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Abstract - This paper presents a set of metrics and 
pseudo-metrics for the measurement of conceptual 
distances in M.E.R.O.DE. business models. The 
measures are developed and validated using measure 
and measurement theory. It is argued that this 
metrics set constitutes a strong formal basis for the 
further assessment and prediction of relevant internal 
and external attributes of object-oriented specifica
tions. 
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I. INTRODUCTION 

In software engineering the notions of software metric 
and software measure are used interchangeably and 
mostly without reference to the mathematical discipline 
of measure theory and the philosophical discipline of 
measurement theory. In order to formalise the 
measurement of software, the distinction between a 
metric and a measure must be clarified and both terms 
must be used in a consistent manner. Formalisation of 
measurement implies that the principles of measurement 
theory, especially the representational approach to 
measurement theory, are adhered to. Recently quite a lot 
of efforts have been done in this direction. The work of 
Norman Fenton can be considered a milestone in this 
regard, as he is an enthusiastic promoter of sound 
measurement theoretical principles in software 
measurement research [7,8]. 

Basically, measurement is the assignment of 
numbers to entities [14]. Of course, this assignment is not 
arbitrary, it should conform to certain rules. Measurement 
theory states what conditions must be fulfilled to have 
good, valid measurement. For instance, for measurement 
on an ordinal scale, the numbers assigned to the entities 
should reflect the intuitive ordering of these entities 
based on the quantities of the attribute we wish to 
measure. Formally, to define a measure on an ordinal 
scale, we need to define [5,7,10,14]: 

• An empirical relational system (A,R) consisting of a 
set A of entities and a set R of relations on A as can 
be observed in reality. The relations in R order the 
entities of A according to the inherent quantity of a 
certain attribute of these entities. 

• A numerical relational system (B,S) consisting of a 
set of numbers (e.g., the real numbers) and the usual 
ordering relations (e.g., ::;) on these numbers. 

• A measure which is a mapping fl from CA,R) into 
(B,S) such that V a, b E A: V Rj E R, 3 Sj E S: a Rj b 
¢::> flea) Sj fl(b). This condition is called the represen
tation condition of ordinal measurement. 

The representation problem is solved if the existence of a 
homomorphical mapping (i.e., a measure) from the 
empirical relational system into the numerical relational 
system is shown. The uniqueness problem involves the 
question: How unique is this homomorphical mapping? 
Solving the uniqueness problem means determining the 
scale type of the measure, which in turn defines the set of 
allowable mathematical operations on the measurement 
values. In the previous example an ordinal scale type was 
assumed. For other scale types other representation 
conditions must be satisfied. For instance, to measure on 
an interval scale the representation condition of 
difference measurement must be fulfilled. To measure on 
a ratio scale requires the problem of extensive 
measurement to be solved (see [14] for a good reference 
on measurement theory). 

These scientific principles must be applied in 
software measurement research. Formal measurement of 
software means solving the representation and uniqueness 
problems in the context of software engineering. A 
measure can only be introduced by explicitly defining 
what the empirical relational systems looks like, into 
which numerical relational system the entities are 
mapped, and how the attribute in question is quantified 
(i.e., the mapping function). All too often measures are 
proposed without clarification of these concepts. A 
critical review of these measures can, by making the 
underlying measurement model and assumptions explicit, 
reveal whether the measures are valid according to 
measurement theory (see for instance [13]). 



Although the application of sound measurement 
theoretical foundations is gaining ground in software 
measurement, we did not find many references pointing 
to the application of mathematical measure theory in 
software measurement. In measure theory a measure is 
defined as a function on sets [2,11,15]. To define a 
measure first a measurable space needs to be identified. 
Formally, a measurable space (X,S) consists of a set X 
of entities and a ()-algebra S of subsets of X. The ()
algebra S is a set of subsets of X that is closed for the 
intersection and the union operator. A measure !l is a 
non-negative set function on the ()-algebra S satisfying: 

• !l(0) = 0 
• !leA) < !l(B) if A c B 
• !l(uAi) S; L!l(A i) 

Also in measure theory the concept of a metric is defined. 
A metric is a function measuring the distance between 
two entities. In fact, a metric is distinguished from a 
pseudo-metric. A pseudo-metric is a non-negative 
function 8 on two entities that satisfies the following 
conditions: 
• 8(x,x) = 0 (identity) 
• 8(x,y) = 8(y,x) (symmetry) 
• 8(x,y) S; 8(x,z) + 8(z,y) (triangle inequality) 
A metric is a pseudo-metric that satisfies a stronger 
axiom of identity: 8(x,y) = 0 <=} x = Y 

Graham compares the definition of a metric and a 
measure to the actual use of the term software metric and 
software measure and concludes that "the use of the terms 
metric and measure in computer science is not usually as 
precise as this ... " [9, p. 400]. Fenton asserts that the 
concept of metrics in the sense of measure theory, which 
he calls 'real' metrics, can be reconciled with his 
software measurement framework based on measurement 
theory [7]. Although he gives examples of the use of 
'real' metrics in the context of fault tolerance assessment, 
diversity of designs measurement and program
specification satisfaction, he does not elaborate the idea 
of using metrics any further. Dvorak proposes some 
metrics measuring aspects of conceptual entropy between 
Smalltalk object classes, but does not formally define 
these metrics [4]. 

The only reference we found in which principles 
of measure theory are really applied to software 
measurement is [6]. Ejiogu examines whether a tree-like 
model of software structure satisfies the requirements of 
measurable spaces. His fundamental theorem of software 
metrics 'If T is a tree (structure) and S = {Ljk} is the 
class of nestings of parent-child nodes of T, then S is a ()
ring' is the 'fundamental ground space for software 
inetrics' [6, p. 41]. Ejiogu applies these important 
findings only in the context of structured programming 
and the measurement of the structural complexity of 
software. Ejiogu proposes some measures, but he does 
not consider metrics, a more basic concept in measure 
theory that we shall consider. 

In software engineering software metrics can be defined 
to measure conceptual distances (i.e., conceptual 
differences) between software entities. Based on these 
distances a framework can be introduced to formally 
define and measure a number of internal product 
attributes that are potentially useful for assessing and 
predicting relevant software product, process and 
resource attributes. By integrating concepts from measure 
and measurement theory, we believe a strong formal 
measurement basis can be created that guarantees the 
validity of the proposed measures. In this paper concepts 
of both theories are applied to software specifications 
developed using the object-oriented paradigm, and this as 
early as the business modelling phase. 

In section 2 the development methodology we 
use to model business object types and business models is 
briefly discussed. This methodology is M.E.R.O.DE., 
which is an acronym for Model-driven Entity
Relationship Object-oriented DEvelopment. In section 3 
a metric is developed that measures the conceptual 
distance between M.E.R.O.DE. business object types. In 
section 4 this metric is used to define a new metric 
measuring conceptual distances between M.E.R.O.DE. 
business models. In section 5 it is discussed how these 
software metrics enable the creation of a number of 
indirect measures of both internal and external attributes 
of relevant software entities. Also a few examples are 
given of how to derive these indirect measures and how 
they can be used in software measurement. Finally, in 
section 6 conclusions and future research directions are 
presented. 

II. M.E.R:O.DE. 

To define a valid measure it must be exactly known how 
the empirical relational system looks like. In software 
engineering this is mostly not the case [19]. Software 
entities and their attributes are not formally defined and 
neither are the measures of these attributes. Even in 
Object Orientation, where the primary goal was to 
improve the quality' of delivered software, most 
methodologies are characterised by a low level of 
formality [3]. However in M.E.R.O.DE. important 
software entity concepts are formalised by means of a 
process algebra [16]. It is this ability to formally define 
conceptual business models and their components that 
allows us to develop a strong measurement basis. 
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BOOK MEMBER 

Figure 1: Object-Relationship Diagram Library example 

A M.E.R.O.DE. business model describes the functioning 
of the business in terms of object types, event types and 
the relationships between object types and event types 
[3]. The static aspect of such a business model is 
described by an Object-Relationship Diagram, which in 
fact integrates an Entity-Relationship Diagram and an 
Existence-Dependency Graph. Figure 1 shows an 
example of an O-R diagram (adapted from [16]). 

The diagram specifies that over time a book can be lend 
by many members, while a member can lend many books. 
Also the object type loan, which is a kind of contract 
between a book and a member, is existence dependent on 
both book and member, meaning that its life cycle is 
embedded in the life cycles of book and member. 

The dynamic aspects of a business model are 
described by the Object-Event Table and by Jackson 
Structure Diagrams. The Object-Event Table identifies 
the relevant event types for each of the business object 
types and specifies which events create, destroy or 
modify object occurrences [3]. In figure 2 an example 
Object-Event Table is shown. 
For each object type a Jackson Structure Diagram 
describes the sequence restrictions imposed on the event 
types that are relevant for the object type. Jackson 
Structure Diagrams are mathematically equivalent with 
Finite State Machines, a dynamic modelling technique 
used in many commercial 00 development 
methodologies (e.g., OSA, OOSA, OOA) [16]. Figure 3 
shows the JSD diagrams for the object types in the library 
example. 

