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Abstract 

The recent algorithm to find efficient conjoint choice designs, the RSC-algorithm 
developed by Sandor and Wedel (2001), uses Bayesian design methods that inte­
grate the V-optimality criterion over a prior distribution of likely parameter values. 
Characteristic for this algorithm is that the designs satisfy the minimal level overlap 
property provided the starting design complies with it. Another, more embedded, 
algorithm in the literature, developed by Zwerina et al. (1996), involves an adap­
tation of the modified Fedorov exchange algorithm to the multinomial logit choice 
model. However, it does not take into account the uncertainty about the assumed 
parameter values. In this paper, we adjust the modified Fedorov choice algorithm in 
a Bayesian fashion and compare its designs to those produced by the RSC-algorithm. 
Additionally, we introduce a measure to investigate the utility balances of the de­
signs. Besides the widely used V-optimality criterion, we also implement the A-, 
9- and V-optimality criteria and look for the criterion that is most suitable for 
prediction purposes and that offers the best quality in terms of computational effec­
tiveness. The comparison study reveals that the Bayesian modified Fedorov choice 
algorithm provides more efficient designs than the RSC-algorithm and that the V­
and V-optimality criteria are the best criteria for prediction, but the computation 
time with the V-optimality criterion is longer. 

Keywords: conjoint choice experiments, discrete choice experiments, Bayesian de­
signs, multinomial logit, RSC-algorithm, Bayesian modified Fedorov choice algo­
rithm, V-, A-, 9- and V-optimality, predictive validity 
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1 Introduction 

Since their breakthrough with the Louviere and Woodworth (1983) article, conjoint choice 
experiments, also referred to as discrete choice experiments, have become increasingly 
popular to explore consumer preferences for the attributes of various goods. In applied 
research, these experiments have been used extensively, while in fundamental research, 
they have been the subject of rigorous study and research. The reason for their popularity 
is that they enable researchers to model real marketplace choices, and thus to emulate real 
market decisions and predict market demand (Carson et al. 1994). In a typical conjoint 
choice experiment, respondents are presented with a series of choice sets, each composed 
of several alternatives, also called profiles, of products or services that are defined as com­
binations of different attribute levels. Respondents are then requested to indicate their 
preferred alternative for every choice set. 

The aim of a conjoint choice experiment is to collect as much information as possible 
on the parameters of the corresponding statistical model by submitting a small number 
of choice sets to a limited number of respondents. To that end, an efficient experimental 
design needs to be developed. Specifically, designing a conjoint choice experiment consists 
of choosing the alternatives and grouping them into choice sets. In practice, the number 
of choice sets as well as the number of alternatives within a choice set and the set of all 
possible alternatives, i.e. the candidate alternatives, are first determined. The problem 
of finding an efficient choice design then comes down to selecting those alternatives that, 
when put into choice sets, provide the maximum of information on the model parameters. 
Assuming that the order of the choice sets in the design has no influence on the respon­
dents' choices, the ranking of the choice sets in the design is unimportant. 

In the literature on conjoint choice experiments, the efficiency of a design is commonly 
expressed in terms of the V-optimality criterion (Atkinson and Donev 1992). This cri­
terion represents the determinant of the information matrix of the parameter estimates. 
The design that maximizes this determinant, which is equivalent to minimizing the de­
terminant of the variance-covariance matrix of the parameter estimates, is termed the 
V-optimal design. 

The main difficulty in the construction of a proper choice design is that the proba­
bilistic choice models are nonlinear in the parameters, implying that the efficiency of the 
design depends on the unknown parameter vector (Atkinson and Haines 1996). There­
fore, researchers need to assume values for the parameters before deriving their design. 
Naturally, if the true parameters are known, research is obviated. 

The problem of how to design efficient choice experiments has been addressed sev­
eral times in the literature. Primarily, the first steps were taken by Lazari and Anderson 
(1994) and Kuhfeld et al. (1994), who argue that V-optimal designs for linear models also 
work well for the nonlinear choice models. In this way, they avoid the circular problem 
that the information on the parameters depends on the unknown values of those parame-
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ters. Furthermore, they ignore the fact that choice design efficiency depends not only on 
the creation of appropriate alternatives, but also on properly placing them into various 
choice sets. Based on the V-optimality criterion for the linear model, Lazari and Ander­
son (1994) provide a catalog of designs for logit choice models (McFaddden 1974). These 
designs perform well for certain problems. However, for many real problems, cataloged 
designs cannot be used without modification, and modification can reduce efficiency. To 
overcome this limitation, Kuhfeld et al. (1994) review a general computerized approach to 
compute designs for diverse situations. Specifically, they make use of Cook and N achts­
heim's (1980) modification of Fedorov's (1972) exchange algorithm to generate choice 
designs. Although this algorithm optimizes the V-criterion for the linear model and not 
for the choice model, it has produced satisfactory choice designs for many years. 

Thanks to Bunch et al. (1996), the choice design problem has been studied from a 
broader perspective. They start from the multinomial logit choice model (MNL, McFad­
den 1974) and assume zero prior parameter values. This means that all attribute levels, 
and thus all alternatives, are equally preferred by the respondents. Under this unrealistic 
assumption, the optimization problem for the MNL model again reduces to that for the 
linear model (Grossmann et al. 2002). The resulting choice designs are called V-optimal 
utility-neutral or Vo-optimal designs. Furthermore, Bunch et al. (1996) have developed a 
new, easy-to-use design strategy that yields a special class of Vo-optimal designs for choice 
experiments. Their strategy is outlined in Section 4.1 of the paper. The designs they pro­
pose are the so-called shifted or cyclic designs characterized by the minimal level overlap 
property. This property is satisfied when the frequencies of the attribute levels within a 
choice set are distributed as equally as possible. It is regarded as an important property 
for choice designs since only the differences between attribute levels within a choice set are 
informative. Additionally, for main-effects MNL models, the shifted or cyclic designs are 
level balanced, i.e. the levels of an attribute occur with equal frequencies, and orthogonal, 
which implies that the number of times every two levels of an attribute occur together is 
the same for every pair of levels. 

However, Huber and Zwerina (1996) have demonstrated that the assumption of zero 
prior values may be costly. In particular, if there are reasonable nonzero prior values, 
which is the case in most practical marketing research situations, then these can be used to 
generate choice designs with improved efficiency. The designs are then called Vp-optimal 
designs, with subscript "P" referring to the nonzero prior point parameter values. In 
the literature on optimal design theory, these designs are termed locally optimal designs. 
The improvement in Vp-efficiency occurs through two techniques, namely relabeling (R) 
and swapping (S). These techniques permute attribute levels and are described in detail 
in Section 4.1. Huber and Zwerina (1996) have found that generally, the utilities of the 
alternatives within the choice sets of Vp-optimal main-effects designs are more balanced 
than the utilities in the Vo-optimal shifted designs of Bunch et al. (1996) which they use 
as starting designs. The utilities are obtained by taking the sum of the weighted attribute 
levels for every alternative. According to the authors, choice sets with balanced utilities 
are to be preferred to choice sets with a dominating alternative. A dominating alter-
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native in a choice set is an alternative of which the attributes are more attractive than 
those of the remaining, dominated, alternatives. In most cases, respondents immediately 
choose this dominating alternative and so the choice task is a very easy one. However, 
the choice of the respondents then does not provide much information on the parameters 
of the choice model and as a result, the parameters are estimated less precisely. To illus­
trate their point, Huber and Zwerina (1996) refer to the S-shaped cumulative probability 
function of the binary logit model. If one alternative within a pair is chosen almost all 
of the time, then this anchors the extreme values of the S-shaped cumulative probability 
function, but provides little information on the slope of that function. Moreover, they 
argue that the idea of utility balance is not new. Also the design heuristic for paired 
comparisons in the popular conjoint package, Adaptive Conjoint Analysis (ACA 1994), 
balances the alternatives to make respondents as indifferent to a pair as possible. To con­
clude, the authors have shown that the gains in V-efficiency from bringing in a nonzero 
prior vector are relatively robust with respect to misspecifications of the prior values. 

Another algorithm that enables researchers to integrate a likely prior parameter vector 
in the optimization process has been developed by Zwerina et al. (1996). They adapt the 
modified Fedorov exchange algorithm applied by Kuhfeld et al. (1994) to the specificities 
of the MNL model. We refer to the adapted version of the algorithm as the modified Fe­
dorov choice algorithm. A more detailed description of the algorithm is given in Section 
4.2. The main difference between the optimal designs generated by the modified Fedorov 
choice algorithm and by the RS-algorithm of Huber and Zwerina (1996) is that the former, 
contrary to the latter, are not restricted to level balance, orthogonality and minimal level 
overlap, although they approximately satisfy these constraints. Optimal designs that are 
generated without constraints are referred to as unconstrained optimal designs. Thus, the 
modified Fedorov choice algorithm yields unconstrained optimal designs. 

