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Samenvatting

Wegvervoer is een hoeksteen van het economisch systeem. De bijdrage die
het levert aan het functioneren van de economie, en de daarmee verbonden
maatschappelijke welvaart, is onbetwist. Door het wegvervoer veroorzaak-
te uitstoot brengt echter ongewenste schade toe aan de leefomgeving. Het
beheersen van deze negatieve gevolgen is een integraal onderdeel van ver-
keersbeleid.

Uit het verlangen om tot een effectief en efficiént uitstootbeleid te komen
ontstaat de vraag naar modellen die aangeven wat de impact op uitstoot en
maatschappelijke kost is van technologische en andere maatregelen. Der-
gelijke modellen identificeren de belangrijkste met wegvervoer verbonden
gedragsdimensies, en waarderen de ermee verbonden impact op maatschappij
en leefomgeving.

Het gepresenteerde onderzoek vertrekt uit bestaande modellen en geeft
aan hoe deze uitgebreid worden om uitstoot van het gebruik van nieuwe
voertuigtechnologieén te bestuderen. Vervolgens simuleren en analyseren we
een reeks vervoersscenario’s.

Met behulp van discrete keuzetheorie bestuderen we de voorkeuren van
autokopers voor nieuwe voertuigtechnologieén op basis van een stated prefe-
rence experiment. De analyse omvat een groot aantal gedragsvariabelen en
technologieén en gebruikt daarvoor diverse gemengde logit specificaties.

Vervolgens geven we aan hoe de geidentificeerde keuzepatronen kunnen
vertaald worden naar een genest logitmodel dat kan gebruikt worden voor
simulatie van maatregelen.

Bij het simuleren van scenario’s voor autovervoer maken we een onder-
scheid tussen klimaatverandering en impact op de leefomgeving. Klimaat-
verandering is nauw verbonden met brandstofefficiéntie (en CO, uitstoot)
terwijl de impact op leefomgeving afthangt van de totale uitstoot. Deze uit-
stoot is sterk afhankelijk van de gebruikte voertuigtechnologie. Als referentie
voor een maatschappelijk verkiesbaar scenario maken we hierbij gebruik van
beprijzingsscenario’s.

Aansluitend simuleren we de bijdrage van openbaar busvervoer tot ver-
mindering van impact op de stedelijke leefomgeving. De beschouwde beleids-
variabelen worden daartoe uitgebreid met het OV-aanbod. We bestuderen



tevens hoe oudere voertuigen kunnen aangepast worden met het oog op
afname van uitstoot.

De belangrijkste inzichten van het onderzoek duiden het verband tussen
bestaande of vernieuwende beleidsinitiatieven voor afname van uitstoot en
de vraag naar vervoersactiviteit en de daarmee gepaard gaande impact op
leefomgeving en welvaart.



Summary

Road transport is a key component of the economic system. Its contribution to
the well functioning of the economy and the corresponding welfare of society
is beyond doubt. There is however a negative side effect when emissions
damage the environment. Controlling for this impact is an integral part of
transport policy.

In establishing efficient and effective damage control policies the need
arises for modelling tools to assess the impact of technological and other
measures on emissions as well as social welfare. Such models represent the
key behavioural dimensions that affect road transport emissions and value
their impact on both society and the environment.

In our study we start from existing modelling tools and extend them for
the assessment of emission damage reduction by new vehicle technologies. In
a next step a number of transport scenarios are simulated and the results are
analysed.

Using discrete choice theory for the analysis of a stated preference experi-
ment we identify car buyers’ preferences for new fuels and vehicle technolo-
gies. The scope of the analysis covers a wide range of behavioural variables
and technologies, which are identified using panel based mixed logit model
specifications.

In bringing the results of the analysis to the setting of a simulation model,
it is shown how a nested logit model can be used to reproduce correlation
patterns identified in the mixed logit analysis of the survey data set, the latter
accounting for repeated choice.

In the simulations of private car transport scenarios a distinction is made
between climate change and environmental damage. Climate change is closely
related to fuel efficiency (and corresponding CO; emissions), whereas other
environmental impact depends on the full range of emissions which vary
over existing and new technologies. In both cases pricing scenarios play an
important role as a reference for a socially desirable setting.

A further series of simulations focus on contributions to environmental
damage reduction from bus public transport. Here we extend the range of
policy variables considered to include level of service provision, and we also
look to upgrading older vehicles.



Key insights of our study relate to how existing and novel policy ap-
proaches to emission reduction interact with transport activity and the related
impact on the environment and global welfare.
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Introduction

Motivation

Road transport is a key component of the economic system. Its contribution to
the well functioning of the economy and the corresponding welfare of society
is beyond doubt and widely recognised by policy makers.

Transport activity does however come at a price for society. Besides the
obvious time and resource costs that go with its consumption, there have been
identified a series of hidden costs for society, such as safety and environmental
damage.

The need to account for the negative side effects of road transport has
been recognised by policy makers in the implementation of transport policy
plans. EU Commission established energy efficiency (and corresponding CO,
emissions) as an important focus of its 2001 White Paper on transport policy
(Commission of the European Communities, 2001). Similar concern on fuel
efficiency has been observed by American and Japanese authorities (Plotkin,
2001).

In the 2007 Green Paper on urban mobility (Commission of the Euro-
pean Communities, 2007), the Commission reconfirmed its dedication to an
integrated transport policy aiming at an effective transport system while
mitigating its environmental effects through emissions.

A simplistic solution would be to order the reduction in the mobility
of persons and goods or impose a redistribution between modes in order
to contain its environmental impact. But the Commission recognises the
constraint that such a policy approach would put on economic development.
Moreover, the Commission has the power nor the means to impose such a
measure.

Optimising the welfare contribution that road transport can make obvi-
ously calls for measures that enhance its efficiency with respect to environ-
mental impact. Technological innovation and differentiated pricing are two
measures receiving much attention in academic literature as well as in many
existing policy plans including the White and Green papers mentioned above.

Technological innovation has proved its effectiveness as an environmental
policy measure. The EU Commission recognises in its 2006 review of the

vii



Scope of the study

White Paper (Commission of the European Communities, 2006) the contribu-
tion made by technological innovation in order to meet tightened emission
standards for road vehicles. Over the last 15 years, cleaner vehicles and fuels
allowed to reduce overall transport NOx and PM emissions in the EU by
between 30 and 40%, despite the rising traffic volume.

Environmentally differentiated charges as a transport policy measure has
however been much of an academic exercise for a long time. Only more
recently have there been real world implementations such as the German
LKW Maut.

In a subsequent section we will define the scope of our study of techno-
logical contributions towards a reduction in the environmental footprint of
transport activity.

Scope of the study

In this study we analyse effects and social costs of using technological innovations
and supporting policy measures to reduce emissions from road transport activity. For
our analysis we design the appropriate modelling tools to simulate a range of relevant
transport scenarios.

The main sources of emissions from road vehicles are exhaust gases and
hydrocarbons produced by evaporation of the fuel (Hickman, Hassel, Joumard,
Samaras, and Sorensen, 1999). A small amount of particulate matter emissions
is caused by wear and tear (brakes and tubes), a source that we will leave out
of consideration in our analysis.

An important determinant of the amount and composition of road trans-
port emissions are the vehicle technology and fuel specification. Whereas some
exhaust emissions are a direct result of the process of energy conversion and
are hence closely correlated to fuel consumption (or energy efficiency), other
emissions are a by-product of the thermodynamic cycle of the engine. Evapo-
rative emissions are determined by fuel specifications and mainly originate
from gasoline.

Although the production and distribution of fuels and vehicles involves
the release of emissions as well, we will not study them provided that their
abatement involves a technological and policy approach that is beyond our
scope. An exception will however be made for electrical vehicles where the
thermodynamic energy conversion is done at a fixed power plant, for reasons
of comparability we will in this case include electricity production emissions.

In order to reach set emission targets, a government can decide for a
range of policy measures that support the adoption and use of specific vehicle
technologies. Traditionally there has been much inclination towards the use
of technological standards which are imposed on new road vehicle sales. The
Euro 1 through 5 standards are examples of how the EU authorities imposed
emission limits on new road vehicles. Recently there has been more attention

viii



Introduction

for using environmentally differentiated road pricing to realise emission
targets. An example of such a policy is the German LKW Maut charge for
heavy duty vehicles. In our study we will limit to policies which focus on the
adoption and use of technologies in a larger area (such as a large city, region
or country). Alternative emission policies could focus on local air pollution
control and consider other policy instruments such as traffic management.

The scope of our study is limited to assessing the impact of measures that
focus on reducing transport emissions through a change in the characteristics
of vehicle technologies and transport modes such as price, fuel efficiency
and technology availability. We do not explicitly model how technological
innovation happens, it is rather assumed to happen externally to our study in
which we assess its impact on vehicle technology use and emissions.

We furthermore explicitly leave out measures that aim at changing the
taste of transport users through a marketing based approach. Also do we
assume the user to be fully informed on all transport characteristics that he or
she considers in any relevant decision. Finally we exclude from our analysis
issues related to acceptability or the impact of policy makers and interest
groups on the final implementation of a technological or policy measure.

Measuring the effectiveness of a measure or technology simply boils down
to assessing its impact on aggregate emissions in the area considered. Total
transport emissions can be expressed as a function of vehicle use and tech-
nology specific emission factors. The impact of new technologies or policy
measures can be assessed by measuring the change in this indicator compared
to a reference scenario. We will refer to this reference scenario as the baseline,
which should ideally correspond to a business as usual scenario. The result of
the effectiveness assessment can be used to test if an emission policy target is
realised by a specific technology or policy measure.

Where we want to compare two measures with similar effectiveness, we
need a more refined indicator. It is here that we introduce efficiency, which
expresses how effectiveness compares to social costs. We define social cost
of a scenario as the sum of all monetary and non-monetary costs incurred
by different actors of a (geographically delimited) society. In the setting
of our analysis, it mainly consists of four components: costs incurred by
passenger transport users, costs for freight transport, changes in tax revenues
and changes in social costs related to environmental impact of emissions.
All cost components are expressed relative to a reference scenario. User
costs are expressed as generalised costs which include both monetary and
non-monetary costs.

For the effectiveness of a technology or policy measure there is an obvi-
ous scale to express their performance in reducing emissions. The baseline
emission level corresponds to zero emission reduction, whereas the maximum
possible reduction is the baseline emissions level itself. In order to define a
similar scale for efficiency, we need for a definition of a scenario that corre-
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Theoretical framework

sponds to maximum social gains. Such a scenario is identified as first-best,
and we will show in the subsequent section on the theoretical framework that
it corresponds to a taxation policy where marginal user prices are set equal to
marginal social costs. For this reason we will extensively use taxation scenar-
ios in our efficiency assessment in order to set a benchmark for alternative
scenarios.

