
 
 

Copyright belongs to the author. Small sections of the text, not exceeding three paragraphs, can be used 
provided proper acknowledgement is given.  

 
The Rimini Centre for Economic Analysis (RCEA) was established in March 2007. RCEA is a private, 
nonprofit organization dedicated to independent research in Applied and Theoretical Economics and related 
fields. RCEA organizes seminars and workshops, sponsors a general interest journal The Review of 
Economic Analysis, and organizes a biennial conference: The Rimini Conference in Economics and Finance 
(RCEF) . The RCEA has a Canadian branch: The Rimini Centre for Economic Analysis in Canada (RCEA-
Canada). Scientific work contributed by the RCEA Scholars is published in the RCEA Working Papers and 
Professional Report series. 
 
The views expressed in this paper are those of the authors. No responsibility for them should be attributed to 
the Rimini Centre for Economic Analysis. 

 
 

The Rimini Centre for Economic Analysis  
Legal address: Via Angherà, 22 – Head office: Via Patara, 3 - 47900 Rimini (RN) – Italy 

www.rcfea.org -  secretary@rcfea.org 
 

 

 
 
 

WP 10-51 
 
 
 

Dimitris Korobilis 
Université Catholique de Louvain 

The Rimini Centre for Economic Analysis (RCEA) 
 

 
 

VAR FORECASTING USING BAYESIAN 
VARIABLE SELECTION 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6347783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


VAR forecasting using Bayesian variable selection

Dimitris Korobilis�

Université Catholique de Louvain

Abstract

This paper develops methods for automatic selection of variables in Bayesian vector
autoregressions (VARs) using the Gibbs sampler. In particular, I provide computationally
efficient algorithms for stochastic variable selection in generic linear and nonlinear models,
as well as models of large dimensions. The performance of the proposed variable selection
method is assessed in forecasting three major macroeconomic time series of the UK econ-
omy. Data-based restrictions of VAR coefficients can help improve upon their unrestricted
counterparts in forecasting, and in many cases they compare favorably to shrinkage esti-
mators.
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1 Introduction

Since the pioneering work of Sims (1980), a large part of empirical macroeconomic model-
ing is based on vector autoregressions (VARs). Despite their popularity, the flexibility of VAR
models entails the danger of over-parameterization, which can lead to poor forecasts. This
pitfall of VAR modelling was recognized early, and in response shrinkage methods have been
proposed; see for example the so-called Minnesota prior (Doan, Litterman and Sims, 1984).
Nowadays the applied econometricians’ toolbox includes numerous efficient modelling tools to
prevent the proliferation of parameters and eliminate parameter and model uncertainty: vari-
able selection priors (George, Sun and Ni, 2008), steady-state priors (Villani, 2009), Bayesian
model averaging (Garratt, Koop, Mise and Vahey, 2009) and factor models (Stock and Watson,
2006), to name but a few.

This paper develops a stochastic search algorithm for variable selection in linear and non-
linear vector autoregressions (VARs) using Markov Chain Monte Carlo (MCMC) methods. The
term “stochastic search” simply means that if the model space is too large to assess in a de-
terministic manner (that is, enumerate and estimate all possible models, and decide on the
best one using some goodness-of-fit measure), the algorithm will visit only the most proba-
ble models in a stochastic manner. In this paper, the general model form that I am studying
is the reduced-form VAR model, which can be written using the following linear regression
specification

yt = c+B1yt�1 +B2yt�2 + :::+Bpyt�p + "t (1)

where yt is an m� 1 vector of t = 1; :::; T time series observations on the dependent variables
and the errors "t are assumed to be N (0;�), where � is anm�m covariance matrix. The idea
behind Bayesian variable selection is to introduce indicators ij such that

Bij = 0 if ij = 0 (2)

Bij 6= 0 if ij = 1

where Bij is an element of the m � k coefficient matrix B =
�
c;B01; :::; B

0
p

�
, for i = 1; ::;m,

j = 1; :::; k and k = p+ 1.
There are various benefits of using this approach over some of the shrinkage methods

mentioned previously, such as the Minnesota prior or factor models. First, variable selection is
automatic, meaning that along with estimates of the parameters we get associated probabilities
of inclusion of each parameter in the “best” model. In that respect, the variables ij indicate
which elements of B should be included or excluded from the final optimal model. Selection
of the optimal model is implemented among all possible 2n, n = mk, VAR model combinations,
without the need to estimate each and every one of these models. Second, this form of Bayesian
variable selection is independent of the prior assumptions about the coefficients B. That is,
if the researcher has defined any desirable prior for the parameters of the unrestricted model
(1), adopting the variable selection restriction (2) needs no other modification than adding one
extra block in the posterior sampler that draws from the conditional posterior of the ij ’s. An
indirect implication of this approach is that, unlike other proposed stochastic search variable
selection algorithms for VAR models (George et al. 2008; Korobilis, 2008), variable selection
of this form may be adopted in VAR models which are nonlinear in the mean coefficients B.
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In fact, in this paper I show that variable selection is very easy to adopt in the non-linear
and richly parameterized, time-varying parameters vector autoregression (TVP-VAR). These
models are currently very popular for measuring monetary policy and have been used exten-
sively in academic research (Canova and Gambetti, 2009; Cogley and Sargent, 2002; Cogley,
Morozov and Sargent, 2005; Koop, Leon-Gonzalez and Strachan, 2009; and Primiceri, 2005).
Common feature of these papers is that they all fix the number of autoregressive lags to 2
for parsimony. This simplification is so popular because marginal likelihoods are difficult to
obtain, especially in the presence of stochastic volatility where one has to rely on computation-
ally expensive particle filtering methods (Koop and Korobilis, 2009a). Even if we assume that
marginal likelihoods are readily available, these would allow only pairwise comparisons and
hence all 2n TVP-VAR models need to be estimated. Therefore, automatic variable selection is
a convenient and fast way to overcome the computational and practical problems associated
with (computationally) demanding nonlinear VAR models as well as simple linear models.

Apart from the TVP-VAR I examine closely the performance of Bayesian variable selection
on several VAR formulations with various prior specifications. In particular I begin with the
simple linear VAR model with ridge regression, Minnesota, and adaptive shrinkage priors. Fol-
lowing this, variable selection for nonlinear models is introduced, where in addition to the
TVP-VAR I consider a multivariate extension of the Koop and Potter (2007) structural breaks
autoregressive model which allows to forecast breaks out-of-sample. Finally, given the recent
interest in forecasting with large models (Bańbura, Giannone and Reichlin, 2010) as an alter-
native to dimension reduction using principal components (Stock and Watson, 2006), a modi-
fication of the stochastic restriction search useful for VARs of medium and large dimensions is
established.

Although the methods described in this paper can be used for structural analysis (by pro-
viding data-based restrictions on the coefficients which could enhance identifying monetary
policy for instance), the aim is to show how more parsimonious models can be selected to
have a positive impact on macroeconomic forecasting.

The next section describes the mechanics behind variable selection in VAR and TVP-VAR
models. In Section 3, the performance of the variable selection algorithm is assessed using a
small Monte Carlo exercise. The paper concludes by evaluating the out-of-sample forecasting
performance of VAR models using variable selection, by computing pseudo-forecasts of 4 UK
macroeconomic variables over the sample period 1971:Q1 - 2008:Q4.

2 Variable selection in vector autoregressions

To allow for different equations in the VAR to have different explanatory variables, rewrite
equation (1) as a system of seemingly unrelated regressions (SUR)

yt = zt� + "t (3)

where zt = Im 
 xt = Im 
 (1; yt�1; :::; yt�p) is a matrix of dimensions m � n, � = vec(B0)
is n � 1, and "t � N (0;�). When no parameter restrictions are present in equation (3), this
model will be referred to as the unrestricted model. Bayesian variable selection is incorporated
by defining and embedding in model (3) indicator variables  = (1; :::; n)

0, such that �j = 0
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if j = 0, and �j 6= 0 if j = 1. These indicators  are treated as random variables by assigning
a prior on them, and allowing the data likelihood to determine their posterior values. We can
explicitly insert these indicator variables multiplicatively in the model1 using the following
form

yt = zt� + "t (4)

where � = ��. Here � is an n�n diagonal matrix with elements �jj = j on its main diagonal,
for j = 1; :::; n. It is easy to verify that when j = �jj = 0 then �j is restricted and is equal
to �jj�j = 0, while for j = �jj = 1 it holds that �j = �jj�j = �j , so that all possible 2n

VAR specifications can be explored and variable selection in this case is equivalent to model
selection.

2.1 A generic VAR case

The restricted VAR specification (4) may serve as a generic formulation for the rest of the
models. All we have to do is make sure that we can write the linear/nonlinear VAR models in
SUR form. For instance, in the next section I show that when using nonlinear models we can
arrive in a SUR form similar to equation (4), but in this case it will hold that � = �g (�). Here
g (�) is any class of nonlinear functions of the VAR parameters �, with a prior density F (�),
that is

p (g (�)) � F (a;G0) (5)

In this paper I focus on specifications of interest to macroeconomists who usually assume that
g (�) is a piecewise linear function (as it is the case with the class of structural breaks, Markov
Switching and threshold autoregressive specifications, among others) but generalizations to
other nonlinear or nonparametric functions is almost as straightforward.

