
Fast estimation methods for time series models in
state-space form

Alfredo G. Hiernaux
José Casals

Miguel Jerez ∗

July 13, 2005

Abstract

We propose two fast, stable and consistent methods to estimate time se-
ries models expressed in their equivalent state-space form. They are useful
both, to obtain adequate initial conditions for a maximum-likelihood itera-
tion, or to provide final estimates when maximum-likelihood is considered
inadequate or costly. The state-space foundation of these procedures implies
that they can estimate any linear fixed-coefficients model, such as ARIMA,
VARMAX or structural time series models. The computational and finite-
sample performance of both methods is very good, as a simulation exercise
shows.

Keywords: State-space models, subspace methods, Kalman Filter, system iden-
tification

∗corresponding author. Departamento de Fundamentos del Anlisis Econmico II. Facul-
tad de Ciencias Económicas. Campus de Somosaguas. 28223 Madrid (SPAIN). email: mje-
rez@ccee.ucm.es, tel: (+34) 91 394 23 61, fax: 91 394 25 91.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6347805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Most statistical model estimation is based either on least squares (LS) or ma-

ximum likelihood (ML) methods. The LS approach has clear advantages in terms

of computational simplicity, stability and cost. However it is limited in scope, as

it cannot be applied to many relevant models such as those with moving average

terms or multiplicative seasonality. On the other hand ML estimation most often

requires iterative optimization, so its statistical efficiency and wide scope is so-

mewhat balanced with increased instability, complexity and computational cost.

Specifically when modeling high-frequency time series, such as those generated by

financial markets, it may be hard to accept the underlying assumptions and costs

implied by gaussian ML.

As the pros and cons of LS and ML are complementary, many works focus in

devising methods that provide the best of both worlds. For example, Spliid (1983),

Koreisha and Pukkila (1989, 1990), Flores and Serrano (2002) and Dufour and Pe-

lletier (2004) extend ordinary and generalized LS to VARMAX modeling. Also

Lütkepohl and Poskitt (1996) propose a LS-based method to specify and estimate

a canonical VARMA structure. Finally, Francq and Zaköıan (2000) provide weak

GARCH representations that can be estimated via two-stage LS. These methods

avoid iteration when there are no exclusion constraints. Imposing such restrictions

requires an iterative procedure which partially offsets their computational advan-

tage. Also, they are typically devised for specific parameterizations, such as the

VARMAX representations and their implementation in other frameworks is not

trivial.

2

In this paper we propose two fast and consistent algorithms to estimate time

series models written in their equivalent state-space (SS) form. They are useful

either to obtain adequate initial conditions for ML iteration, or to provide final

estimates when ML is considered inadequate or too expensive. Their use of the SS

formulations makes them independent of particular representations, as they can

be applied to any linear fixed-coefficients model with an equivalent SS form.

Both algorithms are based on subspace methods, see Van Overschee and De

Moor (1996), Ljung (1999), or Favoreel et al. (2000). The first method, SUBEST1,

consists of estimating the SS model matrices by solving a weighted reduced-rank

LS problem with defined over a set of subspace regressions. Iteration is required

when the problem has constraints relating the parameters in the standard and

state-space representations of the model. Any exclusion or fixed-value constraint

is treated in the same way. Montecarlo experiments show that this method is: a)

asymptotically equivalent to ML, b) very fast and stable, and c) has a perceptible

bias in comparison with ML when estimating models with moving-average para-

meters. Such bias was to be expected, as it has been reported several times by the

literature, see, e.g., Ansley and Newbold (1980).

The second and more sophisticated procedure, SUBEST2, consists of a gaussian

ML solution to the subspace regressions. Simulations show, as expected, that the

method is more efficient than SUBEST1 and compensates effectively the shortco-

mings noted above. The cost of this improved behavior is a higher computational

load that, however, remains much smaller than that of ML.

3

These results point to a clear segmentation of problems between both algo-

rithms. When the model does not include moving average terms, SUBEST1 is

more adequate. Also it is better to compute initial estimates for ML because

of its speed. On the other hand, SUBEST2 is more efficient as final estimation

procedure. Its performance in estimation is comparable to ML for large gaus-

sian samples and practically identical for non-gaussian samples, while consistently

maintaining a substantial stability and computational advantage.

The structure of the paper is as follows. Section 2 defines the basic notation

and results. Building on these grounds, Section 3 derives the estimation algorithms

and Sections 4 explores their performance in finite samples.

The algorithms described in this article are implemented in a MATLAB tool-

box for time series modelling called E4. The source code of this toolbox is freely

provided under the terms of the GNU General Public License and can be downloa-

ded at www.ucm.es/info/icae/e4. This site also includes a complete user manual

and other materials.

4

2 Notation and basic results

2.1 State-space models

Consider a vector of endogenous outputs, zt, which is related to its past and

to current and past values of a vector of exogenous inputs, ut, through a standard

time series model depending on a vector of constant parameters, θ, to be estimated.

Assume also that this model can be written in an equivalent SS representation.