Finally the other business constraints (e.g., referential 
integrity constraints) are formulated, and for each of the 
business object types attributes are defined. This results 
in the definition of abstract data types containing the state 
vector of the object type and one method for each event 
type in which the object type participates [3]. The 
abstract data types and the data constraints for the 
example are shown in figures 4 and 5. 

Object-Event MEMBER BOOK LOAN 
Table 
ENTER C 
LEAVE D 
ACQUIRE C 
CATALOGUE M 
SELL D 
LOSE M D D 
BORROW M M C 
RENEW M M M 
RETURN M M D 
Figure 2: Object-Event Table Library example 

In [16] a process algebra was developed to formalise 
conceptual business models. The universe of event types 
in the model is denoted by the set A. The subset of A that 
is relevant for a certain object type (i.e., containing the 
event types in which the object type participates) is called 
the alphabet of the object type. The alphabet of an object 
type is selected by the function SA' 

Example 
SAMEMBER = {enter, leave, lose, borrow, renew, 
return} 
SABOOK = {acquire, catalogue, sell, lose, borrow, 
renew, return} 
SALOAN = {borrow, renew, lose, return} 

By means of the operators '.' (for sequence), '+' (for 
selection), and ,*, (for iteration) regular expressions over 
A are built. The set R *(A) is the set of regular 
expressions over A. In [16] it is shown that R*(A),+,. is 
an idempotent seml-flng. The Jackson Structure 
Diagrams are graphical representations of these regular 
expressions. Hence, each object type's life cycle is 
modelled by a regular expression. This regular expression 
is selected by the function SR. 

Example 
SRMEMBER = enter. (borrow + renew + return + lose)* 
. leave 
SRBOOK = acquire. catalogue. (borrow + renew + 
return)* . (sell + lose) 
SRLOAN = borrow. (renew)* . (return + lose) 

To summarise, each business object type P is formally 
modelled by a tuple (SAP, SRP) containing its alphabet 
and a regular expression over this alphabet. A conceptual 
business model is a set M of business object types that 
satisfy a number of restrictions (see [16] for a detailed 
account), the first of which is that the union of the 
alphabets of the object types in M must be the set A. 
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Figure 3: Sequence restrictions in the Library example 

MEMBER BOOK LOAN 
State Vector State Vector State Vector 
Member-id, Member-state Book-id, Book-state, Loan-id, Loan-member-id, 

Book-catalogue-number Loan-book-id, Loan-state 
Methods Methods Methods 
ENTER { ACQUIRE { BORROW { 
Member-id := Book-id := ACQUIRE_book-id; Loan-id := BORROW _Loan-id; 
ENTER_member-id; Book-state := "I"; Loan-member-id := 
Member-state := "I"; } BORROW _member-id; 

} CATALOGUE { Loan-book-id := 
LEAVE { Book-catalogue-number := BORROW _book-id; 
Member-state := "E"; CATALOGUE_book- Loan-state := "1"; 

} catalogue-number; } 
LOSE { Book-state := "2"; RENEW { 

} } Loan-state := "2"; 
BORROW { SELL { } 

} Book-state := "E"; LOSE { 
RENEW { } Loan-state := "E"; 

} LOSE { } 
RETURN { Book-state := "E"; RETURN { 

} } Loan-state := "E"; 
BORROW { } 

} 
RENEW { 

} 
RETURN { 

} 
FIgure 4: Abstract Data Types LIbrary example 

LEAVE: 
All LOAN(Loan-member-id = 

LEA VE_member-id).Loan-state = "E" 
SELL: 

All LOAN(Loan-book-id = 
SELL book-id).Loan-state = "E" 

Figure 5: Data Constraints Library example 
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III. A MEASURE OF CONCEPTUAL DISTANCE 
FOR BUSINESS OBJECT TYPES 

Although in software measurement research many 
software metrics are proposed, few of them qualify as a 
metric. In this section the function o(P,Q) is proposed for 
measuring the difference between M.E.R.O.DE. business 
object types P and Q. Since o(P,Q) is a metric according 
to measure theory, it may be called a software metric 
without abusing existing mathematical concepts. At the 
end of this section it is shown that 0 can be defined such 
that it is a valid measure of conceptual distance according 
to measurement theory. Since a non-empty set OM of 
M.E.R.O.DE. business object types and the distance 
function oCP,Q): OM x OM -t Re is said to form a metric 
space, it is common to call the difference between P and 
Q the (conceptual) distance from P to Q [11]. 

In subsequent research o(P,Q) will be used to 
develop a topology on the set of object types. This 
topology can serve as a basis for further formal 
measurement of M.E.R.O.DE. specifications (e.g., the 
measurement of complexity viewpoints). 

In the previous section it was described that 
M.E.R.O.DE. business object types are composed of an 
alphabet of event types, a regular expression on these 
event types describing sequence constraints, a set of 
attribute types, and eventually, some data constraints 
[3,16]. To compare object types each of these aspects 
must be considered, i.e., object types can differ along 
each of these four dimensions. Since it does not seem 
possible at this moment to measure differences along the 
four dimensions simultaneously, first a number of 
pseudo-metrics are developed to measure conceptual 
distances on each of these dimensions separately. Next, 
the pseudo-metrics are combined to define a metric 
measuring the global difference between object types. In 
the next section this metric is used to indirectly measure 
the conceptual distance between business models. 

A. Measuriug differeuces iu alphabet 
The difference in alphabet between the object types P and 
Q is measured as the cardinality of the symmetric 
difference of the sets SAP and SAQ, where SA is the 
selector for the alphabet of an object type. 

Formally, Oalph(P,Q) = cI SAP Ll SAQ I , where the 
symmetric difference between two sets SAP and SAQ is 
defined as SAP Ll SAQ = (SAP - SAQ) u (SAQ - SAP) and 
cI X I is a function mapping a set X to its cardinality. 

ba1ph(P,Q) is also called a measure of conceptual distance 
from the object type P to the object type Q. Conceptual 
distance and difference are equivalent terms in this 
context. Of course, the conceptual distance baIph(P,Q) is 
only one aspect of difference between P and Q. In 
measure theory distances are measured by metrics and 
pseudo-metrics. In appendix 1 it is shown that OaIph(P,Q) 
is in fact such a pseudo-metric. It cannot be a metric 

since P and Q can differ on other aspects than just their 
alphabet. 

B. Measuriug differences in attribute set 
The difference in attribute set between two object types P 
and Q can be measured much the same way as the 
difference in alphabets. Let us introduce the selector Ss 
for the attribute set of an object type. The conceptual 
distance measure for differences in attribute set is defined 
as Oatr(P,Q) = cI SsP Ll ssQI. The symmetric difference of 
the sets SsP and SsQ is defined as 
SsP Ll SsQ = (SsP - SsQ) u (SsQ - SsP). 
The function cI X I maps the set X to its cardinality. 

By analogy to Oalph(P,Q) it can be shown that batr(P,Q) is a 
pseudo-metric (see appendix 1) 

C. Measuring differences in sequence constraints 
In [16] sequence constraints are regular expressions on 
the alphabet of object types. Hence, the operands of 
sequence constraints are event types. Differences in 
alphabets between object types are captured by baIph' So, 
if we just compare the sequence constraints, the 
difference in alphabet is measured again. 

Of course, a sequence constraint is more than 
just the event types that are part of it. It is this additional 
aspect that must be measured. We may call this the 
structure of the sequence constraint. This structure 
consists of the operators C. for sequence, + for selection 
and * for iteration) and the order in which these operators 
are applied. 

To visualise the structure of sequence constraints the 
projection operator 
\eq: R*(A) -t R*(x} : e -t e \eq is defined such that 
a\eq=x 
(e.e') \eq = e \eq . e'\eq 
(e+e') = e \eq + e' \eq 
(e*) \eq = (e \eq)* 
where a is an event type, e and e' are regular expressions 
and x is a dummy event type on which every event type 
of the regular expression e can be projected such that the 
structure of e is not altered. The dummy event type x has 
no semantic meaning of its own. 

Example (see previous section) 
SRMEMBER\eq = x . (x + x + x + x)* . x 
SRBOOK\eq = x . x . (x + x + x)* . (x + x) 
SRLOAN\eq = x . x* . (x + x) 

The measure Oseq(P,Q), which in fact should be written as 
belseq(P,Q) (but we shall employ the first notation for 
reasons of brevity), measures the difference in the \eq
projected sequence constraints between object types P 
and Q. Now, how can bseq(P,Q) be defined such that it 
adequately reflects differences in \eq-projected sequence 
constraints and satisfies the axioms of pseudo-metrics ? 
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First of all, every possible \seq-projected sequence 
constraint is made comparable by creating a 'net' of 
object types, in which every object type can be reached 

transformation from 

from any other object type by means of a limited and 
fixed set of allowable transformations. The 
transformations which are allowed are shown in figure 6. 
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ts: e* ~ e 

Figure 6: Allowable transformations on \'eq-projected sequence constraints 

The transformations tl, t2 and t3 expand the \'eq
projected sequence constraints (i.e., the \'eq-projected 
regular expression) of an object type. The transforma
tions t4 until t8 compress the \seq-projected regular 
expression. 

