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Abstract

In this paper we estimate the business telecommunications demands for lo-
cal, intra-LATA and inter-LATA services, using US data from a Bill Harvesting R©
survey carried out during 1997. We model heterogeneity, which is present
among firms due to a variety of different business telecommunication needs,
by estimating normal heteroskedastic mixture regressions. The results show
that a three-component mixture model fits the demand for local services well,
while a two-component structure is used to model intra-LATA and inter-LATA
demand. We characterize the groups in terms of their differences among the
coefficients, and then use Retina to perform automatic model selection over
an expanded candidate regressor set which includes heterogeneity parameters
as well as transformations of the original variables.

Our models improve substantially the in-sample fit as well the out-of-
sample predictive ability over alternative candidate models. Retina suggests
that the final demand specification should include telephone equipment vari-
ables as relevant regressors. On the other hand, the output of the firm, as well
as its physical extension, have second order, yet significant effects on the de-
mand for telecommunication services. Estimated elasticities are different for
the three demands but always positive for access form (single-line or private
network).
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1 Introduction

The literature on econometric modeling of Telecommunications demand is very ex-
tensive1. The theoretical framework for the modeling is well known and goes back
to Artle and Averous [1], Von Rabenau and Stahl [19] and Rohlfs [14] among others.
Empirical studies on business demand are not so abundant. A relevant contribution
in this field is the pioneering work of Ben-Akiva and Gershenfeld [2] which focuses
on the demand for different types of access lines2. Another example is the prelimi-
nary study of Pérez-Amaral and Marinucci [12] where they estimated the demand
for local telecommunications services by using Bill Harvesting R© data3.

A theoretical framework on business telecommunication demand is provided by
Taylor [15]. He proposes a valuable approach, as he recognized that the standard
approach, which considers telecommunications as an input of a production function
along with capital and labor, is often too inflexible to describe the variety of different
telecommunications needs existing among firms. He points out that determinants of
demand may vary widely depending on the size, the activity sector and the localiza-
tion of the business. Since there is an immense diversity of communications needs,
the presence of unaccounted heterogeneity in the data can pose serious problems in
the modeling process, and becomes an important empirical question.

In this study we are interested in estimating a model for predicting the de-
mand for short distance (local), medium distance4 (intra-LATA) and long distance
(inter-LATA) business telecommunication services. We use a cross-section of US
telecommunications data from the Bill Harvesting R© survey, carried out in 1997.

Modeling business telecommunications demand is not a trivial matter. We face
two difficulties: 1) prices charged for the services are not available 2) heterogeneity is
present among firms. In this situation, we do not have a precise, a priori hypothesis
about the functional form to adopt for the demand equation.

We estimate the parameters of the unknown relationship which relates demand
with available information by using 1) the model search features of Retina5 to
select useful variables for prediction and 2) the clustering flexibility of the finite

1 Many residential demand studies use Bill Harvesting R© or other customer databases. For
example Kridel, Rappoport and Taylor [4] presented a study of carrier choice, usage demand and
price elasticities for the residential intra-LATA toll market using Bill Harvesting R© data. Taylor
[16] estimated competitive cross-price elasticities for the residential intra-LATA toll market with
a two stage approach and using Bill Harvesting R© data. Levy [6] estimated a semi-parametric
generalized additive Tobit model of residential Intra-LATA Telephone demand on a cross-section
of residential telephone consumers across 28 states using bills of GTE customers.

2 They consider a discrete choice framework to estimate price elasticities with respect to the
choice of different telephone systems (PBX, Centrex).

3 Bill Harvesting R© is a proprietary methodology of PNR & Associates (now TNS Telecoms).
4 Medium and long distance calls are defined on the basis of communications between LATA’s.

LATA stands for “Local Access and Transport Area”. A toll call from one point within a LATA
to another point within the same LATA is an intra-LATA or medium distance toll call. Similarly
a toll call from a point within a LATA to a different LATA is an inter-LATA call or long distance
toll call.

5 Retina: RElevant Transformations of the Inputs Network Approach.
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mixture modeling framework, in order to identify sources of heterogeneity in the
data.

Retina (Pérez-Amaral, Gallo and White[11]) is an automated model selection
tool which allows flexibility in specification, suggesting which variables or transfor-
mations can be used to approximate the unknown functional relationship. Its goal is
to provide a model with improved predictive ability over alternative specifications.

Recent developments in finite mixture modeling (McLachlan and Peel [9]) have
provided techniques to partition the data into homogeneous subgroups and perform
regression analyses within each group simultaneously. Thus, by using Retina in
combination with finite mixture models, we overcome the difficulties generated in
1) demand model specification and 2) accounting for heterogeneity among firms.

The rest of the paper is organized as follows: Section 2 discusses Taylor’s ap-
proach in modeling Business Toll Telecommunications Demand, Section 3 describes
the data, Section 4 discusses the empirical model and estimation techniques, Section
5 presents the results and Section 6 contains the conclusions. The appendixes follow.

2 Business Toll Demand Modeling

A formal discussion of business telecommunications demand, considered as a produc-
tion input within a classical microeconomic framework, may be found in textbooks.
Demand, considered as a function of the price and other production factors, is de-
rived from the firm’s cost minimization conditions. Nonetheless, due to limitations
in the available information, this approach is not always useful in empirical research,
as in our case.

Rather than formally discuss a microeconomic model of business telecommunica-
tions demand, we will follow an informal approach which recognizes the differences
among firms in satisfying their communications needs and uses. For this purpose we
will summarize the framework used by Taylor [16], which is the starting point of our
empirical analysis. Taylor divides firms into four generic types, where each type is
referred to as a stage. Firms need telecommunications services not only for external
communications but also for internal use, and this need increases nonlinearly with
the size, the location and the activity sector of the firm.

Stage I firms are assumed to operate from a single location and are supposed
to have mostly external communications needs. Moreover, they are supposed to
access the public network with few single-line telephone systems. These are usually
small-sized businesses.

Stage II firms have multiple locations in the same locality. As the number of
employees increases, the internal use of telecommunications grows. Increased usage
can be accommodated by increasing the number of lines until the purchase (or rental)
of a small private network is considered. Nonetheless, purchasing toll services in bulk
(WATS, 800 service)6 is frequent as a valid alternative to such a decision and small

6 WATS: Wide Area Telephone Service is a flat rate or a special rate pay-by-the-minute (mea-
sured) billing for a specified calling area. It is usually offered by companies that buy transmission
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Table 1: Summary of an a priori segmentation scheme proposed by Taylor†.
Stage I Stage II to IV

Locations Single location Multiple locations,
same locality,

or in multiple localities
Type of Usage External Internal +External

Type of access Multiple Single Lines Multiple Single Lines
(Business Lines, Private Network
Hunting Lines) (PBX, Centrex,

WATS, 800 service )
Sociodemographic The number of Employees Number of employees

characteristics may be low with respect larger than in stage I
to firms that are not in stage I

†Based on Taylor [15].

businesses usually still work well with multiple single-lines.

Stage III firms in general tend to be larger than stage I and II firms. But the
main difference is that they have multiple locations in different localities. Stage III
firms may switch from multiple single lines to private networks if there is a sufficient
volume of communications between fixed points. In this stage access to the public
network is still required for external needs, while internal needs are largely satisfied
by the private network. Nonetheless, frequently so-called smart switches are used
to select the lowest cost for external or internal calls. This is done by routing a call
over the private network and then into the corresponding local destination area.

Finally stage IV firms include multinational corporations located in multiple
countries. The main difference with respect to previous stages is their bigger size
and the fact that their workers are spread across different states and countries. Thus
International Toll services are required for business activity.

3 The Data

Our Bill Harvesting R© database consists of a cross-section of 13766 firms from south-
eastern United States. The data has been provided by PNR & Associates (Philadel-
phia, PA) which today forms part of the TNS group.

Since the AT&T divestiture (January 1st, 1984) local telecommunication services
in this area are provided in a quasi-monopoly regime by Bell South. In fact 78% of
the firms were served by this company and the rest by other independent carriers.

Prior to the model specification a large preprocessing stage was undertaken.
Some details are reported in the appendix. Only 4463 observations had complete

capacity in bulk from other network operators in order to re-offer it to customers at lower prices.
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data and our effective sample size varies along with the type of demand. Local
services are used by all the firms, while intra-LATA and inter-LATA services have
been used by only 29% and 27% of the businesses, respectively. Descriptive analyses
and estimations were carried out twice, first just by using complete records, and
second by using the total data set of 13743 observations where missing information
is imputed with a method suggested by Troyanskaya et al. [18]. In general, results
over the imputed data set differed slightly with respect to the results obtained over
the reduced record set, and the results are not reported here.

After this preprocessing stage and prior to any estimation, outliers were detected
by using an automated procedure proposed by Peña and Yohai [10]. The procedure
is implemented in Retina Winpack7 and may be run optionally by the user prior to
model selection. This reduced the effective sample size of local demand to 4391 firms,
while 1261 were kept for intra-LATA demand and 1176 for inter-LATA demand.
Also, prior to estimation, data have been rescaled to avoid the potential negative
effect of different orders of magnitude.

Since visual inspection of the histograms and empirical densities of the origi-
nal variables shows highly skewed distributions, log transforms have always been
considered. Logarithmic transformations tend to normalize the data, stabilize the
variances and limit the potential negative effect of the most extreme observations.
Variables with zero values, such as the number of lines, have all been augmented by
a unit constant prior to transformations. We also consider log − ratio transforms,
by using the log of the ratio between the original variables (BUS, HUN, PBX, CTX,
SAL, EMT, SQFT) and the number of workers employed locally EMH. Worker per
capita forms, obtained by dividing the variables by the number of employees work-
ing locally EMH, have been chosen since they are common in the literature and
reduce heteroskedaticity. A description of the original variables is reported in Table
2, while descriptive statistics of their transformations over the complete data sample
are given in Table 3 and Figure 1.