The recent approach that produces efficient designs has been created by Sandor and 
Wedel (2001). As opposed to a.o. Huber and Zwerina (1996) and Zwerina et al. (1996), 
Sandor and Wedel (2001) only address main-effects models and thus no models with inter­
actions. Their approach consists of integrating the associated uncertainty of the assumed 
parameter values by the use of Bayesian design techniques (Chaloner and Verdinelli 1995). 
If there is substantial uncertainty about the unknown parameters, then the resulting de­
signs, the so-called Bayesian designs, outperform the designs proposed by Huber and 
Zwerina (1996) in terms of V-efficiency. On the other hand, if the parameters are almost 
known for certain, which is seldom the case, then the designs proposed by Huber and 
Zwerina (1996) tend to do better. In particular, Sandor and Wedel (2001) determine a 
continuous prior distribution by eliciting prior information from respondents based on the 
methods developed by Van Lenthe (1993) and subsequently optimize the design over that 
distribution. Optimization occurs through the RS-algorithm, developed by Huber and 
Zwerina (1996), and an additional cycling (C) procedure. The resulting RSC-algorithm 
is discussed in Section 4.1. In contrast to the Vp-optimal main-effects designs of Hu­
ber and Zwerina (1996), the produced designs, the so-called VB-optimal designs, are not 
characterized by perfect level balance. This is due to the cycling. Furthermore, Sandor 
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and Wedel (2001) state that orthogonality as design optimality constraint is irrelevant 
for nonlinear choice models since, in contrast to linear models, it does not imply that the 
parameter estimates themselves are independent. Therefore, they distinguish between 
design orthogonality, previously referred to as orthogonality, which applies to linear mod­
els, and information orthogonality, which applies to the nonlinear choice models. In case 
of information orthogonality, the parameters of the choice model can be estimated truly 
independently. Yet, for choice models, design efficiency depends on the unknown parame­
ters and as a result, unless all alternatives are equally preferred, information orthogonality 
is unlikely to hold. Finally, Sandor and Wedel (2001) show that choice designs that yield 
more precise parameter estimates also improve predictive validity and thus the effective­
ness of conjoint choice studies. 

In the recent literature as summarized above, researchers have proposed a single (main­
effects) design for the MNL model to be administered to different respondents whose 
choices are pooled. As a result, homogeneous parameters across respondents are as­
sumed. Furthermore, the predictors, i.e. the choice attributes, are treated qualitative, or 
discrete. In this paper, we adopt the same experimental choice scenario and consider only 
main-effects choice designs. 

The question whether the VB-optimal RSC-designs proposed by Sandor and Wedel 
(2001) reach unconstrained optimality or how close they come has not yet been answered 
in the literature. The modified Fedorov choice algorithm developed by Zwerina et al. 
(1996) produces unconstrained optimal designs, but has the disadvantage that it only 
integrates prior point estimates. In this paper, we extend this algorithm to incorporate 
the uncertainty about the prior estimates by using the same Bayesian procedure as in 
Sandor and Wedel (2001). In this way, the Bayesian optimal RSC and modified Fedorov 
choice designs can be easily compared, and as a result, the deviation from unconstrained 
optimality of the optimal RSC-designs can be determined. Additionally, we introduce 
a measure to examine the utility balances of the optimal designs. To evaluate design 
efficiency, we do not restrict ourselves to the widely used V-optimality criterion, but we 
also integrate other optimality criteria in the algorithms. Specifically, the A-, Q- and 
V-optimality criteria, often used by researchers in optimal design, are addressed. We 
then investigate which of these design criteria leads to the most accurate estimates and 
predictions. Eventually, a conjoint choice experiment is carried out to predict the future 
market shares of the products or services under investigation. To summarize, Table 1 
provides an overview of previous and current research on efficient choice designs. 

The remainder of the paper is outlined as follows: the next section reviews the key 
ideas in generating optimal choice designs. Particularly, the multinomiallogit formulation 
and the different optimality criteria are given. In Section 3, specific design measures are 
presented for evaluating the utility balance, the accuracy of the parameter estimates and 
the predictive validity. The RSC and Bayesian modified Fedorov choice algorithms are 
described in Section 4. In Section 5, the different algorithms and criteria are compared. 
Finally, Section 6 summarizes the paper and recalls the main conclusions. 

5 



Table 1: Search strategies for generating efficient aggregate choice designs when qualitative 
attributes and homogeneous parameters across respondents are assumed 

Authors Year 
Crite- Criterion Assumed 

Algorithm 
rion definition parameters 

Lazari and 1994 V det(X'X) not specified 
Anderson 

-

Kuhfeld, Tobias 1994 V det(X'X) - modified Fedorov 
and Garrat 
Huber and 1996 V p det{I(X, (3)-I} f30 RS 

Zwerina 
Zwerina, Huber 1996 V p det{I(X, (3)-I} f30 modified Fedorov 

and Kuhfeld 
Sandor and 2001 VB det{I(X, (3)-I} N(f3If3o, ~o) RSC 

Wedel 
VB det{I(X, (3) -1} 

This paper 2004 AB tr{I(X, (3)-I} f3 rv U[-I, Ilk RSC 
(h maxXjd c'(xjd)I(X, (3)-lc(Xjd) modified Fedorov 
VB J C'(Xjd)I(X, (3)- IC(Xjd)dXjd 

Note: R = relabelmg, S = swappmg, C = cyclmg; for an explanatIon, see SectIOn 4.1. 

2 Theoretical framework 

The designs we develop in this paper are based on the main-effects MNL model derived 
from McFadden's (1974) random utility model of consumer choice. In the random utility 
model, a person's utility for an alternative j in a choice set is specified as 

(1) 

where Xj is the k x 1 vector of the attributes of alternative j, (3 the k x 1 vector of 
parameters [,61, ... ,,6kl' weighting these attributes, and Cj the i.i.d. standard Gumbel, or 
type 1 extreme value (1, 0), error term. 

Suppose there are S choice sets, Cs, indexed by s = 1,2, ... , S, where each choice set 
is characterized by a set of J alternatives: Cs = {XIs, ... , XJs}. If N respondents have 
to choose the alternative that maximizes their perceived utility of the J alternatives in 
choice set s, then the multinomial logit probability that alternative j is chosen can be 
expressed in closed form as 

x' (3 e js 

Pjs(Xs, (3) = L:J x' (3' 
t=l e ts 

(2) 

where Xs = [XIs, ... , xJsl'. The stacked Xs matrices provide the design matrix X for the 
choice experiment. 
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Because of the assumption of independent error terms, the choices from N respondents 
made among the alternatives in the S choice sets represent independent draws from a 
multinomial distribution. Therefore, ifY = [YI, ... , YN] denotes the matrix of choices from 
N respondents with elements Yjsn, each of which equals one ifrespondent n, n = 1,2, ... , N, 
chooses alternative j in Cs and zero otherwise, then the log-likelihood of the N samples 
in Y is defined as 

S J N 

In{L(YIX, /3)} = L L LYjsn In{pjs(Xs, /3)}. (3) 
s=l j=l n=l 

Maximizing this expression with respect to /3 yields the maximum likelihood estimate /3 
for a particular choice design. 

The derivation of optimal choice designs is based on the Fisher information matrix, 
which is inversely proportional to the variance-covariance matrix of the parameter esti­
mates, and given by 

S 

I(X,/3) = NLX~(Ps - Psp~)Xs, (4) 
s=l 

where Ps = [PIS, ... , PJsl' and P s = diag[Pls, ... , PJs]. In Appendix A, we show how the 
information matrix is obtained from the log-likelihood function in (3). The composition 
of a choice design X clearly influences the information content or the precision or quality 
of the choice experiment. Also, since Ps and P s both depend on f3 according to the multi­
nomial logit model in (2), the circular problem that the information on the parameters 
depends on their unknown values can be observed. By maximizing the information on the 
unknown parameters, optimal choice designs are generated. To that end, optimal design 
theory (Fedorov 1972, Silvey 1980, Atkinson and Donev 1992) proposes a set of optimality 
criteria that minimize a function of the information matrix in (4). Additionally, each of 
these criteria addresses a slightly different requirement for the design. In the sequel of this 
section, we present an overview of the optimality criteria most often encountered in the 
optimal design literature. These criteria belong to the class of alphabetic optimality cri­
teria because they are called after a letter. We first give a brief definition of each criterion 
in general and then apply it to the multinomial logit model in (2) to derive locally and 
Bayesian optimality criteria. However, it is important to point out that only Bayesian 
optimal designs are computed in this paper (see Section 4) as they usually outperform 
locally optimal designs. 

V-optimality 

As described in the introduction, researchers in conjoint choice experiments have only 
used the V-optimality criterion to develop locally and Bayesian optimal choice designs. 
This widely accepted one-dimensional measure of information seeks to maximize the de­
terminant of the information matrix in (4), or to minimize its inverse, the determinant 
of the variance-covariance matrix of the parameter estimates, which is often called the 
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generalized variance. For local optimality, researchers in conjoint choice experiments 
usually refer to the V-optimality criterion as the Vp-optimality criterion, to make the 
distinction with linear models for which no prior point estimate is required. Formally, the 
Vp-criterion value is given by 

(5) 

where the exponent 11k assures that it is independent ofthe dimension k of the parameter 
vector {3. The Vp-optimal design is thus obtained by minimizing the Vp-criterion value 
given a prior parameter vector (3o. 