Definition 2.1 (State-space model):

xt+1 = Φxt + Γut + Ewt

zt = Hxt + Dut + Cvt (1)

where xt ∈ Rn is the state vector, ut ∈ Rr is the vector of inputs and zt ∈ Rm is

an observable output. On the other hand, wt ∈ Rn and vt ∈ Rm are uncorrelated

sequences of errors such that: E(wt) = 0, E(vt) = 0, E(wtw
′
t) = Q, E(vtv

′
t) = R

and E(vtw
′
t) = S.

When wt = vt = et and C = I, (1) is known as an innovations form (Aoki,

1990).

Definition 2.2 (Innovations model):

xt+1 = Φxt + Γut + Eet

zt = Hxt + Dut + et (2)

5

where et ∈ Rm is a vector of errors independent of the initial state and such that

et ∼ iidN(0, Q). Many time series models, including transfer functions, VAR and

VARMAX, can be directly written in the steady-state innovations form (Aoki,

1990; Terceiro, 1990). Also, under weak assumptions any model in the general

form (1) can be written in the innovations form (2) (Casals et al., 1999, Theorem

1).

2.2 The subspace structure

Subspace identification starts from the transformation of a SS model, given

by (1) or (2), into a single linear equation. This equation requires the following

matrices related to the data:

Definition 2.3 (Block-Hankel Matrix): The Block-Hankel Matrix (BHM) is par-

titioned in two blocks called past (p) and future (f). Different choices for both

parameters, p and f , are discussed by Viberg (1995), Peternell et al. (1996) or

Chui (1997). For convenience and simplicity we assume that p = f = i. Under

6

these conditions, the output BHM would be given by:

Z0:2i−1 =

(
Zp

Zf

)
=

(
Z0:i−1

Zi:2i−1

)
=

z0 z1 . . . zT −2i

z1 z2 . . . zT −2i+1

...
...

...

zi−1 zi . . . zT −i−1

zi zi+1 . . . zT −i

zi+1 zi+2 . . . zT −i+1

...
...

...

z2i−1 z2i . . . zT −1

(3)

For short hand notation we denote, for any BHM A: Ap = A0:i−1, Apr = Ai:i,

Af = Ai:2i−1 and Af+ = Ai+1:2i−1. The different subscripts p, pr and f denote,

respectively, the past, the present and the future blocks.

Definition 2.4 (State sequences): The state sequences are defined as,

Xt = (xt xt+1 xt+2 . . . xt+T −2i) (4)

Taking this expression as starting point, past and future state sequences which be-

gin, respectively, with t = 0 and t = i, can be written as Xp = X0 and Xf = Xi.

On the other hand, the following matrices are related to the model parameters:

7

Definition 2.5 (Extended observability matrix):

Oi =

H

HΦ

HΦ2

...

HΦi−1

∈ Rim×n (5)

Definition 2.6 (Deterministic lower block triangular Toeplitz matrix):

Hd
i =

D 0 0 . . . 0

HΓ D 0 . . . 0

HΦΓ HΓ D . . . 0

...
...

...
...

...

HΦi−2Γ HΦi−3Γ HΦi−4Γ . . . D

∈ Rim×r (6)

Definition 2.7 (Stochastic lower block triangular Toeplitz matrices):

Hsw
i =

0 0 0 . . . 0

HE 0 0 . . . 0

HΦE HE 0 . . . 0

...
...

...
...

...

HΦi−2E HΦi−3E HΦi−4E . . . 0

∈ Rim×im (7)

8

Hsv
i =

C 0 0 . . . 0

0 C 0 . . . 0

0 0 C . . . 0

...
...

...
...

...

0 0 0 . . . C

∈ Rim×im (8)

2.3 Subspace regression models

Given the matrices defined above, the basic subspace equation, which derives

from the model in Definition 2.1., is

Zf = OiXi + Hd
i Uf + Hsv

i Vf + Hsw
i Wf (9)

When a model can be written in innovations form, equation (9) collapses to

the simpler form:

Zf = OiXi + Hd
i Uf + Hs

i Ef (10)

where Hs
i is just as (7) but with the identity matrix, I ∈ Rm×m, in the main

diagonal.

Finally, an important algebraic tool to estimate the parameters in (9) or (10)

are the orthogonal projections, defined as:

Definition 2.8 (Ortogonal projections): Given A ∈ Rm×n, the orthogonal pro-

jector into the row space of A is denoted by πA and defined as: πA = A+A,

where A+ is the Moore-Penrose pseudo-inverse of A.

9

In the same way, π⊥
A = I − A+A is the matrix of the projection into the

ortogonal complement of the row space of A.

3 Main results

The basic problem consists of estimating all the parameters in the matri-

ces Φ ∈ Rn×n,Γ ∈ Rn×r, H ∈ Rm×n, D ∈ Rm×r, E ∈ Rn×n, C ∈ Rm×m, Q ∈

Rn×n, S ∈ Rm×n and R ∈ Rm×m of (1) and (2), using the time series of the input

and output variables. In general, these matrices will be nonlinear functions of the

parameters θ in the standard representation.