The data include four types of variables:

Access form variables: There are four different types of lines, which may be
grouped into two categories. The first includes single-line access equipment:
business lines (BUS ) and hunting lines (HUN ). The second group represents
private network access forms and includes PBX trunks (PBX ) and Centrex
lines (CTX ).

Socio-demographic variables: These are the population habitat size (POP) and
the States (AL, GA, KY, LA, MS, NC, SC, TN ).

Business size and dispersion related variables, such as the number of employees
in the whole business (EMT ), the number of workers employed locally (EMH )
and the physical extension of the firm (SQFT ).

Output variable: the sales of the firm (SAL).

7 See Appendix B and [8] for more details about Retina Winpack.
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Table 2: 1997 Bill Harvesting Data: Variable definitions†.

Variable Description
LOCAL Total expenditures for local calls in dollars
INTRA Total duration of intra-LATA calls in minutes
INTER Total duration of inter-LATA calls in minutes
BUSa Number of Business Lines +1
HUN b Number of Hunting Lines +1
PBX c Number of PBX Trunks +1
CTX d Number of Centrex Lines +1

SAL Sales expressed in dollars
EMT Total number of employees
EMH Number of employees working locally
SQFT Square footage of the firm
POP Population habitat size

IMILLS Inverse of the Mills ratio (see Appendix B)
STAGE I Binary variable= 1 if Firm is at stage I
BSOUTH Binary variable= 1 if Service is provided by Bell South

AL Binary variable= 1 if Alabama
GA Binary variable= 1 if Georgia
KY Binary variable= 1 if Kentucky
LA Binary variable= 1 if Lousiana
MS Binary variable= 1 if Missouri
NC Binary variable= 1 if North Connecticut
SC Binary variable= 1 if South Connecticut
TN Binary variable= 1 if Tennessee
FL Binary variable= 1 if Florida (omitted to avoid perfect colinearity)

†Source: PNR & Associates, Philadelphia, PA, now TNS.

a. BUS : Business Lines. A service that handles all the routine business telecommunications appli-
cations. Data transmissions for fax, email, and Internet access are usually charged at the
same price as voice calls.

b. HUN : Hunting Lines. A service that bundles all the telephone lines (2 lines up) in the same
location to be easily accessible with a single number (pilot number).

c. PBX : PBX Trunks. Connections between an organization’s PBX (Private Branch eXchange) and
the outside telephone network. Telephone users within the customer’s company share these
connections for making and receiving calls outside the company’s network.

d. CTX : Centrex Lines. (Central office exchange service) is a service which is functionally equivalent
to the PBX and consists of up-to-date phone facilities offered by the telephone company
to business users so they do not need to purchase the equipment. The Centrex service
effectively partitions part of its own centralized capabilities among its business customers.
The customer is spared the expense of having to keep up with fast-moving technology
changes and the phone company has a new set of services to sell. In many cases, Centrex
has now replaced the private branch exchange. The central office has effectively become
a huge branch exchange for all of its local customers. In most cases, the Centrex service
provides customers with as much if not more control over the services they have than PBX
did.

Notice that Business and Hunting Lines can be considered as single line access forms while PBX
and Centrex services are network access forms. 6



Table 3: Univariate statistics of the log of each variable per worker.

Mean Std. Dev. Median Kurtosis Skewness n
ln(LOCAL/EMH ) 2.556 1.049 2.613 .580 −.135 4391
ln(INTRA/EMH ) 1.296 1.767 1.428 .001 −.416 1261
ln(INTER/EMH ) 2.538 1.573 2.693 −.108 −.322 1176
ln(BUS/EMH ) −1.614 1.864 −1.061 .147 −.898 4391
ln(HUN/EMH ) −1.919 1.447 −1.609 .820 −.691 4391
ln(PBX/EMH ) −2.490 1.354 −2.398 .207 −.323 4391
ln(CTX/EMH ) −2.259 1.699 −2.197 .294 −.295 4391
ln(SAL/EMH ) 1.249 3.499 .182 .280 1.176 4391
ln(EMT/EMH ) .249 .706 .000 21.277 4.217 4391
ln(SQFT/EMH ) 5.928 1.235 5.968 1.399 −.273 4391
ln(POP) 1.193 2.273 9.770 −1.461 .210 4391

Figure 1: Descriptive statistics, by the stage of the firm.
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Table 4: Demand by type of access: Firms that demand intra-LATA and inter-LATA
calls do not own private networks (Vertical %).

Firm demands Firm demands
only Local calls intra-LATA or

inter-LATA calls
Type of access (n = 2921) (n = 1542)

Firm owns Multi-Single Lines 80.2% 99.6%
(Business or Hunting lines)
Firm owns Private Networks 39.3% .7%
(PBX or Centrex)

Bivariate plots of the transformed variables, reported in Figures 2, 3 and 4,
announce that the modeling problem is difficult especially because of non-linearities
and heterogeneity among businesses with respect to telecommunications services.

From these plots we find initial evidence of heterogeneity. In some cases as
for local demand (Figure 2), two moderately separated clusters may be visually
identified. Clusters appear upward sloping and as elliptic shaped clouds, suggesting
that they may have different mean and covariance structures. Demand for medium
and long distance services (Figures 3 and 4) also accounts for evident heterogeneity
especially with respect to the firm output proxied by sales (SAL). Nonetheless for
the remaining variables, heterogeneity is visually much less evident and statistical
methods are necessary to assess its existence.

A new variable called Stage I was also added to the analysis. This is a dummy
variable which proxies Taylor’s definition of Stage I firms, i.e., single location busi-
nesses with only a single-line access form used for external communication purposes8.
This variable is used to show some other interesting facts as reported in Figure 1.
For example note that stage I firms are on average smaller, in terms of number
of employees and their physical extension, than firms at higher stages, although to
some extent this also depends on the nature of the markets sold in. Moreover, Figure
1 shows that intra-LATA and inter-LATA services are almost exclusively demanded
by stage I firms. On the contrary, bigger or multiple-location firms that are not at
stage I make a more intensive use of local services. Yet this seems plausible only if
such firms use some “smart” switches which route non-internal calls over the private
network and then into the appropriate local area through a local call.

Finally, from Table 4 we also learn that firms using intra-LATA or inter-LATA
services use almost exclusively single-line equipment access forms (99.6%). In other
words the private network dimension will not play a relevant role in the explanation
of medium and long distance calls and may be dropped without losing relevant
information during the modeling process. We conclude this by bearing in mind that

8 Location conditions have been inferred from the difference between the number of employees
working locally (EMH ) and the total number of employees of the company (EMT ). If the difference
EMT − EMH = 0 then the firm is assumed to be single location.
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Figure 2: Bivariate plots of Local demand vs. explanatory variables. (The LR-prefix
stands for the log transformation of the original variables divided by EMH ).

Two or more groups are visible. Heterogeneity patterns with respect to the demand for local
services are visible for the number of Business Lines (LRBUS) and sales (LRSAL).

Figure 3: Bivariate plots of intra-LATA demand vs. explanatory variables. (The
LR-prefix stands for the log transformation of the original variables divided by
EMH ).

Intra-LATA services show a possible two-cluster structure especially with respect to sales (LRSAL).
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Figure 4: Bivariate plots of inter-LATA demand vs. explanatory variables. (The
LR-prefix stands for the log transformation of the original variables divided by
EMH ).

Heterogeneity in inter-LATA services is not so evident. Non-linearities emerge from LREMT, the
log of the ratio between the total number of employees (EMT ) and the number of workers employed
locally (EMH ).

telecommunication services demanded by the firms are related with the dimension
of the firm and its location.

4 Empirical Model and Estimation

4.1 Demand Specification

We start with the following telecommunication demand function.

D = f(prices, employees, locations, markets sold in, output, equipment) + error

However lack of data imposes some constraints on this specification. No prices
are available, nor is there a direct measure of the number of locations of the business
or the markets sold in. These limitations call for a reformulation of the demand.
Thus we assume the function to be:

D = f(employees, physical extension, output,
equipment, socio-demographic variables) + error

Relevant information is available on the number of employees, which can give an
idea about the dimension of internal communication needs. Output is proxied by
sales although its relevance is unclear a priori, since phone calls are made by people
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and sales may influence the volume of calls only if the business involves a heavy
tele-marketing activity. Sociodemographic variables such as the population habitat
size and the geographic region are included in the general specification as well, but
their effects are uncertain. The signs of the coefficients are expected to be positive
in the case of the number of different types of lines and the relative size of the firm.
Demand variables are defined as follows:

ln(LOCAL/EMH): log − ratio of the expenditures in local calls in dollars per
worker.

ln(INTRA/EMH): log−ratio of the duration of intra-LATA calls in minutes per
worker.

ln(INTER/EMH): log− ratio of the duration of inter-LATA calls in minutes per
worker.