Derivations are simplified if the indicators j are a priori independent of each other for

j = 1; :::; n, i.e. p () =
Qn
j=1 p

�
j
�
=
Qn
j=1 p

�
j jn�j

�
, where n�j indexes all the elements

of a vector but the j � th. Additionally, we can remove the effect of the covariance matrix by
integrating this parameter using an a scale invariant improper Jeffrey’s prior. Hence we have

j jn�j � Bernoulli (�0j) (6)

� / j�j�(m+1)=2 (7)

where �0j is the prior probability of the Bernoulli density, implying prior belief that coefficient
j is restricted.

The following pseudo-algorithm demonstrates that the algorithm for the restricted model
(4) actually adds only one block (which samples the restriction indicators ) over the standard
algorithm of the unrestricted VAR model (3). In the rest of the paper I define y = (y1; :::; yT )

0

and z = (z1; :::; zT )
0.

Bayesian Variable Selection Pseudo-Algorithm
1See for example the formulation of variable selection in Kuo and Mallick (1997).
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1. Sample g (�) from the conditional posterior (assuming it exists)2 of the form

g (�) j�; y; z;� � L (y; z�; g (�) j�;�)� F (a;G0)

where L (y; z; g (�) j�;�) is the conditional likelihood (i.e. conditional on �;� being
known). Here z�t is the restricted data matrix with z�t = zt�

2. Sample each j conditional on n�j , g (�), � and the data from

j jn�j ; g (�) ;�; y; z � Bernoulli (�0j) (8)

preferably in random order j, j = 1; :::; n, where e�j = l0j
l0j+l1j

, with

l0j = p
�
yj�j ;�; n�j ; j = 1

�
�0j (9)

l1j = p
�
yj�j ;�; n�j ; j = 0

�
(1� �0j) (10)

3. Sample � as in the unrestricted VAR in (3), where now the mean equation parameters
are � = �g (�).

��1j�; ; y; z �Wishart
�e�; eS�1� (11)

where e� = T and eS = �PT
t=1 (yt+h � zt�)

0 (yt+h � zt�)
�

.

In this type of model selection, what we care about is which of the parameters � are equal
to zero, so that identifiability of g (�) and  plays no role. In a Bayesian setting identifia-
bility is still possible, since if the likelihood does not provide information about a parameter,
its prior does. When for a specific j = 1; ::; n we sample a g

�
�j
�
= 0 then j is identi-

fied by drawing from its prior: notice that in this case in equations (9) - (10) it holds that
p
�
yj�j ; n�j ; j = 1

�
= p

�
yj�j ; n�j ; j = 0

�
; so that the posterior probability of the Bernoulli

density, e�j , will be equal to the prior probability �0j . Similarly, when j = 0 then g
�
�j
�

is iden-
tified from its prior: the j-th column of z�t = zt� will be zero, i.e. the likelihood provides no
information about g

�
�j
�
, and sampling from the posterior of g

�
�j
�

collapses to getting a draw
from its prior. Nevertheless, in both of the above cases the result of interest is that the j-th
parameter should be restricted since �j = 0.

Posterior computation is based on Gibbs sampler with complete blocking. If the support
of � is finite (see also the discussion of priors on � in the next section), then we can use the
argument of Tierney (1991) to show that the Markov Chain is geometrically ergodic and that
a Central Limit Theorem on this Markov Chain is available. Thus, convergence of the Gibbs
sampler is expected to be quite rapid, and selection of the correct restrictions quite accurate.
A simulation study in the working paper version of this article confirms that this is the case for
both linear and nonlinear VAR models in small samples.

2For all the popular nonlinear models I consider, the posterior conditionals exist, so that a Metropolis step within
the Gibbs sampler is not needed to sample from g (�).
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3 VAR formulations and priors

This section describes in detail some popular VAR specifications and various prior distributions
on them that are considered in the empirical application of this paper. The main idea is to
compare all linear and nonlinear VAR formulations using some popular priors routinely used
in business and academia, with and without variable selection. First, I show how each of these
popular VAR models admit a SUR form. Then the model with variable selection is the one
where the j ’s are sampled from (8), and the corresponding unrestricted model is the one
where we simply impose j = 1 8j without sampling from the posterior (as it will be clear in
Section 4, this model is also equivalent to imposing the tight prior �0j = 1 8j on the restricted
model). Some of the priors described here already provide some shrinkage (i.e. they provide
data-based rules to restrict irrelevant VAR coefficients). This fact implies that we can examine
how variable selection competes with traditional shrinkage (for instance the Minnesota prior),
but also if combining variable selection and shrinkage priors in the same VAR model could help
improve forecasting even further.

In order to do such a comparison, the intercepts are left unrestricted (j = 1 if �j is an
intercept) and flat priors are placed on them in all instances. Similarly the covariance matrix
is integrated out with the improper scale invariant (Jeffrey’s) prior in equation (7). Finally,
the hyperparameters �0j found in equation (6) are set to �0j = 0:8 implying that 80% of
the predictors should be included in the final model. This assumption is reasonable for small
trivariate VARs, since the “noninformative” choice �0j = 0:5 implies that probably too many
(i.e. 50%) VAR coefficients should be restricted. In subsection 3.4 I introduce variable selection
specifically for large VARs. There I relax this assumption and propose setting the values of �0j
in the spirit of the Minnesota prior (i.e. penalize heavily more distant lags using the variable
selection algorithm) which can assist in solving the curse of dimensionality problem in these
models. Full Bayes and Empirical Bayes priors can also be used on �0j and the reader can seek
more information in Chipman, George and McCulloch (2001).

3.1 Linear VAR

The traditional VAR process with variable selection is fully described by equation (4), where �
(and hence � = ��) enters the model linearly. Typical prior distributions for linear VAR models
are based on the Normal density, i.e.

� � Nn (b; V )

In this paper I examine three types of eliciting prior hyperparameters based on the Normal
distribution, all of which provide some form of shrinkage in the VAR coefficients (but no exact
zero restrictions like variable selection does).

Ridge regression prior This is probably the most widely used prior in autoregressive mod-
els. The assumption is that b = 0n�1 and V = �In. The posterior mean/mode of the Bayes
estimator is equal to the penalized least squares estimator which writes

e� = �z0z + ��1In��1 z0y
6



which is equivalent to unrestricted LS for � ! 1. The reader should also note that for the
case � ! 1 (in practical situations this translates to � = 100 and above) variable selec-
tion cannot be performed. An intuitive explanation for this effect is that marginal likelihoods
for model selection cannot be calculated with uninformative priors. Kuo and Mallick (1997)
give a more detailed explanation about this issue and propose to use values of � 2 [0:25; 25].
Consequently, in the absence of prior information about the model coefficients, one can use
a locally uninformative prior by setting � = 100 (diffuse prior) on the intercepts and � = 9
for autoregressive coefficients. In near-covariance stationary VAR processes the autoregressive
coefficients are expected to be roughly less than one in absolute value, so a higher value of �
for these parameters is basically redundant.

Minnesota (Litterman) prior The Minnesota prior is very popular and is as old as the VAR
literature in economics. This prior is due to the works of Bob Litterman and colleagues at
Minnesota University and the Minneapolis Fed; see for instance Litterman (1986) and Doan,
Litterman and Sims (1984). This Empirical Bayes formulation assumes the prior mean vector
b is set equal to 1 for parameters on the first own lag of each variable (random walk prior)
and zero otherwise, and V is a diagonal matrix with diagonal element the variance on lag r of
variable j in equation i of the form

V rij =

8><>:
100s2i if intercept
1=r2 if i = j

�
s2i
r2s2l

if i 6= j
(12)

for r = 1; :::; p, i = 1; :::;m,and j = 1; :::; k with k = p + 1. Here s2i is the residual variance
from the unrestricted p-lag univariate autoregression for variable i. The degree of shrinkage
depends on a single hyperparameter �3, where again if � ! 1 we end up with unrestricted
estimates similar to LS. Litterman (1986) originally introduced a hyperparameter for own lags
as well, i.e. he used V rij = �=r

2 if i = j in equation (12). For small and medium VAR models
it is the choice of � that matters. I set � = 1 which provides a “realistic” prior variance for own
lag coefficients. In covariance-stationary VARs we do not expect these coefficients to be much
larger than 1 especially for higher order lags, so 1=r2 should (and does) work fine. Selection
of � in contrast is dependent on the specific dataset and application considered. Selection of
the shrinkage factor � of the Minnesota prior is discussed in subsection 4.1.

Hierarchical Bayes Shrinkage prior Shrinkage priors based on Empirical Bayes methods,
like the Minnesota prior, suffer from the fact that they are subjective constructs and might
not appeal to the objective researcher. The formal Bayesian way to shrinkage in regressions
is to use hierarchical priors on the regression coefficients so that the shrinkage parameter �
is chosen objectively by the data. In Korobilis (2011) I show that using hierarchical Normal-
Gamma priors, we can recover many popular shrinkage estimators for sparse signals, like the
least absolute shrinkage and selection operator (LASSO) of Tibshirani (1996) and its variants

3Litterman (1986) originally introduced a hyperparameter for own lags as well, i.e. he used V r
ij = �=r

2 if i = j
in equation (12). For small and medium VAR models it is the choice of � that matters. I set � = 1 which provides
a “realistic” variance for own lag coefficients (we do not expect these coefficients to be much larger than 1).
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(Fused LASSO, Group LASSO, Elastic Net). Here I use a special case of adaptive shrinkage
Normal-Gamma priors which is the hierarchical Normal-Jeffrey’s prior of Hobert and Casela
(1993) of the form

� � Nn (0; V ) ; V jj = �j ; j = 1; :::; n

�j �
�
100
1=�j

if �j is an intercept coefficient
otherwise

(13)

In simple words, by placing a scale invariant Jeffreys’ distribution on �j , its posterior value
is determined solely by the data (hence � is not a prior choice for the researcher). This is
the simplest form of adaptive shrinkage, and can easily be used in VAR models. In Korobilis
(2011) I show that LASSO-based Bayesian shrinkage (specifically the hierarchical version of
the Elastic Net algorithm of Zou and Hastie, 2005) perform even better in forecasting than
simple Normal-Jeffreys priors. However as explained in Park and Casela (2008) for LASSO-
type priors we need to condition �j on the model error variance, something not straightforward
to do in a VAR model, unless we make simplifying assumptions like setting � to be diagonal.