By means of the transformations tl, t2 and t3 
each object type with a valid life cycle can be derived 
from the object type with the trivial life cycle 
create. destroy. The life cycle of an object type is valid if 
instances of the object type can be created and destroyed. 
The meanings of tl, t2 and t3 are respectively the 
addition of a sequence, the addition of a selection and the 
addition of an iteration. The addition of these program 
structures can only happen in the manner described by 
the transformations. 

To transform an object type's \seq-projected 
regular expression back into the trivial \seq-projected 
regular expression, we use transformations t4 until t8. 

The number of transformations needed to 
transform the object type with trivial life cycle into the 
\seq-projected regular expression of an object type P is 
equal to the number of transformations needed to 
transform the \seq-projected regular expression of P back 
into the \seq-projected regular expression of the trivial 
object type. This number of transformations is simply a 
count of the number of sequence, selection and iteration 
operators in the \seq-projected regular expression of P, 
minus 1 because there is already one sequence operator 
in the trivial life cycle. 

Since it is possible to 'reach' each object type starting 
from the trivial object type (i.e. object type with trivial 
life cycle) and, secondly, since it is always possible to 
find a way back from each object type to the trivial object 
type, it is possible to transform the \seq-projected regular 
expression of an object type into the \seq-projected regular 
expression of any other object type, at least as long as life 
cycles are valid. In the worst case we just find our way 
back to the trivial object type and go on to the desired 
object type. Since the 8 transformations add or delete 
sequence constraints every possible object type with a 

valid life cycle can be compared. By counting the number 
of transformations needed we can measure how much the 
sequence constraints of two object types differ. 

The function Oseq(P,Q) is defined as the 
minimum number of transformations needed to transform 
the \seq-projected regular expression of object type Pinto 
the \seq-projected regular expression of object type Q. 
When measuring the distance from an object type to the 
object type with trivial life cycle, this amounts to 
counting the number of sequence, selection and iteration 
operators (minus 1) in the \'eq-projected regular 
expression of the object type. When both P and Q are 
different from the trivial object type, there are many ways 
to transform Pinto Q or Q into P. That is why the notion 
of minimum number is used. In appendix 2 it is shown 
that Oseq(P,Q) is a pseudo-metric. 

Example 
SRBOOK\'eq = x.x.(x+x+x)*.(x+x) 
ts(SRBOOK\seq) = x.x.(x+x+x).(x+x) 
~(ts(SRBOOK\eq» = x.x.(x+x).(x+x) 
~(t6(tS(SRBOOK\eq))) = x.x.x.(x+x) 
t4(t6(~(tS(SRBOOK\eq»» = x.x.(x+x) 
t3(t4(t6(t6(tS(SRBOOK\seq»») = x.x* .(x+x) = SRLOAN\eq 
oseq(BOOK,LOAN) = 5 

D. Measuring differences in data constraints 
The data constraints imposed on an object type are 
strongly dependent on the event types in which the object 
type participates (a data constraint always refers to an 
event type) and on the attributes of the object type 
(sometimes additional attributes are needed to implement 
data constraints) [17]. Differences in data constraints are 
to a certain extent the logical result of differences in 
alphabets (event types) and attributes. If we do wish to 
measure differences in data constraints, we can define the 
measure Odata(P ,Q) = cI SDP !1 sDQI, where SD is the 
selector for the set of data constraints that can be 
attributed to an object type, cI xl is the function mapping 
the set X to its cardinality, and the symmetric difference 
!1 is defined in the usual way. 

7 



Note that since it is not expected that object types have 
data constraints in common, Odata(P,Q) is mostly equal to 
the sum of the number of data constraints in both object 
types. The axioms of pseudo-metrics are satisfied by 
Odata(P,Q), since it is defined as the cardinality of the 
symmetric difference between sets (see appendix I). 

E. Characterisation as measures 
The attribute measured is conceptual difference, also 
called conceptual distance since it is measured by a 
pseudo-metric. Each pseudo-metric measures another 
viewpoint of this attribute. This means we have to 
identify four different empirical relational systems. 
However, the set of entities is always the same set. 

The attribute of difference is a special kind of 
attribute since it does not belong to one single entity. An 
entity cannot have a difference. A difference (or a 
distance) is always between two entities. So, it is more 
convenient to consider the attribute of difference as 
belonging to pairs of entities [7]. 

These entities are M.E.R.O.DE. business object 
types. Let us denote the set of M.E.R.O.DE. business 
object types we wish to measure as OM. An empirical 
relational system consists of a set of entities and a set of 
relations. The set of entities is OMxOM. We wish to 
measure the difference between any pair of object types 
in OM, hence the set of entities is the set of all pairs in 
OMxOM. Each of the component pseudo-metrics 
measures one aspect of difference. This implies there are 
four empirical relational systems, each consisting of the 
set OMxOM and (at least) one relation expressing an 
ordering on the pairs of object types according to the 
aspect of difference measured. Let us denote these 
relations by ::;j, where the subscript i can be replaced by 
alph (meaning alphabet), seq (meaning sequence 
restrictions), atr (meaning attribute set) and finally data 
(meaning data constraints). 

The relations ::;j are ordering relations. Suppose 
P, Q, Rand S are object types belonging to OM. Suppose 
further that we wish to compare the difference in aspect i 
(i = alph, seq, atr or data) between the pairs (P,Q) and 
(R,S) belonging to OMxOM. Let us define the meaning 
of (P,Q) ::;j (R,S) as 'the difference in i between P and Q 
is smaller or equal than the difference in i between Rand 
S'. 

The numerical relational system the measures 
are mapped into consists of a set of numbers and a set of 
relations. It is convenient to use the set of real numbers 
Re as the set of numbers. Since the set of empirical 
relations is a singleton set, a single ordering relation ::; 
(the same for each of the aspects) on the set of real 
numbers is used. 

To summarise, the empirical relational systems 
are defined as (OMxOM, ::;D, and the numerical relational 
system is (Re, ::;). It must now be shown that each of the 
pseudo-metrics OJ is a homomorphic mapping from 
(OMxOM, ::;j) into (Re, ::;). 

The pseudo-metrics OJ (where i is alph, atr, seq and data) 
are homomorphic mappings (i.e., valid measures 
according to measurement theory) from the empirical 
relational system into the numerical relational system if 
they satisfy the representation condition. For ordinal 
measurement this means that V (P,Q), (R,S) E OMxOM: 
(P,Q) ::;j (R,S) ~ OJ(P,Q) ::; oj(R,S) 

A variant of the representation theorem of Cantor states 
the axioms that are necessary and sufficient to prove the 
existence of a homomorphic mapping from (OMxOM,::;j) 
into (Re, ::;) [14, p. 107]: 
" Suppose A is a finite set and R is a binary relation on A. 
Then there is a real-valued function f on A satisfying aRb 
~ f(a) ::; feb) if and only if (A,R) is a weak order". 
The relation ::;j is a binary relation on the finite set 
OMxOM. The empirical relational system (OMxOM, ::;j) 
is a weak order if: 
• ::;j is transitive 
• ::;j is strongly complete 

Representation theorems can be interpreted in two 
manners [14]. If we take the descriptive approach, we 
must examine whether the axioms of transitivity and 
strongly completeness are satisfied in the real world. 
Since it is not easy to empirically check whether the 
axioms are satisfied, we take the normative or 
prescriptive approach which just assumes that the axioms 
are true [14]. The normative approach defines rationality 
in (OMxOM, ::;j). Measurement is restricted to those 
empirical relational systems that are rational. Hence, the 
relations ::;j must be transitive and strongly complete. 
Note that these are very rational assumptions for any 
notion of difference or distance. 

To know that a homomorphical mapping exists from 
(OMxOM, ::;j) into (Re, ::;) is one thing. We also must 
show that OJ is such a mapping. For our empirical 
relational systems this step is quite trivial because the 
conceptual differences between object types are made 
visible by our measurements. In other words we define 
(P,Q) ::;j (R,S) as OJ(P,Q) ::; oj(R,S). Hence, the 
representation conditions are by definition satisfied. We 
may conclude therefore that the component pseudo
metrics are valid measures of conceptual difference or 
distance according to measurement theory. 

Note that by defining the pseudo-metrics as 
homomorphisms we have in fact defined viewpoints for 
the attributes measured. These viewpoints depend on the 
way the pseudo-metrics are calculated. If the pseudo
metrics change, the viewpoints also change, and other 
representation conditions involving other empirical 
relational systems will be satisfied. 