3.1 Algorithm Subest1

3.1.1 Models in innovations form

As we have seen, a model in the innovations form (2) can be written in subspace

representation as equation (10). By projecting this equation into the row space

of U0:2i−1 (past and future information) and the row space of Zp (only past

information), we obtain,

ZfπU,Zp = OiXiπU,Zp + Hd
i UfπU,Zp (11)

where it is assumed that the noise is incorrelated with the inputs, i.e.,

EfπU,Zp = 0 (12)

10

From (11) we can obtain estimates of the states conditional to the inputs and the

past values of the outputs as,

X̂i = O+
i (ZfπU,Zp − Hd

i UfπU,Zp) (13)

Also from (10) we obtain (see Appendix A):

Zf+ = Oi−1

[
(Φ − EH)Xi + EZpr + (Γ − ED)Upr

]
+ Hd

i−1Uf+ + Hs
i−1Ef+ (14)

Substituting the unknown states by its estimates (13), we can define the expected

value of Zf+ conditioned to matrices X̂i, Zpr, Upr and Uf+ as,

Ẑf+ = E
[
Zf+/X̂i, Zpr, Upr, Uf+

]
(15)

Then, projecting (14) and Ẑf+ into the row space of U and Zp, we can determine

Φ, Γ, E, H and D, by solving the weighted least-squares problem:

min
Φ,Γ,H,D,E

∥∥∥∥Ω−1
2

[
Zf+πU,Z

p+
− Ẑf+πU,Z

p+

]∥∥∥∥2

F

(16)

where ‖ · ‖F denotes de Frobenius norm; Ω is the covariance matrix of the predic-

tion errors which can be expressed as Ω = Zf+π⊥
U,Z

p+
Zf+

′ and where we have

used the fact that π⊥
U,Z

p+
is idempotent.

Note that, Ω contains the future information of the output which is uncorre-

lated with its pasts and the input. Consequently, matrices of the SS model in (9)

are generated by the parameters θ of the original model. In the same way, the

11

matrices of the subspace equations (5)-(8) are generated by those of the SS repre-

sentation. Then, solving (16) requires iterative numerical techniques. Finally, the

error variance, which in innovations form is Q = R = S can be written as:

Q = Hs
i EprπU,Z

p+
Epr

′Hs
i

′ (17)

with

Hs
i EprπU,Z

p+
= ZprπU,Z

p+
− OiX̂i − Hd

i UprπU,Z
p+

(18)

where in both equations i = 1, which is the row space of Zpr. Hence, we just need

to compute the first row of each matrix, Hs
i , Oi and Hd

i . Note that (18) is the

observation equation of the innovations model (2) formulated in subspace form.

3.1.2 General SS models

The procedure described above has a basic limitation, as the SS representation

of some relevant models does not directly conform with (10). Some of these are

Structural Time Series Models (STSM) (see Harvey, 1989; Harvey and Shepard,

1993), VARMAX models with observation errors (Terceiro, 1990) or Stochastic

Volatility Models (Harvey et al., 1994). To apply the previous algorithm to these

models, we devise a two-stage variant of the previous method. Firstly, we estimate

parameters in matrices Φ, Γ, H and D solving the problem,

min
Φ,Γ,H,D

∥∥∥∥Ω−1
2

[
ZfπU,Zp − OiX̂i − Hd

i UfπU,Zp

]∥∥∥∥2

F

(19)

with Ω = Zfπ⊥
U,Zp

Zf
′ and where the state estimates are the same as in the steady

state innovations case. Notice that, whereas in equation (16) E is a decision

12

variable, here parameters in E are to be estimated in the second stage. Taking into

account equation (13), we use state estimates as an approximation of the Kalman

states (Ho and Kalman, 1966), to obtain initial conditions of the Kalman filter gain,

K̃ and the prediction error covariance, B̃ (see Appendix B). Later, we compute the

estimates for E, C, Q, S and R, by solving the constrained optimization problem:

min
E,C,Q,R,S

∥∥∥∥[
K̃

B̃

]
−

[
K̂i

B̂i

]∥∥∥∥2

F

(20)

where K̂i and B̂i must satisfy the covariance equations of the Kalman Filter

propagated i times:

K̂i = (ΦPi|i−1H
′ + ESC′)B̂′

i (21)

Pi+1|i = ΦPi|i−1Φ
′ + EQE′ − K̂iB̂iK̂

′
i

B̂i = HPi|i−1H
′ + CRC′

Loosely speaking, we estimate matrices E, C, Q, R and S such that, (i) they

return K̂i and B̂i propagating i times equations (21), and (ii) closely resembles

the values K̃ and B̃ resulting from the previous stage.

3.2 Algorithm Subest2

This second procedure works exclusively with models in innovations form.

First, as before, we start determining the states as in equation (13). Then we

obtain the matrix Z̃f as the residual resulting from,

Z̃f = Zf − OiX̂i − Hd
i Uf (22)

13

This residual matrix has a particular structure, with one-step-ahead errors in the

first row, two-step-ahead errors in the second row and so on. Then, the gaussian

loglikelihood function can be written as,

log l(θ) = −im

2
log(2π)− i

2
log(|Σ|)− 1

2
tr(Z̃′

fΣ
−1Z̃f) (23)

where, tr(.) is the trace operator and Σ is the Prediction Error (PE) covariance.