To adopt a Bayesian design approach, one needs to specify the prior distribution n({3) 
of the logit coefficients. This distribution can be informative or uninformative depending 
on the availability of prior information. The Bayesian optimal design is then obtained by 
minimizing the VB-optimality criterion value, i.e. the expectation of the Vp-optimality 
criterion value over the prior distribution n({3). Formally, the VB-criterion value is defined 
as 

(6) 

In practice, the VB-criterion value is approximated by drawing R prior parameter 
values (3T, r = 1, ... , R, from n({3), and computing 

1 R 

DB(X) = R L{detI(X,,aT)-l}l/k. 
T=l 

(7) 

The motivation for V-optimality originates from the confidence ellipsoid for (3 which 
has a volume inversely proportional to the square root of the determinant of the informa­
tion matrix I. Hence, the V p - and Vwoptimal designs minimize the (expected) volume 
of the ellipsoid and thus minimize both the variances and covariances, or the generalized 
variance, of the parameter estimates. 

In the literature on conjoint choice experiments, the V-optimality criterion has been 
advocated for computing optimal choice designs because it has some advantages over other 
alphabetic optimality criteria. The underpinnings of these advantages mainly stem from 
optimal design theory for linear models. First, the Vp- and VB-optimal designs usually 
perform well with regard to other optimality criteria, whereas this is often not true for 
other optimality criteria. Second, the V p - and VB-optimality criteria are invariant to a 
linear transformation of the design matrix. As a result, there are invariant to the scale or 
coding of the attributes. This means that the rank order of the efficiency of a number of 
designs remains unchanged when different codings of the attributes, e.g. dummy or effects 
coding, are used. Finally, the Vp-criterion value is computationally efficient to update 
in exchange algorithms thanks to the existence of a simple, but powerful formula for 
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recalculating the determinant of the information matrix I. The use of this update formula 
is illustrated in Zwerina et al. (1996). However, the update formula is not applicable for 
constructing the VB-optimal design due to the presence of the prior parameter distribution 
n((3) . 

A-optimality 

The A-optimality criterion prefers the design for which the sum or the average of the 
variances of the parameter estimates is minimized. For the nonlinear choice model in (2), 
the Ap-criterion value equals 

k 

Ap = L var(~i) = tr{I(X, (3)-1}. (8) 
i=l 

The Ap-optimal design refers to the design for which the Ap-criterion value is min­
imized given a reasonable prior parameter vector (30. The Bayesian version of the Ap­
criterion value, termed the AB-criterion value, is obtained by averaging the Ap-criterion 
value over the prior distribution n((3) of the coefficients. Hence, the AB-optimal design 
minimizes 

AB = Ef3 {trl(X, (3)-1} = 1 tr{I(X, (3)-1 }n((3)d(3, 
Rk 

(9) 

or by approximation, 
R 

AB(X) = ~ L tr{I(X, (3r)-l}, 
r=l 

(10) 

with R the number of draws from n((3). 

Notice that the Ap- and AB-optimality criteria only consider the parameter variances 
as opposed to the V p - and VB-optimality criteria which take both the variances and co­
variances into account. 

An advantage of the A-optimality criterion with regard to other design criteria is that 
the coefficients can be weighted. However, a drawback of this criterion is that it is not 
invariant to recodings of the attributes, i.e. the ordering of designs with respect to the 
Ap- or AB-optimality criteria depends on the type of coding. We refer to Goos (2002) 
for an example in the case of linear models. 

Q-optimality 

The Q-optimal design minimizes the maximal prediction variance over the design region 
X. For the nonlinear choice model in (2), the design region X consists of all possible choice 
sets of size J that can be composed from the candidate alternatives Xj. If there are D 

9 



possible choice sets, Cd = {Xld' ... , XJd}, indexed by d = 1,2, ... , D, then the Qp-criterion 
value equals 

(11) 

where Pjd(Xjd, 13) denotes the predicted choice probability for Xjd and 

( . ) _ OPjd(Xjd,f3) 
C XJd - 013 ' (12) 

the first-order truncated Taylor series expansion of the multinomial logit model in (2). 
This approach is similar to the computation of locally V- and c-optimal designs for non­
linear models in general (Atkinson and Donev 1992, Atkinson and Haines 1996). Based 
on model (2), (12) can be written as 

o ( 13) ex jd,i3x'd "J eX~d,i3 _ ex jd,i3 "J eX~d,i3Xtd Pjd Xjd, _ J L..-t=l L..-t=l 

013 (2:;=1 eX~d,i3 r 
ex jd,i3 (Xjd 2:;=1 eX~d,i3 - 2:;=1 eX~d,i3Xtd) 

"J eX~d,i3 "J eX~d,i3 
L..-t=l L..-t=l 

= Pjd {Xjd - t (L:t ':, ~) xtd} 
t=l v=l e vd 

= Pjd (Xjd - t PtdXtd) . 
t=l 

(13) 

The design that minimizes the Q p-criterion value given a prior parameter vector 130 is 
referred to as the Q p-optimal design. 

The QB-optimal design is obtained by minimizing the QB-criterion value, i.e. the 
average Qp-criterion value over the prior parameter distribution 1r(f3). More specifically, 
the Q B-optimal design minimizes 

QB = E,i3 {max c' (xjd)I(X, j3)-lC(Xjd)} = r max c' (xjd)I(X, f3)-lc(Xjd)1r(f3)df3, 
Xjd EX ) nk Xjd EX 

which is approximated by 
R 

9B(X) = Rl L max c'(xjd)I(X, f3 T )-lC(Xjd). 
XjdEX 

r=l 

(14) 

(15) 

For not too small design problems, the computation of the Q B-optimal design by minimiz­
ing the Qs-criterion value as defined in (14) is demanding. This is because the specification 
of the design region X as the collection of all possible choice sets of size J is cumbersome. 
As a result, the computation of the QB-optimal design is lengthy and time-consuming. 
Therefore, we will use a tighter and more tractable specification of the design region and 
refer to it as X*. In particular, we will specify the design region X* as one large choice set 
containing all candidate alternatives and modify the QB-optimality criterion accordingly. 
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V-optimality 

The V-optimal design minimizes the average prediction variance over the design region 
x. This criterion is sometimes referred to as Q-optimality, as I-optimality or as IV­
optimality as well. Like the Q p-criterion value, the Vp-criterion value is formally defined 
on the design region X that consists of all D possible choice sets of size J that can be 
composed from the candidate alternatives Xj. The Vp-criterion value then equals 

Vp = 1 C/(Xjd)I(X, (3)-lC(Xjd)dxjd, 

with C(Xjd) defined as in (12) and (13). 

(16) 

The locally optimal design which minimizes the Vp-criterion value is referred to as the 
Vp-optimal design. Averaging the Vp-criterion value over the prior parameter distribution 
7r({3) yields the VB-criterion value which is given by 

VB = Et3 {1 c/(xjd)I(X, (3t1c(xjd)dxjd } 

and approximated by 

= r 1 c/ (Xjd)I(X, (3)-lc(Xjd)dXjd7r ((3)d(3, 
Jnk x 

(17) 

(18) 

The VB-optimal design is obtained by minimizing the VB-criterion value given the prior 
distribution 7r ((3). 

Similar to the computation of the Q B-optimal design, we will base the computation 
of the VB-optimal design on the more workable design region X* consisting of one large 
choice set that comprises the candidate alternatives. 

In Appendix B, we present a simple numerical example of constructing Bayesian op­
timal designs by means of the V w , Aw , QB- and VB-optimality criteria. 

3 Specific design measures 

In this section, we discuss some specific, practical measures on which we evaluate the 
Bayesian optimal designs. We first introduce a measure for the utility balance of a design 
and then describe some measures for the accuracy of the parameter estimates and the 
predictive validity. 

11 



3.1 Utility balance 

The measure we introduce to compare the utility balances of the Bayesian optimal choice 
designs is the percentage utility balance. To compute the percentage utility balance of 
a Bayesian optimal design, we first multiply the so-called within-choice set probabilities, 
i.e. the probabilities of the alternatives within a choice set derived from the multinomial 
logit model in (2) for a prior parameter from 7r({3). We repeat the multiplications for 
several prior parameters from 7r({3) and average them out. Formally, for the S choice sets 
Cs, the outcome Ms of averaging multiplications of the probabilities for choice set scan 
be expressed as 

(19) 

or by approximation, 

(20) 

We then add up the values for Ms over the S choice sets to obtain a final value B given 
by 

(21 ) 

For a perfectly utility balanced design, all within-choice set probabilities are equal to 
1/ J so that Ms = (1/ J)J for every choice set resulting in a maximum value for B, Bmax , 
given by 

(22) 

Finally, Bmax can be used to express the value for B of a design with an imperfect 
utility balance as a percentage. The percentage utility balance %B then becomes 

B 
%B= ~ x 100, 

max 
(23) 

and indicates the extent to which a design is utility balanced. 

3.2 Accuracy of the parameter estimates 

In this section, we propose two one-dimensional measures to compare the Bayesian optimal 
designs with regard to their estimation performance of the parameters. The first measure 
is the expected mean square error of the parameter estimates (EMSE,a) and the second 
measure is the so-called average standard error of the parameter estimates (o5,a). The A B -

optimal design is expected to score best on the latter measure as it minimizes the expected 
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sum or average of the parameter variances, and thus does not take the covariances into 
account. 

EMSE of the parameter estimates 

Formally, the EMSE of the parameter estimates is given by 

(24) 

where f({3) is the distribution of the estimates. It can be shown that the EMSE,a captures 
both the variances of the estimates and the biases. The smaller the EMSE,a-value, the 
more precisely the parameters are estimated. 