F. Scale type of the pseudo-metrics 
The representation condition and theorem used so far 
guarantee an ordinal scale type. Ordinal scales are not 
very useful. We would like to characterise our 
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measurement on higher, more useful scales like e.g., the 
ratio scale. Ratio scales require other axioms to be 
fulfilled. In general, ratio scales are used in extensive 
measurement, which requires in turn the existence of a 
binary operation on the elements of the empirical 
relational system. This binary operation combines two 
elements into a third element, which is also part of the 
empirical relational system. We think however that it is 
not appropriate to create a combination-operator for 
business object types. It is not intuitively clear whether 
the combination of two business object types will result 
in another meaningful business object type. Such a 
combination-operator can certainly be developed, but it is 
questionable whether this is part of the empirical 
relational systems we are used to work with. The 
combination of two object types requires more than just 
putting the two object types together if we want the result 
to be a meaningful object type. So we will not try to 
transform our measurement system into an (explicit) 
extensive one, although theoretically this could be done. 

Even without extensive measurement and 
explicit binary operations on object types it can be shown 
that we have in fact a ratio scale instead of an ordinal 
scale. This is because we only used Cantor's theorem in 
showing that we have an ordinal scale. The component 
measures of distance also satisfy the axioms of pseudo
metrics. These axioms force our measurements to be on a 
ratio scale. 

Every scale type has a class of admissible 
transformations which can be applied without changing 
the properties of the scale. An admissible transformation 
of a scale leads to another scale of the same type. Figure 
7 lists the types of scale and the cOlTesponding classes of 
admissible transformations. 

class of admissible transformations scale type 

<I>(x)=x (identity) absolute 

<I>(x)=a.x, Va> 0 ratio 
similarity transformation 
<I>(x)=a.x+b, Va> 0 interval 
positive linear transformation 
x ~ y ¢:> <I>(x) ~ <I>(y) ordinal 
monotone increasing transformation 
any one-to-one <I> nominal 

Figure 7: types of scale [14, p. 64] 

Note the hierarchy in the scale types. On top are the most 
useful scale types, at the bottom are the least useful scale 
types. The class of admissible transformations gets 
smaller if we go to the more useful scale types. 

The scale type of the pseudo-metrics is assessed 
by transforming them and examining whether the 
transformed measures still satisfy the axioms for pseudo
metrics. We shall begin with the smallest class of 
transformations (for an absolute scale) and extend this 
class until the point where the axioms are no longer 
satisfied. Let OJ(x,y) be an arbitrary component pseudo
metric measuring the conceptual distance from object 

type x to y along a certain dimension i (alphabet, 
sequence constraints, ... ), and let x, y and z be object 
types belonging to OM. 

Absolute scale 
The class of admissible transformations is <I>(olx,y» = 
oJx,y). This means that only the identity transformation 
is allowed. The three axioms for pseudo-metrics are 
therefore trivially satisfied. 

Ratio scale 
The class of admissible transformations is <!>(OJ(x,y)) = 
a.oj(x,y), Va> O. 
• a.olx,x) = a.O = 0 
• a.oj(x,y) = a.oj(y,x) ~ ob,y) = OJ(y,x) 
• a.oj(x,y) ~ a.oj(x,z) + a.oj(z,y) 
~ a.oj(x,y) ~ a.(oj(x,z) + oJz,y» 
~ OJ(x,y) ~ olx,z) + OJ(z,y) 

Interval scale 
The class of admissible transformations IS <!>(olx,y» = 
a.Oj(x,y) + b, Va> 0 
• a.Oj(x,x) + b = a.O + b ;t. 0 
• a.Oj(x,y) + b = a.Oj(y,x) + b ~ a.olx,y) = a.Oj(y,x) 
~ OJ(x,y) = OJ(y,x) 

• a.olx,y) + b ~ a.olx;z) + b + a.Oj(z,y) + b 
~ a.Oj(x,y) + b ~ a.(Oj(x,z) + olz,y» + 2.b 
~ OJ(x,y) ~ olx,z) + OJ(z,y) + b 

Clearly, axioms 1 and 3 are not satisfied if b has an 
arbitrary value. 

We conclude that the scale type of the measures is ratio. 
Note that we reached this conclusion not by using the 
representation theorems of measurement theory, but by 
the important property that our measures are pseudo
metrics. The axioms for pseudo-metrics impose a ratio 
scale on the component measures of distance. The only 
transformations allowed are scalar multiplications. 

G. Measurement protocols 
Apart from a measure's definition, procedures are needed 
that lead to consistent measurement of the attributes of an 
entity. These procedures are part of what Kitchenham et 
at. call the measurement protocol [12]. This protocol 
contains the model of the entity on which measurement is 
based, and the procedures, guidelines and rules to carry 
out the actual measurement. 

As far as models are concerned, entity 
abstractions for the pseudo-metrics measuring conceptual 
distances between object types, have already been 
identified. These entity abstractions are the alphabet, the 
attribute set, the \eq-projected sequence constraints, and 
the set of data constraints of an object type. The object 
type itself was modelled by a number of abstractions 
prescribed by the M.E.R.O.DE. methodology. However, 
the specific measurement procedures for each pseudo
metric were not described. They are nonetheless 
important because actual measurement should be 
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independent of environment and the person carrying out 
the measurement [12]. 

In this paper we are more concerned about the 
conceptual definition of the measures than we are 
interested in their measurement protocols. Anyway, most 
pseudo-metrics can be straightforwardly calculated. 

H. Example 
For the library example of section 2, the measurement 
values of conceptual distance aspects are: 

1. The conceptual distances in alphabet are: 
oalph(MEMBER, BOOK) = 5 
Oalph(MEMBER, LOAN) = 2 
oalPh(BOOK, LOAN) = 3 

2. The conceptual distances in attribute set are: 
oau·(MEMBER, BOOK) = 5 
oatr(MEMBER, LOAN) = 4 
oatr(BOOK, LOAN) = 5 
(Note that we considered Member-id = Loan-member-id 
and Book-id = Loan-book-id) 

3. The conceptual distances in \seq-projected sequence 
constraints are: 
oseq(MEMBER, BOOK) = 9 

(transformations: tl> t2, t8, t6, t6, t6, t2, t2, t3) 
oseq(MEMBER, LOAN) = 6 

(transformations: t8, t6, ~, t6, t3, t2) 
oseq(BOOK, LOAN) = 5 

(transformations: t8, t6, t6, t4, t3) 

4. The conceptual distances in data constraints are: 
odata(MEMBER, BOOK) = 0 
odata(MEMBER, LOAN) = 2 
odata(BOOK, LOAN) = 2 

I. A metric for measuring the global conceptual 
distance between object types 

In this subsection a global measure of conceptual 
distance from the business object type P to the business 
object type Q is derived. First the global measure 0 is 
represented as a scalar. Next, an alternative definition of 
o as a vector is presented. Finally, the pros and cons of 
each type of representation are evaluated. 

1. Scalar representation 
Suppose a global measure of difference between object 
types is defined as a linear combination of the four earlier 
developed component measures. Formally, 
o(P,Q) = aalph.oalph(P,Q) + aseq.oseq(P,Q) + aatr.oatr(P,Q) + 
~ata·Odata(P,Q) 
where aalph' aseq, aatr and adata are constants and P and Q 
are object types belonging to the set of M.E.R.O.DE. 
object types OM. 
It can be shown that o(P,Q) is a pseudo-metric (see 
appendix 3). 8(P,Q) is also a metric because it measures 

conceptual distances from P to Q for all four possible 
aspects of difference. A metric has to satisfy the stronger 
version of the identity axiom. Formally, o(P,Q) = 0 ¢::> 

P=Q. The proof in the <= direction is trivial since this is 
in fact the weaker axiom of identity. For the proof in the 
=> direction it suffices to notice that when two object 
types P and Q do not differ on any of the four aspects, 
i.e., 8;(P,Q) = 0 for subscript i = alph, seq, atr and data, 
then o(P,Q) = 0 and P is just a renaming of Q. SO, if P 
and Q have the same alphabet, sequence constraints, 
attributes and data constraints, we may assert that they 
are identical object types. This proves that o(P,Q) is a 
metric according to measure theory. 

We also wish to characterise the metric o(P,Q) 
as a valid measure according to measurement theory. The 
component measures of distance o/P,Q) are direct 
measures of the attribute difference along dimension i. A 
direct measure of an attribute does not depend on 
measures of other attributes [7]. Hence, no other 
attributes must be measured to know the value of Oi(P,Q). 
The metric o(P,Q) is not a direct measure. Its value 
depends on the values of the o/P,Q)'s. The measurement 
of the global difference between object types involves the 
measurement of various aspects of this difference. 
Therefore o(P,Q) is an indirect measure of difference 
between object types. According to [5] an indirect 
measure involving two or more direct measures is a 
derived measure. Hence, we shall also speak of o(P,Q) as 
a derived measure. 

A derived measure has a derived scale. The type of a 
derived scale can be determined the same way as was 
done for direct measures. Note first that each of the 
component measures is multiplied by a constant represen
ting its weight. Since the component measures are 
pseudo-metrics, measured on a ratio scale, a multiplica
tion by a constant is an admissible transformation of 
scale. This means for instance that aalph.8alph(P,Q) is just a 
rescaling of Oalph(P,Q). The scale type in both cases is 
ratio. 