3.2 Time-varying parameters VAR

Modern macroeconomic applications increasingly involve the use of VARs with mean regres-
sion coefficients and covariance matrices which drift every month/quarter. Nonetheless, fore-
casting with time-varying parameters VARs is not a new topic in economics. During the “Min-
nesota revolution” efficient approximation methods of forecasting with TVP-VARs were devel-
oped, with most notable contributions the ones by Doan, Litterman and Sims (1984) and Sims
(1989); for a large-scale application in an 11-variable VAR see also Canova (1993). Using
modern posterior simulator methods (Markov Chain Monte Carlo), TVP-VARs have been used
recently very extensively for structural analysis (Primiceri, 2005; Cogley and Sargent, 2002)
and forecasting (D’Agostino et al., 2009; Cogley et al., 2005), while Groen, Paap and Ravaz-
zolo (2009) and Koop and Korobilis (2009b) are focusing on univariate predictions with the
use of a large set of exogenous variables.

As mentioned in the Introduction, marginal likelihood calculations in this model are hard
to implement. When specifically stochastic volatility is present, computationally expensive par-
ticle filtering methods are needed only to obtain a measure of fit for a single model. Estimation
using Bayesian variable selection is not affected by specific modelling assumptions (like the in-
clusion or not of stochastic volatility) and can accommodate all possible model combinations
efficiently in a single run of the Gibbs sampler.

A time-varying parameters VAR with constant covariance matrix (Homoskedastic TVP-VAR)
takes the form

yt = ct +B1;tyt�1 + :::+Bp;tyt�p + "t (14)

where as before "t � N (0;�) with � an m � m covariance matrix. This model can eas-
ily be written in the variable selection SUR form (4), by defining �t to be the n � 1 vector�
c0t; vec

�
B01;t

�
; :::; vec

�
B0p;t

��0 of parameters and zt = Im
 (1; yt�1; :::; yt�p)0 is anm�nmatrix.
In that case we have
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yt = zt�t + "t (15)

�t = �t�1 + �t (16)

where �t = ��t and � is the n�n matrix defined in (4). Equation (16) defines a random walk
evolution of the nonlinear VAR coefficients4, for which it holds that �t � N (0; Q) with Q an
n� n covariance matrix.

Note that variable selection in this case implies that a VAR coefficient either enters or exits
the “true” model in all time periods t = 1; :::; T . In contrast, today there are methods in uni-
variate regressions which allow different coefficients to be selected at different points in time.
Most notably, Chan, Koop, Leon-Gonzalez and Strachan (2010) use such a flexible specifica-
tion, however estimation relies on computationally intensive MCMC procedures which only
allow them to consider a handful of variables. The efficient approximations we describe in
Koop and Korobilis (2009b) allow dynamic model averaging (DMA) and selection (DMS) with
up to around 20 predictors (i.e. to average or select among 220 models at each period t).
Nonetheless, the smallest typical VAR used in macroeconomics has three quarterly variables
and four lags and an intercept (39 mean coefficients), which makes application of DMA com-
putationally intensive.

While the priors for (�;�) are the same as in the previous cases (Jeffrey’s-Bernoulli), it can
be shown that conjugate priors for the remaining parameters of the TVP-VAR model (Cogley
and Sargent, 2002) are of the form

�0 � Nn (b; V )

Q�1 � Wishart
�
�;R�1

�
with �0 being practically the initial condition of �t. Note that a prior on each �t, t = 1; :::; T ,
need not be specified since this is implicitly defined recursively as �t � Nn

�
�t�1; Q

�
. An

important thing to underline is that the model allows the VAR coefficients �t to evolve as
random walks for T periods, so that shrinkage/tight priors must be used especially for Q
(a detailed explanation why is given in Primiceri, 2005, Section 4.4). Cogley and Sargent
(2005) and Primiceri (2005) use the OLS estimates of a simple VAR estimated on a training
sample to inform their prior hyperparameters, and set their shrinkage coefficient (what was
denoted as � in the linear VAR priors) at a very small value. This approach is standard in
Bayesian analysis, especially when marginal likelihoods are not readily available, but it results
in discarding valuable information in the training sample.

In contrast the standard Minnesota prior can be used to inform the initial condition �0 of
the TVP-VAR coefficients, combined with a tight prior on Q. Subsequently, we can set b and
V as in equation (12), while setting � = 2 (n+ 1) and R = kRIn

5, where n is the number
of coefficients in �t and kR is a scaling factor which we have to choose. Following Cogley

4An autoregressive model of order one could be defined, but early empirical experience with these models (see
Sims, 1989) suggests that the AR(1) coefficient is practically very close to 1.

5To replicate Primiceri’s (2005) training sample prior, we can use R = kRV where as before V is the Minnesota
prior covariance matrix. However this assumption does not alter any of the forecasting results for the UK dataset
used in the empirical section.
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and Sargent’s (2002) “business as usual” prior, i.e. the belief that the TVP-VAR coefficients
should vary smoothly and not change abruptly each time period, I set kR = 0:0001. This is the
standard value used by Primiceri after implementing a sensitivity analysis, see Primiceri (2005,
Section 4.4.1). Consequently, as in the linear VAR models, we only need to worry about the
value of the shrinkage coefficient �, a choice which is discussed in the empirical section.

3.3 Structural breaks VAR

In theory and in practice, a VAR with structural breaks lies between the linear VARs (zero
breaks) and the TVP-VAR (breaks in every period, i.e. T breaks) and should have been pre-
sented earlier. However one of all the possible formulations of structural breaks in the VAR
coefficients, which is due to Koop and Potter (2007), is to write the model as a special case
of the TVP-(V)AR presented above. Subsequently, following equations (15) and (16) we can
write the structural breaks VAR using the form

yt = zt�st + "t (17)

�st = �st�1 + �st : (18)

Here �st = ��st , �t � N (0; Q), and st 2 [1; :::;K + 1] is a first order Markov process with
block-diagonal transition matrix of the form

P =

26666664
p11 p12 0 � � � 0

0 p22 p23
. . .

...
...

. . . . . . . . . 0
0 pKK pK;K+1

0 � � � 0 0 pK+1

37777775
which makes the structural breaks model a restricted form of a Markov switching VAR, since
we can only move from one regime to the next, and never return to a previous regime. In this
case we have a breaks between time period t and t + 1 iff st 6= st+1. Uncertainty about the
number of regimes is easily incorporated in a Bayesian context by setting a maximum number
of breaks, sayKmax, and allowing the data to determine the “true” number of estimated breaks
K, where 1 � K � Kmax. In Bauwens, Koop, Korobilis and Rombouts (2011) we give exact
implementation details on forecasting with a univariate version of this model, which I follow
closely in this multivariate extension. Estimation details are provided in the Appendix.

The hyperparameters on the initial condition, �0 � Nn (b; V ), and the state covariance ma-
trix, Q�1 �Wishart

�
�;R�1

�
, are based on Sims’s version of the Minnesota prior explained in

the previous subsection. The additional parameters on this model are the transition probabil-
ities pij = Pr [st = ijst�1 = j], for which I use the typical Beta prior for the diagonal elements
pii � Beta (�1; �2), i = 1; :::;K. For �1 = �2 = 1 this density becomes uniform and noninfor-
mative. The parameters st are estimated as in Chib (1996).

3.4 Extension to large VARs and comparison with other models
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The fact that automatic Bayesian variable selection is stochastic and simulation is needed
(Gibbs sampler) implies that it’s use is in general prohibitive in VARs with hundreds of depen-
dent variables as in Bańbura, Giannone and Reichlin (2010). Moreover, the disadvantage of
variable selection is that in order to allow different variables to enter different equations, the
SUR form of the VAR is needed which relies on inverting large matrices (since the RHS data
matrix is zt = Im 
 xt instead of just xt in the reduced-form VAR). Even so, this subsection
discusses some modifications to variable selection that would make its usage in medium-sized
VARs possible.