Forecasting errors Z̃f are obviously autocorrelated, so Σ has the following struc-

ture,

Σ = OiPiO
′
i + Hs

i (Ii ⊗ Q)Hs
i

′ (24)

where ⊗ is the Kronecker product, Pi is the covariance matrix of the states and Ii

is an i× i identity matrix. There are two components in expression (24): the first

addend in the right-hand-side refers to the error covariance of the states, while the

second addend corresponds to the future output error variance conditional to the

estimated states. Due to the structure of Z̃f , the PE covariance matrix can be

defined as,

Σ =

 Σjk ≡ PEj covariance matrix when j = k

Σjk ≡ cov(PEj, PEk) when j 6= k
j, k = 1, 2, ..., i (25)

where PEl denotes the l-step-ahead prediction errors. To calculate expression (24),

we must propagate i times the Kalman Filter covariance equations (21) as in 3.1.2,

to compute Pi.

The algorithm uses only models in innovations form but this is not a limita-

14

tion. To accommodate non-innovations models, we transform any general SS noise

structure into its innovations representation by using the procedure by (Casals

et al., 1999, Theorem 1). This is possible because a likelihood function is maxi-

mized and then, contrary to Subest1, the innovations variance is jointly estimated

with the other parameters of the model.

4 Montecarlo experiments

We will now analyze the behavior of SUBEST1 and SUBEST2 in finite sam-

ples for several common time series models. Their performance is compared in

terms of precision and computational cost with that of a state-space based ML

algorithm, initialized with the true parameter values.

Tables 1-8 summarize the main results. The simulations in Tables 1-6 refer

to homoskedastic models. They have been computed with 1,000 replications of

each data generating processes. In each replication we obtain a sample of T = 50

and T = 300 observations, after discarding the first 50 values to improve ran-

domization. Tables 7-8 show the results obtained for two common conditional

heteroskedastic models. In this case the sample sizes are increased to T = 500 and

T = 3, 000, so they are representative of the high frequency financial time series

to which these models are typically applied.

Tables 1-3 show the results obtained for three univariate nonseasonal models:

gaussian AR(2), gaussian ARMA(2,1) and an ARMA(2,1) with errors drawn from

a Student-t distribution, and a bivariate VARMA(2,1) model. The AR parameters

15

in all cases have been chosen so that the roots are complex and far from the unit

circle. This avoids ill-conditioning situations due to approximate cancellation of

real AR and MA roots. As could be expected:

1. ML estimates have a clear advantage in precision for gaussian models with

MA terms. However, if the model is pure AR or has nongaussian errors, the

root mean-squared errors (RMSEs) of SUBEST2 estimates are comparable

to those of ML and consistently better than those of SUBEST1.

2. Computational cost of ML is 3.5/4 and 8/10 times the cost of SUBEST1

for T = 50 and T = 300, respectively. On the other hand, the cost of

SUBEST2 consistently doubles the cost of SUBEST1 for T = 50. This

overhead decreases when the sample size grows.

[INSERT TABLES 1-3]

Table 4 shows the results corresponding to a gaussian ARMA(1,1)×(0, 1)s pro-

cess with s = 4 and s = 12, and some redundancy between the regular AR and

MA roots. Note that ML keeps the advantage in precision but its computational

overhead increases the cost of SUBEST1 to 4 and 6 times in the quarterly model

and 9 and 14 times in the monthly model. This is due to the increased dimension

of the state vector, which also affects SUBEST2 comparative performance, and

also to the degradation in conditioning, which typically requires more iterations

to achieve convergence. With T = 300, ML and SUBEST2 provide very similar

results in terms of accuracy.

[INSERT TABLES 4.1-4.2]

16

Tables 5 and 6 show the results obtained with two typical formulations in the

state-space literature: an STSM with a low signal-to-noise ratio and an AR(2)

model with observation errors, respectively. Note in Table 5 that SUBEST1 is the

slower method and its estimates are very imprecise in comparison with those of

SUBEST2 and ML. This is mainly due to the fact that the loss function conside-

red in SUBEST1 does not depend on the errors covariance matrix. Therefore, its

estimates do not take into account the restriction of a null covariance between the

errors in the state and observation equation. The low signal-to-noise ratio makes

the matter worst, as it deteriorates the identificability of the parameters. On the

other hand, SUBEST2 and ML estimates are more precise, as they take into ac-

count this critical independence restriction. Their computational overhead is also

similar, due to the very small number of parameters to be estimated. Results pro-

vided by the Table 6 are rather similar, the main difference being the improvement

of SUBEST1 owing to a higher signal-to-noise ratio.

[INSERT TABLES 5-6]

Finally, Tables 7 and 8 present results that had been obtained for two com-

mon high frequency financial models: Autorregresive Stochastic Volatility (ARSV)

and Generalized Autorregresive Conditional Heteroskedasticity (GARCH) Models.

Results in Table 7 are close to those of an AR model with observation errors

in precision and efficiency. This was expected, because the SS representation of

both models is very similar. However, when the sample size increases, the compu-

tational cost of ML becomes between 5 and 20 times the cost of SUBEST1 and,

between 3 and 12 times the cost of SUBEST2, for T = 500 and T = 3, 000.