In the next paragraph we will introduce the theoretical frameworks on
which we draw in our study of the subject.

Theoretical framework

In this section we present the larger theoretical framework used in our study
of the impact that technological innovations have on transport emissions.

The scope of the transport scenarios as outlined in the previous section
calls for the identification of the factors determining the impact on emissions
and social costs related to technological innovations and supporting policy
measures. The impact of such scenarios on emissions is through a change
in vehicle use. Vehicle technologies need to be classified according to their
emissions profile (captured by emission factors) and the impact of the measure
under consideration on activity of each class needs to be assessed using a
simulation model. A secondary effect on emissions may occur when a change
in transport activity affects the technology specific emission factors through
traffic conditions.

In the short term the vehicle stock composition can be regarded as fixed
an the only impact on vehicle use can happen through an increase or decrease
of demand for transport activity. A change in transport demand incurred by
technical or non-technical measures has a direct impact on the corresponding
emissions and social costs. The change can be further detailed as an overall
increase or decrease of demand for transport activity or a shift between
different transport markets (e.g. transport modes). An indirect impact on
transport emissions may happen through a change in traffic conditions where
travel time (and speed) is impacted by demand levels in the corresponding
transport infrastructure network.

In the longer term a change in transport activity demand may be accompa-
nied by a change in vehicle stock composition. Both the size of the stock and
the technological composition may be impacted in the transport scenarios we
study. The size of the stock is dimensioned in order to meet transport activity
demand levels, and hence its evolution is a direct function of the demand
factors described above. The shares of the different emission technologies in
the vehicle stock is the result of a more complex process where vehicles enter
the stock upon purchase and stay in the stock over a longer period (unless a
considerable decrease in activity demand or a technological measure would
make part of the existing stock obsolete). A change in external conditions will
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primarily impact the purchase decision and be reflected in the vehicle stock
composition only in the medium to longer term.

The output of different simulation components needs to be translated in
effectiveness and efficiency of the measure in consideration. In the subsequent
sections we will introduce the theoretical backgrounds of social costs after
having discussed the technology emissions, transport demand and vehicle
stock composition modelling frameworks.

Emissions and technologies

Emission factors express the amount of emissions that originate from vehicle
technology use. A wide range of factors are available from literature, de-
pending on the type of emissions, the component, the spatial and temporal
resolution etc. For our study the factors should represent a rather high tempo-
ral and spatial resolution while at the same time provide sufficient detail with
respect to the technological classification.

An appropriate emission methodology for our study is presented by
Ntziachristos and Samaras (2000). The COPERT III methodology specifies
factors that represent average real world emissions and fuel consumption
for a wide range of conventional road vehicle technologies, engine sizes and
fuels. The factors are based on a set of real world emission measurements and
cover both hot engine and cold start emissions as well as gasoline evaporative
emissions (mainly volatile organic components). The factors are function of
environmental variables (such as ambient temperature), average trip length
(to account for the share of cold start emissions) and average road network
speed. Emission factors are calculated separately for three road types: urban,
rural and motorways.

The classification of vehicle technologies closely follows legislative stan-
dards. Fuel efficiency however is not regulated and its evolution follows an
autonomous trend.! This is not reflected by COPERT III for technologies
beyond Euro 1. Indicators for the evolution of fuel efficiency do however exist
in the form of test cycle measurement time series. Rather than legislation it is
the vintage year that determines fuel efficiency. Emissions that are correlated
to fuel consumption (such as CO, and SO;) follow the same evolution. The
emissions of sulphur are further determined by the sulphur content of the
fuel, which is in turn determined by legislation.

As for alternative (or future) technologies, the same level of detail is
typically not available although studies (such as Hickman et al., 1999) do

IThis is in part caused by the agreements made between the EU Commission and the car
manufacturers. But also in the period before there was an autonomous trend in fuel efficiency as
reported by R. M. M. Van den Brink and Van Wee (2001). Small and Van Dender (2006) discuss
the link between fuel prices and fuel efficiency. The topic of private car fuel efficiency is discussed
in chapter 4.

el



Theoretical framework

provide factors which typically express emissions relative to a conventional
technology, to allow for a consistent technology comparison.

The technological resolution of the emission factors determines the vehicle
stock modelling approach described in the next paragraph.

Vehicle stock

Modelling the composition of the vehicle stock requires a methodology that
describes how vehicle technologies enter and leave the stock in order to allow
for the calculation of technological shares in vehicle use with sufficient detail
for the emissions model at every moment of the modelling period.?

Our study focuses on how the technological composition of the vehicle is
affected by technological and other measures. While there are measures such
as scrapping schemes that stimulate the abandonment of (old) technologies,
our focus will be on measures that impact the share of technologies that enter
the vehicle stock.

Vehicles enter the stock when car drivers purchase a new vehicle. In such
a situation, the car driver faces a discrete choice between a set of available
technological alternatives. Discrete choice theory describes how the probabilities
of each choice alternative are determined by an alternative specific utility
representation. The utility U; of each choice alternative i is the combination
of a deterministic term V; (function of observed variables) and a randomly
distributed term €; (representing unobserved choice variables):

U =Vi+e; 1)

The car driver then chooses the alternative providing him or her with the
highest utility U;. An introduction on discrete choice theory is provided in
appendix A.

To determine the scrapping of vehicles over a time interval a reference age
distribution (based on historical data) can be applied. In a similar way one
can account for the evolution in annual mileage over a vehicle life. In order
to initialise the vehicle stock model a legacy stock needs to be provided for a
base year.

The size of the stock is determined by the evolution in demand for trans-
port activity which is discussed in the next section. The number of new
vehicles over a time interval is then determined by the size of the existing
stock together with the number of vehicles that leaves the stock over the
period considered.

2We explicitly exclude the second hand market from our modelling scope as for our analysis
the owner of the car is not important. There may however be second hand car trade between
regions which influences the age distribution of the vehicle stock and the corresponding emissions
profile. We will not consider this issue mainly because of a lack of data on the flow of second
hand cars.
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Transport activity

Levels of activity in transport markets are a key determinant of transport
emissions through the size (and corresponding use) of the vehicle stock.
Activity levels are determined by price levels on each market, whereas the
prices itself are a function of production costs and taxes. The former relation
is captured by the demand function, whereas the latter is described by the
supply curve. Emerging prices and activity levels are determined by the
intersection of both market specific curves.

Different transport markets can be distinguished based on place, time,
trip motive, transport mode, etc. The subject of the study determines the
appropriate level of detail in the representation of transport markets.

The concept of generalised prices is introduced here in order to have a single
measure for all monetary and non-monetary costs related to the consumption
of a unit of transport service. In the context of road transport activity (and
under the assumption of perfect competition) it consists of three components:
technology related resource costs (and taxes), fuel costs (and taxes) and time
costs. To convert travel time to a monetary unit, value of time estimates are
provided by past research (such as Jong and Tegge, 1998).

Supply functions are established by expressing generalised user prices
as a function of transport activity level. The production cost levels in road
transport are determined by technological design factors, such as capital and
maintenance costs of the vehicle technology, fuel consumption, taxes, and
road infrastructure travel time. The main impact of a change in activity level
is through an increase in travel time costs, a relationship to be specified by
a network specific aggregate congestion function. The congestion function
also provides a representation of average speed, to be used as an input for
the calculation of the technology specific emission factors discussed in the
previous section.

Demand functions express how generalised user prices determine trans-
port activity levels. The demand functions capture the road users’ preferences
with respect to distributing available income over different goods and services.
The assumption is that the user optimises his or her utility for a given set of
prices and under an income constraint.

A wide range of demand function specifications are discussed in literature.
In our setting where we want to study how an average user changes his or her
consumption of a service as a result of a change in generalised costs compared
to a reference level, we use the constant elasticities of substitution (CES)
specification presented by Keller (1976). The CES specification is an aggregate
representation of discrete choice processes (consistent with utility maximising
behaviour) and has the advantage of minimal calibration requirements: an
externally provided reference (generalised) price and activity level for all
transport markets together with substitution elasticities between markets
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Theoretical framework

allows to simulate the impact of changes in price levels.® For freight transport
activity, a similar approach can be followed using a CES cost function.

Welfare

Different measures with an equal impact on transport emissions are equally
effective but still can have a substantially different social impact. The concept
of welfare is the appropriate measure to compare different policy instruments.
For each scenario, we calculate the social costs related to the corresponding
change in transport activity compared to a given reference level.

To compare the welfare impact of different transport scenarios in reducing
emissions, we use the theoretical framework of the partial equilibrium model.
The major assumption behind the approach is the absence of market distor-
tions in (not modelled) non-transport sectors (or more exactly the measure
does not impact the size of existing distortions in other markets), as well as
the absence of income effects in the modelled transport sector.

Under these assumptions the normative indicator expressing welfare is a
sum of components each representing a social cost related to the change in
transport activity compared to a baseline level.

A first component is consumer surplus, which represents the loss or gain
by users of passenger transport. We work with representative individuals so
that we take an unweighted sum of costs over individuals. The cost concept
for one individual corresponds to the compensating income variation: what
change in income is needed to make the individual accept the new prices and
quality offered to him in the new equilibrium. The CES demand specification
allows for a straightforward calculation of this component.

A second component is producer surplus which is similarly calculated
directly from the CES cost function for freight transport.

A third component is the impact of the scenario on tax revenues. The
changes in taxes, subsidies and public transport profits are by assumption
returned to the representative consumer. This change can be calculated
directly from the transport activity modelling framework.

One needs further to account for the distortionary effect of raising taxes
in other sectors. The concept of marginal cost of public funds (MCPF) accounts
for this shadow cost (or gain) that corresponds to a change in tax revenue.
In order to determine the size of the MCPF factor, one needs to specify the
sector in which the compensating distortionary taxes are changed. In our
study we will assume that a change in tax revenue from transport activity is
compensated by a corresponding change in labour taxes.*

3The relation between the CES model and the logit model is discussed by Anderson, Palma,
and Thisse (1992). For a discussion of the application in transport demand simulation we refer to
De Palma, Proost, and Van der Loo (in press) or the TREMOVE model documentation (European
Commission, Standard & Poor’s DRI, and Katholieke Universiteit Leuven, 1999).