Consider the linear VAR6 model (1) written compactly as

yt = Bxt + "t

where xt = (1; yt�1; :::; yt�p) and B =
�
c;B01; :::; B

0
p

�
ism�k. Instead of restricting individually

each of the n = mk elements ofB, whenm is “large” we might want to consider restricting only
the k columns of B. This simplification implies that a specific RHS variable yi;t�j , i 2 [1;m],
j 2 [1; p] either enters simultaneously in all m VAR equations or none. While this results in
a loss of modelling flexibility, the implication is that when we model, say, m = 15 variables
in a VAR with p = 4 lags we only need to average across 260 models as opposed to the 2900

models available otherwise. More importantly, we do not need the computationally expensive
SUR form to estimate the VAR model, since we can now write the large VAR + model selection
model as

yt = �xt + "t

where � = B� with � the k � k diagonal matrix with the restriction indices  on its diagonal.
It would be of benefit to relax the assumption that the prior on the indices j is Bernoulli

with “uninformative” hyperparameter �0j = 0:5. It is feasible to impose many restrictions a
priori by setting 0 < �0j � 0:57. For instance �0j = 0:1 means that our expectation is that
90% of the coefficients should be restricted. However, we need not impose these restrictions
linearly on all parameters. Following the Minnesota tradition we can use a prior which restricts
a priori coefficients on more distant lags

�0j =

�
0:5, for own lags

1=(r + 1), otherwise

where r = 1; ::; p.
The idea to restrict the VAR regression coefficients can also be extended to finding restric-

tions in the covariance matrix of a VAR. In fact, Smith and Kohn (2002) and Wong, Carter and
Kohn. (2003), take the Cholesky decomposition ��1 = A
A0 of an m�m covariance matrix,
and impose restrictions on the matrix A using indicator variables, say �. In this decomposition

6Obviously treating large nonlinear VARs is not different. However this is not discussed, since large time-varying
parameters and structural breaks VARs are computationally intensive. In Korobilis (2011b) I derive efficient com-
putational methods to forecast with VARs of very large dimensions (whether T or m are in the order of thousands)
in seconds of computer time.

7The alternative �0j > 0:5 imposes the prior belief that not many restrictions are expected in the VAR coeffi-
cients. If the researcher is uncertain about these beliefs, a Beta prior can always be placed on �0j which makes this
hyperparameter an unknown random variable to be updated from the data.
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 is a diagonal matrix and A is a lower triangular matrix with 1’s on the diagonal. Hence
model selection proceeds by setting

�i = 0 if �i = 0

�i 6= 0 if �i = 0

where �i is each of the m (m� 1) =2 non-zero and non-one elements of A. Therefore, sim-
ilarly to the case of variable selection in the mean equation coefficients, their approach can
be easily generalized to a covariance matrix which is stochastic as for example in the popular
Heteroskedastic TVP-VARs of Primiceri (2005), Canova and Gambetti (2009) and Cogley and
Sargent (2002). Considering covariance matrix selection and assuming different functional
forms for the covariance matrix (say time-varying, or structural breaks) will affect forecasts
to some extent and would not allow to evaluate the performance of variable selection in the
mean VAR equation, which is of prime interest since it has much larger number of coefficients.
For that reason, it is better to integrate out the (constant) covariance matrix, as well as the
intercepts, using uninformative priors as is the standard practice in the Bayesian Statistics liter-
ature when evaluating model selection or shrinkage priors (see among others Park and Casella,
2008; Villani, 2009; and Liang, Paulo, Molina, Clyde and Berger, 2008).

There are several other approaches to automatic Bayesian model selection and shrinkage
for univariate regression models which can be generalized to VAR models. The formal “full-
Bayes” procedure as it is called, is based on hierarchical Normal priors of the form

�j � Nn (0n�1; V )
 � F (a; b; c) (19)

where V is a prior covariance matrix and F (�) denotes a density function with parameters
a; b; c. In this case, if the prior distribution of , F (a; b; c), is the Bernoulli (�) then  takes
only the values 0 and 1 and we have model selection identical to the one described above (if
 = 1 the prior is (�j = 1) � Nn (0; V ), if  = 0 the prior is (�j = 0) � Nn (0n�1; 0n�n),
i.e. a Dirac � point mass at zero). This is the case of the stochastic search variable selection
(SSVS) prior used in George, Sun and Ni (2008), Korobilis (2008) and Jochmann, Koop and
Strachan (2010). As discussed in subsection 3.1 if we assume V = In and we assign a prior
for  of the form  � Gamma (�1; �2) then we can have shrinkage of � dependent on whether
the  � 0 or  ! 0. Additionally, the shrinkage priors have the desirable property that they
become variable/model selection priors in models with more predictors than observations; see
Korobilis (2011).

From a practitioner’s point of view, it must be noted that the SSVS prior as well as adaptive
shrinkage priors of this hierarchical form are computationally much faster than variable selec-
tion considered in this paper. The main issue with Hierarchical Gaussian priors is that they
cannot be used in nonlinear VARs like the TVP-VAR, which are of special interest to academics
and practitioners in Central Banks. A hierachical prior like (19) can be potentially applied to
the initial condition of the TVP-VAR, which would take the form �0j � Nn (0; V ). We can
immediately observe that for the subsequent time periods, the prior on the time-varying coeffi-
cients becomes �t � Nn

�
�t�1; Q

�
so that dependence on the shrinkage properties of  is lost,

and the prior mean becomes �t�1 which in general will be estimated from the likelihood to be
other than zero. To the best of my knowledge there are no formal Bayesian model selection
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or shrinkage estimators for these nonlinear VARs and the focus of this paper is to fill this gap
using the methods described so far.

4 Macroeconomic forecasting with VARs

The variable selection techniques described previously are used to provide forecasts of three
major U.K. macroeconomic series. These series are: the unemployment rate ut (Unemploy-
ment rate: All aged 16 and over, Seasonally adjusted); the inflation rate �t (RPI:Percentage
change over 12 months: All items); and the interest rate rt (Treasury bills: average dis-
count rate). The data are obtained from the Office for National Statistics (ONS) website:
http://www.statistics.gov.uk/. The available sample runs from 1971Q1 to 2008Q4. All vari-
ables are measured originally on a monthly basis, and quarterly series are calculated by the
ONS by taking averages over the quarter (for inflation), the value at the mid-month of the
quarter (for unemployment), and the value at the last-month of the quarter (for the interest
rate), respectively.

Unemployment ut is specified as a gap from its trend eut, where the trend is estimated
using the one-sided low pass filter eut = eut�1 + 0:2 (ut � eut�1). This is an approximation to an
exponentially weighted moving average filter which is an easy but effective way to estimate the
trend in economic time series; see also the discussion in Cogley, Morozov and Sargent (2005)
and references therein. Henceforth, whenever “unemployment” is mentioned, this will be the
unemployment gap variable ut � eut.
4.1 Forecasting models

Here I provide a summary of all the models presented in the previous section. The models com-
pared in this article are the linear Bayesian VAR with ridge regression (VAR Ridge), Minnesota
(VAR Min) and adaptive shrinkage prior (VAR Shrink). The two nonlinear models estimated
for the UK data are the time-varying parameters VAR (TVP-VAR) and the structural breaks VAR
(SB-VAR), both with a Minnesota prior on the mean coefficients8. Additionally a 13-variable
linear VAR with Minnesota prior is estimated (Large-VAR). The variables in this model are the
ones used in the trivariate VARs above plus 10 major variables for the UK economy including
GDP, total employment, £/$ exchange rate and money stock M4 . These models are summa-
rized in Table 1. This gives forecasts from six models with and without variable selection, i.e. a
total of 12 model forecasts to assess. All models have an intercept and 4 lags of the dependent
variables.

Moreover, we have to decide on selection of the shrinkage coefficient � for the Minnesota
prior. This can be done subjectively as in Litterman (1986), but also searching over a grid of
values in a training sample as in Bańbura, Giannone and Reichlin (2010). A value of � = 0:1
is used for the trivariate linear and nonlinear VARs. This choice is the one which optimizes the
forecasting performance of the TVP-VAR model in particular, compared to competing values

8A “less tight” ridge regression prior can also be used in the initial condition of the mean coefficients of these
two models, say �0 � Nn (0; 9I). In that case, variable selection indeed performs much better than no variable
selection. In practical situations though, one would realistically use a data-based shrinkage prior in these models
(like the Minnesota or the Primiceri, 2005, prior) to reduce the nonlinear parameter space.
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of � in the grid f1; 0:5; 0:1; 0:01; 0:01g. Note that this “sensitivity analysis” approach is done
because the main purpose of this section is to evaluate the performance of variable selection
and not which of the various VARs performs the best. It turns out that for the whole grid of
values for �, the conclusions about whether including variable selection improves forecasting
or not are qualitatively similar. Following the same procedure, and based on the arguments of
Bańbura, Giannone and Reichlin (2010), who compare VARs of large dimensions, the shrink-
age factor on the large linear VAR model is set to a tighter value, i.e. � = 0:01.

Table 1: Definition of VAR models for the UK macro series
Model Description
VAR Ridge VAR with ridge regression prior, � = 9
VAR Min VAR with Minnesota prior, � = 0:1
VAR Shrink VAR with Normal-Jeffreys prior, p (�) / 1=�
TVP-VAR Time-varying VAR with Minnesota prior, � = 0:1
SB-VAR Structural Breaks VAR with Minnesota prior, � = 0:1
Large-VAR Large VAR with Minnesota prior, � = 0:01

4.2 Forecast implementation

The initial estimation period is 1971Q1 to 1989Q4 and forecasts are computed iteratively for h
quarters ahead, h = 1; 2; 3; 4. Then one data point is added at the end of the sample (1990Q1)
and forecasting is implemented again for h quarters ahead. This procedure is followed until
the sample is exhausted. Estimation is based on 30.000 samples from the posterior after an
initial convergence (burn-in) period of 2.000 iterations. Convergence of the Gibbs sampler is
excellent in all instances.