A transformation of a derived scale is admissible 
(in the wide sense) if and only if there exist admissible 
transformations of the composing direct measures which 
still satisfy the equation relating the derived scale with 
the composing direct measures [14]. 

For 8 the equation 8(P,Q) = a.lph.Oalph(P,Q) + 
aseq.8seq(P,Q) + a.tr.oatr(P,Q) + ~ata.Odata(P,Q) must be 
satisfied. We now have to define the class of admissible 
transformations. Suppose 0 is multiplied by the scalar A 
> O. Now it is easily seen that we just have to multiply 
each of the composing direct measures by the same A, 
and the equation is satisfied. 
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A.o(P,Q) A.aalph.Oalph(P,Q) + A.aseq.oseq(P,Q) + 
A.aau.oatrCP,Q) + A.ildata·Odata(P,Q) 
~ 

A.o(P,Q) = A.(aalph.oalph(P,Q) + aseq.oseq(P,Q) + 
aau·.oat,.(P,Q) + actata.°ctata(P,Q») 
~ 

o(P,Q) = aalph.Oalph(P,Q) + aseq.oseq(P,Q) +aau·.oat,.(P,Q) + 
adata.Odata(P,Q) 

Next, we examine if it is possible to extend the class of 
admissible transformations to the form <I>(x)=ax+b. If 
such a transformation on the derived measure is allowed 
i.e., there exist admissible transformations on th~ 
composing direct measures that satisfy the equation, then 
o is not characterised by a ratio scale. However, the only 
admissible transformations of scale allowed on the 
composing direct measures are scalar multiplications. 
Previously was shown that they are measured on a ratio 
scale because they satisfy the properties of pseudo
metrics. So it is not possible to satisfy the equation when 
o is transformed as if it were characterised by an interval 
scale. 

We conclude that the class of admissible 
transformations on the derived scale is <I>(x)=a.x (a>O). 
The type of the derived scale is ratio. 

Note that we would have reached the same 
conclusion by examining the class of admissible 
transformations on metrics. 

So far, it was shown that 0 represented as a scalar is a 
metric according to measure theory, and is measured on a 
ratio scale. However, we did not show that 0 is a valid 
measure according to measurement theory. 

According to [14] not every measurement 
theorist considers derived measures as valid measures. 
Authors like Roberts, Suppes and Zinnes consider any 
measure which is defined in terms of direct measures as a 
valid derived measure [14]. This means that there has to 
be a derived measurement function (until now called the 
equation) that relates the derived measure to the direct 
measures. The mere fact that such a derived measurement 
function exists, validates the derived measure, as long as, 
measurement values are calculated using this function. 

However, we must agree with Causey that the 
measurement function of derived measurement alone is 
not enough because 'the derived scale is not required to 
reflect in any direct manner the characteristics of 
empirical relational systems' (citation from [14, p. 77]). 
Also recently, in software measurement research, more 
stringent conditions are proposed. In [12] an indirect 
measure is considered valid if and only if the 
measurement function itself, relating indirect and direct 
measures, is validated. This may be done empirically, but 
preference is given to theoretical validations. 

The equation 0 is based on, has no theory to 
support it, nor has the function (including the values 
chosen for the weight constants) been empirically shown 
to exist. 

2. Vector representation 
The global measure of conceptual distance can 
alternatively be defined as a vector of the component 
measures of distance. Hence, 'if P, Q E OM: 
o(P,Q) = (Oalph(P,Q), oau(P,Q), Oseq(P,Q), Odata(P,Q») 

According to [12] a vector cannot be transformed into a 
single scalar value by an arbitrary mathematical function. 
The relationship between the vector components must be 
based on a model if they are used to produce a scalar 
indirect measure, like we previously defined o. 
Validating an indirect measure means validating the 
underlying model of the definition of the measure. While 
the theoretical validation of a measure is a complex issue 
in software measurement, empirical validations are not 
applicable since 0 is not used to predict the conceptual 
distance, but to assess it. Moreover, empirically 
validating a measure means that some other direct 
measure of the attribute should be available. Methods 
exist to corroborate a measure empirically [12], but due 
to the lack of consensus concerning software attributes 
and the limited intuitive understanding of empirical 
relations between software products [19], this track is not 
elaborated any further. 

Validating a vector should be easier than 
validating a scalar indirect measure. However, the 
framework for software measurement validation of 
Kitchenham, Pfleeger and Fenton does not state how to 
validate an indirect measure that is a vector of direct 
measures [12]. We believe such an indirect measure is 
invalid if at least one of the vector components is not a 
valid measure of the attribute it is purported to measure. 
The model underlying the vector definition of 0 is that the 
conceptual distance between object types has four 
dimensions. If differences along each of these dimensions 
are measured, then the global distance is measured. This 
model is valid if no other aspect of difference exists that 
can influence the global difference between object types. 
Hence, the theoretical model underlying the vector 
definition of 0 assumes that linguistic differences in 
object type names are not relevant for the conceptual 
distance between object types. Whenever for object types 
P and Q, the component pseudo-metrics are all zero, P 
and Q can be considered the same object type, even when 
their names are different. Note that it was this argument 
that lead us to conclude that 0 defined as a scalar is a 
metric and not just a pseudo-metric. The theoretical 
model also assumes, for example, that for object types P 
and Q having each a method in their abstract data types 
that is triggered by the same event type E, differences in 
the statements of the methods are not relevant for the 
conceptual distance between P and Q. Besides, these 
differences are partly reflected by Oatr(P,Q) since the 
sequential statements in the methods modify the value of 
the attributes in the abstract data types state vectors. 

If the underlying theoretical model is valid and 
if all component measures are valid direct measures of 
aspects of difference, the indirect measure 0 defined as a 
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vector is a valid measure of the conceptual distance 
between object types. Hence, as a vector b is a valid 
indirect measure according to measurement theory. 

Let us now examine the properties of b defined as a 
vector. First, what is the type of scale of b? 

In [18] a number of indirect measures of control flow 
complexity which were based on pairs of direct 
complexity measures are validated. Zuse asserts that if :::;c 
is an empirical relation meaning 'is less or equally 
complex than', and P and P' are programs, then 
P :::;c P' ¢::> (I1J(P), 112(P» :::; (I1J(P'), 112(P'» 

¢::> I1J(P) $; I1J(P') /\ 112(P) :::; 112(P') 

If we extend this reasoning to vectors, then a vector A is 
smaller than or equal to a vector B whenever every vector 
component value a; in A is smaller than or equal to every 
corresponding vector component value b; in B. However 
for arbitrary vectors A and B, there is a non negligible 
chance that neither A$; B, nor B $; A. 

For the object types P, Q, R, S E OM, the 
conceptual distance from P to Q is less than or the same 
as the conceptual distance from R to S (hereafter written 
as (P,Q) :::;cd (R,S) ) if and only if b(P,Q) $; b(R,S). If b is 
defined as a vector, then b(P,Q) $; oCR,S) ¢::> b;(P,Q) :::; 
o;(R,S) for i = alph, atr, seq and data. Again it is clear 
that uncomparabilities can arise. The binary relation :::;cd 
is reflexive and transitive. Hence, we have a quasi order 
[14]. It is however not strongly complete since it is not 
always true that o(P,Q) $; oCR,S) or oCR,S) $; b(P,Q). 
Thus, there is no weak ordering. Even the property of 
antisymmetry necessary for a partial ordering, is not 
satisfied. This implies that we cannot use representation 
theorems to assess the scale type of the measure. 

According to Zuse, indirect measures based on a 
vector have a scale type called half-ordering scale [18]. A 
half-ordering scale is somewhere between the nominal 
and the ordinal scale types in the scale hierarchy. This 
simply means that although the global conceptual 
distance of some pairs of object types can be compared, 
not all of them are comparable. So, using a half-ordering 
scale, pairs of object types can be ranked, but many 
rankings are possible, and none of them will comprise all 
object type pairs. 

It was shown that the vector components are pseudo
metrics. Can it now be asserted that 0 is a pseudo-metric, 
or even a metric? 
\;j P, Q E OM: 
• If b(P,Q) = (0,0,0,0) => P = Q since the theoretical 

model underlying 0 is valid. 
If P = Q => b(P,Q) = (0,0,0,0) since the vector 
components are pseudo-metrics. 
Hence, b(P,Q) = (0,0,0,0) ¢::> P = Q 
This property is similar to the identity axiom of 
metrics. 

• o(P,Q) = (Oalph(P,Q), ()atr(P,Q), bseq(P,Q), OdataCP,Q» = 
(OaJph(Q,P), batr(Q,P), bseq(Q,P), Odata(Q,P)) = b(Q,P) 
since the vector components are pseudo-metrics. 
This property is the symmetry axiom of metrics. 