4We use the approach by Ochelen, Proost, and Van Dender (1998) who present a value of
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A last welfare component are external social costs related to emissions. For
each pollutant cost factors are provided by literature (for instance Friedrich
and Bickel, 2001) that express in monetary units the external impact of a
marginal increase of emissions.” These factors are based on atmospheric
models that relate emissions to concentration levels, which are further linked
to a number of impact conditions each of which are valued (i.e. expressed in
monetary terms). The factors typically vary over urban and non-urban areas,
the former factors being higher compared to the latter as a result of higher
population densities. A notable exception to this is CO, which is not toxic
and its only social impact is through global climate change.®

As has been discussed in the previous section, the scale for efficiency
is set by the first best scenario for which welfare reaches a maximum level.
Economic theory sets out that maximal welfare occurs at consumption levels
that correspond to user prices that are equal to marginal social costs. This can
be realised by setting taxes equal to the external costs, which in the framework
of our study correspond to congestion and environmental impact.

Methodological Approach & Reading Guide

In our study of the cost benefit assessment of measures reducing road trans-
port emissions, we apply a capita selecta approach. The study consists of two
main parts: behavioural analysis and policy simulation.

The first part analyses car driver preferences for alternative fuels and
vehicle technologies. This part extensively draws on discrete choice theory for
the analysis of survey data and the design of a simulation tool.

1,2 for the marginal cost of public funds and a share of labour income in total income of 70%.
The contribution of the MCPF component to welfare is then equal to 6,6% of the increase in tax
income for the government. Other studies (for instance Kleven and Kreiner, 2003) present higher
values for the marginal cost of public funds. In our simulations we will report the contribution of
the MCPF cost component separately in order to provide an indication for the sensitivity of the
net welfare result to the assumed allocation of the change in tax revenues and the valuation of
the selected allocation. Note that these assumptions do not feed back in the model but affect the
size of the MCPF social cost component only.

5In our simulations we use values for the marginal external emission cost coefficients from a
draft version of TREMOVE 2 which are based mainly on Friedrich and Bickel (2001) and which
are presented in appendix C. Other studies (for instance Maibach et al., 2008) as well as later
versions of TREMOVE 2 (based on Holland, Pye, Watkiss, Droste-Franke, and Bickel, 2005) use
values that are lower by a factor of up to three. In our simulations we will report the contribution
of the external emission cost component separately in order to provide an indication for the
sensitivity of the net welfare result to the valuation of external impact.

%As opposed to the other pollutants we use for CO, emissions an external cost factor that is
based on a reference value of economy wide marginal abatement cost. The rationale is that total
EU-wide CO, emissions are capped by the Kyoto agreements. An increase of CO, emissions in
one sector needs hence to be compensated by a decrease elsewhere in the economy. The reference
value we use for external abatement cost is provided by TREMOVE 2 and is based on Holland,
Hunt, Hurley, Navrud, and Watkiss (2005). This value is of a similar order of magnitude as values
provided in literature for marginal environmental impact by CO, emissions.
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Methodological Approach & Reading Guide

A first chapter discusses the design of a conjoint choice experiment and
presents the corresponding findings on car purchase behaviour.

The second chapter presents an approach to use the survey data set for the
design of a simulation tool for car technology procurement. It is illustrated
how a nested mixed logit model specification allows to account for the repeated
choice setting of the survey in order to identify correlated preferences for
technologies. In a subsequent step a computationally efficient nested logit
specification that replicates the correlation pattern is presented.

Finally the alternative technology model is integrated in the larger trans-
port modelling framework of TREMOVE which is a proven model for evalua-
tion of emission policies. This integrated model will be used for simulation of
transport scenarios in the second part of the study.”

The second part of the study presents the assessment of the effectiveness
and efficiency of a series of transport scenarios in which technological innova-
tion is used to reduce road transport emissions. A first chapter studies the
contribution to be expected from alternative private car technologies and fuels.
A second chapter is dedicated to energy efficiency and the corresponding CO,
emissions from traditional private car technologies. A last chapter studies
contributions to emission reductions from public transport activity in urban
areas.

For each simulation chapter a customised version of the TREMOVE model
is implemented. The role of this simulation tool is to provide a consistent
framework for the comparison of the effectiveness and efficiency of the differ-
ent technical and non-technical measures.

The model simulations each focus on the impact of a small change in
external variables on transport activity and emissions over the modelling
period. These simulations allow us to study the impact of isolated policy
measures.

The time period over which to change the course of external variables
in a scenario is entirely arbitrary in a simulation exercise. In the context of
this study we should however account for the lifetime of technologies in the
vehicle stock. In order to allow for an understanding of long term impact,
simulated measures should cover a sufficiently long time period. At the same
time the end of the modelling period was fixed to 2020 to fit the availability
of sufficiently detailed (and consistent) external baseline forecasts for model

"The methodological approach for the simulations is to use the framework of the TREMOVE
model as a starting point and extend it. This approach allows for the use of an existing and proven
modelling framework (including a consistent reference scenario) while focussing on behavioural
extensions of it. A drawback is that each extension needs to be designed consistent with the
larger modelling framework dictated by TREMOVE (an issue which is much the focus of the
second chapter). An alternative bottom-up approach would be to design a partial equilibrium
model tailored for (and entirely consistent with) the behavioural topic of the study. That would
be an enormous exercise, and while allowing for more theoretical flexibility it would still be
confined by limitations in data availability.
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calibration.®

It is key to understand that the strength of the modelling approach is in the
consistent comparison of individual measures. By no means is the model to be
regarded as a forecast tool. To forecast developments in transport activity one
has to consider a wide range of variables, whereas in TREMOVE a baseline
evolution of activity and prices over the modelling period is taken as given in
the model calibration, hence any forecasting is external to the model.

Furthermore, TREMOVE is not an optimisation tool. In a static context the
welfare optimal price levels under a series of constraints is an illuminating
exercise. But the time dynamic nature of the technology stock makes opti-
misation burdensome, and the results would be dependant on the applied
discount rate. As noted by Arrow et al. (2004), the right value of the discount
rate is a matter of much debate which we will not further consider here.

For clarity we want to draw the attention of the reader to the monetary
unit used throughout all simulation exercises presented in this study. Unless
mentioned differently, all costs and prices have been expressed in constant
prices of the year 2000. For actualisation a social discount rate of 4% per year
was used.’

The common base for the simulations in the second part is the TREMOVE
model for Belgium. A hybrid version is used that draws mainly on version
1.3a with some relevant upgrades from version 2 included. A discussion of
the base model including baseline and other assumptions is presented in
appendix C.

In the first chapter of the second part the extended private car technology
choice model developed in part one is added to the base model.

The second chapter uses a model where availability of private car technol-
ogy is again limited to traditional diesel and gasoline technologies, but the
model is now extended with an internal representation of fuel efficiency for
all road transport vehicles.

The last chapter limits the model to the Brussels metropolitan area and
uses an updated baseline for public transport modes. The model is here
extended with an internal representation of optimal public transport user
prices and service provision level.

8To provide an indication we mention here that in our simulation model the expected
(technical) lifetime of a private car is 9,5 years (see appendix D). The modelling horizon sufficiently
accommodates for the representation of the corresponding transient effects.

9Zhuang, Liang, Lin, and De Guzman (2007) provide an overview of the state of practise
around the world in public discount rate policy. They draw the conclusion that developed
countries apply rates of 3-7%. In our simulations we will report undiscounted costs for a selection
of years over the modelling period, in order to provide an indication of the evolution of costs.
The discount rate is applied where these yearly costs are aggregated in a single net present value
indicator.
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List of notations and acronyms

Notation

Model design and estimation

The notation used in discrete choice model design and estimation is applied
in chapters 1 and 2 and appendixes A and C.

Notation =~ Meaning

jk,m,n indexes used to indicate alternative j, nest k, choice set or choice
situation m and consumer or respondent n

Ujmn random utility of choice alternative j as obtained by consumer n
in choice situation m

Vimn deterministic part of U, function of x;;;,

«, B vector of model coefficients

B estimate of

Xjmn vector of variables relating to consumer #n and alternative j in
choice situation m

Zjmn vector of variables relating to consumer n and alternative j in
choice situation m (used in mixed logit utility specification)

€jmn stochastic part of U,

Wimn stochastic utility in a mixed logit model specification (expected
value of py, is zero)

Pimn choice probability of alternative j chosen by consumer # in choice
situation m

E(7y) expected value of a stochastic variable v

Var(7y) variance of a stochastic variable v

Nkmn stochastic utility in a nested logit model specification

o scale parameter of the Gumbel distribution

Tkmn inclusive value of nest k

Ak inclusive value coefficient of nest k

p p-value, indication of significance of a coefficient estimate

continued on next page
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Notation

continued from previous page

Notation =~ Meaning

t t-statistic, indication of confidence interval of a coefficient esti-
mate

K number of nests

N sample size (=number of respondents)

M number of choice sets per respondent

J number of alternatives per choice set

B amount the respondent indicated he or she would spend on a
new car in case he or she had to buy one at the moment of the
survey

6 dummy variable, can have values 0 or 1 only

A difference

4 ratio of variance of two stochastic terms, used to compare two
model estimations

flr) probability density function of a stochastic variable «y

F(7) cumulative distribution function of a stochastic variable

Sk set of alternatives j that belong to nest k

a scale factor, used to scale utility Uy, of a model

S scale factor, used to scale the estimation data set (x;,)

dy expected annual mileage by respondent n

PCim value of the purchase cost variable for alternative j in choice set
m faced by respondent n

ACjmn annual cost

FCjun fuel cost

LFCjin lifetime cost

i discount rate used to amortise medium run capital investment

y expected vehicle lifetime

Vet speed in year t in period p on road type r for vehicle class ¢

Fprt flow (in passenger car units per hour) in period p on road type r

Acyrt coefficient in congestion function

Bt coefficient in congestion function

c vehicle class: truck/bus or private car/motorcycle

4 road type: Brussels, other urban, motorway or other road

p period: peak or off-peak

Policy simulation

The notation presented in the following table is applied in chapters 3, 4 and

appendix D.
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List of notations and acronyms

Notation =~ Meaning

f fuel intensity in litre per kilometre

p fuel price in euro per litre

€ fuel price elasticity of fuel intensity

uc user cost (including taxes) in euro per vehicle kilometre

RC resource costs (including taxes on resource costs) in euro per
vehicle kilometre

e emission factor in gram per vehicle kilometre

Eqp annual emissions of pollutant p at vehicle age a

Cp marginal external emission cost coefficient for pollutant p in €
per ton

C constant

dj dummy variable for technology j

Beat coefficient of choice model for technology class cat

LFC; lifetime user cost of technology j

Yy expected vehicle lifetime

EC expected emission cost over the entire expected vehicle lifetime

i discount rate used to amortise medium run capital investment

A difference

Ak inclusive value coefficient of nest k of a nested logit model speci-
fication

v CO; emissions per fuel unit

The notation presented in the following table is applied in chapter 5.