In practice, the EMSE,a is approximated by computing R times (3r, r 
through simulation and working out 

R 

EMSE,a(3) = ~ L ({3r - (3) I ({3r - (3) . 
r=l 

1, ... , R, 

(25) 

Starting from a true parameter vector (3, the simulation process proceeds as follows. 
To obtain an estimate {J, we simulate choices Yjsn for N respondents with respect to a 
Bayesian optimal design by drawing for each choice set s of the design and for each re­
spondent n a random number Vsn from the uniform distribution U[O, 1]. These random 
numbers represent cumulative probabilities and are compared to the true logit probabili­
ties ps ((3) of the design to assign values to Yjsn in the following way: 

Yjsn = {I if Vsn E ] L~~i Pts((3) , L~=l Pts((3)] , (26) 
o otherwise. 

Then, based on the vectors Yn, we estimate {J using the log-likelihood function in (3). 

Average standard error of the parameter estimates 

Another measure to assess the quality of the parameter estimates {Jr obtained from a 
Bayesian optimal design is the average standard error of the parameter estimates, B,a. 
This measure is derived from the variances of the k parameter estimates, S~i' i = 1, ... , k, 
which are defined as 

(27) 

where R refers to the number of simulations and bi is the average parameter estimate 
over the R simulations. The average standard error of the parameter estimates, B,a, is 
then given by 

(28) 
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3.3 Predictive validity 

In general, marketing consultants carry out conjoint choice experiments to predict the 
market share for certain products or services as precisely as possible. The market shares 
are derived from the predicted probabilities that are calculated using the multinomiallogit 
formulation in (2). To assist marketing consultants in making precise predictions, we eval­
uate the predictive validity of the Bayesian optimal designs by means of two measures that 
are analogous to those used for evaluating the accuracy of the parameter estimates. The 
first measure is the expected mean square error of the predicted probabilities (EMSEpJ 
and the second measure is the average standard error of the predicted probabilities (spJ. 
We apply both measures to a special design for prediction, namely a design that consists 
of all possible choice sets of size J. In this way, no particular design is favoured. We refer 
to this special design as the complete choice design. 

In the optimal design literature, the Q- and V-optimality criteria are proposed to 
generate designs for making precise predictions about the response variable. It is therefore 
interesting to investigate the relative predictive validity of the popular DB-optimal design 
with respect to the Q e- and VB-optimal designs. These issues are further elaborated in 
Section 5 of the paper. 

EMSE of the predicted probabilities 

Formally, the EMSE of the predicted probabilities is given by 

Here, Pc ((3) is the vector of logit probabilities in the complete choice design based on 
the true parameter (3, Pc(J3) is the corresponding vector of predicted logit probabilities 
computed for the parameter estimate /3 and f (/3) is the distribution of the estimates. 
Consequently, the EMSEpc compares the true and predicted probabilities using the true 
and estimated parameters, respectively. The smaller the EMSEpc -value, the more pre­
cisely choices are predicted. 

To use the EMSEpc in practice, it is approximated by 

R 

EMSEpJ(3) = ~ L (pc(/3r) - Pc((3))' (pc(/3r) - Pc(!3)) , 
r=l 

(30) 

where R refers to the number of simulations. 

Average standard error of the predicted probabilities 

Another way to look at the predictive validity of a Bayesian optimal design is to study the 
average standard error of the predicted probabilities in the complete choice design, spc. 

If there are D choice sets in the complete choice design, indexed by d = 1,2, ... , D, then, 
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to compute this measure, we first compute the variances of the predicted probabilities of 
the alternatives in the D choice sets, 8p~ ,which are given by 

Cjd 

(31 ) 

where PCjd is the average predicted probability of alternative j in choice set d over the R 
simulations. The computation of spc then comes down to 

1 1 D J 

- - '""" '""" 8 2 D J 66 PCjd· 

d=l j=l 

(32) 

4 Bayesian design generating algorithms 

This section embarks on the discussion of the algorithms that are used for constructing 
D B -, AB -, 9B- and Vs-optimal choice designs. The algorithms under investigation are the 
RSC-algorithm and the Bayesian modified Fedorov choice algorithm. In both algorithms, 
we implement the DB -, AB -, 9B- and Vs-optimality criterion because Bayesian optimal 
designs are usually more efficient than locally optimal designs. The design we chose to 
optimize with the different algorithms and optimality criteria is characterized by four 
attributes each at three levels, and two alternatives in each of fifteen choice sets. The 
design is therefore said to be of type 34 /2/15. We now start with a description of the 
RSC-algorithm and then proceed with the account of the Bayesian modified Fedorov 
choice algorithm. 

4.1 The RSC-algorithm 

The RSC-algorithm comprises three sub-algorithms, namely relabeling (R), swapping (S) 
and cycling (C), hereby constructing a so-called RSC-design. Relabeling and swapping 
have been introduced by Huber and Zwerina (1996) in combination with the use of nonzero 
prior point coefficients. Cycling has been added by Sandor and Wedel (2001). Addition­
ally, these authors have adapted the RSC-algorithm in a Bayesian manner. In this paper, 
we deal with this recent version of the RSC-algorithm. 

Starting design 

As starting design for the RSC-algorithm, we took the same starting design as in Sandor 
and Wedel (2001, Table 2, p. 434-435), which is depicted in Table 2. Noteworthy about 
this starting design is that it is characterized by minimal level overlap. In the litera­
ture, minimal level overlap is considered as a property of efficient choice designs and if 
the starting design is characterized by it, then the designs generated by the algorithm 
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Table 2: Starting design 

Choice Profile Attributes 
set 1 2 3 4 
1 I 3 2 3 2 

II 1 3 2 1 
2 I 3 1 2 1 

II 1 2 1 3 
3 I 3 3 2 3 

II 1 1 1 2 
4 I 3 2 1 1 

II 1 3 3 3 
5 I 3 1 1 2 

II 1 2 3 1 
6 I 1 1 2 2 

II 2 2 1 1 
7 I 1 2 3 3 

II 2 3 2 2 
8 I 1 1 1 1 

II 2 2 3 3 
9 I 1 3 1 3 

II 2 1 3 2 
10 I 1 3 3 1 

II 2 1 2 3 
11 I 2 2 2 2 

II 3 3 1 1 
12 I 2 3 3 1 

II 3 1 2 3 
13 I 2 2 2 3 

II 3 3 1 2 
14 I 2 3 1 2 

II 3 1 3 1 
15 I 2 1 3 3 

II 3 2 2 2 
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also satisfy this property. Hence, the algorithm limits its search to designs with the 
minimal level overlap property provided the starting design complies with it. Also the 
starting designs proposed by Huber and Zwerina (1996) satisfy the minimal level over­
lap constraint. These designs are the 'Do-optimal shifted or cyclic designs developed by 
Bunch et al. (1994). They are constructed by first generating a so-called seed design 
by use of either an orthogonal array or the SAS procedure OPTEX. Each row of this 
design represents the first alternative of a particular choice set. The other alternatives 
of the choice sets are generated by subsequently incrementing the levels of the attributes 
with each new alternative and cycling back to the lowest level when the highest level for 
an attribute is reached. In this way, the designs attain the minimal level overlap property. 

In general, to construct and evaluate designs with algorithms, the levels of the at­
tributes are coded. We made use of the so-called effects-type coding which is often em­
ployed in the literature. In our situation of three levels per attribute, the first level of each 
attribute is coded as [1 0], the second level as [0 1] and the third level as [-1 -1]. The use 
of this type of coding explains why only two parameter values are needed to characterize 
each of the four attributes. Hence, in our situation, the number of parameter values, k, 
equals 8. 

Prior parameter distribution 

The prior distribution from which we sampled to compute the 'Dw , A w , YB- and VB -

criterion value is the continuous multivariate uniform distribution, n((3) = U[-l, l]k. This 
distribution gives equal weight to all possible prior parameter vectors {3o in the interval 
[-1, l]k. Consequently, it is useful when there is substantial uncertainty about the un­
known parameters. We fixed the bounds on -1 and 1 because we experienced that the use 
of higher absolute values leads to designs that consist of many choice sets with a dominat­
ing alternative. Particularly when the Bayesian modified Fedorov choice algorithm was 
used, which does not confine its search to designs with the minimal level overlap property, 
it could be seen that large absolute prior parameter values entailed optimal designs with 
a lot of overlap in the choice sets. Most often, overlap was found in three of the four 
attributes so that dominating alternatives were clearly present in the designs. 

Similar to Sandor and Wedel (2001), we draw R = 1000 prior parameter samples {3T to 
compute the Bayesian criterion values. A relatively large number of draws is needed, since 
for a small number of draws, chance fluctuations affect the computation of the criterion 
values and thus also the construction of the optimal designs. 

Relabeling 

Relabeling modifies a design by permuting the levels of the attributes across choice sets 
and searches for a combination of permutations for which the corresponding design has 
the highest efficiency. This design is called the optimal R-design. Take for example 
the starting design of the algorithm in Table 2. If ceteris paribus the levels 1, 2 and 3 of 
attribute 1 are replaced by 3, 1 and 2, and the levels 1, 2 and 3 of attribute 4 by 2, 1 and 3, 
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then the corresponding design is retained if it improves efficiency. Consequently, relabeling 
the starting design involves an investigation of 3! x 3! x 3! x 3! = 1296 permutations because 
each of the four attributes has three levels for which 3! permutations are possible. The 
optimal R-design then refers to the design with the smallest criterion value among the 
1296 designs. 

