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Abstract 

The usual assumption of independence of the remaining life times 

involved in joint-life and last survivor statusses is ommitted. Given 

the marginal distributions of the remaining life times, lower and upper 

bounds are derived for the single premiums of multi-life insurances and 

annuities. 

Keywords: joint-life statusses, last surVIVor statusses, independence, 

single premiums. 

1 Introduction 

Usually in the theory of multilife contingencies, the remaining life times of 

the lives involved are assumed to be mutually independent. Computational 

feasability rather than realism seem to be the major reason for making this 

assumption. Indeed, a husband and his wife are more or less exposed to the 

same risks. The "broken hart syndrome" causes an increase of the mortality 

rate after the mortality of one's spouse. Such effects may have a significant 

influence on present values related to multilife actuarial functions. 
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In this paper, we will use some results from Dhaene & Goovaerts (1995) 

which were obtained for portfolios where the risks involved are not necessarily 

mutually independent. We will show that we can use some these general 

results for evaluating the effect of dependencies in case of multilife functions. 

We will restrict our discussion to situations involving two lives. 

In the following section we will give some definitions and results, as obtai­

ned in Dhaene & Goovaerts (1995). In section 3 these results will be used for 

deriving ordering relations between multilife insurances and annuities on two 

lives. In the sections 4 and 5 we derive bounds for the expected payments 

for the different types of multi life insurances and annuities. In section 6 , we 

will discuss a particular case of dependency. Finally, in section 7 we will give 

some numerical illustrations of the results obtained in the previous sections. 

2 Correlation order and positive quadrant de­

pendency 

Let R(F, G) be the set of all bivariate distributed random variables (X, YO) 

with given marginal distribution functions F and G for X and Y respectively. 

We interpret X and Y as the remaining life times of persons (x) and (y) 

respectively. We will assume that all random variables involved are non­

negative. 

Definition 1 Let (Xl, Yd and (X21 Y2) be two elements of R(F) G). (Xl, 1'1) 

is said to be less correlated than (X21 Y2)) written as (Xl, 1~) :Sc (X2' Y2) if 

JOT all non-decreasing functions f and 9 for which the cova'riances e:l:ist. 

The correlation order is a partial order between the joint distributions of 

the risks in R(F,G). It expresses the notion that some elements of R(F,G) 

are more positively correlated than others. 
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The following theorem gives an alternative definition for correlation order 

in terms of the joint probability distributions. 

following statements are equivalent : 

(b) Frob(X1 :S Xl 1'1 :S y) :S Frob(X2 :S Xl Y2 :S y) for all Xl y 2 0 

A proof of this theorem can be found in Dhaene & Goovaerts (1995). 

Often certain insured risks tend to act similarlYl they possess some llpO_ 

sitivell dependency. In order to describe such situations we introduce the 

well-known notion of llpositive quadrant dependencil. 

Definition 2 Two random variables X and Yare said to be positively qua­

drant dependent) written as FQD(X l Y)) if 

Frob(X :S Xl Y:S y) 2 Prob(X :S x)Frob(Y :S y) 

for all Xl y 2 o. 

Hencel the probability that X and Y both realize small values is larger 

than in the case of independent random variables. In terms of correlation 

order (definition 1) we can say that (Xl Y) is actually more correlated than 

in the independent case. 

3 Actuarial functions on two dependent lives 

Let v = l~i denote the discounting factor and d = 1 - v. 
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3.1 The joint-life status 

In this subsection we consider insurances and annuities issued on the joint-

life status (xy) which exists as long as (x) and (y) are both alive. YAle ",,,ill 

consider a pure endowent (where an amount is paid after 17, years if both CD) 

and (y) are alive at that moment), a perpetuity (where an amount is paid 

in the beginning of each year, as long as both (x) and (y) are alive) and a 

whole life insurance (where an amount is paid at the end of the year of the 

first death). 

Let X and Y be the remaining life times of (x) and (y) respectively. The 

bivariate remaining life time of the couple consisting of (x) and (y) is then 

given by (X, Y). The single premiums of these insurances and annuities are 

given by 

(a) Pure Endowment 

nExy = vn Frob(X > 17" Y > 17,) 

(b) Perpetuity 
00 

axy = L vk Frob(X > k, Y > k) 
k=O 

(c) Whole Life Insurance 

00 

Axy = L Vk+l Frob(k < mi17,(X, Y) :'S k + 1) 
k=O 

In the following theorem we will consider two bivariate remaining life 

times in R( F, G) which are ordered by the correlation order. We will show 

that a correlation order between these remaining life times implies an ordering 

of the corresponding single premiums. 