17

Table 8 shows that computational disadvantage of ML in the GARCH model is

larger than in the previous case. In particular, computational load of ML becomes

49 times the cost of SUBEST1 and more than 16 times the cost of SUBEST2, for

T = 500. When the sample size increases to T = 3, 000, SUBEST2 becomes the

fastest method. In fact, ML converges 90 and 79 times slower than SUBEST2 and

SUBEST1, respectively, while the three methods remain very similar in terms of

precision.

[INSERT TABLES 7-8]

Both algorithms are very useful with high frequency financial data. Further-

more, usual problems in the ML estimation of multivariate conditional heteroske-

dasticity models, as convergence problems due to ill-conditioning or doubts about

gaussian distribution, strongly suggest the use of these alternative estimation met-

hods.

18

References

Anderson, B. D. O. and Moore, J. B. (1979). Optimal Filtering. Englewood Cliffs
(N.J.): Prentice Hall.

Ansley, C. F. and Newbold, P. (1980). Finite sample properties of estimators for
autorregresion moving average models. Journal of Econometrics, 13:159–183.

Aoki, M. (1990). State Space Modelling of Time Series. Springer Verlag, New
York.

Casals, J., Sotoca, S., and Jerez, M. (1999). A fast stable method to compute the
likelihood of time invariant state space models. Economics Letters, 65(3):329–
337.

Chui, N. L. C. (1997). Subspace Methods and Informative Experiments for System
Identification. PhD thesis, Pembroke College Cambridge.

Dufour, J. M. and Pelletier, D. (2004). Linear estimation of weak varma models
with macroeconomic applications. Technical report, Centre Interuniversitaire
de Recherche en Economie Quantitative (CIREQ), Université de Montréal, CA-
NADA.

Favoreel, W., De Moor, B., and Van Overschee, P. (2000). Subspace state space
system identification for industrial processes. Journal of Process Control, 10:149–
155.

Flores, R. and Serrano, G. (2002). A generalized least squares estimation method
for varma models. Statistics, 36(4):303–316.

Francq, C. and Zaköıan, J. M. (2000). Estimating weak garch representations.
Econometric Theory, 16:692–728.

Harvey, A. C. (1989). Forecasting, structural time series models and th Kalman
Filter. Cambridge University Press.

Harvey, A. C., Ruiz, E., and Shepard, N. (1994). Multivariate stochastic variance
models. Review of Economic Studies, 61:247–264.

Harvey, A. C. and Shepard, N. (1993). Structural Time Series Models, volume 11
of Handbook of Statistics. Elsevier Science Publishers B.V.

Ho, B. and Kalman, R. (1966). Effective construction of linear state-variable
models from input-output functions. Regelungstechnik, 14:545–548.

19

Koreisha, S. G. and Pukkila, T. H. (1989). Fast linear estimation methods for
vector autorregresive moving average models. Journal of Time Series Analysis,
10:325–339.

Koreisha, S. G. and Pukkila, T. H. (1990). A generalized least-squares approach
for estimation of autorregresive moving-average models. Journal of Time Series
Analysis, 11:139–151.

Ljung, L. (1999). System Identification, Theory for the User. PTR Prentice Hall.

Lütkepohl, H. and Poskitt, D. S. (1996). Specification of echelon form varma
models. Journal of Business and Economic Statistics, 14(1):69–79.

Peternell, K., Sherrer, W., and Deistler, M. (1996). Statistical analysis of novel
subspace identification methods. Signal Processing, 52:161–177.

Spliid, H. (1983). A fast estimation method for the vector autoregressive moving
average model with exogenous variables. Journal of the American Statistical
Association, 78(384):843–849.

Terceiro, J. (1990). Estimation of Dynamics Econometric Models with Errors in
Variables. Springer-Verlag, Berlin.

Van Overschee, P. and De Moor, B. (1996). Subspace Identification for Linear
Systems: Theory, Implementation, Applications. Kluwer Academic, Dordrecht,
The Netherlands.

Viberg, M. (1995). Subspace-based methods for the identification of the linear
time-invariant systems. Automatica, 31(12):1835–1852.

20

A Appendix

From equation (10), displacing time subscripts, we obtain:

Zf+ = Oi−1Xi+1 + Hd
i−1Uf+ + Hs

i−1Ef+ (26)

Note that Zf+ includes only the future block information while Zf integrates the

present and the future. On the other hand, from the state equation in (2), we can

express:

xt = (Φ − EH)ixt−i +
i−1∑
j=0

(Φ − EH)j[Ezt−1−j + (Γ − ED)ut−1−j] (27)

which can be written in subspace form as,

Xi = (Φ − EH)iXp + Ψi(Φ − EH, E)Zp + Ψi(Φ − EH, Γ − ED)Up (28)

where Ψi(A, B) = [Ai−1B Ai−2B ... AB B]. Again, displacing time in-

dices, we write:

Xi+1 = (Φ − EH)i+1Xp++Ψi+1(Φ − EH, E)Z+
p +Ψi+1(Φ − EH, Γ − ED)U+

p (29)

or, in the same way,

Xi+1 = (Φ − EH)Xi + EZpr + (Γ − ED)Upr (30)