Standard results for forecasting with VAR models apply whether or not variable selection
is present. The companion form of the standard VAR model is

yt = c+Byt�1 + "t

where yt =
�
y0t; :::; y

0
t�p+1

�0, "t = ("0t; 0; :::; 0)0, c = (c0; 0; :::; 0)0 and

B =

�
B1:::Bp�1 Bp
Im(p�1) 0m(p�1)�m

�
:

Iterated h-step ahead forecasts can be computed using the formulas

E (yt+h) =
Xh�1

i=0
Bic+Bhyt�1

var (yt+h) =
Xh�1

i=0
Bi�

�
Bi
�0 (20)

Two points have to be clarified here. First, in the case of variable selection, the parame-
ter matrices B1; :::; Bp are going to be replaced by the respective elements of the restricted
parameter vector � = ��. Second, in the case of the two models with drifting coefficients,
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predictive simulation can be implemented to forecast breaks in the coefficients out-of-sample.
This would mean that we should use the random walk evolution of the mean coefficients in
the time-varying parameters and structural breaks VARs and simulate their future path using
Monte Carlo; see Bauwens, Koop, Korobilis and Rombouts (2011) for more details. I follow
D’Agostino, Gambetti and Giannone (2010) and relax this assumption. In that case, I use the
formula (20) where I plug-in the last known values of the coefficients in sample, i.e. b�T andb�sT respectively for the two nonlinear models.

Using MCMC implies that we sample from the full posterior density of the VAR coefficients,
so that instead of a single point forecast E (yt+h) we end up having samples from the full
Bayesian predictive density. This also implies that there are two ways to implement the variable
selection forecasts. The one is to estimate a specific VAR model using the Gibbs sampler, save
the sequence of S = 30:000 posterior draws s, s = 1; :::; S, and obtain the mean/median .
Then the “best” model is the one for which �j is unrestricted (restricted) if  � 0:5 ( < 0:5),
so that we can estimate and forecast only with this best model at a second step. The second
way is simply to implement one run of the MCMC and forecast using the current estimates
�s = �s�s for s = 1; :::; S MCMC samples. That way if we sample j = 1 10% of the time
(3.000 samples from the posterior) and j = 0 for the remaining samples, this means that
we also use �j to produce the final forecasts only 10% of the time. The former case provides
absolute variable selection of a single optimal model, which is what Barbieri and Berger (2004)
call the “median probability model”. The second method provides relative variable selection
which is equivalent to Bayesian Model Averaging. In previous research (Korobilis, 2008; Koop
and Korobilis, 2009) I find that there is no clear dominance of one method over the other in
forecasting. In face of this result, I use the second method for forecasting which takes explicitly
into account uncertainty about the true model (by giving relative, instead of absolute, weights
to each VAR coefficient).

4.3 Forecast evaluation

All models are evaluated using various measures of out-of-sample performance and forecast
accuracy. Precision of mean forecasts is evaluated using averages of the Mean Absolute Fore-
cast Error (MAFE) and the Root Mean Squared Forecast Error (RMSFE) over the whole pseudo
out-of-sample evaluation period. In particular, for each of the three variables yi;t (i =inflation,
unemployment, interest rate) of the vector yt, and conditional on the forecast horizon h and the
time period t, these three measures are calculated as

� dMAFE�h
i
=

1

�1 � h� �0 + 1

�1�hX
t=�0

��byi;t+hjt � yoi;t+h��
� dRMSFE

�h
i
=

vuut 1

�1 � h� �0 + 1

�1�hX
t=�0

�byi;t+hjt � yoi;t+h�2
where byi;t+hjt is the time t+ h prediction of variable i, made using data available up to time t,
and yoi;t+h is the observed out-of-sample value (realization) of variable i at time t + h. In the
recursive forecasting exercise, averages over the full forecasting period 1990:Q1 - 2008:Q4 are
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presented using these formulas where �0 is 1989:Q4 and �1 is 2008:Q4.
These two measures can help provide a ranking of all the VAR models and give an idea

of which model and prior specification performs the best. An interesting question to answer
is whether the inclusion of variable selection results in overall improvement of forecasts. A
simple measure is to compute the time series of differences between the squared losses of the
two models, i.e.

dt+h =
�
�Rt+h

�2 � ��Ut+h�2 ; (21)

where
�
�Rt
�2 are the squared forecast errors from the restricted model (with variable selection),

and
�
�Ut+h

�2 are the squared forecast errors from the unrestricted model (without variable se-
lection). The subscript t runs only for the pseudo out-of-sample period �1�h� �0+1. Diebold
and Mariano (1995) provide a simple test statistic when the null is that of equal predictive
ability, i.e. E (dt+h) = 0. From a Bayesian point of view, since we have 30.000 samples from
the predictive density of our data yt+h, it is easy to construct through equation (21) an equal
number of samples from the finite sample density of dt+h. Hence this Bayesian procedure is
equivalent, but not identical, to bootstrapping dt under the assumption of Gaussianity (instead
of having to rely on the asymptotic distribution of dt in the presence of small samples). Sub-
sequently, it is straightforward to get a pairwise measure of overall predictive ability by using
the whole posterior density Pr (dt+h), i.e. we can evaluate the following “Bayesian Diebold-
Mariano” (BDM) statistic

BDM =
1

�1 � h� �0 + 1

�1�hX
t=�0

Pr (dt+h > 0) ; (22)

see also Garratt, Koop, Mise and Vahey (2009). This statistic implies that if BDM > 0:5, the
unrestricted model performs better than the restricted model, and vice versa.

4.4 In-sample variable selection results

Before proceeding to the forecast evaluation of variable selection, it would be interesting first
to obtain a picture of what is the output of variable selection. Since the Gibbs sampler provides
a sequence of 0-1 draws from the posterior of , once we take an average of these draws we
can end up with an average “probability of inclusion in the true model” for the respective VAR
coefficients �. Table 2 does exactly that for the six models described earlier. The table is split in
three blocks pertaining to each of the three VAR equations (unemployment ut, inflation �t and
interest rate rt). Each row corresponds to the lags of the three variables as they appear in each
equation. Numerical entries in this table are the averages of the posterior of  using the full
sample 1971:Q1 - 2008:Q4. The prior on  for the five trivariate VARs is the Bernoulli(0:8)
discussed earlier, whilst for the Large VAR model the tighter prior discussed in subsection 3.4
applies.

Variable selection indicates that some variables should always be included, irrespective of
the model specification or the priors used. These are the first own lags of each dependent
variable, but also the first lag of the interest rate in the inflation equation. Moreover, inflation
and interest rates two periods ago seem to affect the current level of inflation, as well as the
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Table 2: Posterior means of the restriction variables j using the full sample
VAR Ridge VAR Min VAR Shrink SB-VAR TVP-VAR Large-VAR

VAR equation: ut
ut�1 1.00 1.00 1.00 1.00 1.00 1.00
�t�1 0.34 0.26 0.72 0.00 1.00 1.00
rt�1 0.01 0.23 0.63 0.23 1.00 1.00
ut�2 0.23 0.32 0.72 0.29 0.43 0.17
�t�2 0.03 0.47 0.58 0.07 0.00 1.00
rt�2 0.08 0.53 0.59 0.00 0.03 1.00
ut�3 1.00 0.99 1.00 1.00 0.98 0.08
�t�3 0.00 0.46 0.65 0.00 0.00 0.00
rt�3 0.14 0.45 0.74 0.00 1.00 0.00
ut�4 0.10 0.23 0.64 0.17 0.56 0.00
�t�4 0.02 0.53 0.66 0.00 0.00 0.00
rt�4 0.17 0.39 0.61 0.00 0.00 0.00

VAR equation: �t
ut�1 0.36 0.12 0.64 0.59 0.80 1.00
�t�1 1.00 1.00 1.00 1.00 1.00 1.00
rt�1 1.00 1.00 1.00 0.98 1.00 1.00
ut�2 0.43 0.18 0.65 0.56 0.79 0.17
�t�2 0.93 0.98 1.00 0.88 1.00 1.00
rt�2 0.68 0.85 0.82 0.90 0.97 1.00
ut�3 0.42 0.21 0.71 0.60 0.80 0.08
�t�3 0.29 0.39 0.69 0.38 0.84 0.00
rt�3 0.33 0.57 0.70 0.29 0.87 0.00
ut�4 0.33 0.23 0.73 0.46 0.80 0.00
�t�4 0.21 0.38 0.61 0.21 0.71 0.00
rt�4 0.21 0.71 0.82 0.21 0.85 0.00

VAR equation: rt
ut�1 0.62 0.32 0.75 0.68 0.81 1.00
�t�1 0.12 0.13 0.63 0.09 0.41 1.00
rt�1 1.00 1.00 1.00 0.95 1.00 1.00
ut�2 0.60 0.42 0.68 0.59 0.78 0.17
�t�2 0.11 0.29 0.67 0.14 0.66 1.00
rt�2 0.21 0.23 0.66 0.10 0.65 1.00
ut�3 0.62 0.39 0.71 0.69 0.79 0.08
�t�3 0.32 0.53 0.62 0.14 0.84 0.00
rt�3 0.16 0.32 0.67 0.17 0.71 0.00
ut�4 0.45 0.30 0.69 0.59 0.81 0.00
�t�4 0.12 0.39 0.65 0.18 0.79 0.00
rt�4 0.07 0.30 0.66 0.17 0.66 0.00

third lag of unemployment affects the current level of unemployment (but only in the small,
trivariate VAR models). Lastly, unemployment in the previous quarter is more likely to affect
the current level of the interest rate than past inflation.