Theorem 2 Let (Xl, Yi) and (X2' Y2) be two bivariate remaining life times, 

both elements of R(F, G). If (Xl, Yd :'Sc (X2, Y;) then 
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A(l) > A(2) 
xy - xy 

We have added the superscript (i) (i = 1, 2) to the single premium symbols 

to denote that the biva1'iate remainig life time of the couple involved is given 

by (Xi, Ii). 

Proof. 

To proof the stated relations, we use the equivalent definition of correla­

tion order: 

Prob(Xl ::; x, Yi ::; y) ::; Prob(X2 ::; x, Y2 ::; y) 

or equivalently 

Prob(X l > x, Yi > y) ::; Prob(X2 > x, Y2 > y) 

U sing this inequality and the following relations 

we find the stated results. 

00 

axy = L Exy 

k=o 

o 
Theorem 2 can be interpreted as follows. Assume that the marginal 

distri butions of the remaining life times of (x) and (y) are given. If the 

bivariate remaining life time of the couple increases in correlation order, then 

the single premiums of endowment insurances and annuities on the joint life 

status increase. For the whole life insurance, the opposite conclusion holds. 
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3.2 The last survivor status 

Let us now consider insurances and annuities that are based on the last 

sur\Tivor status (xy) \vhicll exists as lOllg as at least one of (x) and (y) is 

alive. 

(a) Pure Endowment 

nExy = vn (1 - Prob(X ::; n, Y ::; n)) 

(b) Perpetuity 
00 

axy = L vk (1 - Prob(X ::; k, Y ::; k)) 
k=O 

(c) Whole Life Insurance 
00 

Axy = L vk+lprob(k < max(X, Y) ::; k + 1) 
k=O 

For the last survivor status we find the following result. 

Theorem 3 Let (Xl, Yd and (X2, Y2) be two biva7'iate remaining life times, 

both elements of R(F,G). If(XI,1~)::;c (X2,Y2) then 

EQ) > Ei!J n xy _ n xy 

AQ! < A(2) 
xy - xy 

Proof. The proof is similar to the proof of Theorem 2. o 
Theorem 3 can be also interpreted as follows. Assume that the marginal 

distributions of the remaining life times of (x) and (y) are given. If the 

bivariate remaining life time of the couple increases in correlation order, 

then the single premiums of endowment insurances and annuities on the last 

survivor status (xy) decrease. For the whole life insurance, the opposite 

conclusion holds. 
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4 Independent lives versus PQD 

In this section, we will again assume that the marginal distributions of the 
.. lor L" _ "\7, 1 1:7 r I \ 1 I \ j' 1 • TTY "11 rernall1ll1g lHe LlrneS A ana r or ~ X) ana ~y) respectIVeLy, are gIVen. We wlll 

compare the case where the remaining life times are mutually independent 

with the case where they are PQD. The independent case will be denoted 

by the superscript "ind". The PQD-case will be denoted by the superscript 

"PQD" . 

Theorem 4 If the marginal distributions of the remaining life times of (x) 

and (y) are given, then 

E ind < EPQD 
n xy _ n xy 

··ind < ··PQD axy _ axy 

A ind > APQD 
xy - xy 

E ind > E PQD 
n xy _ n xy 

.. ind> .. PQD axy _ axy 

A ind < A PQD 
xy - xy 

Proof. The proof follows immediately from Definition 2 and the Theo-

rems 2 and 3. o 

These inequalities have been derived in Norberg (1989). 

5 Lower or upper bounds for the single pre-
. 

mlums 

In this section we will look at an extremal element in R( F, G), namely the 

one which is larger in correlation order than any other element in R(F, G). 

Lemma 1 For any element (X, Y) in R(F, G), we have that 

Prob(X ~ x, Y ~ y) ~ min (F(x), G(y)) 

with this 'Upper bound being the bivariate distribution function of an an ele­

ment contained in R( F, G). 
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This result can be found in Frechet (1951). 

From Lemma 1 and the Theorems 2 and 3 we immediately find the follo­

wing result. 

Theorem 5 For any bivariate remammg life time (X, Y) zn R( F, G) we 

have 

nExy ::.; nE;y 

axy ::.; a;y 
Axy ~ A;y 

nExy ~ nE;y 

"-> .. * axy _ axy 

Axy ::.; A;y 

where the single premiums with a superscript" *" are computed with the biva-

riate distribution of the remaining life time of the couple given by min (F( x), G(y)). 

Now assume that the given remaining life times of (x) and (y) are PQD. 
In this case the bounds obtained in the Theorems 4 and 5 complement each 

other in the sense that we have an upper and a lower bound for each type 

of insurance or annuity on two lives. One of the bounds corresponds to 

the independence case. The other bound corresponds to the case where 

the bivariate distribution is the minimum of the two marginal distributions 

involved. 