21

Finally, substituting (30) into (26), we obtain:

Zf+ = Oi−1[(Φ − EH)Xi + EZpr + (Γ − ED)Upr] + Hd
i−1Uf+ + Hs

i−1Ef+ (31)

B Appendix

To obtain the equations of the Kalman Filter (Anderson and Moore, 1979) in

subspace form, we must propagate i times equations:

Ẑpr = HX̂i|i−1 + DUpr (32)

X̂i+1|i = ΦX̂i|i−1 + ΓUpr + Ki(Zpr − Ẑpr) (33)

Ki = (ΦPi|i−1H
′ + ESC′)B′

i (34)

Pi+1|i = ΦPi|i−1Φ
′ + EQE′ − KiBiK

′
i (35)

Bi = HPi|i−1H
′ + CRC′ (36)

From (33) we get K̃i, an approximation for Ki as,

K̃i =
(X̂i+1 − ΓUprπU,Z

p+
)

Z̃pr

(37)

where the state sequence is computed as,

X̂i+1 = O+
i−1(Zf+πU,Z

p+
− Hd

i−1Uf+πU,Z
p+

) (38)

and Z̃pr as,

Z̃pr = ZprπU,Zp − OiX̂i − Hd
i UprπU,Zp (39)

22

Finally, an approximation of Bi is obtained as,

B̃i = Z̃prZ̃
′
pr

23

C Appendix

Table 1: Univariate nonseasonal models with gaussian errors.

Table 1.1 AR model (1-.4B+.3B2)Zt = at; at ∼ iidN(0, 1).

Method SUBEST1 SUBEST2 ML
T True values -.4 .3 1.0 -.4 .3 1.0 -.4 .3 1.0

Average -.384 .305 -.931 -.367 .284 .943 -.386 .304 .946
50 Std. Dev .144 .144 .203 .136 .127 .198 .137 .135 .196

RMSE1 .145 .144 .203 .136 .127 .198 .138 .135 .196
Time 100% 216% 416%
Average -.397 .306 -.985 -.391 .296 .992 -.395 .300 .994

300 Std. Dev .059 .066 .083 .053 .055 .082 .053 .056 .082
RMSE1 .059 .066 .083 .054 .055 .083 .054 .065 .083
Time 100% 219% 1040%

Table 1.2 ARMA model (1-.4B+.3B2)Zt = (1− .8B)at; at ∼ iidN(0, 1).

Method SUBEST1 SUBEST2 ML
T True values -.4 .3 -.8 1.0 -.4 .3 -.8 1.0 -.4 .3 -.8 1.0

Average -.360 .289 -.671 1.020 -.307 .297 -.680 1.000 -.354 .313 -.800 .927
50 Std. Dev .305 .175 .291 .214 .222 .141 .254 .206 .196 .141 .197 .194

RMSE1 .308 .175 .318 .215 .240 .141 .281 .206 .201 .141 .197 .207
Time 100% 244% 359%
Average -.398 .309 -.763 1.014 -.389 .304 -.805 1.001 -.395 .304 -.797 .993

300 Std. Dev .085 .071 .061 .085 .066 .061 .074 .083 .066 .061 .050 .081
RMSE1 .085 .072 .072 .086 .067 .062 .074 .083 .066 .062 .050 .081
Time 100% 230% 881%

1RMSE is the root mean-squared error. The smallest RMSEs are underlined. ML algorithm
is initialized with the true parameter values.

24

Table 2: Univariate nonseasonal models with t-student errors.

Table 2.1: ARMA model (1-.4B+.3B2)Zt = (1− .8B)at; at ∼ iid t with 400 d.f.

Method SUBEST1 SUBEST2 ML
T True values -.4 .3 -.8 1.0 -.4 .3 -.8 1.0 -.4 .3 -.8 1.0

Average -.379 .294 -.688 1.037 -.293 .300 -.691 1.016 -.364 .316 -.808 .942
50 Std. Dev .292 .174 .280 .218 .207 .145 .238 .207 .183 .143 .182 .195

RMSE1 .292 .174 .302 .221 .233 .145 .262 .208 .186 .144 .182 .203
Time 100% 246% 357%
Average -.399 .309 -.764 1.019 -.390 .303 -.808 1.006 -.398 .302 -.802 .998

300 Std. Dev .087 .070 .061 .086 .064 .060 .074 .085 .067 .060 .053 .084
RMSE1 .087 .071 .071 .088 .065 .060 .075 .085 .067 .060 .053 .084
Time 100% 230% 866%

Table 1.2: ARMA model (1-.4B+.3B2)Zt = (1− .8B)at; at ∼ iid t with 8 d.f.