Other than these few regularities, the posterior probabilities of inclusion of each predictor
variable varies a lot between specifications. For the linear VAR model, the relatively uninfor-
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mative ridge regression prior invites more restrictions from the variable selection algorithm
than when the Minnesota and Normal-Jeffrey’s priors are present. This is because the last two
priors already provide shrinkage of coefficients towards zero. Subsequently it is the case that
shrinkage will force more (compared to an uninformative prior) the posterior of the �j ’s to
move towards the region of zero, so that the respective j ’s are not identified and they will be
drawn randomly from their Bernoulli(0:8) prior. As discussed earlier, this is not a failure of
variable selection since what we care about is the combined coefficient �j = j�j to be zero,
whether it is because �j = 0 or j = 0. An example where this effect happens is for variable
�t�2 in the unemployment equation, which has only a probability of 8% of inclusion when
using the VAR Ridge model, but this probability increases to circa 50% when using the VAR
Min and VAR Shrink models. Nevertheless, in these two latter models, the posterior mean of
�j for j = �t�2 is around 0.002, so that it finally holds that �j = j�j � 0.

For the rest of the VAR models mixed results are present which depend on the nature of
each model. Even among the two nonlinear models many differences exist. For instance,
�t�1 has 0% probability of appearing in the unemployment equation of the structural breaks
VAR but 100% probability of appearing in the same equation in the time-varying VAR model.
Finally, notice that more restrictions are present in the Large-VAR model since a more restricted
form of the prior on  is used, compared to the one used in the small models. In this Large-VAR
setting the right-hand side (RHS) variables have exactly the same probability of appearing in
each of the three VAR equations of interest. This is due to the simplifying assumption described
in subsection 3.4 which allows computational tractability when the dimensions of the VAR
grow large.

4.5 Out-of-sample iterated forecasts

In this subsection the restricted and unrestricted VAR models are evaluated out-of-sample.
Tables 3 and 4 present the MAFE and RMSFE statistics over the forecast sample 1990:Q1-
2008:Q4. The first column of each table shows the three variables in the vector of interest
yt+h, for horizons h = 1; :::; 4. The second column of both tables presents the absolute value
of the MAFE and RMSFE, respectively, for the driftless random walk model. Consequently the
remaining columns present the MAFE and RMSFE statistics from the six Bayesian four-lag VARs
with and without variable selection, as a proportion of the respective MAFE and RMSFE of the
random walk. For comparison the third column in each table gives the respective statistics
from a parsimonious VAR(1) specification estimated with OLS.

The results suggest that all small four-lag VAR models perform better the naïve model in
short-term forecasting of unemployment and inflation. The very flexible TVP-VAR provides the
lowest mean prediction error (the gains are especially visible during the financial crisis sample
2007-2008), while the Large VAR being quite heavily parametrized gives only the best VAR
forecasts for the interest rate. Nevertheless, none of the VAR models can beat the random
walk in interest rate forecasting.
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In terms evaluating variable selection, the unrestricted VAR(4) model with ridge regres-
sion prior (which in this paper is defined to be uninformative, as if using a VAR(4) estimated
with least squares) is better at all horizons than the unrestricted, more parsimonious VAR(1)
in forecasting unemployment and inflation. In that respect, good performance of the variable
selection is translated into expecting substantial restrictions of the VAR(4) Ridge model coeffi-
cients only in the interest rate equation since from the VAR(1) it is obvious that using one lag
in this equation is always better. At the same time less restrictions are expected in the coeffi-
cients in the unemployment and interest rate equation, since the VAR(4) is already doing much
better than the VAR(1) for these two equations. Table 2 provided an idea of the restrictions
that actually hold in each model, however notice that in a recursive forecasting exercise the
posterior probabilities are estimated in real-time as new data become available, so they will
not be constant during the forecast evaluation sample.

In fact, variable selection in the VAR(4) Ridge model does improve forecasts of all three
variables, especially at longer horizons. For the VAR(4) Min and VAR(4) Shrink (these two
models already have shrinkage priors) variable selection only improves the interest rate fore-
cast while there is usually a �1% gain/loss in MAFE or RMSFE, but this is so small that might
also be attributed to sampling and rounding error. The main result is that none of the three
unrestricted linear VARs with four lags is forecasting interest rates as the VAR(1) estimated
with OLS does, something that is consistently accounted for when adding variable selection9.

The gains from variable selection for forecasting all three variables of interest are more
clear as the model size increases. As forecasting results for the 13-variable Large VAR suggest,
when the model dimensions increase, variable selection really helps to prevent overfitting.
Although the Minnesota shrinkage parameter is not set optimally, this improvement when
using variable selection is robust for a large grid of values of � (see the discussion in subsection
4.1).

The story behind the structural breaks model SB-VAR(4) is different. There, the gains
are quite impressive for longer horizons, but closer examination shows that these are linked
only indirectly to variable selection. Estimation of the unrestricted SB-VAR(4) model with
maximum number of possible breaks equal to 3, indicates that there are actually no breaks10.
When the SB-VAR(4) model is estimated with variable selection, a break is found (using the
full sample) in 2004Q1. This is actually the exact reason why variable selection does much
better in mean prediction with the structural breaks model. By restricting the parameter space,
a structural break is found that is not otherwise identified when all 39 mean VAR coefficients
are unrestricted.

In the TVP-VAR model with Minnesota prior, which is the best performing among all VAR
models, variable selection helps improve the MAFE of the interest rate in longer horizons.
Nevertheless, in this case variable selection increases the absolute and squared forecast error
of unemployment and inflation at horizons two to four quarters. Subsequently, the shrinkage

9Here we can observe that although variable selection improves forecasts of interest rate from the linear VAR(4),
these are never as good as the VAR(1)-OLS forecasts. This is due to the fact that our prior expection is that 20% of
the parameters should be restricted (�0j = �0 = 0:8). Subsequently there might be benefit from setting �0j << 0:8
but only if �j is a coefficient in the interest rate equation; see also the discussion in the next subsection.

10Notice that although no breaks are estimated, the SB-VAR(4) forecasts are not the same as the VAR(4) Min
forecasts (these two models have identical Minnesota priors). The reason is computational, but explaining why is
beyond the scope of this paper. The reader is advised to consult Bauwens, Koop, Korobilis and Rombouts (2011).

20



prior in this case is sufficient to guarantee optimal mean forecasts, and variable selection is not
necessary. Although this observation might be correct for the expected risk of mean forecasts,
the Bayesian Diebold-Mariano (BDM) statistic given in equation (22) reveals that there is the
case that variable selection provides overall superior predictive ability.

The BDM statistic, which is based on the time series of differences between the squared
forecast errors of the restricted and the unrestricted models, is presented in Table 5. A value
less than 0.5 shows the probability that the restricted model has better forecasting ability
overall compared to the unrestricted model. Table 5 reveals that this is the case for all models
apart from the structural breaks VAR. That is because in this model we saw that variable
selection indicates one break, while in the unrestricted model no break is found. Thus forecasts
from the restricted model with one break have larger variance because all the VAR coefficients
in the second regime are estimated using only 19 observations (the break date is 2004Q1).
Since the BDM statistic is based on all simulated draws from the posterior predictive densities,
parameter uncertainty is included in the evaluation of the quantity Pr (dt+h > 0). Thus, this
fact explains why the unrestricted no-break model does better overall than the restricted model
with one break, despite the fact that the MAFE and RMSFE results suggest otherwise. Finally,
in Table 5 we can observe again that as the forecast horizon increases the gains from using
variable selection also increase.

Table 5: Bayesian Diebold-Mariano statistic, 1T
P
Pr (dt+h > 0).

VAR Ridge VAR Min VAR Shrink SB-VAR TVP-VAR Large-VAR
ut+1 0.481 0.486 0.491 0.535 0.485 0.433
�t+1 0.467 0.467 0.505 0.622 0.495 0.476
rt+1 0.477 0.486 0.473 0.619 0.498 0.441
ut+2 0.470 0.480 0.472 0.522 0.491 0.421
�t+2 0.473 0.472 0.501 0.625 0.489 0.470
rt+2 0.470 0.474 0.456 0.587 0.486 0.473
ut+3 0.458 0.468 0.464 0.525 0.488 0.380
�t+3 0.463 0.460 0.487 0.618 0.481 0.442
rt+3 0.448 0.453 0.444 0.562 0.476 0.483
ut+4 0.463 0.466 0.457 0.528 0.486 0.345
�t+4 0.453 0.449 0.473 0.597 0.472 0.436
rt+4 0.447 0.449 0.433 0.546 0.471 0.485
Note: The Table shows the average values of the statistic Pr(dt+h>0) where dt+h are the time series of differences between the squared

forecast errors from the restricted and unrestricted models; see also equation (22) in the text.