Swapping 

Swapping involves switching two attribute levels among alternatives within a choice set 
and testing if the swap improves the criterion value. If this is the case, the swap is 
performed. Furthermore, the procedure also considers simultaneous swaps for several 
attributes within a choice set. In the end, if no design is found with a lower criterion 
value, then the last selected design is the one that maximizes the information and is 
called the optimal RS-design. Starting from the optimal R-design of our example with two 
alternatives, the swapping algorithm begins with the first choice set, takes the level of the 
first attribute and swaps it with the level of that attribute in the second alternative. Then 
it does the same with the other attributes after which simultaneous swaps are examined. 
The algorithm subsequently proceeds to the second choice set and passes through all 
choice sets. If an improvement in information occurs, then the modified design is retained 
and the algorithm returns to the first choice set and continues in the same way until 
improvement stops. In that case, the optimal RS-design is obtained. 

Cycling 

Cycling is a combination of cyclically rotating the levels of an attribute and swapping 
them. All cycles and swaps are examined for design improvements and if an improvement 
emerges, the corresponding design is stored. If, after a while, no improvement is possible, 
then the last stored design is the one with the largest efficiency gains and is called the 
optimal RSC-design. Applied to the optimal RS-design of our example, the cycling pro­
cedure starts with the first attribute in the first choice set. It cyclically rotates the levels 
of the attribute until all possibilities are exhausted. Thus, for the three attribute levels, 
level 1 is replaced by level 2, level 2 by level 3 and level 3 by level 1. This goes on until the 
original configuration is obtained again. Then a swap is applied and the attribute levels 
are cyclically rotated for the second time. For designs with more than two alternatives, 
this alternating swapping and cycling continues until all swaps and subsequent cycles are 
verified. Then the algorithm proceeds to the second choice set and so on until the last 
choice set. Subsequently, the remaining attributes are handled in the same way as the 
first attribute. At each stage, if an improvement is made, the algorithm starts over from 
the first attribute in the first choice set. Finally, the algorithm stops when no further 
improvement is achieved and the last selected design is the optimal RSC-design. 

4.2 The Bayesian modified Fedorov choice algorithm 

Contrary to the RSC-algorithm, the Bayesian modified Fedorov choice algorithm is flex­
ible in the sense that its design search is not restricted to minimal level overlap designs. 
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The designs generated are referred to as the Bayesian optimal modified Fedorov choice 
designs. We used the same multivariate uniform prior parameter distribution as the one 
employed in the RSC-algorithm, namely 1r(f3) = U[-l,l]k, and we also took the same 
R = 1000 draws to compute the criterion values. 

The Bayesian modified Fedorov choice algorithm is an exchange algorithm. This means 
that the design alternatives are exchanged with the alternatives from a predefined set of 
candidate profiles. The algorithm originally stems from the Fedorov algorithm (1972) 
developed for constructing optimal designs for linear models. The Fedorov algorithm 
carries out an exchange if it is the best exchange possible. To speed up the algorithm, 
Cook and Nachtsheim (1980) modified it by executing any beneficial exchange as soon as 
it is discovered rather than only performing the best exchange. Finally, Zwerina et al. 
(1996) adapted the modified Fedorov algorithm to the multinomial logit model. While 
they only incorporated one prior point parameter vector in the optimization process, 
we adapted the modified Fedorov algorithm in a Bayesian fashion. We now explain the 
algorithm more in detail and proceed with a study of the effectiveness of the different 
design criteria used for the algorithm. 

Description of the algorithm 

The Bayesian modified Fedorov choice algorithm starts with the composition of the set 
of candidate profiles. For our example, this set consists of 34 = 81 candidates. Next, 
the starting choice design is constructed by randomly selecting alternatives from this 
set. The algorithm alters the starting design by exchanging its alternatives with the 
candidates. Specifically, for every alternative in the starting design, the exchange with 
every candidate alternative is considered and if the exchange improves the efficiency of 
the corresponding design with respect to a certain criterion, then it is performed. Remark 
that only exchanges are considered for which the candidate alternative is different from the 
alternatives in the choice set tackled. The first iteration is completed when the algorithm 
has found the best exchanges for the alternatives in the starting design. After that, the 
algorithm returns to the first alternative and continues with iterations until no substantial 
efficiency improvement is possible anymore. In total, an iteration in our example requires 
testing 30 x (81- 2) = 2370 exchanges. To avoid poor local optima, the algorithm repeats 
the search for a number of different starting designs. Each repetition is called a try and 
we executed 150 tries. Finally, the most efficient design from these tries is selected and is 
called the Bayesian optimal modified Fedorov choice design. 

Computational effectiveness of the design criteria 

The computational effectiveness of a Bayesian design criterion refers to the quality and 
the speed of the Bayesian modified Fedorov choice algorithm in which this criterion is 
integrated. We compared the computational effectiveness of the Bayesian design criteria 
by means of the estimated expected efficiency of the corresponding optimal designs. The 
computation of expected efficiencies was first done by Trinca and Gilmour (2000) in the 
context of blocked experiments. If M refers to the number of tries for the algorithm, 
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then, to compute the expected efficiency of a Bayesian optimal modified Fedorov design, 
the efficiencies Em of the designs X m , m = 1, ... , NI, that are generated by try m of the 
algorithm first need to be derived. As already mentioned above, we used M = 150 tries. 
The efficiencies are given by 

(33) 

where B refers to the corresponding Bayesian criterion value, VB, A B , QB or VB, and X* 
to the respective optimal design. 

Let's assume now that for a large number of tries, t, we obtain 9 distinct designs G l , 

G2, ... , Gg , with efficiencies El > E2 > ... > Eg . G l is the best design, and an estimate of 
the probability of finding Gl in t tries, say Pl, is given by the number of times Gl is found 
divided by t. If, correspondingly, P2, ... , Pg refer to the probability of finding G2 , ... , Gg in 
t tries, then the estimated expected efficiency of the Bayesian optimal design is defined 
as 

g-l {( 9 ) t (g ) t} 
E( efficiency) = L ~ Pj - .L Pj Ei + p~Eg. 

~=l J=~ J=~+l 

(34) 

Usually, this expression is computed for various numbers of tries, t, to make a plot 
of the expected efficiencies. In total, we made four plots, one for each of the Bayesian 
optimality criteria. From these plots, we will determine the optimality criterion for which 
the algorithm obtains the optimum with the least number of tries. This criterion also 
leads to the highest expected efficiency if the optimum is missed. 

5 Results 

In this section, we compare the V B -, A B-, QB- and VB-optimal designs generated by the 
RSC and Bayesian modified Fedorov choice algorithms. First, the RSC-algorithm is com­
pared to the Bayesian modified Fedorov choice algorithm for each criterion. Specifically, 
the designs, their computation time, utility balance and performance on local optimality 
are studied. Next, the different optimality criteria are compared in terms of other design 
criteria than the one optimized for, the accuracy of the parameter estimates, the predic­
tive validity and the computational effectiveness. We performed all computations in SAS 
8.02, procedure IML. 

5.1 Comparing the RSC and Bayesian modified Fedorov choice 
algorithms 

The RSC and Bayesian modified Fedorov choice algorithms are now compared with respect 
to the optimal designs generated, the corresponding criterion values, the computation 
times, the degree of utility balance and their performance on local optimality. 
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Optimal designs and criterion values 

The Bayesian optimal RSC and modified Fedorov designs are depicted in Tables 3 and 
4 respectively. The optimal RSC-designs clearly do not show any overlap because of the 
minimal level overlap constraint integrated in the RSC-algorithm if the starting design 
complies with it, which is the case here. Since there is no restriction to minimal level 
overlap in the Bayesian modified Fedorov choice algorithm, some overlap can be seen 
in the 9B-optimal modified Fedorov design and one overlap in the VB-optimal modified 
Fedorov design. 

Table 5 shows the results of the comparison between the D B -, AB -, 9B- and VB-optimal 
RSC and modified Fedorov designs. A close look at this table reveals that for every design 
criterion used, the Bayesian optimal modified Fedorov designs are more efficient than the 
optimal RSC-designs. This is because the Bayesian modified Fedorov choice algorithm is 
not restricted in its design search as opposed to the RSC-algorithm. From Table 5 we 
also notice that with regard to the RSC-algorithm the swapping of attribute levels within 
a choice set has no impact on lowering the criterion values of the optimal R-designs. On 
the other hand, the relabeling and cycling of attribute levels are effective in achieving 
better designs. 

Thus, one better constructs optimal choice designs by means of the Bayesian modified 
Fedorov choice algorithm because this algorithm generates more efficient designs. How­
ever, if one uses the RSC-algorithm to optimize criterion values, then Table 6 indicates 
by how much the optimal criterion values deviate from the unconstrained optimal cri­
terion values, i.e. resulting from the Bayesian modified Fedorov choice algorithm. The 
values of the Ds- and VB-optimal RSC-designs only deviate by 1.72% and 1.67% from 
the unconstrained optimal values, whereas those of the As- and 9 B-optimal RSC-designs 
show a deviation of 4.72% and 6.28% respectively. As a result, the D B - and VB-optimal 
designs generated by the RSC-algorithm come close to unconstrained optimality, but the 
AB - and 9B-optimal designs are somewhat further away from it. 