• Since the vector components are pseudo-metrics, 
\;j R E OM: b;(P,Q) :::; b;(P,R) + o;(R,Q), for i = alph, 
atr, seq, data 
If the sum of two vectors is defined as the vector of 
the sum of the vector components, then it follows that 
o(P,Q) $; b(P,R) + b(R,Q). 
This property is the triangle inequality. 

It is concluded that b as a vector satisfies a number of 
properties similar to the metric axioms. However, the 
triangle inequality is only fulfilled it the sum of two 
vectors is defined as the vector of the sum of vector 
components. 

3. Evaluation 
The scalar definition of 0 satisfies the metric properties 
and is measured on a ratio scale. This means that each 
pair of object types can be mapped to a unique 
measurement value, on which the many kinds of 
operations associated with ratio scales are applicable. It is 
very tempting to represent the conceptual distance 
between object types this way. However, as shown 
earlier, the validity of such a definition cannot be proven. 

On the other hand, the vector definition of 0 is 
shown to be valid according to measurement theory. But, 
in this case, measurement of conceptual distance does not 
result in a single measurement value, and uncomparabili
ties are created since 0 is characterised by a half-ordering 
scale. 

So, from a pragmatical point of view, the scalar 
definition would be preferred. From a more scientific 
viewpoint, the vector definition is preferred. In 
subsequent research, the vector definition will be used, 
unless there is a theory supporting the use of scalar 
representations, or for purposes of measuring other 
attributes a single conceptual distance value is needed. 

4. Example 
If b is represented as the vector (OaJph, batn bseq, Odata) then 
the conceptual distances are: 
o(MEMBER, BOOK) = (5,5,9,0) 
o(MEMBER, LOAN) = (2,4,6,2) 
o(BOOK, LOAN) = (3,5,5,2) 

According to these measurement values, no definitive 
comparisons of conceptual distance can be made. It is 
however possible to compare the conceptual distances for 
each of the vector components separately. 

If b is represented as a scalar by linearly combining the 
vector components, we get: 
o(MEMBER, BOOK) = CaJph .5 + Catr.5 + cseq .9 + Cdata .0 
b(MEMBER, LOAN) = CaJph .2 + Catr .4 + cseq .6 + Cdata .2 
b(BOOK, LOAN) = CaJph .3 + catr .5 + cseq .5 + Cdata .2 
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For all constants equal to 1 (i.e., all aspects of difference 
are equally important), we get 
D(MEMBER, BOOK) = 19 
D(MEMBER, LOAN) = 14 
D(BOOK, LOAN) = 15 

Note however that the scalar representation of D cannot 
be proven to be a valid measure, since the underlying 
measurement model (the linear combination, and the 
choice of the constant values) has not been shown to be 
valid. At most this model has an intuitive justification, 
meaning that the measured values correspond to a 
specific viewpoint of conceptual distance. 

IV. MEASURING CONCEPTUAL DISTANCES 
BETWEEN BUSINESS MODELS 

A dynamic conceptual schema M is a set of object types 
that satisfies a number of constraints. For a detailed 
account of these constraints see [16]. The difference 
between two object types P and Q is measured by D(P,Q). 
It was shown that this measure of conceptual distance 
satisfies the axioms of pseudo-metrics and metrics. We 
now wish to develop a measure of distance for dynamic 
conceptual schemes. This new measure should also be a 
pseudo-metric, and, preferably, be a metric. Equally 
important, the measure should be a valid measure 
according to measurement theory. 

A. Development of the measure 
The function DM(Mp,MQ) must adequately ret1ect 
conceptual distances between schemes. The notion of 
conceptual distance can be defined in many ways. Each 
definition can be considered as a viewpoint of difference. 
The notion of viewpoints is extensively used in [18,19] to 
prove representation conditions for measurement. In the 
next subsection the viewpoint used is formally defined. In 
this subsection the measure is developed. 

Let us define DM(Mp,MQ) as: 
DM(Mp,MQ) = 0 

;=1 j=1 

I.J 
where: 
Mp and MQ are non-empty dynamic conceptual schemes; 
Mp L1 MQ = 0 ~ (V P E Mp,::3 Q E MQ : D (P,Q) = 0) /\ 
(V Q E MQ, ::3 P E Mp : D (Q,P) = 0); 

cardinality (Mp) = I; 
cardinality (MQ) = J; 

i = 1, ... , I; 
j = I, ... , J; 

The above definition can be used for both scalar and 
vector representations of the measure o(Pj,Qj)' If 0 is a 
scalar (i.e., o(Pj,Q) = aalph.oalph(Pj,Qj) + aseq.oseq(P;,Qj) + 
aatr.oau(Pj,Qj) + ll,!ata.Odata(Pj,Qj) ) then the expression 

{ .I 

IIo(P.,{b) 
i=l j=l is straightforwardly solved. 

1.1 
If 0 is a vector (i.e., o(Pj,Qj) = (Oatph(P;,Qj)' Oseq(P;,Q), 
Oatr(Pj,Q), Oda~,(Pj,Qj)) ) then the expression 

I J 

IIo(Pi,{b) . 
;=1 j=l IS equal to 

I.J 
I J I J 

II(i'{Ph(P;,Qi) II(i,,,(p;,Qi) 
;=1 j=1 i=l j=1 

I.J 1.1 
/' l' I J 

II&,·,,(p;,Qi) IIlit"",(p;,Qi) 
;=1 j=! i=1 j=1 

1.1 1.1 

and for the case MpL1 MQ = 0, oM(Mp,MQ) = (0,0,0,0). 

It can be shown that OM satisfies the axioms of metrics, or 
similar ones for vector representations (see appendix 4). 

The measure of distance OM is equal to the average 
distance between the object types of two different, non
empty dynamic conceptual schemes. A large average 
distance between object types leads to a large difference 
between the dynamic conceptual schemes. If the schemes 
are not different, then the measure is zero by definition. 
The identity axioms are by definition true. The schemes 
may however not be empty. For empty schemes the 
measure cannot be calculated. We believe this restriction 
will not hamper the usability of the measure. 

B. Validity of the measure 
The metric OM is a derived measure based on the I.J direct 
measures o(Pj,Qj). According to [7,14] a derived measure 
is a valid measure. However, in section 3 we argued that 
a derived measure is valid only as long as the indirect 
measurement model it is based on is valid, and the direct 
measures it is composed of are valid. 

The validity of the pseudo-metrics has been 
shown in section 3. An indirect measurement model can 
be theoretically or empirically proven. The model is valid 
if the theory underlying the model is validated [12]. 
Informally, this theory can be stated as the conceptual 
distance between two conceptual schemes is the average 
distance between the object types in the schemes. 
This means that the validity of the measurement model is 
trivially shown if the attribute of conceptual distance is 
defined according to this theory. 
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Formally, the components of the measurement system 
are: 
• The empirical relational system E = (YxY, R), where 

Y is a non-empty, countable set of non-empty 
dynamic conceptual schemes, YxY is the set of all 
conceptual schema pairs and R = {'are closer to each 
other than'} is a singleton set of relations defined on 
YxY; 

• The numerical relational system N = (Re, <), where 
Re is the set of real numbers and < is the usual 'is 
smaller than' relation; 

• The measure DM which is a mapping from E into N. 

To be a valid measure DM has to satisfy the representation 
condition: 
(Mp,MQ) are closer to each other than (MR,Ms) 
¢::} DM(Mp,MQ) < DM(MR,Ms) 

Note that we could have extended the set of empirical 
relations (e.g., 'is not closer than'). This would just have 
meant that additional representation conditions must be 
proven. 

The representation theorem of Cantor states the sufficient 
conditions for the existence of a homomorphism for the 
representation condition [14]: E is represented into N if 
and only if 'are closer to each other than' imposes a strict 
weak order on YxY. Taking a prescriptive approach we 
assume that such an order exists (meaning 'are closer to 
each other than' is negatively transitive and asymmetric), 
hence a homomorphic mapping from E into N exists. 

If the conceptual distance between dynamic 
conceptual schemes is defined as 'the average conceptual 
distance between the object types in the schemes', then 
the above representation condition is trivially satisfied, 
since DM(A,B) is equal to the average distance from the 
object types in A to the object types in B. Hence, DM is a 
homomorphic mapping from E into N (i.e., a valid 
measure of conceptual distance). 

Note that for D represented as a scalar we cannot 
prove DM to be valid, since it was not shown that such a 
definition for D is a valid measure of conceptual distance 
between object types. Therefore, the validity of DM is 
dependent on the representation of D. 

C. Scale type 
Scalar representation 
It was previously shown that (pseudo-)metrics have a 
ratio scale. As DM is a metric, it is measured on a ratio 
scale. We can validate this result by examining the set of 
admissible transformations for the derived measure DM. 
Recall that a transformation on a derived measure is 
admissible if there exist admissible transformations on 
the component direct measures, such that the condition of 
derived measurement is still satisfied. The condition of 
the derived measure is the definition of DM. 