Our analysis begins with the specification of a Benchmark Linear Model (BLM).
The BLM is defined as the specified model without using any particular selection
strategy. This is the natural starting point because the BLM represents a lower
bound for evaluating the performance of our methodology. Recall that our final
objective is specification of a Useful Representative Model or URM, which repre-
sents the function finally adopted for a representative firm. Its functional form is
unknown a priori, however we would like 1) an improved predictive ability over the
corresponding BLM, and 2) a parsimonious representation of the phenomena of in-
terest. As starting point, we adopt a double logarithmic specification for the BLM,
which expresses telecommunications demand in per worker terms as a function of
the candidate predictors (or any transformation of them):

ln

(
Yij

EMH i

)
= β0 + β1 ln

(
BUS i

EMH i

)
+ β2 ln

(
HUN i

EMH i

)
+ β3 ln

(
PBX i

EMH i

)
+β4 ln

(
CTXi

EMHi

)
+ β5 ln

(
SALi

EMH i

)
+ β6 ln

(
EMT i

EMH i

)
+ β7 ln

(
SQFTi

EMHi

)
+β8 ln (POP i) + ϕ1 IMILLS i + δ1 STAGEI i + δ2 BSOUTH i +

+
∑

h

γh POP ih + ui (1)

Where i = 1, . . . , n h = 1, . . . , 9 and u is the error term with u ∼ i.i.d. N(0, σ),
IMILLS is the inverse of the Mills ratio (which is explained in Appendix B) and Yij

represents alternatively the total local bill (j = 1), the intra-LATA minutes (j = 2)
or the inter-LATA minutes (j = 3). In the following sections we discuss how to
obtain possible URM models, from which we can choose a final URM*.
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4.2 Model Building and Selection using Retina

Equation (1) may be expressed in a more compact form as follows:

ln

(
Yj

EMH

)
= X ′β + F ′δ + u (2)

Where:

X: includes all the continuous candidate regressors which in the case of eq.(1) are:
ln(BUS/EMH ), ln(HUN /EMH ), ln(PBX /EMH ), ln(CTX /EMH ),
ln(SAL/EMH ), ln(EMT/EMH ), ln(SQFT/EMH ), ln(POP).

F : includes the dummies, and the inverse Mills ratio.

In general, X represents a matrix of variables which may be transformed ex-
panding the original set of regressors, while F represents a matrix of other auxiliary
regressors that will not be transformed.

Now, if we allow the original regressor set X to be expanded by considering
squares, cross-products, ratios and inverses of the original variables, we may gener-
alize the demand as follows:

ln

(
Yj

EMH

)
= W ′β + F ′δ + u (3)

W = xα
i xβ

j with i, j = (1, . . . , k) where k is the total number of untransformed
continuous inputs.

α, β = −1, 0, 1

The main difference with respect to the BLM specified in (1) is that here we allow
transformations of the original regressors, while the BLM exclusively considers logs
of ratios of variables per worker. We use (3) because we want Retina to generate
the W transforms and identify which ones may help to predict better than the BLM.

We can further generalize equation (3) by using the dummy variables included
in F to model group-specific slopes and allowing interactions between such dummy
variables and the continuous regressors. Formally, assume Hg to be a subset matrix
of F with g − 1 columns, which represents some specific grouping which accounts
for heterogeneity in the data set. This leads to:

ln

(
Yj

EMH

)
= W ′β + [Hg ×W ]′βh + F ′δ + u (4)

with: Hg ⊂ F.
This specification is akin to an analysis of covariance formulation where the

parameters of W may vary across the categories by using dummy indicators included
in F to model group-specific constants, or in Hg to model group-specific slopes.
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4.3 Modeling Heterogeneity using Finite Mixtures

Since the presence of heterogeneity can in our case be visually detected from bivariate
scatterplots as seen in Section 3, the problem of modeling heterogeneity may well
be addressed by using available information at hand (geographic indicators, stage
of the firm and so on). Nonetheless, this a priori information may not account for
all the heterogeneity in the data set. Finite mixtures may then be used to detect or
represent any additional group structure, if present, in the data.

The only assumption in this case is that the distribution of our dependent vari-
able may be approximated as a weighted sum of normal distributions, each of which
has an expected mean expressed as a function of the explanatory variables, without
loss of generality if we define:

ln

(
Yj

EMH

)
= W ′βg + F ′δg + σg u

where u ∼ N(0, 1) and βg, δg, σg may assume different G values with probabilities
(π1, . . . , πG): the conditional distribution of the dependent variable with respect to
the candidate regressors may then be expressed formally as a mixture of G compo-
nents as:

ln(Yj/EMH ) | W, F ∼
G∑

g=1

πg N( W ′βg + F ′δg, σ
2
g)

Using this formulation9, the Expectation Maximization (EM) algorithm10 is then
used to estimate the maximum likelihood parameters of the regression equations
of each group β̂g, δ̂g, σ̂g, and the posterior probabilities π̂g for each firm. Cluster
membership (the Hg matrix) is then determined by assigning each observation to
the group for which posterior probability is highest.

What is relevant for us is that this methodology allows us to obtain a consistent
inference about Hg better suited to our objectives than any other traditional non-
parametric clustering method, eg. K-means (MacQueen [7]), Ward (Ward [20]).
Traditional clustering methods are concerned with grouping objects, in our case
the firms, by minimizing some distance measure among them. The distance mea-
sures are defined on the basis of a specific metric which typically is chosen by the
researcher on an a priori basis (Euclidean distance is usually considered). Thus tra-
ditional clustering methods do not involve the estimation of any a priori parametric
model structure on the variables. With Finite Mixtures, on the contrary, distribu-
tional assumptions and conditional heterogeneity among the variables, rather than
unconditional heterogeneity, are explicitly taken into account and a parametric (or
semi-parametric) inference about a specific partition model is possible, as will be
shown later.

9 Note that we are assuming normal heteroskedastic components. See Appendix B for more
details.

10 See McLachlan and Peel [9] for a discussion on finite mixture modeling.
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4.4 Combining RETINA and Finite Mixture Framework

The above discussion configures a two-step approach which is used to obtain a set
of possible URM models from which we can choose a final URM*. The first step
is to model heterogeneity, fitting finite mixtures to each demand. The second is to
perform a variable selection on an expanded regressors set which, besides the original
variables, also includes transformations of the form xα

i xβ
j as well as heterogeneity

parameters. More specifically:

1. First fit a mixture of regressions for each demand and for each proposed initial
specification by estimating the maximum likelihood mixture parameters via
the EM algorithm.

2. Decide the number G of clusters to be retained for subsequent analyses in each
case (we use AIC and BIC).

3. Obtain the corresponding Hg matrixes (if any) by assigning each observation
to the cluster for which the posterior cluster membership probability is highest.

4. Once a partition has been chosen, consider a general specification as in equa-
tion (4) but this time including the cluster membership matrix Hg:

• into F in order to model group-specific constants

• into Hg in order to model group-specific slopes

5. Then use Retina to automatically select only the most relevant predictors
among W , F , and the Hg ×W interactions between predictors and clusters.
Obtain a candidate URM*.

This approach works well in practice. One can get different candidate URM’s by
running the above steps for different specifications of the inputs, namely X, F and
H. All of them represent a candidate model set on which Multi-Model Inference,
MMI [3] may be carried out by comparing the models on the basis of AIC and BIC
criterion.

5 Empirical Results

In this section we present the main results of this study. Details about estimations
are reported in the Appendix. We first present the results for the BLM models
corresponding to each demand. We then comment the heterogeneity parameters we
found via finite mixtures, and finally we discuss model selection, using Retina, as
the final URM.
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5.1 BLM Demand Models

In Table 9 in the Appendix, we report the Benchmark Linear Models for local,
intra-LATA and inter-LATA demand. The estimations show that:

1. Demands appear to be sensitive to equipment variables (BUS, HUN, PBX,
CTX.

2. Constant terms for intra-LATA and inter-LATA are not significant.

3. The sales (SAL) variables have wrong signs. This may be due to heterogeneity
(see Figures 2, 3 and 4).

4. The Stage I indicator is negative for local calls, confirming that firms at stages
higher than the first make a more intensive use of local services by routing
long distance calls over their private network (PBX, CTX ).

5. Dimension of the firm appears to be relevant for local services demand, again
reflecting the fact that larger-sized firms demand ceteris paribus use more local
services than firms at stage I.

The sample fit for local calls is quite satisfactory, (R̄2 = .682), but this is not
the case of intra-LATA (R̄2 = .191) and inter-LATA demands (R̄2 = .243). These
results suggest that alternative specifications should be taken into account.

5.2 Mixtures of Linear Demand Models

After applying the EM algorithm, the number of groups was selected by examining
both the AIC and BIC criteria over three different specifications, say S1, S2 and
S3 where S1 ≡ BLM, S2 the relevant regressors of the BLM selected by Retina,
and S3 the BLM excluding all dummy variables. The AIC and BIC statistics of the
fitted mixture of linear demand models using S1, S2 and S3 as initial specification
are reported in Table 1011.

Strong evidence for a two group solution was found for intra-LATA demand using
the S2 specification suggested by Retina, while for local calls we adopted both a
two cluster and a three cluster solution using the S1 BLM specification. For inter-
LATA demand there is apparently weaker evidence of heterogeneity although finally
a bootstrap likelihood ratio test was finally used to choose a two group structure
using the S2 specification proposed by Retina.

The estimated models are reported in Tables 11, 12, 13 and 14 in the Appendix.
Interestingly the results show that most differences among clusters can be captured
by differences in constants. For example, while in the intra-LATA or inter-LATA
BLM’s the constant term was not statistically significant (see Table 9), homogeneous
clusters found by using mixture modeling show significant variations across the

11 See also Appendix B for more details about the justification of using AIC and BIC as selection
criterion for mixture models.
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constant terms of two groups (see Table 13 for intra-LATA and Table 14 for inter-
LATA demand). Basically, this means that firms belonging to clusters with higher
constants may be “heavy users”, while components with lower constants may be
“light users” of the service. Other differences among groups are associated with
component variances and slope parameter estimates. Interestingly we find a close
relationship between these results and the descriptive statistics shown in Table 1.