4.6 Sensitivity analysis: Direct forecasts, and expected number of restrictions

In many cases, iterated, multi-step ahead VAR forecasts might not be satisfactory. This is
particularly true when the model is misspecified (Marcellino, Stock and Watson, 2006), in
which case econometricians estimate a direct VAR using information up to time t to directly
predict yt+h, i.e. the model

yt+h = Bxt + "t:

Using the above VAR equation, the researcher can use directly the available information xT to
forecast yT+h. This is, additionally, a particularly useful approach when xt contains exogenous
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predictors for which forecasts are not available to the econometrician (and hence iterating the
VAR h-steps ahead is not possible).

This case is examined analytically in Korobilis (2008) using the SSVS algorithm in large
linear VARs with hundreds of predictors. Here I provide results for 4-steps ahead forecasting
using the TVP-VAR(4) in the context of a “sensitivity analysis” with varying degree of prior
expected number of restrictions. Restrictions in the VAR models with variable selection can
be imposed through the prior hyperparameter �0j of the Bernoulli density in equation (6).
Table 6 presents the RMSFE from the unrestricted TVP-VAR(4) in the second column, and the
RMSFE of the restricted TVP-VAR(4) with �0j = �0 for all j = 1; :::; n, relative to that of the
unrestricted model. The case �0 = 0:8 is the one examined previously in the small VARs (but it
was relaxed in the Large VAR model) and implies the expectation that 20% of the coefficients
should be restricted a priori. Other values shown in this Table can be interpreted in a similar
way. The optimal forecasts from the restricted model are obtained when �0 is 0.7, where
gains of up to 8% in forecasting inflation are attained. When more and more restrictions are
imposed, the RMSFE are monotonically increasing, suggesting that there is a risk attached to
imposing strong prior beliefs in such a small model. For �0 > 0:7 the RMSFE also increases,
where the limit �0 = 1 implies the unrestricted model (where all relative RMSFEs are equal to
1.00).

Table 6: RMSFE of 4-quarter ahead direct forecasts from a TVP-VAR(4)
TVP-VAR(4) TVP-VAR(4) with VS

no VS �0 = :3 �0 = :4 �0 = :5 �0 = :6 �0 = :7 �0 = :8

ut+4 0.3569 1.05 1.01 1.00 0.97 0.96 0.97
�t+4 1.7546 0.93 0.94 0.92 0.92 0.92 0.93
rt+4 1.9521 1.03 1.03 1.02 1.01 0.99 0.99
Note: The second column presents the RMSFE of the unrestricted TVP-VAR(4) model. The next columns present the RMSFEs of the restricted

model (relative to that of the unrestricted TVP-VAR(4)) for different prior expected number of restrictions on .

Although for other direct VAR models and forecast horizons results are mixed as to whether
variable selection improves forecasting over the unrestricted model, it is always the case that
for small VAR models the RSMFE is a quadratic function of �0. Consequently, choice of �0
should not pose a challenge for the applied researcher as soon as the choice of expected re-
strictions is chosen reasonably, i.e. it is tied to the dimension of the VAR model considered.
For instance, in subsection 3.4 an empirical method for tuning the prior expected number of
restrictions as the dimension of the VAR increases was introduced. Moreover, if there are actu-
ally practical difficulties in selecting a value for �0, full Bayes methods can also be used. That
means that a hyperpior distribution is placed on �0 (or even �0j for j = 1; :::; n), so that this
hyperparameter is estimated from the data and hence it will also vary with the sample size
considered.

5 Concluding remarks

Vector autoregressive models have been used extensively over the past for the purpose of
macroeconomic forecasting, since they have the ability to fit the observed data better than
competing theoretical and large-scale structural macroeconometric models. This paper shows
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that Bayesian variable selection methods can be used to find restrictions based on the evidence
in the data with positive implications in preserving parsimony. It was argued that these types
of restrictions are important for long-horizon forecasts as well as forecasts from large VAR
systems. Specifically, variable selection i) dominates forecast from VAR models with uninfor-
mative priors; ii) competes favourably to shrinkage estimation; and iii) provides more benefits
in forecasting as the model size increases.
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Technical Appendix

A Posterior inference in the linear VAR with variable selection

In this section I provide exact details on the conditional densities of the restricted VAR model.
For simplicity rewrite the priors, which are

� � Nn (b; V ) (A.1)

j jn�j � Bernoulli (�0j) (A.2)

� / j�j�(m+1)=2 (A.3)

A.1 Algorithm 1

Given the prior hyperparameters (b; V ; �0;	; �) and an initial value for , �, sampling from
the conditional distributions proceeds as follows

1. Sample � from the density
�j;�; y; z � Nn

�eb; eV � (A.4)

where eV = �V �1 +PT
t=1 z

�0
t �

�1z�t

��1
and eb = eV �V �1b+PT

t=1 z
�0
t �

�1yt+h
�

, and z�t =
zt�.

2. Sample j , j = 1; :::; n, from the density

j jn�j ; �;�; y; z � Bernoulli (e�j) (A.5)

preferably in random order j, where e�j = l0j
l0j+l1j

, and

l0j = p
�
yj�j ; n�j ; j = 1

�
�0j (A.6)

l1j = p
�
yj�j ; n�j ; j = 0

�
(1� �0j) (A.7)

The expressions p
�
yj�j ; n�j ; j = 1

�
and p

�
yj�j ; n�j ; j = 0

�
are conditional likeli-

hood expressions. Define �� to be equal to � but with its j � th element �j = �j (i.e.
when j = 1). Similarly, define ��� to be equal to � but with the j � th element �j = 0
(i.e. when j = 0). Then in the case of the VAR likelihood of model (4), we can write
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l0j , l1j analytically as

l0j = exp

 
�1
2

TX
t=1

(yt � zt��)0��1 (yt � zt��)
!
�0j

l1j = exp

 
�1
2

TX
t=1

(yt � zt���)0��1 (yt � zt���)
!
(1� �0j) :

3. Sample ��1 from the density

��1j�; ; y; z �Wishart
�
T; S�1

�
(A.8)

where S =
PT
t=1 (yt � zt�)

0 (yt � zt�).

A.2 Algorithm 2

In modern matrix programming languages it is more efficient to replace "for" loops with ma-
trix multiplications (what is called "vectorizing loops"). This section provides a reformula-
tion of the VAR, so that the summations in the Gibbs sampler algorithm (A.4) - (A.8) are
replaced by matrix multiplications. For example, computing l0j and l1j requires to evaluatePT
t=1 (yt � zt��)

0��1 (yt � zt��) for t = 1; :::; T . In practice, it is more efficient to use the
matrix form of the VAR likelihood:

Begin from formulation (1), and let y = (y01; ::::; y
0
T ), x = (x

0
1; :::; x

0
T ) and " = ("01; :::; "

0
T ). A

different SUR formulation of the VAR takes the form

vec (y) =
�
Im 
 x0

�
��� + vec (") (A.9)

Y = W� + e (A.10)

where Y = vec (y) is a (Tn) � 1 column vector, W = Im 
 x is a block diagonal matrix
of dimensions (Tn) � m with the matrix x replicated m times on its diagonal, � = ��� is
a m � 1 vector, �� = vec(B0) and e = vec (") � N (0;�
 IT ). To clarify notation, vec (�)
is the operator that stacks the columns of a matrix and 
 is the Kronecker product. In this
formulation, W = Im 
 x is not equal to z = (z01; :::; z

0
T ) =

�
(Im 
 x1)0 ; :::; (Im 
 xT )0

�
which

was defined in (4). Additionally, note that while � and �� are both n� 1 vectors, they are not
equal. It holds that � = vec(B) and �� = vec(B0).

The priors are exactly the same as the ones described in the main text. The conditional
posteriors of this formulation are given by

1. Sample �� from the density

��j;�; Y;W � Nn
�eb; eV � (A.11)
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where eV = V �1+W �0 ���1 
 IT �W � and eb = eV �V �1b+W �0 ���1 
 IT �Y �, andW � =
W�.

2. Sample j , j = 1; :::; n, from the density

j jn�j ; ��;�; Y;W � Bernoulli (e�j) (A.12)

preferably in random order j, where e�j = l0j
l0j+l1j

, and

l0j = exp

�
�1
2
(Y �W��)0

�
��1 
 IT

�
(Y �W��)

�
�0j

l1j = exp

�
�1
2
(Y �W���)0

�
��1 
 IT

�
(Y �W���)

�
(1� �0j) :

3. Sample ��1 from the density

��1j; ��; Y; x �Wishart
�
T; S�1

�
where S = (y � x�)0 (y � x�), with � the k �m matrix obtained from the vector � =
���, which has elements (�ij) = �(j�1)k+i, for i = 1; :::; k and j = 1; :::;m.

This sampler has slight modifications compared to the one above because of the different
specification of the likelihood function, but the two SUR specifications are equivalent and pro-
duce the same results. Posterior inference in the TVP-VAR model is just a simple generalization
of the VAR case and it is described in the next section.

A.3 Sampling from a VAR with Normal-Jeffreys’ prior

The previous results hold for the linear VAR models when the prior covariance matrix V is
known. If instead a Jeffreys’ prior is placed on the diagonal elements �j , j = 1; :::; n, of V as
in the case of the prior in (13) one needs to sample these elements using the following step
which is added to previous VAR model algorithms

4. Sample ��1j for each j = 1; :::; n from the density

1

�j
j�; ;�; y; z � Gamma

 
1

2
;
�2j
2

!