For dynamic conceptual models Mp, MQ 
where Mp t. MQ -j:. 0 

I J 

rr8(Pi,~) 
DM(Mp,MQ) = i=1 j=1 • 

I.J 
This can be written as 

I 1 I 
DM(Mp,MQ) = -I 1·8(P"Q,)+-.8(Pi, Q2)+-.8(P"Q,) 

. 1.1 1.1 
1 

+ ... +-.8(Pl,QJ) 
1.1 

As can be seen each term is multiplied by a constant III.! 
> O. This multiplication is an admissible transformation 
of scale. If we multiply the derived measure by a constant 
A>O, we can multiply each of the terms by this constant 
A and still satisfy the condition. Since the D's are metrics, 
a scalar multiplication is the only admissible 
transformation. Hence, the derived measure has a ratio 
scale. 

Vector representation 
If the D's are defined as vectors, the scale of DM can at 
most be a half-ordering scale. 

v. USING THE SOFTWARE METRICS 

Empirical relational systems related to software are not 
easily understood. Most of the time it is not known how 
these systems really look like [19]. Attributes like size, 
complexity and functionality are very general concepts 
that lack formal definitions, mainly because there exists 
little theory in software engineering [1]. Nonetheless, a 
lot of research was conducted to measure these concepts. 
However, if it is not known how the attributes are 
defined, you cannot develop valid measures for them. 

Using the formal measurement basis developed 
in this paper, internal attributes of M.E.R.O.DE. business 
object types and M.E.R.O.DE. business models can be 
formally defined. First we need to define a null object 
type showing only a minimal amount of the attribute that 
must be defined. The conceptual distance from an object 
type to this null object type determines the amount of the 
attribute that is present in the object type. Of course, it 
must also be determined which aspects of conceptual 
distance are considered. Next, the attribute is measured 
using the (pseudo-)metric(s) that measure the relevant 
conceptual distance aspects. This implies that once an 
attribute is formally defined, deriving a measure for the 
attribute is a trivial problem. 

If we wish, for instance, to measure the size of a 
M.E.R.O.DE. business object type, then this size attribute 
can be defined as the conceptual distance in alphabet 
and attribute set from an object type to the null object 
type. By formally defining the internal attributes of 
software products, we explicitly describe our viewpoints 
of these attributes. For size, it is the difference with an 
object type having no (or minimal) size that determines 
how much of the attribute is present. The definition 
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implies also that only differences in attribute set or 
alphabet are important to describe size differences. 

Once the attribute defined a measure is easily 
derived. For instance, the size of M.E.R.O.DE. business 
object types can be measured by the function size, which 
is defined as size(P) = (8a1ph(P,Null), 8atr(P,Null)), where 
P is a M.E.R.O.DE. business object type and Null is the 
null object type. It can be shown that size is a valid 
measure of the attribute size such as defined above. Also, 
size has a meaningful scale type (i.e., the half-ordering 
scale). If the function size is defined as a linear 
combination of 8a1ph(P,Null) and 8atr(P,Null), it can be 
shown that the scale type of size is ratio. However as a 
scalar the measure validation is more difficult (see the 
discussion in section 3). 

Apart from the measurement of internal attributes of 
M.E.R.O.DE. business object types and models, the 
software metrics and pseudo-metrics can be used to 
predict relevant attributes of software products and 
processes. For prediction purposes we might think of a 
two-step approach. First the metrics are used to measure 
a number of internal attributes of object types and 
models, in the way described in the previous paragraph. 
Next, the measurement values of these attributes are the 
input variables of a model predicting the value of some 
dependent variable. Of course, the validity of such a 
prediction model does not only depend on the validity of 
the measures of the independent variables. More 
important for prediction purposes is the accuracy of the 
model, which must be established by empirical means, 
just as the model itself is empirically constructed (unless 
some theory guides the model construction). 

We also have identified a number of applications in 
which measures of conceptual distance can be directly 
used, mainly for assessment. Promising is the application 
of the metric 8M to decide whether a conceptual schema 
is different from the schemes already present in a reuse 
repository. By calculating the values of 8M the reuse 
potential of the schema is assessed. If necessary, the 
schema is included in the repository. 

Another possible application is case-based 
reasoning. Conceptual distances must be measured to 
retrieve closest-matching cases or nearest-neighbours in 
the case base. Software metrics, when properly defined, 
can measure these distances. 

VI. CONCLUSIONS AND FURTHER RESEARCH 

In this paper a set of software metrics and measures was 
proposed for measuring the business object types con
tained in a M.E.R.O.DE. business model. M.E.R.O.DE., 
which is an acronym for Model-driven Entity
Relationship Object-oriented Development, is an object
oriented development methodology with a high degree of 
formality. The formal definition of the conceptual 
business model and its components allowed us to develop 

a formal measurement basis. Although the measures 
proposed in this paper are specifically developed for 
M.E.R.O.DE., we believe our measurement approach is 
generic and can be applied to any development 
methodology that models relationships, abstract data 
types, constraints, Finite State Machines, etc. Of course, 
the more formal the methodology, the easier the measures 
are derived. 

First a software metric was presented for 
measuring the conceptual difference between business 
object types. As object types can differ along a number of 
dimensions (e.g., attribute types, participation in event 
types, etc.), the difference along each of these dimensions 
was measured. It was shown that i) these component 
measures are pseudo-metrics according to measure 
theory, i.e., they are non-negative functions on two 
variables satisfying the axioms of weak identity, 
symmetry and triangle inequality, ii) they are valid direct 
measures according to measurement theory, and iii) the 
type of their scales is ratio. 

By combining the component measures of 
difference a global measure of conceptual distance 
between business object types was created. This global 
measure is both a metric according to measure theory 
(i.e., a pseudo-metric satisfying a stronger axiom of 
identity) and a valid indirect measure according to 
measurement theory, at least when defined as a vector. It 
was demonstrated that the scale type of the global 
measure is ratio when defined as a scalar, and half-order 
when defined as a vector. 

Next, an indirect measure of the difference 
between conceptual business models based on the notion 
of average distance between the object types contained in 
the models was discussed. Again it was shown that this 
measure is a metric with a ratio scale type (for scalars) or 
a half-ordering scale type (for vectors). 

Further research includes the development of a 
measurement framework for object-oriented 
specifications developed using M.E.R.O.DE. The metrics 
set constructed so far is the formal basis for such a 
framework. We believe the set must be extended in three 
directions. 
• In-depth by formulating measurement protocols for 

each of the pseudo-metrics. 
• Horizontally by developing measures of conceptual 

distance for other kinds of object types and models 
(e.g., for information and function object types, and 
for the information and technology model in 
M.E.R.O.DE.). 

• Vertically by formally defining and measuring other 
relevant attributes of M.E.R.O.DE. products, 
processes and resources in terms of conceptual 
distances. 
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APPENDIX 1 

If A and B are sets, A - B is the set of all elements of A that are not an element of B. For any set C, the following 
identities hold: 
A - B := «A - B) - C) U «A - B) n C); 
(A - B) - C:= (A - C) - B; 
(A - B) n C := C n (A - B) := (C - B) n A. 
Given the sets A, Band C, the respective symmetric differences are rewritten as: 
A t1 B := (A - B) u (B - A) := «A - B) - C) U «A - B) n C) U «B - A) - C) u «B - A) n C) 

:= «A - C) - B) u «C - B) n A) u «B - C) - A) u «C - A) n B) 
A t1 C := (A - C) u (C - A) := «A - C) - B) u «A - C) n B) u «C - A) - B) u «C - A) n B) 
C t1 B := (C - B) u (B - C) := «C - B) - A) u «C - B) n A) u «B - C) - A) u «B - C) n A) 
Each of the above expressions describes a set which is the union of four disjoint subsets. The cardinality of a set is equal 
to the sum of the cardinalities of the disjoint subsets it is composed of. If IXI is a function mapping the set X to its 
cardinality then the expressions are rewritten as: 
IA t1 BI := I(A - C) - BI + I(C - B) n AI + I(B - C) - AI + I(C - A) n BI 
IA Ll q := I(A - C) - BI + I(A - C) n BI + I(C - A) - BI + I(C - A) n BI 
IC Ll BI := I(C - B) - AI + I(C - B) n AI + I(B - C) - AI + I(B - C) n AI 
If a function 15(A,B) is defined as the cardinality of the symmetric difference between the sets A and B, then it can be 
shown that 8 satisfies the properties of pseudo-metrics. 

non-negativity 
15(A,B):= IA t1 BI ~ 0 

weak identity 

(the cardinality of a set cannot be negative) 

15(A,A) := IA t1 AI := I(A - A) u (A - A)I := 101 := 0 

symmetry 
o(A,B) := IA t1 BI = I(A - B) u (B - A)I := I(B - A) u (A - B)I = IB Ll AI := o(B,A) 

triangle inequality 
'II C : o(A,B) ~ o(A,C) + o(C,B) 
¢:::> 

I(A - C) - BI + I(C - B) n AI + I(B - C) - AI + I(C - A) n BI ~ I(A - C) - BI + I(A - C) n BI 
+ I(C - A) - BI + I(C - A) n BI + ICC - B) - AI + I(C - B) n AI + I(B - C) - AI + I(B - C) n AI 
¢:::> 

o ~ I(A - C) n BI + I(C - A) - BI + ICC - B) - AI + ICB - C) n AI 
¢:::> 

o ~ 2.I(A - C) n BI + 2.I(C - A) - BI 

APPENDIX 2 

Q.E.D. 