For example, consider the coefficient of ln(EMT/EMH ) for inter-LATA demand
(Table 14). This parameter gives an indication of the effect of the relative size of the
local subsidiary with respect to the whole business. It gives an approximation of the
dimension of the firm’s internal communication needs. As we can see from Table
14 inter-LATA “heavy users” (cluster 2) are not sensitive to the ln(EMT/EMH )
ratio since the corresponding coefficient is not significantly different from zero. This
reflects the fact that “heavy users” of inter-LATA service are mostly stage I firms,
which are smaller and single location firms. In fact, since the proportion of single
location firms is higher in this cluster, EMT tends to EMH and this causes the
ln(EMT/EMH ) ratio to tend towards zero.

More evidence of heterogeneity is reported in Table 12. Here, local services
demand is decomposed into three components: cluster 1 with a constant term of
4.112 (virtually equal to the whole sample estimate), cluster 2 with a constant term
of 2.497 and cluster 3 with a constant term of 3.125. For the sake of convenience
we will call cluster 1 “heavy users” cluster 2 “light users”, and cluster 3 “medium
users”. We observe that estimated demand elasticities of single-line accesses such
as business (BUS ) and hunting (HUN ) lines have positive signs as expected and
are significant. Nonetheless, for network systems such as PBX trunks (PBX ) and
Centrex lines (CTX ), the signs of the elasticities vary across clusters: PBX trunk
elasticities are negative (-1.259) for “light users”, and Centrex line elasticities are
also negative (-1.229) for “medium users” - with very high t− values.

A final comment is due for Sales, which is the variable that proxies the firm
output. Heterogeneity of demand with respect to sales (SAL) is evident from Figure
2, where the upward sloping cloud may suggest a positive relationship between local
demand and the firm’s sales. Nonetheless the estimated parameter has negative
signs across clusters (Table 12). This suggests that the heterogeneity attributed to
sales has no correlation with heterogeneity due to different access equipment in the
firm, which in turn is represented by four variables (BUS , HUN , PBX , CTX ) and
accounts for a greater proportion of explained variance.

5.3 Model Selection using RETINA

5.3.1 Local Demand URM

Summary statistics for a set of local demand URM’s are reported in Table 5. The
final selected model is URM6 which has been chosen among six possible URM’s
suggested by Retina by varying the inputs as detailed in Table 15.

We start by defining a new specification, say URM1, and adding to the BLM
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the heterogeneity parameters of the optimal three-cluster solution. In Table 5 we
see that URM1 slightly improves predictive ability with respect to the BLM and R̄2

increases from .682 (BLM) to .708 (URM1).
However substantial improvement in prediction is achieved with the use of W

transformations generated by Retina. This is the case of URM2, which includes
W transforms of worker per capita log-ratios. With 27 parameters URM2 has an
R̄2 = .883, thus explaining an increased variance of about 20% with respect to
the BLM and about 18% with respect to URM1. Out of sample predictive ability,
measured by the Robust Cross Mean Square Prediction Error (RCMSPE)12 increases
substantially (about 60% of the BLM) as do the information statistics (AIC, BIC).

Perhaps the most interesting results are obtained for URM3 and URM4 in which
we exclude all mixture heterogeneity parameters and just use per capita log-ratios
together with W transforms of the logs of the original variables. Both models slightly
outperform URM2, in terms of predictive ability without using mixture heterogeneity
parameters. URM3 is a very appealing specification suggested by Retina because
it has just 20 parameters, almost as many as the number of parameters of the BLM
(19), while URM4 has 27 parameters and shows a modest forecasting improvement
with respect to URM3. We can say more about URM3 by looking at its specification:

̂
ln

(
LOCAL

EMH

)
= 2.630

(102.99)
+ 2.722

(79.07)
ln(EMH ) + 1.098

(82.60)
ln

(
BUS

EMH

)
+ .694

(52.15)
ln

(
HUN

EMH

)
+ 1.219

(89.10)
ln

(
PBX

EMH

)
+ .774

(101.88)
ln

(
CTX

EMH

)
+ .184

(6.84)
ln

(
EMH

SAL

)
− .194

(−25.99)
ln(BUS ) ln(HUN )− .214

(−6.34)
ln(BUS ) ln(PBX )

− .204
(−36.98)

ln(HUN ) ln(PBX )− .143
(−35.95)

ln(HUN ) ln(CTX )

+ .012
(8.19)

ln(EMH ) ln(EMT ) + .179
(12.70)

BSOUTH + .262
(14.58)

AL + .107
(6.34)

GA

+ .155
(6.97)

KY + .371
(15.97)

LA + .445
(19.78)

MS + .262
(11.09)

SC + .249
(1.49)

TN

(5)

n = 4391 R̄2 = .891 σ̂ = .346 RCMSPE (1000) = .349∑
ε̂2 = 522.485 AIC = −9305 BIC = −9171

(t− statistics are reported in parentheses)

Note that Retina suggests that interaction effects are not negligible for the
final specification. Selected W transformations mainly involve interactions between
different types of lines: ln(BUS ) ln(HUN ), ln(BUS ) ln(PBX ), ln(HUN ) ln(PBX )
and ln(HUN ) ln(CTX ). All of them have negative signs indicating a negative impact
on demand.

12 See [8] for details on RCMSPE.
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Table 5: Local Demand: Comparison of selected statistics of candidate URM models
with respect to the BLM†.

Specification BLM URM1 URM2 URM3 URM4 URM5 URM6

No. of Parameters 19 21 27 20 26 37 41
No. of Clusters 1 3 3 1 1 2 3

Retina Selection No Y es Y es Y es Y es Y es Y es
W Transforms No No Y es Y es Y es Y es Y es

Specific Constants No Y es Y es No No Y es Y es
Specific Slopes No No No No No Y es Y es

R̄2 .682 .708 .883 .891 .896 .912 .930
σ̂ .592 .567 .359 .346 .339 .312 .278

rcmspe(1000)a .595 .571 .365 .349 .343 .317 .286∑
ε̂2 1530 1403 562 522 500 423 336

AICb −4590 −4965 −8973 −9305 −9484 −10199 −11207
BICc −4462 −4824 −8794 −9171 −9312 −9956 −10939

†Different URM models have been selected by Retina using different initial specifications for X,F
and H. Details are reported in Table 15.

• URM1: Obtained starting with BLM + three specific constants corresponding to the optimal
S1, G3 three cluster solution.

• URM2: As in URM1 + W transforms.

• URM3: Here heterogeneity mixture parameters are excluded. Auxiliary log-transforms of
original variables (BUS, HUN, PBX, CTX, EMT, EMH, SQFT ) are used to generate W
transforms and original log-ratios are included in F , the untransformed inputs.

• URM4: A different specification proposed by Retina using the same specification as in
URM3.

• URM5: As in URM3, but this time allowing heterogeneity parameters corresponding to the
S1, G2 two-cluster solution.

• URM6: As in URM3 and including heterogeneity parameters of the S1, G3 optimal three-
cluster solution.

a. Robust Cross Mean Square Prediction Error is an approximation of the out of sample σ̂2

using 1000 bootstrap random selection of three disjointed sub-samples. See [8] for details.

b. Here AIC is specified as n ln(σ̂ε
2) + 2k, where n is the sample size and k is the number of

parameters.

c. Here BIC is specified as n ln(σ̂ε
2) + ln(n)k, where n is the sample size and k is the number

of parameters.
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Ramsey’s RESET test [13] was computed for URM3 to test departure from the
null hypothesis of correct model specification. With an F (2, 4369) = 105.24 the
null hypothesis of correct specification is rejected, suggesting that there is room to
improve the results. Just as URM3, URM4 is still not well specified, RESET F (2,
4363) = 69.74, and thus we reject the null hypothesis of correct specification. A nat-
ural way to re-specify URM3 is to add heterogeneity parameters suggested by finite
mixtures. Both URM5 and URM6 incorporate two-cluster and three-cluster mix-
ture parameters, respectively. Estimates of URM6 are shown in Table 16. Inclusion
of heterogeneity parameters improves prediction ability at the expense of having a
larger number of parameters (37 and 41 for URM5 and URM6, respectively). But
this gain in prediction ability is larger than the loss in precision of the estimates
since AIC and BIC statistics both show evidence in favor of URM5 and URM6 over
previous models. URM6 has an R̄2 of .930 and RCMSPE which is about half that of
the BLM. Both models include line-equipment interactions as in URM3 (see Table
16), but additional demand variation is modeled by cluster-specific slopes, namely
regressors that are selected by Retina from the [Hg × W ] term of equation (4).
Going back to Table 5, the out of sample prediction ability (RCMSPE) is only 48%
of the BLM for URM6 (.286/.595) and 53% for URM5 (.317/.595) while it is 59%
for URM3 (.349/.595).

Almost all of the variables already used in the earlier specification of the BLM are
included in the URM. These are: Business Lines (BUS ), Hunting Lines (HUN ), PBX
trunks (PBX ) and Centrex lines (CTX ). RESET test for URM6 gave F (2, 4349) =
1.10 which does not reject the null hypothesis of correct specification.

In URM6, the specification suggested by Retina includes untransformed vari-
ables as well as interactions and cross-ratios between them. Equipment variables
(such as type and number of lines) have non-linear effects on demand. Non-linearities
may arise due to a variety of reasons including the unavailability of other relevant
variables such as the nature of the business activity or whether usage is primar-
ily internal or external. In order to capture the above mentioned non-linearities,
the proposed URM6 for local services includes a variety of transformations that go
beyond the a priori specification of the BLM.