6 A particular type of dependency 

Let X and Y be the remaining life times of (x) and (y) respectively. Assume 

that the bivariate reniaining life time (X, Y) is an element of R(F, G). The 

following inequalities can easily be derived. 

nExy::'; nEx 

axy ::.; ax 

nExy ~ nEy 

aXY ~ ay 

Now we will prove that these bounds for the multilife single premiums cor­

respond to the bounds denoted with a superscript" *" in Theorem .5 provided 
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that Y stochastically dominates X. The well-known definition of stochastic 

dominance is repeated below. 

tically dominates X, written as X Sst Y if 

F(t) ~ G(t) 

for all t ~ O. 

Note that Sst is an order between distributions. This implies that all elements 

of R(F, G) are stochastically ordered or not. 

H F(t) ~ G(t) for all t ~ 0 we have that 

min (F(t), G(t)) = G(t) 

for all t 2:: O. After some straightforward derivations we find that in this case 

.. * .. 
a xy = a y 

A:y = A~ 

We can conclude that if X Sst Y for all (X, Y) in R(F, G) then the bounds 

derived in Theorem 5 all reduce to single premiums of insurances and annui­

ties on a single life. 

7 Numerical illustration 

In this section we will illustrate the bounds derived in the previous secti­

ons by some nurnerical examples. The technical interest rate equals 0.475. 

Further, (x) and (y) are a male and a female respectively. The marginal 

distribution functions of the remaining life times of (x) and (y) follow from 

the Belgian mortality tables AIR and F R respectively. Finally, we assume 

that the remaining life times of (x) and (y) are positive quadrant dependent. 
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In Table 1 bounds are gi ven for perpetuities on (xy) and (xy) with x = y 

for different values of ;1:. The bounds follow from Theorems 4 and 5. 

a xx a--xx 

x LB UB LB UB 
20 19.73491 20.16667 20.65737 21.08913 

25 19.25552 19.75987 20.33743 20.84178 

30 18.66676 19.25966 19.9384 20.53131 

35 17.94998 18.64924 19.44297 20.14223 

40 17.08711 17.9114 18.83157 19.65585 

45 16.06302 17.03007 18.08316 19.05021 

50 14.86913 15.9929 17.17676 18.30054 

55 13.50804 14.79454 16.09438 17.38088 

60 11.9987 13.44083 14.82536 16.26748 

65 10.38052 11.95296 13.37225 14.94469 

Table 1. Bounds for perpetuities on (xx) and (xx). 

The differences between the upper and lower bounds are relatively small. 

This means that the knowledge of the marginal distributions of the (not 

necessarily independent) remaining life times involved, gives already a lot of 

information concerning the multilife annuity values. We also remark that the 

absolute difference between the upper and the lower bound increases with the 

age. 

In Table 2 we compare the single premiums for endowment insurances on 
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(25 : 20) and (25 : 20) respectively, for varying durations of the endowment. 

E----
n ?" ?() 

_~ _v 

n LB DB LB DB 

5 0.7877 0.78926 0.79135 0.79291 
10 0.61963 0.62223 0.62609 0.6287 
15 0.48632 0.48965 0.49513 0.49847 
20 0.38028 0.38418 0.39128 0.39518 
25 0.29557 0.29998 0.30883 0.31324 
30 0.22746 0.23243 0.24321 0.24819 
35 0.17219 0.17784 0.19081 0.19645 
40 0.12689 0.13333 0.14872 0.15515 
45 0.08945 0.09672 0.11458 0.12186 

Table 2. Bounds for endowment insurances on (25 : 20) and (25 : 20). 

In both cases, the difference between the upper and the lower bound 

seems to be an increasing function of the duration. 

Finally, in Table 3 we com pare perpetuities on (x : 20) and (x : 20) with 
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x varying from 20 to 55. 

U xy a--xy 

X y LB DB LB DB 

20 20 19.73491 20.16667 20.65737 21.08913 
25 20 18.97906 19.25966 20.65737 21.00743 
30 20 18.97906 19.25966 20.65737 20.93798 
35 20 18.42589 18.64924 20.65737 20.88073 
40 20 17.7345 17.9114 20.65737 20.83428 
45 20 16.89073 17.03007 20.65737 20.79672 
50 20 15.88407 15.9929 20.65737 20.76621 
55 20 14.71068 14.79454 20.65737 20.74124 

Table 3. Bounds for perpetuities on (x : 20) and (x : 20). 

For the last survivor annuity the lower bound equals ay and hence is 

constant. From Table 3 we see that increasing the difference in age between 

(x) and (y) decreases the absolute difference between the bounds. 
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