Method SUBEST1 SUBEST2 ML
T True values -.4 .3 -.8 1.3 -.4 .3 -.8 1.3 -.4 .3 -.8 1.3

Average -.383 .282 -.691 1.009 -.282 .294 -.678 .991 -.354 .308 -.802 .919
50 Std. Dev .315 .193 .314 .256 .211 .161 .255 .247 .193 .155 .207 .238

RMSE1 .315 .194 .332 .411 .242 .161 .283 .419 .199 .155 .207 .475
Time 100% 245% 368%
Average -.401 .307 -.765 1.007 -.385 .302 -.808 .994 -.399 .300 -.803 .986

300 Std. Dev .088 .072 .065 .059 .066 .061 .076 .057 .068 .061 .053 .055
RMSE1 .088 .072 .074 .328 .068 .061 .077 .341 .068 .061 .053 .349
Time 100% 230% 862%

1RMSE is the root mean-squared error. The smallest RMSEs are underlined. ML algorithm
is initialized with the true parameter values.

25

Table 3: Bivariate VARMA model with gaussian errors.

(
1− .7B + .6B2 0

0 1− 1.3B + .5B2

) (
z1t

z2t

)
=

(
1− .3B −.9B

.6B 1− .8B

) (
a1t

a2t

)
(

a1t

a2t

)
∼ iidN

[(
.0
.0

)
,

(
.07 .02
− .05

)]

Table 3.1: Results with sample size T = 50

True values -0.70 -1.30 0.60 0.50 -0.30 0.60 -0.90 -0.80 0.07 0.02 0.05
Method SUBEST1

Average -.671 -1.359 .545 .557 -.267 .431 -.743 -.736 .079 .019 .056
Std. Dev .137 .233 .104 .177 .200 .104 .177 .246 .017 .010 .014
RMSE1 .140 .240 .118 .186 .203 .199 .236 .254 .019 .010 .015
Time 100%

Method SUBEST2
Average -.620 -1.297 .519 .500 -.331 .453 -.832 -.776 .073 .017 .056
Std. Dev .133 .202 .100 .151 .208 .121 .195 .251 .016 .010 .014
RMSE1 .155 .202 .129 .151 .210 .190 .207 .252 .017 .010 .015
Time 348%

Method MVE
Average .686 -1.279 .589 .492 -.344 .654 -1.024 -.872 .060 .017 .044
Std. Dev .087 .188 .072 .155 .175 .122 .179 .220 .014 .010 .010
RMSE1 .088 .189 .073 .155 .181 .134 .218 .231 .017 .010 .012
Time 398%

1RMSE is the root mean-squared error. The smallest RMSEs are underlined. ML algorithm
is initialized with the true parameter values.

26

Table 3.2: Results with sample size T = 300

True values -.70 -1.30 .60 .50 -.30 .60 -.90 -.80 .07 .02 .05

Method SUBEST1
Average -.693 -1.318 .580 .515 -.276 .536 -.829 -.769 .074 .021 .054
Std. Dev .044 .090 .038 .072 .084 .044 .063 .099 .006 .004 .005
RMSE1 .045 .092 .043 .074 .087 .078 .094 .104 .008 .004 .006
Time 100%

Method SUBEST2
Average -.686 -1.311 .584 .506 -.289 .585 -.902 -.831 .072 .019 .053
Std. Dev .039 .076 .034 .062 .070 .043 .072 .089 .006 .004 .005
RMSE1 .042 .076 .037 .062 .070 .046 .072 .095 .006 .004 .006
Time 342%

Method MVE
Average -.699 -1.296 .599 .500 -.305 .605 -.913 -.804 .069 .019 .049
Std. Dev .030 .055 .023 .047 .062 .035 .052 .066 .006 .004 .004
RMSE1 .030 .055 .023 .047 .062 .035 .054 .066 .006 .004 .004
Time 744%

1RMSE is the root mean-squared error. The smallest RMSEs are underlined. ML algorithm
is initialized with the true parameter values.

27

Table 4: Univariate seasonal ARMA models.

Table 4.1 ARMA model (1− .4B)Zt = (1− .7B)(1− .8B4)at; at ∼ iidN(0, 1.0)

Method SUBEST1 SUBEST2 ML
T True Values -.4 -.7 -.8 1.0 -.4 -.7 -.8 1.0 -.4 -.7 -.8 1.0

Average -.208 -.390 -.456 1.174 -.294 -.632 -.742 .924 -.325 -.683 -.835 .886
50 Std. Dev .557 .585 .168 .336 .486 .482 .153 .210 .325 .329 .169 .204

RMSE1 .589 .662 .383 .378 .497 .486 .163 .223 .333 .330 .173 .233
Time 100% 217% 441%
Average -.302 -.591 -.575 1.228 -.365 -.665 -.826 .998 -.388 -.695 -.800 .990

300 Std. Dev .250 .267 .088 .153 .147 .132 .064 .084 .146 .122 .042 .080
RMSE1 .269 .288 .242 .275 .151 .136 .069 .084 .146 .122 .042 .081
Time 100% 227% 577%

Table 4.2 ARMA model (1− .4B)Zt = (1− .7B)(1− .8B12)at; at ∼ iidN(0, 1.0)

Method SUBEST1 SUBEST2 ML
T True values -.4 -.7 -.8 1.0 -.4 -.7 -.8 1.0 -.4 -.7 -.8 1.0

Average -.240 -.493 -.368 1.133 -.244 -.592 -.494 1.073 -.324 -.680 -.807 .902
50 Std. Dev .525 .534 .128 .261 .438 .454 .042 .237 .331 .323 .224 .225

RMSE1 .549 .572 .450 .293 .465 .467 .309 .248 .340 .323 .224 .245
Time 100% 436% 907%
Average -.374 -.661 -.586 1.221 -.379 -.691 -.812 .970 -.386 -.694 -.805 .984

300 Std. Dev .221 .201 .055 .118 .143 .128 .073 .084 .135 .112 .048 .083
RMSE1 .222 .205 .221 .250 .145 .128 .074 .089 .136 .112 .048 .085
Time 100% 371% 1415%

1RMSE is the root mean-squared error. The smallest RMSEs are underlined. ML algorithm
is initialized with the true parameter values.