Notation = Meaning

Co is the operating cost in euro per vehicle kilometre (vkm)

D is the average occupancy rate (in travellers per vehicle)

Vw is the value of time during waiting (in euro per hour)

f is the average frequency (in departures per hour per direction)
Lt is the average trip length (in pkm)

Cuw is the walking cost from/to the stop

Vi is the in-vehicle value of time (in euro per hour)

Ce is the marginal external emission cost (in euro per vkm)

T is the commercial travel time (in hour per km)

q is the level of demand (in pkm per hour)

Ly is the network length (in km)

B number of buses

S no-travellers speed

) time (in hours) necessary to slow down, open and close the doors

and to re-accelerate at a stop

continued on next page
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Acronyms

continued from previous page

Notation =~ Meaning

€ time (in hours) necessary to let a user embark/disembark
d the average stop distance

a,b COPERT III technology specific parameters
Acronyms

Acronym  Meaning

ACEA Association des Constructeurs d”Automobiles
CAFE Corporate Average Fuel Economy

CATI computer assisted telephone interviewing
CES constant elasticities of substitution

CNG compressed natural gas

CHy methane

CeHg benzene

Cco carbon monoxide

CO, carbon dioxide

EU European Union

EV electric vehicle

GDP gross domestic product

H, hydrogen

HDV heavy duty vehicle

HH household

IG integrated model

A independence from irrelevant alternatives

iid independent and identical distributed

ICE internal combustion engine

JAMA Japan Automobile Manufacturers Association
KAMA Korea Automobile Manufacturers Association
LA Los Angeles

LDV light duty vehicle

LFC lifetime cost

LL log-likelihood

LPG liquefied petroleum gas

MCPF marginal cost of public funds
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List of notations and acronyms

continued from previous page

Acronym  Meaning

MIE main income earner

MIVB Maatschappij voor het Intercommunaal Vervoer te Brussel
ML mixed logit

MNL multinomial logit

NG natural gas

NL nested multinomial logit

NMBS Nationale Maatschappij der Belgische Spoorwegen
NMVOC  non methane volatile organic compounds
N,O laughing gas

NOx nitrogen oxides

NPV net present value

pkm passenger-kilometre

PM particulate matter

RP revealed preference

RUM random utility maximisation

SP stated preference

TEC Transport En Commun

tkm ton-kilometre

TWC three way catalyst

UK United Kingdom

VAT value added tax

vkm vehicle-kilometre

VOC volatile organic compound

WTP willingness to pay
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CHAPTER 1 I

Modelling the choice for alternative
cars

1.1. Introduction

The development of alternative car technologies has received much attention
from both authorities and car manufacturers as a way to reduce emission
levels and energy consumption of transport activity. Major research and
development efforts result in a broad range of new fuels (e.g. hydrogen)
and new private car technologies (e.g. hybrid cars) which all seem to have
interesting characteristics when compared to the existing diesel and gasoline
options.

There is however a difference between the technological and environmental
specifications of the individual car and the overall environmental impact of
transport activity. Before a new technology can contribute to air quality
improvements, people need to actually buy it. In this chapter we concentrate
on the choice of a new private car in Belgium.

Discrete choice theory (Anderson et al., 1992; Ben-Akiva and Lerman,
1985; K. Train, 1986/1990; K. E. Train, 2003) provides a powerful modelling
framework to analyse choice behaviour of consumers, and has been widely
applied in transportation research to study modal choice, destination choice,
private car choice etc. With the advent of more powerful computers a shift
is noticed from the multinomial and nested logit choice models to the mixed
logit choice framework.

The analysis of technology choice behaviour in past research falls roughly
apart in two categories, based on the approach applied in the collection of the
choice data set used: stated preference or revealed preference.

Revealed preference research allows for a highly detailed choice data set
including information on large numbers of car purchases and all choice
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alternatives that are available on the market. Some examples are COWI
A/S (2002); De Jong (1996); Verboven (1996). Difficulties encountered by the
revealed preference approach typically relate to correlation in choice variables
and the technological scope of the choice data being limited to conventional
technologies only (alternative technologies not being widely available on the
market). The modelling specification applied in these papers is logit or nested
logit, probably because of the computational demands caused by the large
choice set dimensions. An exception is Brownstone, Bunch, and Train (2000)
who apply a mixed logit specification in a joint stated and revealed preference
estimation.

Stated preference research on technology choice has focused much on the
choice for alternative fuels as well as battery cars. The stated preference
approach allows to avoid correlation issues and allows for the inclusion of
alternative technologies as well as variation in more exotic choice variables
such as refuelling range. Some examples are Batley, Knight, and Toner (2003);
Brownstone and Train (1999); Bunch, Bradley, Golob, Kitamura, and Occhiuzzo
(1993); Ewing and Sarigollii (1998); Ramjerdi and Rand (1999). The surveys
focus on different geographical regions but with much similarity in the survey
procedure which seams to be particularly robust. Early examples apply a
nested logit setting in the choice analysis (revealing similar correlation patterns
over different studies), whereas more recent research implements mixed logit
model specification.

In our study of the topic we will apply the stated preference approach.
We will use the survey procedure developed in past research as a base and
update the design in order to allow for some extensions to past research.

In this chapter we will extend the technological scope! in order to include
the choice for hybrid power-trains (hybrid cars seem not to be covered by
most past research, Bunch et al. (1993) being an exception) as well as fuel cell
powered technologies. The private car technologies we want to study in this
chapter include both existing, conventional (diesel, gasoline, LPG) and new,
alternative technologies (e.g. fuel cell powered, alternative fuels, hybrid power
train equipped).

Another unexplored territory by past research is the geographical focus on
Flanders? in our study. Most past research focused on car markets where only
one technology (gasoline) was available for private cars at the moment of the
survey. None of the studies mentioned did study differences in correlation
between two or more established technologies (e.g. diesel and gasoline) at one
hand and alternative technologies at the other hand. In contrast we will use
the opportunity of having two established technologies (diesel and gasoline)
on the Flemish market to study these correlation patterns.

Finally, most past studies did not cover all cost variables, in most cases

IThe technological scope of our study is discussed in section 1.2.1.
2The Flemish Region is one of the three official regions of the Kingdom of Belgium.
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excluding annual costs such as maintenance which may differ significantly
between technologies (e.g. replacement of battery pack for the electric car).

In our application we refine the survey design and show how it can
be successfully applied to a significantly smaller sample compared to past
research on the topic.

In our analysis of the choice data we compare multinomial, nested and
mixed logit specifications. The mixed logit specification provides the best
results as it can accommodate for the repeated choice character of the data set.
This finding is in line with past research by Batley et al. (2003). Analysis of the
choice data reveal no significant preferences for hybrid technologies. Correla-
tion patterns analysed reveal strong fuel-specific correlations in preferences
for technologies.

The structure of the chapter is as follows. In a first section we define the
scope of the research and provide a short introduction on discrete choice
theory which is the modelling framework we use. A second section reviews
the literature. The third section reports on the results of a focus group session.
Two further sections focus on the design and implementation of the survey to
collect stated preference data. The sixth section discusses the estimation of a
model and the last section concludes the chapter.

In a subsequent chapter (chapter 2) we will use our analysis to design a
simulation tool and show how we can integrate this alternative technology
choice model in the partial equilibrium model TREMOVE. In chapter 3 we will
then calibrate the model for Belgium and analyse the potential of alternative
technologies to contribute to a reduction of external emission cost.

1.2. Scope and modelling framework

In this section we first discuss the scope of the choice analysed in this chapter.
In a second subsection we introduce the modelling framework of discrete
choice theory and in a last subsection we discuss the use of stated preference
versus revealed preference data in model estimation.

1.2.1. Scope

A consumer who wants to buy a new car faces a rather extended choice
set of cars that are available on the market. Different values for brand,
car body, colour, comfort equipment, engine size etc. define the range of
choice alternatives and the consumer has to make a decision on his preferred
combination.

In this chapter we will limit our attention to the choice between technologies,
both conventional and alternative. With technology we indicate the combination
of fuel (including electricity), engine and power-train. This means that the
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choice we study is the one between different vehicles that are identical in all
properties except for the driving technology.?

We will limit the geographical scope of our research to the preferences
by Flemish consumers. Conventional technologies that are broadly available
on the Flemish car market include gasoline, diesel and LPG fuelled internal
combustion engines.

For alternative technologies, a broad range of fuel, engine and power-train
combinations have been discussed in the past. Arcoumanis (2000) and Interna-
tional Energy Agency [IEA] (1999) focus on alternative fuels, whereas Burgwal,
Dijkhuizen, Mourad, Smokers, and Winkel (2001) provide an overview of
hybrid power-train technologies as well as electrical battery and fuel cell
powered vehicles. Verbeiren, De Vlieger, Pelkmans, De Keyser, and Springael
(2003) conduct a sustainability assessment of a varied range of conventional
and alternative technologies.

To allow for the analysis of the potential of alternative technologies (which
will be conducted in chapter 3) we need to define the technological scope
accordingly. The scope should cover a range of (improved) conventional
and innovative technologies that are sufficiently diverse in technical and
economic characteristics and for which consistent data is available to allow for
simulation. The selection by Verbeiren et al. (2003) meets this requirements,
we decide to use it as definition of the scope of our study (see table 1.1).

We will limit the analysis in this chapter to the choice made by private
consumers, and leave the technological preferences of business consumers
beyond the scope of our research. Some earlier private car technology choice
models include a separate sub-model for company and private car purchase
(e.g. COWI A/S, 2002). There is however very limited knowledge on the size,

3In our study we assume that the choice between technologies is independent from brand,
car body etc.

Table 1.1. Technological scope of the choice analysed (based on Verbeiren et al., 2003)

Technology

Gasoline
Gasoline hybrid
Diesel

Diesel hybrid
LPG

CNG

CNG hybrid
Hydrogen
Hydrogen hybrid
Hydrogen fuel cell
Battery electric
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composition and specific dynamics of the company car stock for Flanders.
Lacking insight in key aspects of the structure of this specific car market
hampers the study of specialised issues such as preferences for alternative
vehicle technologies.