Computation time 

In Table 7, computation times are specified for the Bayesian optimal RSC and modified 
Fedorov choice designs. The designs were generated in SAS 8.02, PROC IML. The times 
were obtained using a Dell PC with a 1.80 GHz Intel Processor and 256 MB RAM. 
For the Bayesian optimal modified Fedorov designs, times are reported for one try, i.e. 
using one random starting design, so as to compare with the optimal RSC-designs for 
which the starting design of Table 2 was used. Furthermore, the times for computing the 
modified Fedorov choice designs are approximate since the number of iterations in one try 
is not fixed, but determined by convergence. From the table, we clearly observe that the 
computation times for the Bayesian optimal modified Fedorov designs are much higher 
than those for the optimal RSC-designs. 
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Table 3: Bayesian optimal RSC-designs 

DB-optimal AB-optimal YB-optimal VB-optimal 
design design design design 

Choice Profile Attributes Attributes Attributes Attributes 
set 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
1 I 2 2 2 1 2 1 2 2 1 2 2 1 1 1 2 3 

II 1 1 3 2 1 2 3 1 2 1 3 2 2 2 3 2 
2 I 2 1 2 2 2 2 2 1 1 2 2 2 1 2 3 2 

II 1 2 1 1 1 1 1 2 2 1 1 1 2 1 1 1 
3 I 2 1 3 1 2 2 2 2 1 2 3 1 1 2 3 1 

II 1 2 1 3 1 1 1 1 2 1 1 3 2 1 1 3 
4 I 2 2 1 2 2 1 1 1 1 1 1 2 1 1 1 2 

II 1 1 2 1 1 2 2 2 2 2 2 1 2 2 2 1 
5 I 2 1 1 1 2 2 1 2 1 3 1 3 1 2 1 1 

II 1 2 2 2 1 1 2 1 2 2 2 2 2 1 2 2 
6 I 1 3 2 3 1 3 2 3 2 3 2 3 2 3 2 3 

II 3 2 1 2 3 1 1 1 3 2 1 2 3 1 1 2 
7 I 1 3 1 1 1 1 1 2 1 1 1 1 2 3 1 1 

II 3 1 3 3 3 2 3 3 2 2 3 3 3 1 3 3 
8 I 1 3 1 2 1 3 1 1 2 3 1 2 2 3 1 2 

II 2 2 2 1 2 1 2 2 1 1 2 1 1 1 2 1 
9 I 1 2 1 1 1 2 1 2 2 2 1 1 2 1 1 1 

II 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 
10 I 1 1 2 2 1 2 2 1 2 1 2 2 2 2 2 2 

II 3 3 1 3 3 3 1 2 3 3 1 1 3 3 1 1 
11 I 1 2 3 3 1 1 2 3 2 1 3 3 2 1 3 3 

II 2 1 1 2 2 2 1 1 1 2 1 2 1 2 2 2 
12 I 3 1 2 2 3 2 2 1 3 1 2 2 3 2 2 2 

II 2 3 3 1 2 3 3 2 2 3 3 1 1 3 3 1 
13 I 3 2 3 1 3 1 3 2 3 1 3 1 3 1 3 1 

II 2 1 1 3 2 2 1 3 2 2 1 3 1 2 1 3 
14 I 3 1 1 3 3 2 1 3 3 2 1 3 3 2 1 3 

II 2 3 2 2 2 3 2 1 2 3 2 2 1 3 2 2 
15 I 3 3 2 1 3 3 2 2 3 3 2 2 3 3 2 1 

II 2 2 3 3 2 1 3 3 1 2 3 3 1 1 3 3 

DB = AB = YB = VB = 
0.32479 3.25170 0.01340 0.00058 
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Table 4: Bayesian optimal modified Fedorov designs 

DB-optimal AB-optimal QB-optimal VB-optimal 
design design design design 

Choice Profile Attributes Attributes Attributes Attributes 
set 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
1 I 2 2 2 3 1 1 3 2 3 3 1 2 3 1 3 2 

II 1 1 3 2 2 2 1 1 2 1 3 3 3 2 1 1 
2 I 3 1 3 2 1 2 2 1 2 3 2 3 2 2 3 1 

II 1 3 2 1 2 3 1 2 3 1 1 2 1 1 1 2 
3 I 3 1 2 2 2 1 2 2 2 3 1 2 2 1 1 1 

II 2 2 1 1 1 2 3 1 1 1 2 1 3 2 2 2 
4 I 1 3 1 3 2 2 1 3 1 2 1 2 1 2 2 1 

II 3 2 2 1 3 1 2 1 2 3 1 1 2 1 1 3 
5 I 1 3 2 2 2 1 1 1 2 2 2 2 1 1 3 1 

II 2 1 1 3 1 3 2 2 1 1 3 1 2 2 2 2 
6 I 2 1 2 1 2 2 2 1 1 3 1 2 2 2 3 2 

II 1 2 1 2 3 1 1 2 3 3 3 1 3 3 1 3 
7 I 2 2 3 1 3 2 1 2 3 2 1 3 3 3 1 1 

II 3 1 1 3 1 3 3 3 2 1 3 2 1 2 3 3 
8 I 3 3 1 2 3 2 2 1 3 2 2 1 3 3 3 3 

II 1 1 3 3 1 1 1 2 3 1 1 3 2 1 2 2 
9 I 1 2 2 3 2 3 3 1 2 2 1 3 2 2 1 2 

II 2 1 1 1 1 1 2 3 1 3 2 3 1 3 2 1 
10 I 1 2 2 1 2 2 3 2 1 2 3 3 3 1 2 2 

II 2 3 1 3 1 3 2 1 2 1 2 1 1 3 1 3 
11 I 1 1 1 1 3 2 3 3 3 1 2 2 3 3 3 2 

II 2 3 3 2 2 1 1 1 1 2 2 1 1 2 2 3 
12 I 3 2 1 1 1 2 1 3 2 2 3 2 2 3 1 2 

II 2 1 2 2 2 1 3 1 1 1 1 1 3 1 2 3 
13 I 2 2 1 2 3 3 1 3 1 1 2 2 1 1 1 1 

II 3 3 2 1 1 2 2 2 3 2 1 1 2 3 2 3 
14 I 2 2 2 2 2 2 2 2 2 1 1 1 1 3 2 2 

II 1 3 3 1 1 1 1 1 3 1 2 3 3 2 1 1 
15 I 1 1 1 2 2 1 2 3 2 1 2 3 1 2 1 2 

II 3 2 3 3 1 2 1 2 1 3 3 2 2 1 2 1 

DB = AB = QB = VB = 
0.31930 3.10527 0.01261 0.00057 
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Table 5: V w , A B -, YB- and VB-criterion values of the RSC starting design and the V B-, 
Aw , YB- and VB-optimal designs generated by relabeling, swapping and cycling (RSC) 
and the Bayesian modified Fedorov choice algorithm 

Optimal RSC Modified 
design Start'" Relabeling Swapping Cycling Fedorov 

VB 0.35533 0.34776 0.34776 0.32479 0.31930 

AB 4.22441 4.05209 4.05209 3.25170 3.10527 

YB 0.01711 0.01548 0.01548 0.01340 0.01261 

VB 0.00072 0.00067 0.00067 0.00058 0.00057 
'1'1 Start refers to the startmg desIgn m Table 2 

Table 6: Deviation from unconstrained optimality of the Bayesian optimal RSC-designs 

Optimal % Deviation of RSC 
design from modified Fedorov 

VB 1.72% 
AB 4.72% 

YB 6.28% 
VB 1.67% 

Utility balance 

Table 8 indicates the percentage utility balances of the RSC starting design and the 
optimal designs generated by relabeling, swapping and cycling (RSC) and the Bayesian 
modified Fedorov choice algorithm. In general, the percentage values of the optimal 
choice designs are very low and thus, the designs are not utility balanced. With regard to 
the RSC-algorithm, it can be seen that the relabeling and cycling increase the percentage 
utility balance to some extent. Further, there is no substantial difference in utility balance 
between the Bayesian optimal RSC and modified Fedorov designs. 

Local optimality 

It is interesting to investigate the performance of the Bayesian optimal RSC and modified 
Fedorov choice designs for particular values of (3. Specifically, we assume that a certain 
parameter is the true parameter (3. For two true parameters, we computed local criterion 
values for the Bayesian optimal designs and investigated to what extent the local crite­
rion values of the designs deviate from the true optimal criterion values. Therefore, we 
computed the locally V p -, A p -, yp- and Vp-optimal RSC and modified Fedorov designs. 
The first parameter used was randomly drawn from U[-I, Ilk whereas the second param­
eter contains all zero values and was chosen as a limiting case. The results for the two 
parameters are shown in Table 9. A first, general finding is that the local criterion values 
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Table 7: Computation times of the Bayesian optimal RSC and modified Fedorov designs. 
For the modified Fedorov designs, approximate computations times are given for one try. 