Then sampling of � proceeds conditional on all sampled �j ’s, i.e. whenever V shows up in
the posterior of � in step 1, we use the matrix V = diag f�1; :::; �ng.
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B Posterior inference in the TVP-VAR with variable selection

The homoskedastic TVP-VAR with variable selection is of the form

yt = zt�t + "t (B.1)

�t = �t�1 + �t (B.2)

where �t = ��t, and "t � N (0;�) and �t � N (0; Q) which are uncorrelated with each other
at all leads and lags. The priors for this model are:

�0 � Nn (b; V )

j jn�j � Bernoulli (�0j)

Q�1 � Wishart
�
�;R�1

�
� / j�j�(m+1)=2

Estimating these parameters means sampling sequentially from the following conditional den-
sities

1. Sample �t for all t, conditioning on data z�t = zt� with � = diag f1; :::; ng, using the
Carter and Kohn (1994) filter and smoother for state-space models (see below)

2. Sample j , j = 1; :::; n, from the density

j jn�j ; �;Q;�; y; z � Bernoulli (e�j) (B.3)

preferably in random order j, where e�j = l0j
l0j+l1j

, and

l0j = p
�
yj�1:Tj ; n�j ; j = 1

�
�0j (B.4)

l1j = p
�
yj�1:Tj ; n�j ; j = 0

�
(1� �0j) (B.5)

The expressions p
�
yj�1:Tj ; n�j ; j = 1

�
and p

�
yj�1:Tj ; n�j ; j = 0

�
are conditional like-

lihood expressions, where �1:Tj = [�1;j ; :::; �t;j ; :::; �T;j ]
0. Define ��t to be equal to �t but

with its j � th element �t;j = �t;j (i.e. when j = 1). Similarly, define ���t to be equal to
�t but with the j � th element �t;j = 0 (i.e. when j = 0), for all t = 1; :::; T . Then in the
case of the TVP-VAR likelihood of model (B.1), we can write l0j , l1j analytically as

l0j = exp

 
�1
2

TX
t=1

(yt � zt��t )
0��1 (yt � zt��t )

!
�0j

l1j = exp

 
�1
2

TX
t=1

(yt � zt���t )
0��1 (yt � zt���t )

!
(1� �0j) :
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3. Sample Q�1 from the density

Q�1j�; ;�; y; z �Wishart
�e�; eR�1� (B.6)

where e� = T + � and eR�1 = �R+PT
t=1

�
�t � �t�1

�0 �
�t � �t�1

���1
.

4. Sample ��1 from the density

��1j�;Q; ; y; z �Wishart
�
T; S�1

�
(B.7)

where S =
PT
t=1 (yt � zt�t)

0 (yt � zt�t).

B.1 Carter and Kohn (1994) algorithm:

Consider a general state-space model of the following form

yt = ztat + ut (B.8a)

at = at�1 + vt (B.8b)

ut � N (0; R) , vt � N (0;W )

where (B.8a) is the measurement equation and (B.8b) is the state equation, with observed
data yt and unobserved state at. If the errors ut, vt are iid and uncorrelated with each other,
we can use the Carter and Kohn (1994) algorithm to obtain a draw from the posterior of the
unobserved states.

Let atjs denote the expected value of at and Ptjs its corresponding variance, using data up
to time s. Given starting values a0j0 and P0j0, the Kalman filter recursions provide us with
initial filtered estimates:

atjt�1 = at�1jt�1

Ptjt�1 = Pt�1jt�1 +W

Kt = Ptjt�1z
0
t

�
ztPtjt�1zt +R

��1 (B.9)

atjt = atjt�1 +Kt
�
yt � ztatjt�1

�
Ptjt = Ptjt�1 �KtztPtjt�1

The last elements of the recursion are aT jT and PT jT for which are used to obtain a single
draw of aT . However for periods T � 1; :::; 1 we can smooth our initial Kalman filter estimates
by using information from subsequent periods. That is, we run the backward recursions for
t = T � 1; :::; 1 and obtain the smooth estimates atjt+1 and Ptjt+1 given by the backward
recursion:

atjt+1 = atjt + PtjtP
0
t+1jt

�
at+1 � atjt

�
Ptjt+1 = Ptjt � PtjtP 0t+1jtPtjt
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Then we can draw from the posterior of at by simply drawing from a Normal density with
mean atjt+1 and variance Ptjt+1 (for t = T we use aT jT and PT jT ).

C Posterior inference in the structural breaks VAR with variable
selection

Having described the TVP-VAR with variable selection, the structural breaks VAR is a special
case of this model and takes the form

yt = zt�st + "t (C.1)

�st = �st�1 + �st (C.2)

The full set of prior distributions for this model are

�0 � Nn (b; V )

j jn�j � Bernoulli (�0j)

pii � Beta (�1; �2)

Q�1 � Wishart
�
�;R�1

�
� / j�j�(m+1)=2

where j = 1; :::; n and i = 1; :::;K.
Estimating these parameters means sampling sequentially from the following conditional

densities

1. Sample �st for all t, conditioning on data z�t = zt� with � = diag f1; :::; ng, using the
modified Carter and Kohn (1994) filter and smoother for state-space models (see below)

2. Sample j , j = 1; :::; n, from the density

j jn�j ; �;Q; P;�; y; z � Bernoulli (e�j) (C.3)

preferably in random order j, where e�j = l0j
l0j+l1j

, and

l0j = p
�
yj�j ; n�j ; j = 1

�
�0j (C.4)

l1j = p
�
yj�j ; n�j ; j = 0

�
(1� �0j) (C.5)

The expressions p
�
yj�1:sTj ; n�j ; j = 1

�
and p

�
yj�1:sTj ; n�j ; j = 0

�
are conditional like-

lihood expressions, where �1:sTj = [�s1;j ; :::; �st;j ; :::; �sT ;j ]
0. Define ��st to be equal to �st
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but with its j � th element fixed to �st;j = �st;j (i.e. when j = 1). Similarly, define ���st
to be equal to �st but with the j � th element set to �st;j = 0 (i.e. when j = 0), for all
t = 1; :::; T . Then in the case of the TVP-VAR likelihood of model (B.1), we can write l0j ,
l1j analytically as

l0j = exp

 
�1
2

TX
t=1

�
yt � zt��st

�0
��1

�
yt � zt��st

�!
�0j

l1j = exp

 
�1
2

TX
t=1

�
yt � zt���st

�0
��1

�
yt � zt���st

�!
(1� �0j) :

3. Sample Q�1 from the density

Q�1j�; ; P;�; y; z �Wishart
�e�; eR�1� (C.6)

where e� = T + � and eR�1 = �R+PT
t=1

�
�st � �st�1

�0 �
�st � �st�1

���1
.

4. Sample ��1 from the density

��1j�;Q; P; ; y; z �Wishart
�
T; S�1

�
(C.7)

where S =
PT
t=1 (yt � zt�st)

0 (yt � zt�st).

5. Sample st using Chib’s (1996) algorithm.

6. Sample pii from the density

piij�;Q;�; ; y; z � Beta (�1 + Ti; �2 + 1)

where Ti are the number of observations in regime i (i.e. number of time periods for
which st = i), i = 1; :::;K.

C.1 Modified Carter and Kohn (1994) algorithm for structural breaks VAR:

Consider the following special state-space form

yt = ztast + ut (C.8a)

ast = ast�1 + vst (C.8b)

ut � N (0; R) , vt � N (0;W )

When structural breaks indicators st are present, the Kalman filter and smoother have to be
modified. The main idea is that in the standard Kalman filter we have a break in each period,
so that st = t and at the end of the sample sT = T . Subsequently, when st < t (a few breaks
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model) we run the Kalman filter for t = 1; :::; T , with the exception that the second filtering
equation in (B.9) takes the form

Ptjt�1 =

�
Pt�1jt�1 +W; if st 6= st�1
Pt�1jt�1; otherwise

In order to get the smoothed estimates of aj for j = 1; :::; sT we run the backward recursions

atjt+1 =

�
atjt + PtjtP

0
t+1jt

�
at+1 � atjt

�
; if st 6= st�1

atjt; otherwise

Ptjt+1 =

�
Ptjt � PtjtP 0t+1jtPtjt; if st 6= st�1
Ptjt; otherwise

for t = T � 1; :::; 1 and draw ast � N
�
atjt+1; Ptjt+1

�
, iff st 6= st�1.

D Efficient sampling of the variable selection indicators

In order to sample all the j we need n evaluations of the conditional likelihood functions
p
�
yj:::; j = 1

�
and p

�
yj:::; j = 0

�
which can be quite inefficient for large n. Kohn, Smith

and Chan (2001) replace step 2 of the algorithms above with step 2* below. For notational
convenience denote S to be the total number of Gibbs draws, and let the (current) value of
j at iteration s of the Gibbs sampler to be denoted by sj , and the (candidate) draw of j at
iteration s+ 1 to be denoted by s+1j . An efficient accept/reject step for generating j is:

2* a) Draw a random number g from the continuous Uniform distribution U (0; 1).

b) - If sj = 1 and g > �0j , set s+1j = 1.

- If sj = 0 and g > 1� �0j , set s+1j = 0.

- If sj = 1 and g < �0j or sj = 0 and g < 1 � �0j , then generate s+1j from

the Bernoulli density j jn�j ; b; y; z � Bernoulli (e�j), where e�j = l0j
l0j+l1j

and l0j , l1j
are given in equations (A.6)-(A.7) and (B.4)-(B.5), for the VAR and TVP-VAR models
respectively.
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