28

Table 5: Structural time series model.

(
Tt+1

∆t+1

)
=

(
1 1
0 1

) (
Tt

∆t

)
+

(
0
1

)
ηt

yt = (1 0)

(
Tt

∆t

)
+ εt;

(
ηt

εt

)
∼ iidN

[(
.0
.0

)
,

(
.01 0
0 10

)]
Method SUBEST1 SUBEST2 MVE

T True values .01 10 .01 10 .01 10
Average 1.475 8.473 .022 9.726 .035 9.911

50 Std. Dev 3.275 3.693 .040 1.406 .069 1.005
RMSE1 3.588 3.996 .042 1.432 .073 1.009
Time 395% 125% 100%
Average .461 10.137 .019 9.977 .008 10.005

300 Std. Dev .146 .476 .014 .443 .006 .409
RMSE1 .474 .495 .017 .444 .007 .409
Time 273% 100% 171%

Table 6: AR model with observation errors.

(1− 1.5B + .8B2)z∗t = at; zt = z∗t + vt;(
at

vt

)
∼ iidN

[(
.0
.0

)
,

(
1.0 0
0 .5

)]
Method SUBEST1 SUBEST2 ML

T True values -1.5 .8 1.0 .5 -1.5 .8 1.0 .5 -1.5 .8 1.0 .5
Average -1.425 .731 1.030 .558 -1.429 .737 1.045 .558 -1.480 .781 .954 .469

50 Std. Dev .268 .187 .219 .202 .133 .121 .195 .177 .128 .119 .185 .169
RMSE1 .278 .199 .221 .210 .150 .136 .200 .186 .129 .121 .190 .172
Time 100% 204% 142%
Average -1.491 .798 .990 .530 -1.487 .788 1.010 .513 -1.492 .793 .997 .493

300 Std. Dev .057 .046 .081 .069 .047 .044 .075 .057 .044 .043 .072 .055
RMSE1 .057 .047 .081 .076 .048 .046 .076 .059 .045 .043 .072 .056
Time 100% 193% 253%

1RMSE is the root mean-squared error. The smallest RMSEs are underlined. ML algorithm
is initialized with the true parameter values.

29

Table 7: ARSV(1) model in State Space form.

xt+1 = .95xt + wt

zt = xt + 1.5ut + vt

E(wt) = E(vt) = 0, E(wtw
′
t) = .5, E(vtv

′
t) = 2, E(wtv

′
t) = 0

Method SUBEST1 SUBEST2 ML
T True values .95 1.50 .50 2.0 .95 1.50 .50 2.0 .95 1.50 .50 2.0

Average .932 1.414 .469 1.999 .945 1.453 .462 2.010 .933 1.471 .517 1.990
500 Std. Dev .164 1.105 .146 .087 .041 1.027 .146 .085 .034 .460 .104 .077

RMSE1 .165 1.108 .149 .087 .041 1.028 .151 .085 .038 .461 .106 .078
Time 100% 168% 476%
Average .949 1.485 .497 2.001 .949 1.484 .494 2.004 .948 1.490 .501 2.000

3000 Std. Dev .010 .202 .044 .032 .009 .198 .044 .033 .009 .183 .038 .031
RMSE1 .010 .202 .044 .032 .009 .198 .044 .033 .009 .184 .039 .031
Time 100% 166% 2059%

Table 8: GARCH(1,1) model in ARMA form.

yt = εt with εt ∼ iid(0, 1.0) and εt|Ωt−1 ∼ iidN(0, σ2
t) where

ε2
t = 1.0 + 1−.80B

1−.97B
vt with vt = ε2

t − σ2
t

Method SUBEST1 SUBEST2 ML
T True values 1.0 -.97 -.80 1.0 -.97 -.80 1.0 -.97 -.80

Average 1.005 -.972 -.798 1.002 -.969 -.814 1.209 -.952 -.784
500 Std. Dev .766 .025 .076 .760 .031 .106 1.420 .037 .056

RMSE1 .766 .025 .076 .760 .031 .107 1.436 .041 .058
Time 100% 298% 4916%
Average .999 -.974 -.810 .998 -.972 -.809 1.095 -.967 -.797

3000 Std. Dev .314 .015 .052 .313 .019 .068 .880 .011 .018
RMSE1 .314 .016 .053 .313 .019 .069 .885 .011 .018
Time 114% 100% 9047%

1RMSE is the root mean-squared error. The smallest RMSEs are underlined. ML algorithm
is initialized with the true parameter values.

30