Optimal 
RSC 

Modified 
design Fedorov 

DB 0.08h 1h 
AB 0.08h 1h 
YB 1.06h 7h 
VB 1.06h 7h 

Table 8: Percentage utility balances of the RSC starting design and the optimal designs 
generated by relabeling, swapping and cycling (RSC) and the Bayesian modified Fedorov 
choice algorithm 

Optimal RSC Modified 
design Start"" Relabeling Swapping Cycling Fedorov 

DB 55.30% 55.93% 55.93% 57.69% 57.83% 
AB 55.30% 55.52% 55.52% 59.21% 59.18% 
YB 55.30% 55.44% 55.44% 58.00% 59.57% 
VB 55.30% 55.44% 55.44% 57.12% 57.96% 

-1', Start refers to the startmg desIgn m Table 2 

for the Bayesian optimal modified Fedorov designs are smaller or equal than those for 
the optimal RSC-designs. As a result, the Bayesian modified Fedorov choice algorithm 
produces better designs than the RSC-algorithm for these parameters. Further, it is re­
markable that the deviations with respect to the Y p-optimality criterion are much higher 
than those with respect to the other criteria. 

Since for every design criterion used, the Bayesian optimal modified Fedorov designs are 
more efficient than the optimal RSC-designs, we compared the different design criteria 
only with respect to the Bayesian modified Fedorov choice algorithm. In this section, 
we first elaborate on their performance in terms of other optimality criteria. Next, we 
consider the accuracy of the parameter estimates generated by the optimal designs and 
the predictive validity of the designs. Finally, we discuss the computational effectiveness 
of the design criteria. 
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Table 9: Local V p -, A p -, yp- and Vp-criterion values of the V B-, A B-, YB- and VB-
optimal designs generated by the RSC and Bayesian modified Fedorov choice algorithms. 
For each of the local criterion values, the percentage deviation from the corresponding 
optimal local criterion value is indicated. 

a) Values are given for the true parameter 
f3 = [0.25847, -0.54128,0.15842, -0.48284, -0.18535,0.64285, -0.12391, 0.33847j' 

Optimal 
RSC Modified Fedorov 

design 
Local % Deviation from Local % Deviation from 

criterion value local optimum criterion value local optimum 
VB 0.23606 24.13% 0.22376 19.32% 
AB 2.18020 17.85% 2.07095 14.50% 

YB 0.00284 141.60% 0.00230 129.59% 
VB 0.00023 17.13% 0.00023 22.46% 

b) Values are given for the true parameter f3 = [0,0,0,0,0,0,0, OJ' 
Optimal 

RSC Modified Fedorov 

design 
Local % Deviation from Local % Deviation from 

criterion value local optimum criterion value local optimum 
VB 0.16142 3.17% 0.16004 3.31% 
AB 1.40934 1.31% 1.39018 3.24% 

YB 0.00020 18.81% 0.00020 55.97% 
VB 0.00012 3.42% 0.00012 8.06% 

Performance in terms of other optimality criteria 

Since the V B-, A B-, YB- and VB-optimality criteria all have a slightly different aim, it 
is interesting to observe how robust the Bayesian optimal modified Fedorov designs are 
with respect to other design criteria for which they are not optimized. Table 10 gives 
the efficiencies of the Bayesian optimal designs with respect to the different optimality 
criteria. As expected from optimal design theory, the VB-optimal design scores quite 
well on the other design criteria. In particular, the DB-optimal design is almost as good 
as the Vwoptimal design in terms of VB-efficiency. Hence, the VB-optimal design is not 
only useful for precisely estimating the parameters, but also for accurately predicting logit 
probabilities. Inversely, the VB-optimal design also performs well in terms of VB-efficiency. 
As a result, the V B - and VB-optimal designs behave similarly. To a lesser extent, this 
is also the case for the V B- and AB-optimal designs since the corresponding optimality 
criteria are related functions of the information matrix in (4). Further, it is striking that 
the YB-optimal design does not perform well on the other design criteria. Also the V B -

and AB-optimal designs do not score well in terms of Y B-efficiency, in contrast with the 
VB-optimal design. 
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Table 10: Performance of the Bayesian optimal modified Fedorov designs in terms of other 
design criteria 

Design Optimal design 
criterion DB AB QB VB 

DB 100.00% 98.26% 9l.67% 98.50% 
AB 98.13% 100.00% 93.06% 96.66% 
QB 96.24% 93.97% 100.00% 99.20% 
VB 99.73% 96.27% 96.78% 100.00% 

Accuracy of the parameter estimates 

To evaluate the accuracy of the parameter estimates generated by the DB-, AB-, QB- and 
VB-optimal modified Fedorov designs, we computed for each of these designs the EMSE;3 
and the average standard error of the parameter estimates, s;3. Since both measures de­
pend on a true parameter j3, we repeated the computation of these measures 50 times, 
each time for a different true parameter. We refer to each new computation for a different 
true parameter as a replication. For each replication, we estimated the parameter values 
R = 1000 times by simulating choices from N = 20 respondents. 

Table 11 shows the results of the 50 replications. By means of percentage values, it 
depicts the number of replications for which the Dw , Aw , Qw and VB-optimal modified 
Fedorov designs have the lowest value for the EMSE;3 and the average standard error of 
the parameter estimates, s;3. Overall, for each of the 50 replications, the EMSE;3 and the 
average standard error of the parameter estimates, s;3' lead to similar conclusions about 
the ranking of the optimal designs with respect to the best estimate. As expected, the 
AB-optimal design has the largest number of replications for which the estimate /3 is most 
precise. Furthermore, we observe that the estimation performance of the DB-optimal de­
sign is fairly good and that of the Q B- and Vwoptimal designs somewhat poorer. As an 
illustration, we display the outcomes of a replication in Table 12a. For this replication, 
the AB-optimal design finds the best estimate of the true parameter j3. 

It is also interesting to depict the values of the EMSE;3 and the average standard 
error of the parameter estimates, s;3' for the 50 replications by means of box plots in 
Figures 1a and lb. The white line in each of the boxes is the median. Both figures, 
which respectively display the EMSE;3-distributions and the s;3-distributions, show similar 
patterns. Surprisingly, we spot the lowest median for the DB-optimal design, but the 
medians for the other optimal designs, in particular the AB-optimal design, are close. 
Furthermore, the interquartile range in all four box plots is comparable. This is also the 
case for the distance between the whiskers, although it is a bit smaller for the Q B-optimal 
design. Generally, we can conclude from this section that, although the AB-optimal 
design has the largest number of replications for which the estimate /3 is the best, the 
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Table 11: Number ofreplications for which the Bayesian optimal modified Fedorov designs 
perform best on providing the most accurate estimate f3 in terms of the EMSE fJ and the 
average standard error of the parameter estimates, sfJ 

Optimal # Replications with lowest 
design EMSEb sb 

DB 30% 32% 
AB 42% 44% 

YB 14% 12% 
VB 14% 12% 

Table 12: a) Values for the EMSEfJ and the average standard error of the parameter 
estimates, S fJ' indicating the estimation performance of the parameters of the Bayesian 
optimal modified Fedorov designs. b) Values for the EMSEpc and the average standard 
error of the predicted probabilities, spc' indicating the predictive validity of the Bayesian 
optimal modified Fedorov designs. Values are given for the true parameter f3 = [0.45654, 
0.65320,0.18420, -0.34280, -0.98530, -0.10420, 0.64280, -0.12390]'. 

Optimal design 
DB AB YB VB 

EMSEfJ 0.18293 0.16749 0.21164 0.18807 
a) 

sb 0.14873 0.14196 0.16033 0.15131 
EMSEpc 29.72293 31.31291 38.01960 30.07124 

b) 
spc 0.06765 0.06942 0.07657 0.06808 

DB-optimality criterion comes very close to the AB-optimality criterion for providing 
accurate estimates. 

Predictive validity 

In this section, we finally establish which of the Bayesian optimal modified Fedorov de­
signs provides the best predictions Pc (/3) with respect to the complete choice design. 
To this end, we computed for each of the optimal designs the EMSEpc and the average 
standard error of the predicted probabilities, spc' We carried out 50 replications and for 
each replication, we computed the predicted probabilities R = 1000 times using N = 20 
respondents to simulate choices. 

The prediction results from the 50 replications are shown in Table 13. The table de­
picts the number of replications for which the DB-, AB-, YB- and VB-optimal modified 
Fedorov designs have the lowest value for the EMSEpc and the average standard error 
of the predicted probabilities, spc' Surprisingly, not the VB-optimal design, but the DB -
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Figure 1: Distributions of the EMSE j!J and the average standard error of the parameter 
estimates, sj!J, obtained from 50 replications and computed for the 'DB-, A B-, YB- and 
VB-optimal modified Fedorov designs 

optimal design has the largest number of replications for which the predictions Pc (/3) are 
most precise. Nevertheless, the 'DB-optimal design is closely followed by the VB-optimal 
design. The Ae- and Y B-optimal designs provide the best predictions in only a few repli­
cations. As an example, the outcomes of a replication are portrayed in Table 12b. For 
this replication, the 'DB-optimal design provides the most accurate predictions. 