1.2.2. Discrete choice theory

Discrete choice theory provides a broad range of modelling frameworks. An
extended introduction on the topic is provided in appendix A. An in depth
discussion on discrete choice theory can be found in Anderson et al. (1992);
Ben-Akiva and Lerman (1985); K. Train (1986/1990); K. E. Train (2003).

The consumer who considers the purchase of a car faces a discrete choice
problem. Discrete choice theory models the probability that a consumer n
chooses a given alternative j in choice situation® m as a function of the random®
utility Uy, of the alternatives, expressed as:

Ujmn = ijn + €jmn (1.1)
where:

® Vimn: the deterministic part of the utility for alternative j as obtained
by consumer # in choice situation m—we will in this section assume
that Vj,, is linear in parameters: Vj,, = B Xjmn With B a vector of
coefficients and x;,,,, a vector of decision variables relating to consumer
n and alternative j in choice situation m;

® €jun: the stochastic part.

The consumer then chooses the alternative with the highest utility (utility
maximisation).

The multinomial logit model (MNL) assumes a Gumbel distribution with
variance of the stochastic utility Var(€j,,,) = 0?7% /6.7 This assumption results
in a closed form for the choice probability of alternative j chosen by consumer

n in choice situation m:
eﬁ,xjmn/a
ijn = W (1.2)

As we can see from expression (1.2), any linear transformation of x;;;,
does not affect the choice probabilities. This makes it impossible to identify

4Wuy’cs (2009) has conducted a survey of company car use in Flanders. His focus was mainly
on issues related to labour economics, which fall well beyond the scope of our study.

5The index for choice situation m is introduced here to allow for the repeated choice character
of survey data.

®Where we discuss or apply discrete choice theory we will use the terminology that is
common in the literature (for instance K. E. Train, 2003). Random utility could be understood as
being probabilistic in character.

"Note that throughout this and the subsequent chapter ¢ denotes the scale parameter of the
Gumbel distribution and not the variance which is noted as Var(e). A full overview of notations
and acronyms is provided in the introducing sections.
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the value of the scale parameter ¢ of the stochastic part separately from the
true coefficients f of the deterministic part. In estimation the utility U, is
scaled by a factor 1/¢ which normalises the variance of the stochastic part
to 712/6. The estimated coefficients j include the scale parameter o of the
stochastic utility:

B=p/c (1.3)
Appendix A discusses how the scale parameter of two independent model
estimations can be compared using the ratio of their respective coefficient
estimates 3.

The nested multinomial logit model (NL) extends the MNL specification by
allowing for correlation in unobserved preferences (stochastic utility) for a
subset of alternatives. A partition structure defined by the researcher groups
the alternatives in subdivisions or nests. The more substitutable alternatives
are grouped in lower nests in the tree structure. For each nest k the coefficient
Ak (0 < Ax < 1) is a measure for the correlation between the alternatives in
nest k, with values closer to unity indicating less correlation.

The mixed logit model (ML) is a further extension to the multinomial logit
specification that provides a very flexible modelling framework. It defines the
utility Uy, as:

ujmn = “,xjmn + .ujmnlzjmn + €jmn (1.4)
stochastic utility
with

* « a vector of fixed coefficients

® MUimn @ vector of random terms with mean zero and probability distribu-
tion f(#jmy), any distribution can be used (independence over j, m or n
is not a necessary condition)

® Xjmn and zjy,;, vectors of observed variables

® €jmp 11.d. Gumbel distributed with scale parameter ¢ normalised to unity
(independent over all alternatives j, choice situations m and respondents
n)

In order to better understand the potential of the mixed logit specification
to account for a repeated choice situation, we rewrite the utility formula (1.4)
as:

ujmn = “/x]’mn + ,un/zjmn + €jmn (1.5)
with y,, a vector of random terms with mean zero which are independent for
all respondents 7 (but constant over choice sets m).

The error terms i, introduce correlation between the utility Ujy,,, of alter-
natives j of the different choice sets m faced by the same respondent. The
vector zj,,,, may or may not include the same variables as x;,;,, this depends
on the correlation pattern studied.®

8Based on the discussion of the mixed logit specification by Batley et al. (2003).
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1.2.8. Stated preference and revealed preference

To analyse the choice behaviour of consumers, we need an observation data
set. Roughly two approaches exist for the collection of the data set for the
analysis of technology choice: revealed preference and stated preference.

The revealed preference approach uses observations of actual choices made
by consumers. This approach has the major advantage that there is no doubt
that the data set reflects real world behaviour.” But it may be difficult to
use these data for model estimation. Brownstone et al. (2000) indicate that
a major difficulty in estimating revealed preference car choice models is the
correlation in decision variables. A second problem that arises is the correct
definition of the choice made: both the choice set and the choice variables
have to be defined by the researcher. Finally, studying preferences for new car
technologies may necessitate to assess the effect of values of characteristics
that are beyond the range observed in the revealed data sample.

The stated preference approach overcomes these difficulties by using a
custom designed survey to collect the choice observations. This provides the
researcher with much control over the choice sets faced by each respondent:
both the number of alternatives, the variables in which they differ and the
levels of these variables are controlled in the survey setup. This allows to
eliminate correlation in choice variables as well as to eliminate the influence
of non-observed choice alternatives or variables. The major disadvantage of
the stated preference approach is that what is measured are the intentions
of the consumer, without any guarantee that they correspond to real world
behaviour. This may be a specific concern when the levels of presented
decision variables are well outside the range experienced by the respondent
in real world behaviour.

Research focusing on the choice between conventional technologies has
made use of revealed preference data (some examples are De Jong, 1996;
Verboven, 1996). However, Bunch et al. (1993) argue that the current limited
supply of alternative private car technologies excludes the revealed preference
approach for the analysis of the choice for alternative technologies.

In this chapter we will follow the approach by Bunch et al. (1993) and
conduct a survey in order to collect a stated preference data set that allows
for the analysis of the choice for alternative technologies. Before we design
the survey, a focus group is conducted in order to gain a better qualitative
understanding of the choice process. An overview of existing experience on
the stated preference approach in the analysis of alternative car technology
choice allows us to optimise the survey design.

In a subsequent chapter (chapter 2) we will compare our stated preference
approach to an existing revealed preference choice model for conventional
technologies and discuss how both models can be integrated in order to

9Assuming no measurement bias.
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combine advantages of both approaches.

1.3. Literature review

Different choice models have been developed in past research for the analysis
of choice behaviour for new electric and alternative fuel technologies. Since
these technologies are not available on the market in large quantities, these
models have been estimated making use of stated preference data (SP) collected
through a survey. Several modelling frameworks have been applied, we will
limit the review to multinomial logit, nested multinomial logit and mixed
logit choice model specifications.
The focus of our review will be on:

e technology attributes that have been proved to be significant in the choice
process;

* survey design: sample size, response rate, survey setup with special focus
on the choice set design (e.g. number of alternatives per choice set).

Throughout this chapter we will use the p-value as a measure of coefficient
significance in the different models discussed. The p-value of a coefficient
estimation B indicates the probability that, given that the null hypothesis (true
coefficients are zero) is true, the coefficients  assume a more extreme value
than the observed (estimated) ,B As a rule to decide on significance, we will
use in this chapter p < 0,05. Although any threshold value for significance is
entirely arbitrary, insights gained in simulations we conducted (see section
1.5.7) resulted in the specified level.

The p-values reported in this literature review section have been added
by ourselves based on standard errors or t-statistics reported in literature (as
far as the p-values have not been provided in the original text). This common
measure of coefficient significance simplifies the comparison of the different
models discussed here.

1.3.1. California

Much research on private car technology choice has been conducted in Cali-
fornia for the development of a micro-simulation model of the vehicle market
in the greater LA area.

Bunch et al. (1993) conducted a pilot study and estimated a nested multino-
mial logit (NL) model based on stated preference (SP) data. They conducted a
survey in three phases, resulting in 562 returned questionnaires (20% response
rate). Three model specifications are estimated. The first model (table 1.2) only
includes technology-specific variables, whereas subsequent models extend
the specification by including interaction variables. Five technology types
were included in the model: gasoline, alternative fuel only, multiple-fuel
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(alternative fuel and gasoline), electric and hybrid. Hybrid car technology was
here described as a car that is able to run on gasoline and/or electricity.

The survey used a three phase setup, where in a first phase background
information on the respondent was collected, in the second phase the re-
spondent made a choice between alternative technologies and a third phase
focused on the choice between fuels (for multi-fuel vehicles). The car technol-
ogy choice sets included 3 alternatives, each alternative was presented with
six or seven variables. The net sample size that finished the second phase was
N = 692,19 where each respondent completed five choice sets. The response
rates were 40% for phase 1 and 26% for phase two.

Some coefficients in the model were found not to differ significantly from
zero (p < 0,05): alternative fuel, electric vehicle and the possibility to charge
at work as well as at home for electric vehicles. Also the constant for hybrid
electric is not significant.

The log-sum coefficient representing correlation in preference for non-
electric vehicles differs significantly from zero.

Further Californian research on the topic includes Brownstone, Bunch,
Golob, and Ren (1996) who built a large multinomial logit (MNL) model
based on new SP data. The same data have been reused by Brownstone and
Train (1999) to compare MNL with mixed logit (ML) models (table 1.3). In
the survey, four technology types were included: gasoline, CNG, methanol

1011 fact 717 respondents finished phase 2, but a handful of them provided incomplete choice
data.

Table 1.2. Nested Multinomial Logit model by Bunch et al. (1993)

Variable Model 1
(variable? means square of variable) coeff. p-value
Purchase price ($1000) —0,134 0
Fuel cost (cents/mile) —0,190 0
Range (100 miles) 2,52 0
Range? (100 miles)? —0,408 0
Emissions level (fraction of current) —2,45 0
Emissions level? (fraction of current)? 0,855 0,007
Fuel availability (fraction of stations) 2,96 0
Fuel avaﬂabili’cy2 (fraction of s’ca’cions)2 -1,63 0
Alternative fuel (constant relative to gasoline veh.) 0,098 0,368
Multiple fuel (constant relative to gasoline veh.) 0,693 0
Electric vehicle (constant relative to gasoline veh.) —0,024 0,92
Hybrid electric (constant relative to gasoline veh.) —0,257 0,134
Electric: charge at work as well as home (dummy) —0,126 0,271
Electric: low performance (dummy) —1,04 0
Electric: low performance with hybrid (dummy) 0,544 0,022
Non-electric vehicles (log-sum coefficient A) 0,805 0,001




1.3. Literature review

and electric. A two-phase survey setup was applied. The first phase was
completed by 7387 households approached through random dialling and
collected household information through CATI'!. In the second phase a choice
set with six alternatives described by 15 attributes was sent to the respondents.
The response rate in the second phase was 66%, providing a net sample with
sufficient non-missing information of N = 4654.