Final WLS estimations that incorporate heteroskedasticity correction of URM6

are shown in Table 17. F − tests for variable exclusion were also carried out, since
some of the initial 41 variables were no longer significant, finally reducing the number
of parameters of URM6 from 41 to 37.

5.3.2 Intra-LATA and inter-LATA URM

The intra-LATA and inter-LATA demand results are quite different. As seen from
Table 9, both BLM’s show relatively poor fits and high standard errors of the es-
timation over the whole data set. The estimations suggest that both demands are
sensitive to the number of single-line accesses in the business. Moreover we observe
that the constant term in both BLM’s is not significant. The negative sign of the
(EMT/EMH ) coefficients is due to the fact that both medium and long distance
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services are mostly demanded by single-location and small sized firms. Since these
results are somewhat unsatisfactory from the prediction point of view, we apply
here a selection strategy similar to the one used for local demand. For the sake of
brevity, for intra-LATA and inter-LATA demand we report just the final selected
URM models.

5.3.2.1 Intra-LATA URM
The final selected Useful Representative Model (URM) for intra-LATA minutes is

reported in equation 6: Retina selects a very simple formulation as URM of intra-
LATA demand. This model has only 5 parameters and, with the inclusion of just one
specific constant for cluster 1 (H1), we take into account heterogeneity in the data
set. Recall Cluster 1 may be defined as “light users” which explains the negative
sign of the specific H1 constant. Moreover the Bell South effect is negative, reflecting
the fact that intra-LATA services tend to be provided by alternative companies.

̂
ln

(
INTRA

EMH

)
= 3.015

(51.90)
+ .662

(23.88)
ln

(
BUS

EMH

)
− 2.637

(−45.75)
H1 − .203

(−3.36)
BSOUTH − 1.205

(−14.80)
LA

(6)

Weighted Statistics

n = 1261 R̄2 = .701 σ̂ = 1.766

Non Weighted Statistics

n = 1261 R̄2 = .711 σ̂ = .950 RCMSPE (1000) = .955∑
ε̂2 = 1134.094 AIC = −121.755 BIC = −90.918

(t− statistics in parentheses)

But perhaps the most interesting characteristic of the inter-LATA demand model
concerns the ln(BUS/EMH ) ratio, which represents the effect of basic single line ac-
cess demand. In other words, intra-LATA demand is found to be especially sensitive
to the number of business lines, while the effect of the other variables negligible.

The model passes the RESET specification test; with F(2,1254) = .958 we do not
reject the null hypothesis of correct specification. Then we applied weighted OLS to
correct for heteroskedisticity. The R̄2 of the intra-LATA URM increases from .191 to
.711 (.701 for weighted estimation), while the RCMSPE is about a fifth of the BLM
corresponding value. Also the standard error of estimate is about 60% with respect
to the corresponding BLM value. This model shows very appealing features because
its specification includes only five variables in modeling the demand of intra-LATA
calls. With respect to the corresponding BLM, we gained in terms of predictive
ability and also in terms of a more parsimonious representation.

5.3.2.2 Inter-LATA URM
For inter-LATA demand, we also obtain a quite parsimonious representation with
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just 9 parameters, after considering a set of potential URM candidates suggested by
Retina. The selected URM for inter-LATA minutes is:̂

ln

(
INTER

EMH

)
= 3.858

(44.27)
+ .481

(7.49)
ln

(
BUS

EMH

)
+ .234

(3.85)
ln

(
HUN

EMH

)
− 2.051

(−24.03)
H1

+ .626
(9.20)

ln(HUN )2 + .001
(2.19)

ln(POP)2 − .397
(−8.01)

ln(BUS ) ln(HUN )

− .787
(−3.29)

H1
ln(SAL)

ln(POP)
+ .840

(5.05)
H1 ln

(
EMT

EMH

)
(7)

Weighted Statistics

n = 1176 R̄2 = .733 σ̂ = 1.774

Non Weighted Statistics

n = 1176 R̄2 = .730 σ̂ = .818 RCMSPE (1000) = .827∑
ε̂2 = 780 AIC = −463 BIC = −412

(t− statistics in parentheses)

The model has been estimated by WLS for heteroskedasticity correction. Here,
significant effects are provided by the number of lines per capita, namely the number
of business (BUS ) and hunting (HUN ) lines. Also their interaction is relevant, as
well as the square of ln(HUN ). Again, these interactions have negative signs. R̄2

is .730 versus .243 of the corresponding BLM, and RCMSPE (.827) is only 59% of
the corresponding BLM (1.392) value. The model suggested by Retina is a very
significant improvement over the BLM.

5.3.3 Elasticities

We are interested in evaluating the leading elasticities both for local and inter-
LATA final URM models. In the case of the intra-LATA URM, since the demand
specification is very simple, we do not need to make further calculations to evaluate
the elasticities because the corresponding coefficients may be interpreted directly.
Elasticity of intra-LATA demand with respect to the number of business lines is .66
(see eq. 6). On the other hand, evaluation of the local and inter-LATA elasticities is
more tedious because the respective URM’s often embed nonlinear transformations
of the inputs.

As a consequence, expressions for the elasticities of the local and the inter-LATA
URM also embed heterogeneity parameters and other non linearities represented by
further transformations of the inputs, as shown in Table 18 and Table 19. Note that
the reported expressions in most cases depend on the values assumed by other vari-
ables. We evaluate the elasticities at the average values of the influencing variables.
The results are shown in Table 6.
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Table 6: Selected Elasticities based on URM estimates†.

BUS HUN PBX CTX SAL EMT SQFT POP
Local ($) 1.02 .21 .87 .74 -.04 .02 .00 .00

intra-LATA (min.) .66 - - - - - - -
inter-LATA (min.) .29 .44 - - .03 .36 - .03

† See Tables 18 and 19 for elasticity expressions of local and inter-LATA demand, respectively.

For local demand, we found larger positive elasticities for telephone equipment
of the firm. Elasticities with respect to the number of basic accesses, namely the
number of business lines, is close to one. Elasticities with respect to network access
forms, PBX trunks and Centrex lines, are .87 and .74, respectively. Demand elastic-
ities are quite irrelevant for the other explanatory variables, including the number
of workers in the firm (EMH, EMT ), sales (SAL), and physical extension (SQFT )
and population habitat size (POP).

Single line access forms were also positively related to demand for inter-LATA
services. Elasticity is .29 for business lines and .44 for hunting lines. On the other
hand, the elasticity with respect to the total number of employees is .36.

5.3.4 Discussion

For each of the three demands, we may summarize the results obtained so far as
follows:

• In Table 7 we report summary statistics of the Benchmark Linear Models in
comparison with the final URM models suggested by Retina. They show that
modeling heterogeneity and non-linearities substantially increases the overall
fit and predictive ability of the estimated models with respect to the corre-
spondent BLM’s. The R̄2 increases for all the proposed models which is a
significant improvement in within-sample-fit. Also the RCMSPE drops to be-
tween one half and one third of the benchmark model, which is a marked
improvement in the out-of-sample forecast ability.

• Retina often suggests the inclusion of access equipment variables in the de-
mand models. Relevant first order effects for medium distance (intra-LATA)
and for long distance calls (inter-LATA) are single line access forms13, whereas
local demand additionally includes network access equipment variables14 in the
final specification15. As expected, the signs of these effects are positive.

• The specification of the three telecommunication demands never includes the
physical extension of the firm16.

13 ln(BUS/EMH ) and ln(HUN /EMH ).
14 ln(PBX /EMH ) and ln(CTX /EMH ).
15 URM6: Table 17.
16 ln(SQFT/EMH ).
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Table 7: Comparison of Benchmark Linear Models (BLM) and Useful Representative
Models (URM)†.

Local Intra-LATA Inter-LATA
(n=4391) (n=1261) (n=1176)

BLM URM6 BLM URM BLM URM

Parameters 19 41 18 5 16 10
R̄2 .682 .930 .191 .711 .243 .730

Std.Err. Estimate .592 .278 1.589 .950 1.369 .818
Robust CMSPE .595 .286 1.619 .955 1.392 .827

AIC -4590 -11207 1188 -122 757 -463
BIC -4462 -10945 1285 -91 843 -412

† Here we use non-weighted models for direct comparison between BLM and URM. The overall fit
of the estimated URM models improves with respect to the corresponding BLM’s.

• First order effects never include the output of the firm (SAL) in the final
specification. However this variable appears in second order terms.

• There are significant pairwise interactions between access equipment vari-
ables17 for local demand and between single access systems18 for inter-LATA
demand. The signs are always negative.

• Heterogeneity parameters estimated via finite mixtures are always included in
the demand functions, in the form of specific constants or slopes.

• These heterogeneity parameters also influence elasticity of the demands with
respect to the relevant predictors. We observe that access form variables,
namely single access lines (Business and Hunting lines) and network accesses
(PBX trunks and Centrex), produce larger relative variations in demand than
the remaining explanatory variables.

The above results suggest that:

1. Access equipment variables are good predictors of telecommunication demand.

2. Interactions between different telephone access equipments, are not negligible.

3. The sales account only for a small proportion of explained variance for the
proposed models, since their effects are second order.

4. Heterogeneity needs to be taken into account to represent the data and eval-
uate leading elasticities with respect to the relevant inputs.