Table 13: Number of replications for which the Bayesian optimal modified Fedorov designs 
perform best on making the most precise predictions Pc(/3) with respect to the complete 
choice design in terms of the EMSEpc and the average standard error of the predicted 
probabilities, spc 

Optimal # Replications with 
design lowest EMSEpc and spc 

'DB 46% 
AB 12% 

YB 8% 
VB 34% 

In Figures 2a and 2b, the distributions of the values for the EMSEpc and the average 
standard error of the predicted probabilities, spc' for the 50 replications are depicted by 
means of box plots. It is striking that the medians and the interquartile ranges of the boxes 
for the 'De- and VB-optimal designs are the same in both figures. The distance between 
the whiskers of the box plots for the VB-optimal design is smaller than that for the 'DB -

optimal design, although more outliers are present for the VB-optimal design. Concerning 
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Figure 2: Distributions of the EMSEpc and the average standard error of the predicted 
probabilities, spc' obtained from 50 replications and computed for the V B -, AB -, 9B- and 
VB-optimal modified Fedorov designs 

the distributions for the A B - and 9 B-optimal designs, we observe rather elevated values 
for the median, a large interquartile range and a large distance between the whiskers. To 
conclude, we can state that the VB-optimal design most often leads to the best predictions. 
However, the predictions with respect to the VB-optimal design are almost as precise as 
those with respect to the VB-optimal design. 

Computational effectiveness of the design criteria 

To compare the computational effectiveness of the V B -, AB -, 9B- and VB-optimality cri­
terion when applied in the Bayesian modified Fedorov choice algorithm, we computed 
the estimated expected efficiencies of the V B -, A B -, 9B- and VB-optimal modified Fe­
dorov designs according to (34). The results are shown in Figure 3. It turns out that 
the highest expected efficiency is obtained when the VB-optimality criterion is used. The 
VB-optimality criterion is second-best, followed by the 9B-optimality criterion and the 
AB-optimality criterion. As a consequence, the smallest number of tries is needed for 
calculating the VB-optimal modified Fedorov design. Moreover, missing the optimal V B­

criterion value leads to the smallest loss in efficiency. To summarize, choosing the V B -

optimality criterion in combination with the Bayesian modified Fedorov choice algorithm 
to obtain an efficient choice design not only yields very accurate predictions, but also 
results in the highest efficiency if the optimal design is missed. 
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Figure 3: Estimated expected efficiency of the D B -, AB -, Qw and VB-optimal modified 
Fedorov designs 

6 Summary and conclusion 

In this paper, we adapted the modified Fedorov choice algorithm developed by Zwerina 
et al. (1996) in a Bayesian manner and compared it to the RSC-algorithm proposed by 
Sandor and Wedel (2001) to construct efficient choice designs. The designs under in­
vestigation were of type 34 /2/15. Since the so-called Bayesian modified Fedorov choice 
algorithm does not enforce any constraints on its design search as opposed to the RSC­
algorithm, it provides the most efficient choice designs. To score the utility balances of 
the designs, we introduced as measure the percentage utility balance and found that the 
optimal designs are not utility balanced. Furthermore, we compared the DB -, AB -, QB­

and VB-optimality criteria and examined their estimation performance of the parameters 
and predictive validity. After all, conjoint choice experiments are carried out to predict 
the market demand of a specific product line or related services. We observed that the 
Aw and DB-optimal modified Fedorov designs provide the most accurate estimates and 
the D B - and VB-optimal modified Fedorov designs the most precise predictions. However, 
since the DB-optimality criterion results in the highest expected efficiency if the optimal 
design is missed and leads to the shortest computation time, it has to be preferred to the 
other optimality criteria to set up an effective choice experiment. 
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Appendix A 

To derive the information matrix I(X,,6) in (4), we need to compute the Hessian matrix 
H(X,,6) since I(X,,6) is defined as - E{H(X, ,6)}. We start by calculating the gradient 
of the log-likelihood function from one respondent: 

8 
-lnL 
8,6 

S J S J ""J x' fJ 
~~ ~~ Dt=l e ts Xts 

~ ~ YjsXjs - ~ ~ Yjs 2:;=1 ex~sfJ . 
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The Hessian matrix H(X, (3) from one respondent then equals 

82 

8(38(3' InL 

-t (tPt'Xt,X;, -tPt'Xt, tPt,X~') t,y;" 
-t (tPt'Xt,X;, -tPt,x" tp"X;,) 1, 

s 
- L (X~PsXs - X~Psp~Xs), 

s=1 

s 
-LX~ (Ps - Psp~) Xs, 

s=1 

where Xs = [XIs, ... , XJsj', Ps = [PIs, ""PJsl' and P s = diag[Pls, ""PJsj. Taking the 
expected value of the Hessian matrix, E{H(X, (3)}, leads to the same expression: 

s 
= - L X~ (Ps - Psp~) Xs' 

s=1 

As a result, the information matrix from N respondents becomes 

I(X, (3) = N ( - 8;;(3' In L) , 

s 

NLX~ (Ps - Psp~) Xs· 
s=1 
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Appendix B 

We compute the V B -, AB -, gB- and VB-criterion values of a small design XO, consisting 
of three choice sets each with two alternatives. The alternatives have two attributes: 
attribute 1 at three levels denoted 1, 2, 3, and coded [1 0], [0 1], [-1 -1] respectively, and 
attribute 2 at two levels, 1 and 2, coded -1 and l. The design XO with its coded version 
X looks as follows: 

1 2 1 0 1 
2 1 0 1 -1 

Xo= 2 2 
X= 

3 1 
, 0 1 1 

-1 -1 -1 
3 2 -1 -1 1 
1 1 1 0 -1 

The three choice sets are separated by horizontal lines. The alternatives are specified 
in the rows and the columns represent the attributes. The Bayesian criterion values are 
computed as in (7), (10), (15) and (18). By way of illustration, we only use three prior 
parameters (3r = [;3h,;3r2,;3;]' r = 1,2,3, randomly drawn from 7r((3) = U[-l,l]k with 
k = 3. For each of these prior parameters, we compute the local V p-, Ap-, gp- and 
Vp-criterion values and subsequently average them to obtain the corresponding Bayesian 
values. 

The information matrix I(X, (3r) is computed as in (4) by taking N 
I(X, (3r) = L~=l X~(P s - Psp~)Xs with choice sets given by 

Xl = [~ ~ _~], X 2 = [_~ _~ _~], X3 = [-f -~ _~], 

1 so that 

Ps the vector of probabilities in choice set sand P s the corresponding diagonal matrix. 

As a first draw, r = 1, we have (31 = [-0.238,0.656,0.122]'. Using (2), we obtain the 
following for choice set s = 1: 

[0.343] , [ 1 -1] PI = 0.657 ,P l - PlPl = 0.225 x -1 1 and 

[
0.225 -0.225 0.451] 

X~ (P l - PlP~)Xl = -0.225 0.225 -0.451 . 
0.451 -0.451 0.901 

Repeating the computations for choice sets 2 and 3 and summing the three matrices yields 
the information matrix corresponding to (31: 

[ 
l.391 

I(X, (31) = 0.607 
-0.215 
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0.607 
l.141 

-0.284 

-0.215] 
-0.284 . 
2.567 



The local D~-criterion value then becomes 

and the local A~-criterion value, 

A~ = tr{I(X, (31 )-1} = 2.499. 

To obtain the local g~- and V~-criterion values, we use the more practical design region 
X* that consists of one large choice set embracing all candidate alternatives. For our small 
example, since attribute 1 has three levels and attribute 2 has two levels, this large choice 
set, Gl , contains 3 x 2 = 6 alternatives: Cl = {XII, ... , X61}. For each of these alternatives, 
we compute the corresponding c-vector according to (12) and (13): 

1 0 -1 -----+ Pll = 0.103 -----+ C(XII) = [0.099, -0.039, -0.115]', 
1 0 1 -----+ P2l = 0.131 -----+ C(X21) = [0.126, -0.049, 0.115]', 
0 1 -1 -----+ P3l = 0.251 -----+ C(X31) = [-0.010,0.157, -0.281]', 
0 1 1 -----+ P4l = 0.320 -----+ C(X41) = [-0.012,0.200,0.281]', 
-1 -1 -1 -----+ P5l = 0.086 -----+ C(X51) = [-0.089, -0.118, -0.096]', 
-1 -1 1 -----+ P6l = 0.109 -----+ c(X61) = [-0.114, -0.151, 0.096]'. 

The local g~- and V~-criterion values are then derived as 

g~ = max 

V~ = avg 

c' (XII)I(X, (31 )-lC(Xll) = 0.020 
c' (x21)I(X, (31 )-lC(X21) = 0.029 
c'(x31)I(X, (31)-lC(X31) = 0.054 
c' (x41)I(X, (31 )-lC(X41) = 0.090 
c'(x51)I(X, (31)-lC(X51) = 0.019 
c' (X61)I(X, (31 )-lC(X61) = 0.022 

c'(xll)I(X, (31 )-lC(Xll) = 0.020 
c' (x21)I(X, (31 )-lC(X21) = 0.029 
c' (x31)I(X, (31 t 1C(X31) = 0.054 
c' (x41)I(X, (31 )-lC(X41) = 0.090 
c' (x51)I(X, (31 )-lC(X51) = 0.019 
c' (x61)I(X, (31 )-lC(X61) = 0.022 

= 0.090, 

= 0.039. 

Similar computations for a second draw, r = 2, (32 = [0.045, -0.832, -0.198]', yield 

D~ = 0.804, 
A~ = 2.969, 
g~ = 0.140, 
V~ = 0.048, 
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and for a third draw, r = 3, /33 = [0.783, -0.267,0.549]', we obtain 

D~ = 0.934, 
A~ = 4.080, 
g~ = 0.198, 
V~ = 0.058. 

Finally, we average the local criterion values over the three draws to get the corre­
sponding Bayesian values: 
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