In Brownstone et al. (2000), revealed preference (RP) data have been added
to develop a joint estimation mixed logit model.

1.3.2. Canada

Ewing and Sarig6llii (1998) designed a vehicle technology choice model for the
Montreal metropolitan area. The model was estimated using a SP data set that
was built on a survey with 1500 respondents in the suburbs of the Montreal
Census Metropolitan Area. The survey applied a two phase approach similar
to Brownstone and Train (1999). Of the 1500 phase one respondents, 59%
completed the second phase of the survey, which consisted of completing
nine choice sets. The choice sets presented a choice between three alternative
technologies described by 8 attributes.

1Computer-aided telephone interview

Table 1.3. Multinomial Logit Model by Brownstone and Train (1999)

Variable coefficient p-value
Price/In(income) —0,185 0
Range 0,350 0
Acceleration -0,716 0
Top speed 0,261 0,001
Pollution —0,444 0
Size 0,935 0,003
Big enough 0,143 0,06
Luggage space 0,501 0,008
Operating cost —0,768 0
Station availability 0,413 0
Sports utility vehicle 0,820 0
Sports car 0,637 0
Station wagon —1,437 0
Truck —1,017 0
Van —0,799 0
Constant for EV —-0,179 0,290
Commute<5 x EV 0,198 0,016
College x EV 0,443 0
Constant for CNG 0,345 0
Constant for methanol 0,313 0,002
College x methanol 0,228 0,010

10



Modelling the choice for alternative cars

The model includes vehicle technology and commuting attributes, allowing
for the assessment of infrastructure related policies, e.g. separate motorway
lanes for cleaner vehicles. The number of vehicle technology types included
in the survey is limited to three: a conventional gasoline vehicle, an electrical
vehicle and a more fuel-efficient vehicle running on gasoline or alternative
fuel.

Several multinomial logit model specifications were estimated: starting
with a basic model with main effects only, both for categorical and continuous
variables for some technology attributes. Next a choice model was estimated
including several interaction terms. The choice process was also tested for
correlation in preferences for vehicle types, but with negative results. As a
result, no nested logit specification was found appropriate.

The coefficient estimates of the basic multinomial logit discrete choice
model with continuous variables can be found in table 1.4.

1.3.8. Norway

A technology choice model has been developed by Ramjerdi and Rand (1999)
to estimate demand for clean fuel cars in Norway. Both MNL and NL models
have been estimated. Three fuel technologies were included: gasoline, electric
and alternative fuel. Different models were estimated for the household’s
main car (table 1.5) and for the second car.

The survey implemented a two phase approach similar to Ewing and
Sarigollii (1998). Choice sets consisted of three alternatives with 8 attributes.
The sample size used for multinomial logit estimation used data from 1222
observations.

This study identifies a correlation in preferences for non-electric vehicles,
a nesting structure that is identical to Bunch et al. (1993).

Table 1.4. Multinomial logit model by Ewing and Sarigollii (1998)

Variable coefficient p-value
Fuel-efficient vehicle constant 0,42 0
Electric vehicle constant 0,25 0,009
Price ($) —0,00022 0
Maintenance cost ($/year) —0,00104 0
Acceleration (as % of current car) 0,013 0
Range (miles) 0,0039 0
Refuel time (minutes) —0,0014 0
Emission rate (as % of current car) —0,7128 0
Commuting time (min one-way) —0,008 0,024
Commuting cost ($/week) —0,015 0

11
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Table 1.5. (M)NL model for HH main car by Ramjerdi and Rand (1999)

Variable MNL NL

(var? means square of var) coeff. p-value coeff. p-value
Constant, electric car —2,351 0 —2,2030 0
Constant, alt fuel car —1,348 0 —1,0450 0
Electric car, refuelling range 0,04089 0 0,0391 0,001
Gasoline car, emission —0,1888 0,272 —0,2971 0,089
Gasoline car, HH without car —1,786 0 —1,6120 0
Gasoline car, age over 66 0,5457 0,046 0,6355 0,028
Alt fuel car, refuelling range 0,02495 0 0,0256 0
Gasoline, HH income 0,0015 0,036
Purchase price —0,009577 0 —0,0115 0
Variable car cost —0,008816 0,842

Number of seats 0,4200 0 —0,7337 0,058
Number of seats? 0,1597 0,005
Top speed 0,0992 0,004 0,1112 0,004
Accessibility 0,3808 0,028

Logsum A (non-electric veh.) 0,6566 0

1.3.4. UK

Batley et al. (2003) estimated a discrete choice model for alternative-fuel
technologies based on a UK survey conducted by Knight (2001). Different
specifications of multinomial logit, nested logit and mixed logit models have
been estimated.

The survey methodology differs somewhat from most other studies. The
choice sets were limited to two alternatives with four properties (variables),
this in order to limit cognitive difficulty for the respondent.

The alternatives were unlabelled in the choice sets. However, the levels of
the variables differed between both alternatives in such way that the alternative
car was distinguishable, an effect that was confirmed in model estimation by
finding a significant dummy coefficient.

In order to allow for seven variables in the choice model estimation, the
variables were divided over two setups with four variables each, having
the purchase price in common. The nested logit specification was used in
order to allow for integration of both setups in model estimation, following
a methodology proposed by Bradley and Daly (1991). This comes down to
introducing a scaling factor (the log-sum coefficient) for the expected utility
Vimn (see equation (1.1)) of the alternatives belonging to one of both setups.
For completeness we provide here the resulting multinomial logit model in
table 1.6.

12
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Table 1.6. Multinomial logit model by Batley et al. (2003)

Variable coefficient p-value
Purchase price —0,215 0
Operating costs —0,072 0
Maximum speed 0,143 0
Fuel availability 0,234 0
Emissions —0,212 0
Range 0,478 0
Refuel location -1,22 0

A (log-sum) 0,642 0
1.3.5. Summary

Past research provides much insight in discrete choice modelling of new pri-
vate car technologies. We see that a short-list of choice variables is common to
most studies: purchase cost, range, etc. The survey procedure applied shows
much similarity between the different studies. Nested logit model estimations
identify a correlation in preferences for non-electric cars as opposed to electric
cars.

There are however some limitations. As the emphasis has been put on
alternative fuels rather than on alternative technologies, hybrid cars seem
not to be covered by most past research, Bunch et al. (1993) being the sole
exception. We also observe that most past research focused on car markets
where only one technology (gasoline) was available for private cars at the
moment of the survey. None of the studies mentioned did study differences
in the correlation between two or more established technologies (e.g. diesel
and gasoline) at one hand and alternative technologies at the other hand.
Finally, most studies did not cover all cost variables, in most cases excluding
annual costs such as maintenance which may differ significantly between
technologies (e.g. replacement of battery pack for electric car).

As far as we could identify, alternative technology choice for private cars
has not been researched yet for Belgium. The survey described in the next
sections allows to build the necessary data set for estimation of a choice model
for the Flemish car market. The approach used is similar to the literature
surveyed, however we modified the methodology on some points in order to
overcome the limitations identified above.

1.4. Focus group
In this section we report on the focus group session that was held in preparation

of the survey. The aim of this focus group was to analyse qualitatively the
choice process consumers experience upon buying a new car. Starting from

13



1.4. Focus group

very general aspects of choosing a new car, the focus of the discussion moves
gradually towards the more technical aspects of choosing between different
technological makes of the same car type. Finally two choice set designs were
tested with special focus on terminology used and layout design.

The focus group discussion was held at a weekday evening in Antwerp
in spring 2004. The size of the group was N = 7. The main criterion for the
selection of participants to the focus group was the purchase of a new car
during the last year (including having made the decision on make, brand and
type) and being the owner as well as the main driver of that car. To allow for
a balanced discussion, the selection of participants for the focus group was
gender balanced.

At the start of the session the focus group was initiated as a spontaneous
discussion on why the participants bought a new car. As the issue was
risen which aspects a potential car buyer should consider when choosing a
car, a long list of characteristics were discussed, ranging from size, comfort,
driving characteristics, family size, car body colour to safety and maintenance
cost. Already at this point there was a small discussion regarding repair and
maintenance costs to expect, and how the related risk can be covered by a
service package.

Starting from the extended list of car variables, the discussion was further
narrowed towards the more technological properties and how these were
assessed by the participants. As the session proceeded, the discussion was
gradually moved from the first list of car variables to some aspects that had
not been risen spontaneously to cover their assessment as well. In this section
we will report on car properties that are relevant for the design of our survey.

Fuel consumption was one of the first aspects discussed. The participants
indicated that this was rather simple to assess, as plenty of information is
available, although it was remarked that there is a relation with the driving
style of the driver as well.

Expected annual mileage was indicated to have a relation to the choice
between gasoline, diesel and LPG cars. Also the relation between fuel and
first or second car was made. Another aspect linked to fuel choice was family
tradition.

Upon choosing between cars, the buyer apparently first decides on the car
body and next chooses within that segment for a technical version.

The engines size (in cc) was indicated as a choice variable, being linked first
to taxes but having relation also with power and driving comfort. Driving
comfort itself was however related to a lot of other aspects as well, including
air conditioning, sense of space etc.

Regarding reliability, the question was raised if there still is a real difference
between new cars now available on the market.

Different aspects of the user cost were discussed. Some car buyers ap-
parently thoroughly compare all available figures, whereas others trade-off

14
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financial aspects in a less rational way. A distinction between purchase, annual
and distance related costs was made, but also other aspects were included in
the decision, e.g. not only the average annual maintenance cost matters, but
also the maintenance interval is relevant as it determines the owner’s time
costs of bringing the car to the service centre. Some of the more irrational
aspects mentioned included the absolute cost of filling up at the gas station
(rather than the per kilometre cost). The fact that large price differences exist
between cars sold by different car dealers, making a comparison more difficult,
was also taken into account.

Another interesting issue was the uncertainty about future taxes. Appar-
ently this issue is considered by some car buyers.

Raising the issue of retrofitting the new car for LPG use, the participants
made a link with loss of luggage space, although it was immediately added
that this loss can be limited. LPG was further considered as cheaper in use
and better for the environment. However, it was added that LPG still excludes
access to some underground parking infrastructure.

Discussing the emissions issue, the Euro emission class was immediately
determined as the main indicator. For diesel cars the participants added not
to like too much visual soot-emissions. However, it was indicated that not
much information is available for car purchasers regarding emissions.!?