17 ln(BUS ), ln(HUN ), ln(PBX ), ln(CTX ).
18 ln(BUS ) ln(HUN ).
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6 Conclusions

In this paper we estimate business telecommunications demands for local, intra-
LATA and inter-LATA services using US Telecommunications data. Graphical bi-
variate analysis and Benchmark Linear Model estimation show strong evidence of
heterogeneity which must be modeled in order to achieve a useful representation of
the data. We achieve this goal by first using finite mixtures of normal heteroskedastic
components to partition the data into homogeneous subgroups. For local demand
we fit three components, while two components were fitted both for intra-LATA
and inter-LATA demand. We describe the clusters, observing significant differences
between constant terms and regression coefficients of each component. We then
perform an automatic model search using the Retina algorithm to obtain a flexible
model useful for out of sample prediction. Retina generates an expanded regres-
sor set using the firm group membership as a heterogeneity parameter to estimate
specific constants and specific slopes. In addition Retina includes interactions and
nonlinear transformations of the original variables as candidate regressors. We find
that telephone equipment variables are almost always selected as relevant first order
effects. Moreover, the corresponding coefficients are always positive. Also hetero-
geneity parameters and negative interactions between different forms of access are
significant and play an important role in demand prediction. As a result, the de-
mand elasticities, evaluated for the relevant variables at the average values, show
that:

• Local calls demand is most sensitive to a relative variation of the number of
business lines (1.02) and network access equipment (PBX Trunks (.87) and
Centrex (.74)), while a change in the remaining explanatory variables is not
significantly linked to relative variations of demand.

• Intra-LATA demand was sensitive only to single line access equipment repre-
sented by the number of business lines (elasticity is .66), while the effect of
most of the remaining explanatory variables was negligible.

• Inter-LATA demand elasticity is positive with respect to business lines (.29)
and hunting lines (.44) but also shows a positive relationship with respect to
the total number of workers of the whole business (.36).

With these results we are tempted to claim that modeling of business telecom
demand for this data set is adequate for its intended primary use of out of sample
forecasting. These results are very encouraging in that the proposed methodology
could also work well in other contexts. It is likely that the use of finite mixtures and
automatic modeling procedures such as Retina will become more widespread due
to the availability of richer data sets, new software and enhanced computing power.
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Table 8: Probit models for intra-LATA and inter-LATA demand (t− statistics are
reported in parenthesis)

Dependent Variable intra-LATA (Yes=1) inter-LATA (Yes=1)
Observations 4463 4463

log-Lik −1806.962 −1343.420
restricted log-Lik −2675.425 −2594.076

Chi-sq (dgf) 1736.927 (18) 2501.312 (16)
sig. .0000 .0000

Constant −.815
(−3.381)

−.954
(−3.565)

ln(BUS/EMH ) .389
(11.439)

.376
(9.095)

ln(HUN /EMH ) −.238
(−6.288)

−.153
(−3.590)

ln(PBX /EMH ) .205
(5.929)

.313
(8.446)

ln(CTX /EMH ) −.015
(−.578)

.065
(2.316)

ln(SAL/EMH ) −.119
(−1.793)

−.255
(−16.439)

ln(EMT/EMH ) −.102
(−1.987)

−.198
(−3.063)

ln(SQFT/EMH ) −.020
(−.806)

−.026
(−.925)

ln(POP) −.006
(−.459)

.026
(1.870)

STAGEI .774
(9.534)

1.053
(1.785)

BSOUTH −.083
(−1.314)

.010
(.143)

AL .503
(5.390)

−

GA −.043
(−.514)

.103
(1.247)

KY 1.599
(15.670)

1.904
(18.568)

LA .493
(4.597)

1.327
(12.299)

MS .911
(9.186)

1.442
(14.330)

NC 1.347
(12.342)

2.240
(17.634)

SC 1.575
(15.117)

−

TN 1.004
(1.055)

1.720
(15.638)

Predicted counts for intra-LATA and inter-LATA probit models
intra-LATA inter-LATA

Predicted Predicted
Actual 0 1 Total Actual 0 1 Total

0 2890 292 3182 0 3111 156 3267
1 503 778 1281 1 364 832 1196

Total 3393 1070 4463 Total 3475 988 4463
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Table 9: Benchmark Linear Models for Local, intra-LATA and inter-LATA traffic
(t− statistics are reported in parenthesis).

Dependent Variable ln(LOCAL/EMH ) ln(INTRA/EMH ) ln(INTER/EMH )

Observations 4391 1261 1176
Adjusted R2 .682 .191 .243

Std.err.est. .592 1.589 1.369
Robust CMSPE .595 1.619 1.392

AIC −4590 1188 757
BIC −4462 1285 843

Constant 4.112
(45.115)

1.374
(1.297)

.941
(1.349)

ln(BUS/EMH ) .290
(29.320)

.694
(3.515)

.713
(5.330)

ln(HUN /EMH ) .168
(15.181)

.111
(1.228)

.509
(6.632)

ln(PBX /EMH ) .157
(15.371)

− −

ln(CTX /EMH ) .112
(16.950)

− −

ln(SAL/EMH ) −.024
(−5.796)

.009
(.165)

−.343
(−5.985)

ln(EMT/EMH ) .138
(9.520)

−.324
(−1.615)

−.188
(−.945)

ln(SQFT/EMH ) .001
(.087)

.017
(.379)

.036
(.878)

ln(POP) .004
(.804)

.009
(.378)

.110
(5.577)

IMILLS − .256
(.420)

1.159
(3.591)

STAGEI −.490
(−17.197)

−.064
(−.176)

.125
(.448)

BSOUTH .221
(9.142)

−.355
(−2.956)

.051
(.544)

AL .092
(2.884)

.859
(2.516)

−

GA .047
(1.614)

.356
(1.726)

−.374
(−2.172)

KY −.275
(−7.100)

.881
(1.383)

1.242
(3.171)

LA .089
(2.199)

−.517
(−1.551)

.712
(2.130)

MS .004
(.099)

.646
(1.417)

1.119
(3.221)

NC −.598
(−13.489)

.763
(1.281)

2.156
(4.520)

SC −.156
(−3.808)

.819
(1.289)

−

TN −.101
(−2.450)

.435
(.920)

.923
(2.472)
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Table 10: Model selection of BLMM (Benchmark Linear Mixture Models)†.
AIC Statistic

Local intra− LATA inter − LATA

Groups S1 S2 S3 S1 S2 S3 S1 S2 S3

1 7871 8161 8628 4766 4774 4796 4094 4170 4139
2 4155 4960 5415 4721 4730∗ 4766 4067 4139∗ 4116
3 3403 4405 4823 4674 4734 4769 4020 4149 4110
4 3300 4231 4592 4614 4739 4749 3984 4154 4101
5 3209∗ 4146∗ 4561∗ 4564∗ 4747 4744∗ 3928∗ 4160 4092∗

BIC Statistic
Local intra− LATA inter − LATA

Groups S1 S2 S3 S1 S2 S3 S1 S2 S3

1 7999 8238 8692 4864∗ 4795 4842∗ 4180∗ 4190 4185∗

2 4417 5145 5550 4922 4776∗ 4864 4244 4184∗ 4212
3 3799∗ 4648 5027 4978 4806 4918 4288 4220 4257
4 3831 4556∗ 4866∗ 5020 4837 4949 4344 4250 4299
5 3873 4614 4906 5073 4870 4996 4379 4260 4340

†In Table 10 we show up to five groups solution for each demand. Solutions were obtained using
both k−means starting values and 100 random starting values for each partition. Values marked
with an asterisk represent the lowest values of AIC and BIC along specifications S1, S2 and S3.
More in detail:

S1 : An initial specification as in equation (1). This is adopted as a natural starting point,
since it is the BLM specification.

S2 : An initial specification suggested by performing a variables selection on eq. (1). Here
we choose a more parsimonious specification than the BLM, where selected regressors were
suggested by Retina.

S3 : An initial specification using a specification as in (1) but excluding all the dummy variables.
This is just an additional specification allowing only continuous regressors.

Solutions proposed by both criteria do not generally coincide. BIC criterion is in general the
preferred statistic since AIC has been observed to over-estimate the number of components [9]. In
fact AIC tends to suggest a higher dimensional solution excluding some special cases. The lowest
AIC value for local demand models corresponds to a five group solution (AICLOCAL,G5,S1 = 3209)
while BICLOCAL,G5,S1 = 3799 suggests a three group solution using specification S1. Note that
these are the lowest values with respect to alternative group solutions, but also with respect to
specifications S2 and S3. Nonetheless, since a two cluster solution is visually expected we also
take into consideration a two group solution for subsequent steps. A similar reasoning is applied
to intra-LATA demand. We find evidence for a two groups solution since the lowest BIC statistic
across alternative specifications corresponds to S2 for which 19 BICINTRA,G5,S1 = 4776. The choice
of the number of groups is more difficult in the inter-LATA case. Heterogeneity is not strongly
supported as in the case of local and intra-LATA demand, since lowest information statistics
provide opposite results: we find the lowest AICINTER,G5,S1 = 3928 suggests 5 groups using
specification S1, but BICINTER,G1,S1 = 4180 suggests evidence in favor of absence of heterogeneity
in the data proposing a one-cluster solution. Nonetheless we observe that the second best solution
is for the two groups S2 specification, for which BICINTER,G2,S2 = 4184. But the differences
BICINTER,G2,S2 −BICINTER,G1,S1 = 4184− 4180 = 4 and BICINTER,G1,S2 −BICINTER,G2,S2 =
4190− 4184 = 6 indicate only a weak evidence in favor of the S1 and S2 absence of heterogeneity
model. To verify this hypothesis at least on the S2 specification we run a bootstrapped likelihood
ratio test where null hypothesis is the one group solution and the alternative is a two group solution.
Departure from the null hypothesis was significant using n = 100 replications at α = .0001 level
thus we finally decided on a two cluster solution.
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Table 11: Local Demand: Two-cluster solution Benchmark Linear Mixture Models
(BLMM)(t− statistics in parenthesis).