Q.E.D. 

Q.E.D. 

Q.E.D. 

In the following the expression 'to go from P to Q' means to transform the \eq-projected regular expression of object 
type P into the \seq-projected regular expression of object type Q by means of the transformations t1 until t8 earlier 
described. 
A way W(P,Q) is a series of transformations and the resulting object types, including P and Q, to go from P to Q. 
A shortest way SW(P,Q) is a minimal series of transformations and the resulting object types, including P and Q, to go 
from P to Q. Of course, we do not know if SW(P,Q) is unique. That is why we also introduce the set of shortest ways 
SSW(P,Q) containing all SW(P,Q). 
The set of closest common ancestors CCA(P,Q) contains all object types on the shortest ways SW(P,Q) E SSW(P,Q). 

proof of the weak axiom of identity: 
This first axiom is trivially proven since no transformations are required. 

Q.E.D. 
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proof of the axiom of symmetry: 
The second axiom is trivially proven since a transformation in one direction can always be reversed by a transformation 
in the opposite direction. Hence, the minimum number of transformations needed to go from P to Q is always equal to 
the minimum number of transformations to go from Q to P. Hence, the values of Oseq(P,Q) and Oseq(Q,P) are the same. 

proof of the triangle inequality: 
We have to prove that 

Oseq(P,Q) ~ oseq(P,R) + oseq(R,Q) 'if P, Q, R 
Given: 

'if T E CCA(P,Q): Oseq(P,Q) = Oseq(P,T) + oseq(T,Q) 

'if U ~ CCA(P,Q): Oseq(P,Q) < Oseq(P,U) + Oseq(U,Q) 
It must be shown that 

-, ::3 R ~ CCA(P,Q): Oseq(P,Q) > Oseq(P,R) + oseq(R,Q) 

Q.E.D. 

But if there would exist such an object type R !2: CCA(P,Q), R would be on a shortest way SW(P,Q), and this would 
imply that R E CCA(P,Q), which contradicts the previous assertion. Hence, 

'if R: Oseq(P,Q) ~ Oseq(P,R) + oseq(R,Q) 

APPENDIX 3 

Proof that 0 defined as a scalar is a pseudo-metric: 
weak axiom of identity 

o(P,P) = aalph.oalph(P,P) + aseq.oseq(P,P) + aatr.oatr(P,P) + ada~,.odata(P,P) 
= aalph'O + aseq.O + aatt·.O + adata'O 
=0 

axiom of symmetry 

o(P,Q) = aalph.oalph(P,Q) + aseq.oSeq(P,Q) + aatr·o.tr(P,Q) + ~ata.Odata(P,Q) 
= aalph.oalph(Q,P) + aseq.oseq(Q,P) + aatr.oatr(Q,P) + ~a~,.Odata(Q,P) 
= o(Q,P) 

axiom of triangle inequality 

Since the triangle inequality is satisfied for each of the component measures of distance, 'if P, Q, R holds: 

Oalph(P,Q) ~ Oalph(P,R) + Oalph(R,Q) 
Oseq(P,Q) ~ Oseq(P,R) + oseq(R,Q) 
Oatr(P,Q) ~ oat..(P,R) + oatr(R,Q) 

Odata(P,Q) ~ Odata(P,R) + odata(R,Q) 
Hence, 

aalph.oalph(P,Q) ~ aalph.oalph(P,R) + aalph.Oalph(R,Q) 
aseq.oseq(P,Q) ~ aseq.oseq(P,R) + aseq.oseq(R,Q) 
aatPoseq(P,Q) ~ aatr.oseq(P,R) + aau·.oseq(R,Q) 

adata.oseq(P,Q) ~ adata.oseq(P,R) + adata.oseq(R,Q) 

When the left and right terms of these inequalities are summed we get the desired expression. 
o(P,Q) ~ o(P,R) + o(R,Q) 

APPENDIX 4 

Q.E.D. 

Q.E.D. 

Q.E.D. 

Q.E.D. 

In the following the scalar representation is implicitly assumed. We shall not repeat the proofs for the vector 
representation, although, like was done for 0, it is possible to show that the vector OM satisfies properties very similar to 
the metric properties. 
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axiom 1 (weak identity) 
To prove: 0M(Mp,Mp) = 0 V'Mp 

Proof: By definition satisfied because Mp!;. Mp= 0 

axiom 2 (symmetry) 
To prove: oM(Mp,MQ) = oM(MQ,Mp) 
Proof: Trivially proven because 

I .I 

II8(Pi,Qj) 
oM(Mp,MQ) = _i=_'-'-j=_, ___ _ 

I.J 

axiom 3 (strong identity) 

To prove: oM(Mp,MQ) = 0 => Mp = MQ 
Proof: 

I.J 

oM(Mp,MQ) = 0 by definition if Mp ~ MQ = 0 => Mp = MQ 
But also, 
oM(Mp,MQ) = 0 if o(Pi,Qj) = 0 V' i,j 

J.I 

i) For I = 1 and J = 1, O(PJ,QI) = 0 ~ PI = QI => Mp = MQ 
ii) For I = 1 and J > 1, o(PJ,Qj) = 0 V' j E [1, ... ,J] 

=> o(Qj,Qj') = 0 V' j,j' E [\, ... ,J] 
=> Qj = Qj' V' j,j' E [\, ... ,J] 

However, all object types within a valid conceptual schema must be unique. Therefore case ii) cannot occur. 
iii) For I > 1 and J = 1, O(Pj,QI) = 0 ViE [1, ... ,1] 

=> o(Pi,Pj") = 0 V' i, i' E [1 , ... ,I] 
=> Pi = Pi' V' i, i' E [1, ... ,I] 

Q.E.D. 

Q.E.D. 

However, all object types within a valid conceptual schema must be unique. Therefore case iii) cannot occur. 
iv) For I > 1 and J > 1, o(Pj,Qj) = 0 V'i E [1, ... ,1] and V' j E [1, ... ,J] 

=> o(Pj,Pj') = o(Qj,Qj') = 0 Vi, i' E [\, ... ,1] and V' j, j' E [1, ... ,J] 
=> Pi = Pi' = Qj = Qr V' i, i' E [1, ... ,1] and V' j, j' E [1, ... ,J] 

However, all object types within a valid conceptual schema must be unique. Therefore case iv) cannot occur. Thus, since 
only case i) can occur, the axiom is satisfied. 

axiom 4 (triangle inequality) 

To prove: oM(Mp,MQ) ::; oM(Mp,MR) + oM(MR,MQ) V' Mp, MQ, MR 
Proof: 
i) Mp ~ MQ = 0 => Mp = MQ 

=> oM(Mp,Mp)::; oM(Mp,MR) + oM(MR,Mp) 
=> 0 ::; 2.oM(Mp,MR) 

ii) Mp ~ MR = 0 => Mp = MR 
=> oM(Mp,MQ)::; oM(Mp,Mp) + oM(Mp,MQ) 

=> 0 ::; oM(Mp,Mp) + 0 
=> 0::; 0 

iii) Mq ~ MR = 0 => MQ = MR 
=> oM(Mp,MQ) ::; oM(Mp,MQ) + oM(MQ,MQ) 

=> 0 ::; 0 + oM(MQ,Mq) 
=> 0::; 0 

Q.E.D. 

iv) When the symmetric difference is empty for two pairs of schemes we know that the three schemes are in fact equal. 
The triangle inequality is in this case trivially proved. This is true for all possible combinations of schemes. 
v) When all schemes are different then, 
V' i,j: o(Pi,Qj) ::; o(Pi,Rk) + O(RbQj) 
where Rk E MR, k = 1, ... , K and K is the cardinality of MR' 
This means that there are LJ.K inequalities which are satisfied. V' i,j there are K inequalities satisfied. If we add V' i,j the 
left and right terms of these K inequalities we get the LJ inequalities 

K K 

K.8(Pi,Qj)~ I 8(Pi,Rk)+ I8(Rk,QJ)' 
k=' k=' 
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V i there are now J inequalities satisfied. If we add V i the left and right terms of these J inequalities we get the I 
inequalities 

J K J K 

K2.. O(Pi,Qj)-::; II. o(Pi,Rk)+ 2..2.. O(Rk,QJ)' 
j=1 k=l j=i k=1 

We now only have to add the left and right terms of these remaining inequalities to get the inequality 
I .I I K K J 

K2..2.. O(Pi,Qj)-::; II. 2.. o(Pi,Rk)+ II. I. O(Rk,Qj)' 
;=1 j=1 i=] k::: I k =1 1=1 

Dividing each term by K.I.J results in the desired triangle inequality: 

+ k=1 j=1 

I.I I.K K.I 

Q.E.D. 
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