Some fechnological subclasses of conventional diesel technologies currently
available had already been mentioned, so the participants were asked to judge
the difference between injection, turbo, ecopower, etc. Besides power and
driving performance the respondents added fuel efficiency as an important
characteristic.

The hybrid technology was linked immediately to higher purchase price,
better fuel efficiency and better environmental performance. Some uncertain-
ties were added: has technology matured, is power sufficient and what about
battery replacement costs? Different driving performance characteristics are
expected but the participants thought this can easily be overcome after some
time (learning curve effect). It was added that an incentive may be needed to
convince the car purchaser, e.g. a subsidy or lower insurance costs.

The final aspect to be discussed was alternative fuels. A first fuel mentioned
was vegetable oil and hydrogen. For hydrogen it was immediately questioned
how safe its use is and if its technology is reliable. It was further added that
infrastructure needs to be adapted (gas stations). Solar energy and electricity
were also identified as alternative fuel, but again the infrastructure issue was
raised. Ethanol and methanol were identified as involving risk of life—although
it was immediately added that this was probably a psychological judgement
rather than a rational one. The analogy with LPG was made, where studies

121t may be useful to add here that no distinction between Euro classification for gasoline
and diesel was made—apparently the common denominator for both fuels suggests common
standards which is actually not the case.
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have proved that gasoline and diesel are actually less safe in use.!> However,
these fuels obviously do not provide a comfortable feeling to the car buyer.

Overall the alternative fuels were assessed as still too experimental at this
point in time. All in all there seems to be much uncertainty related to them:
at what cost will they come, how broadly will they be available, what will
be the reliability of the related technologies. More information is needed to
make a more thorough assessment.

In the last part of the focus group session a simulation exercise was con-
ducted. Two choice set setups were prepared based on the literature: one
containing three alternatives and another one with five alternative technolo-
gies. The setup with three alternatives was motivated based on the literature
review where most past research used this approach. A setup with more
alternatives however provides more information on the choice behaviour of
the respondent, but this also increases the cognitive difficulty of the choice
task, which in turn may result in a less deterministic choice behaviour. We
therefore decided to test such an extended setup in the focus group session
and to observe the participant’s reaction to both setups.

A small preliminary test of the designs had already been held before the
focus group session and some improvements (especially regarding layout)
had already been identified and implemented in the version proposed to the
focus group participants.

The choice sets were presented to the focus group participants and they
were asked to consider them. After the participants made their choice, the
choice sets were discussed. The main goal was to see if the design of the sets
was clear and if five alternatives wasn’t too difficult from a cognitive point of
view.

The number of questions for clarification indicated that unambiguous for-
mulation of the different aspects is necessary. It is important not to leave
too much space is left for interpretation by the respondents. This would
make estimation of a discrete choice model much more difficult (especially
considering the limited survey budget). Take as an example the car taxes, for
which the participants indicated that it should be clearly mentioned if they
are included or not in the cost figures provided in the choice sets.

As for emissions, an alternative formulation of this variable seemed impor-
tant. The design as it was presented in the focus group provided environmen-
tal costs per kilometre as a measure for emissions level, but this was confused
with a monetary user cost.

Fuel availability was included in the focus group choice set design. The dis-
cussion of the variable indicated that this was also a difficult one to represent
objectively. The participants indicated that the share of fuel stations having
the fuel was irrelevant for them: the only thing that matters is whether the

13We report this as discussed in the focus group—any studies suggested here are unknown to
us.
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station around the corner has it or not.

Finally there was some surprise for us when the participants indicated the
choice set with five alternatives to be an easier task compared to the one with
three alternatives. It was felt to be more realistic to have about five alternatives
when it comes to technology choice rather than just three. Although it was
added that there may have been a relation to the combination of levels of the
variables in the particular sets designed for the focus group.

1.5. Survey

In this section we discuss the survey design and implementation.

1.5.1. Targeted statistical population

The population for the survey are the households living in Flanders. We
include all households in the population: the current car ownership status of
the household is not considered. This means that we also include households
who own a second hand car of do not own a car at all at the moment of the
survey.

1.5.2. Observation method

The choice information is collected in a two phase survey conducted in spring
2004.1* A first phase (sample N = 257) invites the respondent to participate in
the survey, and collects some socio-demographic data, together with informa-
tion that should allow for customisation of the second phase (see 1.5.7). This
first phase is conducted making use of CATI'.

In the second phase the respondent is sent six (customised) choice sets by
mail.!® Each of these sets presents a choice between five alternative vehicle
technologies, with for each alternative a value for each technology variable. A
CATI is then used to ask the respondent which vehicle he would buy in case
the purchase of a new vehicle would be necessary at the time of the survey.
209 respondents completed the second phase of the survey.

A small pilot (N = 19) has been conducted in order to check the survey
procedures before the full test is held. The main result of the pilot was an
overhaul of the quality control procedures.

4This two phase approach is similar to what has been applied in most past research (see
section 1.3)

15Computer Aided Telephone Interview

16The design of the choice sets is discussed in section 1.5.7; a choice set example is provided
in appendix B.
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1.5.3. Sampling frame

In order to allow for representative survey results, a proper sampling frame
has to be chosen. This frame has to cover the statistical population as com-
pletely as possible.

The respondents are selected through a CATI in phase 1 by dialling ran-
domly selected listed phone numbers. This means that the frame for the
sample are the households in Flanders having a fixed telephone connection.
Limiting the dialling procedure to listed phone numbers allows to exclude
non-existing as well as non-residential phone numbers which greatly enhances
the efficiency of the selection procedure. It also allows to efficiently control
the urbanisation stratification variable.

The use of this frame has the disadvantage that people who have no (listed)
telephone number can not be selected. Households who have more than one
fixed line have theoretically more chance to be selected, be it that the second
line is probably mainly used for fax and/or internet use and thus won’t be
answered upon calling. Moreover, literature provided no evidence on the
existence of a correlation between car technology choice and the number of
fixed telephone lines. Nevertheless we have to take these disadvantages into
account when determining the sampling method to avoid a bias.

1.5.4. Sampling method

Different sampling methods are possible. The stratified sample seems to be the
most appropriate for our survey.

The stratification has been done on the basis of household income, as this
variable is relevant for car technology choice preferences. For Flanders, this
is a variable that is very difficult to determine directly in a survey, the risk
of ending up with no usable information is significant. This problem has
been addressed by using the standard demographic classification by ESOMAR
(1997). This methodology is used to determine the appropriate Social Grade
category of the Main Income Earner in the household (M.LE.). The Social Grade
variable is a composite variable based on:

e the occupation of the M.LE,;

¢ the Terminal Education Age of the M.LE., adjusted to incorporate any
further education or professional training completed by the M.LE. fol-
lowing a period of employment;

¢ in the case of non-active M.LLE.s, the Economic Status of the house-
hold, based on the household ownership level of ten selected consumer
durables.

We used a standardised questionnaire to determine the Social Grade
category of the respondents. For these categories, the average household
income is available from statistics.
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Further stratification is made regarding the respondent’s age, gender,
province and degree of urbanisation. We also included the choice set blocking
variable in the stratification process (see section 1.5.7).

We want each stratum to be represented proportionally in the survey. There-
fore the quota have to be calculated, based on the targeted total number of
respondents and the shares of the different strata in population statistics.
Filter questions have been added in the first phase in order to determine
the strata (see 1.5.6). The stratification quota were set based on the original
sample target for phase two, which was N = 150.1” As the response rate in
the second phase turned out to be higher than expected, a final sample of
N = 209 could be realised.

1.5.5. Sample Size

In the literature we find an indication of the number of respondents that
typically enter the data set used for estimation of technology choice variables.
An overview is provided in table 1.7.

Given the limited survey budget, we asked each respondent to deal with six
choice sets. This way, we were able to get 1254 observations (209 respondents,
6 sets per respondent).

The decision to send each respondent six choice sets involves some risk
by inducing correlation between in choices by the same respondent. For the
multinomial and nested logit specification, the estimation of standard errors
(and p-values) for the coefficients relies on strict independence between obser-
vations, and may therefore be understated. The estimation of the coefficient
values however will not suffer from this. Therefore the benefits of a larger
data set will more than outweigh this concern (Bunch et al., 1993).

7The variables enter the stratification uncrossed, that is: in the sampling procedure each strati-
fication variable is checked independently. Given the small sample size, a crossed stratification
would result in more strata than respondents.

Table 1.7. Data set size in literature

Study data set size
(number of observations)

Bunch et al. (1993) 3460

Brownstone and Train (1999) 4654

Ramjerdi and Rand (1999): main car model 1197

Ramjerdi and Rand (1999): second car model 945

Ewing and Sarigolli (1998) 7856
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1.5.6. Data collection procedures

Besides the questions that collect the data necessary for the model estimation,
we included some filtering questions in the beginning of the CATI in phase
1, in order to control the stratification of the sample. In case the quota for a
stratum have been reached, any further respondent belonging to that stratum
was refused to participate.

The initial sampling procedure randomly selects listed phone numbers
over the whole of Flanders (all provinces). However, when the quota for a
given province is reached, the sample procedure was adapted in order to
exclude the selection of telephone numbers that are geographically situated
in that province. This increased the efficiency.

1.5.7. Choice set design

The design of the choice sets for the survey is discussed in this section. These
choice sets include five vehicle technologies. Each respondent indicates for
each choice set the technology of his/her choice.

The design of the choice sets has to meet some objectives:'®

¢ minimise the level of cognitive difficulty;

e maximise the credibility of the choice alternatives;

¢ maximise the numbers and types of choice models (e.g. different nesting
structures, utility functions) that can be estimated from the final data
set;

* maximise potential simulation flexibility;

* maximise statistical efficiency.

In a first subsection we select the technology variables to be included.
In the second subsection, the levels of the variables in the choice sets are
fixed and in the last subsection we discuss how the levels of the variables are
combined in the final choice sets.

Technology variables

Earlier research on the topic (see section 1.3) provides us with an indication
of the technology variables that are relevant for the choice we want to model.
These variables proved to be significant in choice models estimated based on
stated or revealed preferences data.

We also use the focus group observation (see section 1.4) to identify the
variables considered by consumers purchasing a car.

Further, expert discussions have been held regarding which variables to
include.

18Based on Bunch et al. (1993)
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Finally simulations have been conducted in order to identify the number
of variables that can be estimated simultaneously given the limited budget
(and hence limited sample size).