ln(LOCAL/EMH ) Total Sample cluster 1 cluster 2

Observations 4391 3287 1104
AdjustedR2 .682 .962 .764
Std.err.est. .592 .191 .566

Constant 4.112
(45.115)

2.482
(7.516)

4.742
(26.067)

ln(BUS/EMH ) .290
(29.320)

1.178
(166.347)

.171
(7.734)

ln(HUN /EMH ) .168
(15.181)

.249
(47.777)

.032
(1.796)

ln(PBX /EMH ) .157
(15.371)

−1.165
(−123.813)

.341
(2.932)

ln(CTX /EMH ) .112
(16.950)

.761
(137.977)

.219
(19.808)

ln(SAL/EMH ) −.024
(−5.796)

−.017
(−11.296)

−.052
(−4.125)

ln(EMT/EMH ) .138
(9.520)

.008
(1.171)

.169
(8.813)

ln(SQFT/EMH ) .001
(.087)

.000
(−.044)

−.018
(−1.018)

ln(POP) .004
(.804)

.005
(2.676)

−.005
(−.598)

STAGEI −.490
(−17.197)

.029
(2.512)

−.272
(−4.372)

BSOUTH .221
(9.142)

.237
(26.234)

.033
(.696)

AL .092
(2.884)

.406
(32.997)

−.143
(−2.274)

GA .047
(1.614)

.243
(22.739)

−.345
(−5.098)

KY −.275
(−7.100)

.347
(23.727)

−.324
(−4.040)

LA .089
(2.199)

.316
(19.833)

.271
(3.559)

MS .004
(.099)

.451
(29.652)

−.059
(−.753)

NC −.598
(−13.489)

.034
(1.817)

−.800
(−1.211)

SC −.156
(−3.808)

.415
(28.702)

−.623
(−5.004)

TN −.101
(−2.450)

.355
(24.162)

−.132
(−1.216)
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Table 12: Local Demand: Three-cluster Benchmark Linear Mixture Models
(BLMM) for Local Calls Billing (t− statistics in parenthesis)†.

ln(LOCAL/EMH ) Total Sample cluster 1 cluster 2 cluster 3

Observations 4391 585 2622 1184
AdjustedR2 .682 .759 .972 .984
Std.err.est. .592 .586 .163 .134

Constant 4.112
(45.115)

4.113
(15.347)

2.497
(73.969)

3.125
(74.760)

ln(BUS/EMH ) .290
(29.320)

.146
(4.684)

1.248
(179.245)

1.046
(139.117)

ln(HUN /EMH ) .168
(15.181)

.072
(3.051)

.203
(41.950)

.104
(2.523)

ln(PBX /EMH ) .157
(15.371)

.247
(1.484)

−1.259
(−138.700)

1.101
(136.011)

ln(CTX /EMH ) .112
(16.950)

.215
(15.284)

.841
(165.416)

−1.229
(−106.006)

ln(SAL/EMH ) −.024
(−5.796)

−.054
(−2.96)

−.026
(−18.348)

−.043
(−22.712)

ln(EMT/EMH ) .138
(9.520)

.256
(9.212)

−.002
(−.368)

−.017
(−2.661)

ln(SQFT/EMH ) .001
(.087)

.013
(.493)

−.001
(−.156)

−.007
(−1.593)

ln(POP) .004
(.804)

.003
(.283)

.004
(2.204)

−.001
(−.527)

STAGEI −.490
(−17.197)

−.040
(−.465)

.037
(3.387)

−.042
(−3.225)

BSOUTH .221
(9.142)

−.165
(−2.349)

.158
(18.509)

.331
(29.423)

AL .092
(2.884)

−.046
(−.502)

.425
(37.658)

.211
(13.002)

GA .047
(1.614)

−.430
(−4.037)

.068
(6.296)

.391
(31.415)

KY −.275
(−7.100)

−.382
(−2.898)

.218
(14.668)

.330
(21.140)

LA .089
(2.199)

.481
(4.542)

.311
(2.804)

.220
(11.350)

MS .004
(.099)

.175
(1.584)

.357
(24.757)

.451
(24.196)

NC −.598
(−13.489)

−.584
(−5.266)

−.002
(−.116)

.242
(11.329)

SC −.156
(−3.808)

−.444
(−2.617)

.392
(28.314)

.358
(18.019)

TN −.101
(−2.450)

−.030
(−.213)

.299
(2.840)

.362
(18.870)

†These parameter estimates correspond to the optimal three-cluster solution of specification S1.
See Table 10.
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Table 13: Selected Benchmark Linear Mixture Models (BLMM) for intra-LATA
minutes (t− statistics in parenthesis).

ln(INTRA/EMH ) Total Sample cluster 1 cluster 2

Observations 1261 472 788
AdjustedR2 .177 .361 .349
Std.err.est. 1.603 1.030 .902

Constant 1.923
(32.597)

.281
(4.451)

2.849
(68.752)

ln(BUS/EMH ) .738
(15.691)

.776
(15.490)

.626
(18.713)

LA −1.037
(−5.361)

−.973
(−4.507)

−1.244
(−9.348)

Table 14: Selected Benchmark Linear Mixture Models (BLMM) for inter-LATA
minutes (t− statistics in parenthesis).

ln(INTER/EMH ) Total Sample cluster 1 cluster 2

Observations 1176 505 665
AdjustedR2 .184 .389 .396
Std.err.est. 1.422 .928 .763

Constant 3.404
(48.208)

2.133
(29.648)

4.354
(88.110)

ln(HUN /EMH ) .693
(15.891)

.743
(16.666)

.637
(2.937)

ln(EMT/EMH ) .442
(2.982)

1.153
(6.073)

−.102
(−.110)
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Table 15: Local Demand: Specification of X,F and H inputs of Retina†.

URM1 URM2 URM3 URM4 URM5 URM6

ln(BUS/EMH ) X W F F F F
ln(HUN /EMH ) X W F F F F
ln(PBX /EMH ) X W F F F F
ln(CTX /EMH ) X W F F F F
ln(SAL/EMH ) X W F F F F

ln(EMT/EMH ) X W F F F F
ln(SQFT/EMH ) X W F F F F

ln(BUS ) − − W W W W
ln(HUN ) − − W W W W
ln(PBX ) − − W W W W
ln(CTX ) − − W W W W
ln(SAL) − − W W W W

ln(EMT ) − − W W W W
ln(EMH ) − − W W W W

ln(SQFT ) − − W W W W
ln(POP) X W W W W W

STAGEI F F F F F F
BSOUTH F F F F F F

AL F F F F F F
GA F F F F F F
KY F F F F F F
LA F F F F F F
MS F F F F F F
NC F F F F F F
SC F F F F F F
TN F F F F F F

H1 F/H F/H − − F/H F/H
H2 F/H F/H − − − F/H

† Each letter of the table is referred to a specification as in model 4.
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Table 16: Local Calls: URM6 parameter estimates.

Observations 4391
AdjustedR2 .930
Std.err.est. .278
Robust CMSPE .286
AIC −11207
BIC −10939

Variable coefficient t-statistic
Constant 2.644 8.783

A priori ln(EMH ) 2.427 61.851
transforms ln(BUS/EMH ) 1.095 76.492

ln(HUN /EMH ) .341 18.568
ln(PBX /EMH ) 1.201 77.146
ln(CTX /EMH ) .767 55.685

Interaction ln(BUS ) ln(HUN ) −.077 −1.642
Terms ln(BUS ) ln(PBX ) −.145 −5.040

ln(HUN ) ln(PBX ) −.101 −15.432
ln(HUN ) ln(CTX ) −.055 −13.331
ln(EMH )/ ln(SAL) .119 4.100
[ln(SAL) ln(SQFT )]−1 4.511 9.162

Specific STAGEI .028 2.031
constants BSOUTH .163 14.159

AL .307 2.694
GA .099 7.064
KY .180 9.861
LA .357 18.921
MS .389 21.035
SC .317 16.586
TN .265 13.747

Specific H1 ln(EMH )2 .058 19.144
slopes H1 ln(BUS ) ln(EMH ) −.172 −22.787
of Cluster 1 H1 ln(HUN ) ln(EMH ) −.027 −4.916

H1 ln(PBX ) ln(EMH ) −.139 −25.710
H1 ln(CTX ) ln(EMH ) −.064 −16.913
H1 ln(HUN ) ln(PBX ) .082 8.469
H1 [ln(SAL) ln(SQFT )]−1 −3.185 −4.723
H1 ln(BUS )/ ln(POP) 2.195 6.373
H1 ln(HUN )/ ln(POP) .450 1.986
H1 ln(EMH )/ ln(POP) −1.381 −7.654
H1 ln(EMT )/ ln(POP) 1.630 14.357

Specific H2 ln(BUS )2 .022 4.174
slopes H2 ln(SAL)−2 −1.151 −8.161
of Cluster 2 H2 ln(SQFT )−2 −9.551 −8.977

H2 ln(CTX ) ln(EMH ) .015 5.185
H2 ln(EMH ) ln(POP) −.003 −4.505
H2 ln(BUS )/ ln(SAL) .161 2.756
H2 ln(HUN )/ ln(SQFT ) .506 3.472
H2 ln(EMH )/ ln(POP) −.446 −6.724
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Table 17: WLS estimation of URM6 with heteroskedasticity correction†.

Observations 4391
AdjustedR2 .973
Std.err.est. .278

Variable coefficient t-statistic
Constant 2.534 166.664

A priori ln(EMH ) 2.592 11.937
transforms ln(BUS/EMH ) 1.150 155.441

ln(HUN /EMH ) .370 29.58
ln(PBX /EMH ) 1.239 119.72
ln(CTX /EMH ) .804 6.735

Specific STAGEI .178 26.892
constants AL .380 38.466

GA .119 13.372
KY .233 21.59
LA .309 23.085
MS .405 35.803
SC .377 46.607
TN .307 33.193

Interaction ln(BUS ) ln(HUN ) −.100 −19.099
Terms ln(BUS ) ln(PBX ) −.200 −6.318

ln(HUN ) ln(PBX ) −.111 −21.988
ln(HUN ) ln(CTX ) −.054 −15.52
ln(EMH )/ ln(SAL) .057 3.346
[ln(SAL) ln(SQFT )]−1 5.336 2.662

Specific H1 ln(EMH )2 .058 12.556
slopes H1 ln(CTX ) ln(EMH ) −.076 −15.211
of Cluster 1 H1 ln(HUN ) ln(EMH ) −.027 −5.391

H1 ln(HUN ) ln(PBX ) .100 7.721
H1 ln(PBX ) ln(EMH ) −.151 −19.665
H1 [ln(SAL) ln(SQFT )]−1 −.149 −13.382
H1 ln(EMH )/ ln(POP) −1.112 −3.587
H1 ln(EMT )/ ln(POP) 1.863 9.001
H1 ln(BUS )/ ln(POP) 1.625 4.180
H1 ln(SAL)/ ln(POP) −.531 −3.153

Specific H2 ln(SAL)−2 −1.320 −16.472
slopes H2 ln(SQFT )−2 −9.782 −17.047
of Cluster 2 H2 ln(EMH ) ln(CTX ) .008 2.835

H2 ln(EMH ) ln(POP) −.002 −4.989
H2 ln(EMH )/ ln(POP) −.389 −1.103
H2 ln(BUS )/ ln(SAL) .332 9.438
H2 ln(HUN )/ ln(SQFT ) .369 4.034

† Several transformations have been dropped since they were no longer significant after WLS
estimations.
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Table 18: Selected Elasticities from local calls URM6 weighted model (Table 17)

∂ ln(LOCAL)
∂ ln(BUS )

= 1.150− .149 H1 ln(EMH )− .100 ln(HUN )− .200 ln(PBX ) +

+
1.626 H1

ln(POP)
+

.332 H2

ln(SAL)

∂ ln(LOCAL)
∂ ln(HUN )

= .029− .149 H1 ln(BUS )− .076 H1 ln(CTX ) + .008 H2 ln(CTX ) +

− .027 H1 ln(HUN )− .151 H1 ln(PBX ) + .116 H1 ln(EMH ) +

− .002 H2 ln(POP)− 1.112H1

ln(POP)
− .389 H2

ln(POP)
+

.057
ln(SAL)

∂ ln(LOCAL)
∂ ln(PBX )

= 1.239− .200 ln(BUS )− .151 H1 ln(EMH )− .111 ln(HUN ) +

+ .100 H1 ln(HUN )

∂ ln(LOCAL)
∂ ln(CTX )

= .804− .076 H1 ln(EMH ) + .008 H2 ln(EMH )− .054 ln(HUN )

∂ ln(LOCAL)
∂ ln(SAL)

= − .531 H1

ln(POP)
+

2.637 H2

ln(SAL)3
− .332 H2 ln(BUS )

ln(SAL)2

− .057 ln(EMH )
ln(SAL)2

− 5.336
ln(SAL)2 ln(SQFT )

∂ ln(LOCAL)
∂ ln(EMT )

=
1.863 H1

ln(POP)

∂ ln(LOCAL)
∂ ln(EMH )

= .029− .149 H1 ln(BUS )− .076 H1 ln(CTX ) + .008 H2 ln(CTX ) +

+ .116 H1 ln(EMH )− .027 H1 ln(HUN )− .151 H1 ln(PBX )− 1.112H1

ln(POP)
+

− .389 H2

ln(POP)
− .002 H2 ln(POP) +

.057
ln(SAL)

∂ ln(LOCAL)
∂ ln(POP)

= −.002 H2 ln(EMH )− 1.625 H1 ln(BUS )
ln(POP)2

+
1.112 H1 ln(EMH )

ln(POP)2
+

.389 H2 ln(EMH )
ln(POP)2

− 1.863 H1 ln(EMT )
ln(POP)2

+
.531 H1 ln(SAL)

ln(POP)2
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Table 19: Selected Elasticities from inter-LATA URM weighted model (eq.7).

∂ ln(INTER)
∂ ln(BUS )

= ln(HUN )

∂ ln(INTER)
∂ ln(HUN )

= .234− .397 ln(BUS ) + 1.251 ln(HUN )

∂ ln(INTER)
∂ ln(EMT )

= .840 H1

∂ ln(INTER)
∂ ln(EMH )

= .285− .840 H1

∂ ln(INTER)
∂ ln(POP)

= .002 ln(POP) + .787 H1 ln(SAL) ln(POP)−2

∂ ln(INTER)
∂ ln(SAL)

=
.787 H1

ln(POP)
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A Data Preprocessing

Prior to any analysis, the data have been inspected for errors and checked for con-
sistency. From the whole sample, 23 observations have been definitively deleted
because telephone usage was absent. From the remaining 13743 observations, 4463
had complete data20.

In modeling intra-LATA and inter-LATA demand, PBX trunks (PBX ) and Cen-
trex lines (CTX ) have been excluded a priori from the respective BLM’s due to
the lack of variation across the considered sample. Also, for the same reason, the
Alabama and South Connecticut dummy indicators have been excluded from the
specification of inter-LATA traffic. Furthermore, in order to avoid perfect collinear-
ity between the State dummy indicators, Florida is taken as the reference level and
is always removed from the analysis.

Finally all the equipment variables such as business lines (BUS ), hunting lines
(HUN ), PBX trunks (PBX ) and Centrex lines (CTX ) have been augmented by one
because these variables present zero values, and therefore log transformations would
be undefined.

B Estimation

Estimation of the BLM is straightforward for local traffic but not for intra-LATA
and inter-LATA demand since, as seen in Section 3, not all firms use public carriers
for this type of service. Direct estimation of the BLM by OLS, using only the sample
with nonzero demand, would be inconsistent since the mean of the error estimates
could be biased by sample selection effects. In these cases we first use a probit model
to explain the probability of the firm having a non-zero demand. Probit analysis
provides us with a new variable called the inverse of the Mills ratio (IMILLS ). After
this step we can go ahead with the OLS estimation of the BLM considering only
those firms with some toll calling activity. But this time, among the regressors, we
include the inverse of the Mills ratio as an explanatory variable because it adjusts
the mean of the error term which is not necessarily equal to zero. Probit estimations
for intra-LATA and inter-LATA demand are provided in Table 8.

We fitted a number of Gaussian mixture models to capture additional sources of
variation for each demand. We specify the dependent variable to be distributed as a
mixture of normal distributions with heteroscedastic components allowing different
variances for each component. Indeed, there are many different initial specifications
that may be used for clustering our data via finite mixtures. Moreover, within each
specification, the number of groups of the resulting partition must be assessed after
estimations. Interested readers may refer to Table 10 for details.

When heteroscedastic components are specified, the likelihood function is un-
bounded for the component covariances, which in turn implies that a global maxi-

20 The variables which reported missing values were (number of missing values reported in
parenthesis): SQFT (9270), EMH (416), EMT (2458), SAL (2735).
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mizer does not exist, (see [9]). This means that great care must be taken in order to
ensure that the provided estimations do not correspond to a spurious local solution
on the edge of the parameter space for σg, g = (1 . . . G), which should be discarded.
For this reason, we compared a wide range of solutions by using different strategies
to select the starting parameter values. For their definition, we used both k−means
clustering [7] and 100 random initial partitions of the original data set. Using this
strategy we fitted up to 5 groups for each initial model specification relative to each
demand.

As regards the number of groups to be retained for subsequent analysis, since
regularity conditions do not hold for the log-likelihood function, usual likelihood
ratio tests cannot be applied here. Thus the decision on the number of partitions
to retain is based on information criteria (both AIC and BIC in our case) as well
as on an a priori hypothesis about a two-cluster structure especially for local and
intra-LATA demand. As discussed in the foot note of Table 10, only in the case
of inter-LATA demand was there a need to assess a two cluster structure using a
bootstrap likelihood ratio test. Computations were carried out using the Flexmix
[5] and the Mixreg packages designed for the R software [17].

For the model selection step, we used a modified version of the Retina algo-
rithm, called Retina Winpack [8]. The Winpack allows to perform model selection
and estimate a variety of econometric models including those corresponding to equa-
tions (2), (3) and (4). The Winpack version of Retina incorporates part of the
original algorithm proposed by Pérez-Amaral, Gallo and White [11] . Some modi-
fications especially designed to analyze real data sets have been introduced. More
details about Retina Winpack may be found in [8] and is available at:

http://personales.ya.com/max mar/retina v0b p.exe.

Interested readers may refer to [8] and to [11] for details. Using Retina, estima-
tions were performed following a bottom up strategy, beginning from the simplest
specification of equation (2) and then expanding the regressors set with available
information on heterogeneity sources in the data, such as the geographic region or
the stage of the firm. Different URM candidates were estimated for each demand
by considering original variables, their possible transformations, and specific het-
erogeneity parameters available in the data21 or obtained via finite mixtures. Final
checks for heteroscedasticity on residuals have been performed using White’s test
[21]. When necessary, weighted least squares are applied to correct heteroscedastic-
ity of the errors.

21 These are the dummy variables available in the data set: the geographic region, the Bell South
and Stage I dummy variable.
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