All these considerations resulted in a final list:

* Engine type and energy source: the combination of these variables was
used to describe internal combustion engine technologies running on dif-
ferent fuels as well as fuel cell and battery electric technologies (see table
1.8 for an overview). In model estimation (see section 1.6) we will specify
a separate dummy!? for each technology.?’ For the internal combustion
engine technologies, the energy source can be gasoline, diesel, LPG?!
or an unspecified alternative fuel. Fuel cell technologies are defined as
running on the alternative fuel. Electrical battery technology is powered
with electricity and it was specified that batteries are recharged at home,
an operation taking several hours. For the other technologies, refuelling
time was defined as equal, fuel storage being as safe for all alternatives
and all fuels available at all service stations in Europe. We remind the
reader that an outcome of the focus group (see section 1.4) was the
decision that an unambiguous definition of all variables was necessary,
hence the sometimes rather extended specifications (see appendix B for
the exact formulation). We decided not to further specify the alternative
fuel because in the focus group methanol, ethanol etc. all sounded alike
for the participants, who added that they probably don’t know anything
about them at all.

* Power train (transmission): conventional or hybrid (for ICE?? only), in the
estimation we will include a dummy for hybrid transmission. Hybrid
was specified as a combination of an electric and internal combustion
engine driving the wheels. It was further specified that the internal com-
bustion engine recharges the batteries. Motivation for this specification
was based on the characteristics of the only hybrid car available on the
market at the moment of the survey (Toyota Prius), in order to avoid

1Where we discuss or apply discrete choice theory we will use the terminology that is
common in the literature (for instance K. E. Train, 2003). A dummy choice variable for alternative

j is a variable whose value in the representative utility of alternative i is @} = 1 for i = j and zero
otherwise. It could be understood as a binary variable.

20From equation (1.2) it is easy to derive that the coefficient of one alternative-specific dummy
is undetermined (linear combination of remaining dummies), we will hence omit the dummy
for gasoline. This results in dummy coefficient values to be relative to the gasoline internal
combustion engine technology.

2ITechnologies are represented as single-fuel in the choice sets. For retrofit LPG and CNG
cars, this assumption seems not to meet today’s common specifications, which allow the use of
gasoline. However, people owning such car are likely to use the alternative fuel most of the time
because that fuel is much cheaper in Belgium (otherwise they probably would not have retrofit
their car).

ZInternal Combustion Engine
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Table 1.8. Technology type represented by engine type and energy source in the survey
Technology Engine type Energy source

Gasoline Internal combustion  Gasoline

Diesel Internal combustion  Diesel

LPG Internal combustion LPG

Alternative fuel Internal combustion Alternative fuel (unspecified)

Battery Electrical Electrical energy from batteries

Fuel cell Electrical Fuel cells convert an alternative fuel into

electrical energy

confusion on the topic. We also refer to Burgwal et al. (2001) providing
some evidence that hybrid technology is evolving towards the use of
smaller battery units, used as a temporary power storage buffer only
and not allowing to recharge the batteries at home or at another place.

Purchase cost: purchase cost in euro including VAT and registration
taxes. It was indicated that bargains and subsidies were reflected in the
purchase cost.

Annual cost: annual cost in euro, all taxes included. Based on focus group
observations we formulate repair, maintenance and battery replacement
costs as an annual service plan fee included in the annual cost variable,
this reduces the risk perceived by the consumer related to the purchase
of new technologies. It was further specified that the frequency of
maintenance was the same for all technologies.

Fuel cost: fuel cost per kilometre in euro, including all taxes (excise and
VAT). It was specified that these fuel costs assume a normal driving
style.

Range: distance driven without refuelling, in km. Again we added that
this distance assumed a normal driving style.

Emissions level: damage by exhaust emissions from the car. The focus
group indicated that special attention should be paid to the formulation
of this variable. We decided to express emissions damage as relative to
the damage caused by the average new gasoline car sold at the moment
of the survey.??> To avoid further confusion the emissions damage of
the gasoline car in the choice sets was constant and specified as equal
to the level of the average car sold at the moment of the survey. For
diesel cars we specified emissions damage in a similar way as equal
to the level of the average diesel car sold. Motivation here was the
focus group observation that car buyers seem no to be informed on the

2This is a Euro 3 car.
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major difference in emission damage level of diesel relative to gasoline
technologies: we would have to specify levels of several hundred percent
to compare diesel to gasoline, this may not only introduce a cognitive
difficulty (percentages over 100% might be confusing), but it may fail
to reproduce the observed real world choice situation where consistent
information on the environmental damage difference diesel-gasoline is
absent.

o Trunk space: loss of trunk space because of technology related require-
ments, e.g. gas tank (not for ICE on conventional fuels), expressed as a
percentage relative to a gasoline or diesel car’s trunk space.

We also provide a motivation for the exclusion of some technology at-

tributes in the final choice set specification:?*

* Fuel availability: the focus group provided evidence that this is a variable
which is difficult to express.”> As a simulation exercise indicated that
with the given survey budget we might fail to estimate coefficients for a
too large number of variables, we decided to drop this variable from the
choice sets.

* Driving performance: the focus group indicated that a lot of technology
variables are linked to driving performance, making it more difficult
to provide a single measure that acts as a proxy for overall driving
performance. Further on, some of these variables such as engine size
(in litre) are closely associated with taxation levels and should hence be
avoided in a stated preference setting. We finally decided to exclude this
variable because earlier revealed preference research?® provides infor-
mation on the trade off between driving performance and purchase cost
for the Flemish market. This attribute varies amply over conventional
technologies and new alternative technologies will probably not fall
beyond observed values.

* Reliability: the focus group did not consider this variable in detail. It
was decided from the beginning to define all technologies as equal.

Based on the literature review and the focus group observation, we believe
that the variables that we finally selected for the choice sets describe the
technology choice decision to a sufficient degree.

24For these variables we specified in the survey that they do not differ over alternatives in the
choice sets.

ZMaybe we should add here that this variable is an attribute of service stations rather than
private car technologies. The interest of such a variable for analysis of choice behaviour and
policy simulations seems somewhat limited—more limited than for the other variables.

265ome references: Verboven (1996), G. De Ceuster et al. (2005)
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In the next section we will discuss the orthogonal setup of the variables
in the choice sets. It is important to note that as a result of this setup the
omission of one or more variables has no impact on the estimation of the other
variables, so even if we miss out on an important choice determinant, this will
not affect the assessment of the impact of the other variables on the choice
made. In the model estimation (see section 1.6) we will include some dummy
variables. The role of the dummies in model estimation is to capture all choice
preferences that could not be explained by the generic and/or interaction
variables.

We finally note that the number of variables (9) is smaller than what has
been applied successfully in literature (Brownstone and Train, 1999), so from
the point of view of cognitive difficulty we should be on the safe side.

Levels of the technology variables in the choice sets

Based on literature review and focus group results, we have chosen for a
design with five choice alternatives per choice set. Each choice set includes a
gasoline, diesel, LPG and an alternative fuel car. The fifth car is either a fuel
cell or a battery powered car.?’

We now have to fix two or three levels at which the different technology
attributes enter the choice sets. Two levels allow for a linear estimation only,
whereas for variables that have three levels a quadratic term can be estimated
as well.

The levels have to be specified in such way that they are meaningful to the
respondent on the one hand. On the other hand, the values of the attributes of
the technologies we want to simulate (see technological scope in section 1.2.1,
for a description of the technologies we refer to appendix D) have to be as
much as possible within the range we apply in the survey. The choice of three
levels for each variable should allow us to cover the range of interest and at the
same time allow us to estimate for non-linear effects. The range of levels has
thus to be chosen wide enough to allow for forecasting flexibility, but at the
other hand not too wide because that would undermine statistical efficiency as
well as the credibility for the respondent. Finally, domination of the variation
of one variable in the choice process should be prevented, e.g. if the variation
of the purchase cost is too big compared to the variation of the other variables,
the respondent may consider only purchase cost and as a result we would not
get any information on the influence of the other variables. Past research (see
section 1.3) provided an indication on the trade-off of the different technology
attributes.

The values used in the survey are presented in table 1.9.

?’This setup where two technologies each enter half of the choice sets is similar to the setup
by Bunch et al. (1993). We will have a closer look to possible consequences of such a setup when
we discuss the model estimation (see 1.6.3).
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The levels of the purchase cost are relative to the value of B, which is the
amount the respondent indicated in the first phase of the survey he/she
would spend in case the respondent had to buy a new car at the moment of
the survey, with a minimum of 10000 € and a maximum of 30000 €. In case of
non-specification, a default value of 10000 € was applied. This customisation
of the choice sets was introduced in order to enhance the credibility of the
choice task.?8

The annual costs were also defined proportional to B. The average value
of 15% of the average purchase cost is based on the TREMOVE 2 model
(G. De Ceuster et al., 2005).

All cost variables have been represented both in euro and Belgian franc,
as the focus group clearly indicated that people still commonly use the now
obsolete Belgian franc for valuation.

The exact layout and formulation (in Dutch) of the choice sets is provided
in appendix B.

Factorial design

The choice set setup results in eight variables with two levels and twenty vari-
ables with three levels. In this section we will discuss how the combinations
of the different levels for the final choice sets are designed.

When we would apply a full factorial design, this would result in a huge
number of runs. A full factorial would result in 3% - 2% runs, which falls
beyond any existential limits.

However, a full factorial design is necessary only in case we want to esti-
mate all (interaction) coefficients. For the purpose of the car technology choice
model we limit our focus to the main effects, assuming that all interaction
coefficients between variables in the choice sets are zero.

For that reason, we apply an orthogonal main-effect plan.?’ A main effects
plan for this design has been selected with SAS (SAS Institute Inc., 2001) and
is limited to 72 runs. This plan also included a blocking variable with twelve
levels (six choice sets per respondent).

In a final step, the choice sets are customised (cost variable B) and the
order of technologies as well as technologies variables are randomised within
each choice set, in order to prevent any order-related bias.

2The deliberately low default value avoids that the respondent is presented with cost values
that are too far beyond his or her budget.

2 An orthogonal main-effect plan is an orthogonal fraction of resolution III. In such a design
the levels of the variables are uncorrelated, which is a major advantage as it allows for uncorrelated
estimation of the coefficients in section 1.6, under the assumption that all interactions are absent.
A more extended discussion on the topic can be found in Day (1985).
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Table 1.9. Levels of the variables in the choice sets for each technology type

Variable Car 1 Car 2 Car 3 Car 4 Car 5
Engine ICE ICE ICE ICE Electrical
Energy Gasoline Diesel LPG Alternative fuel Batteries
Fuel cells
Transmission Conv Conv Conv Conv Electrical
Hybrid Hybrid Hybrid Hybrid
Purchase 0,85B 0,85B 0,85B 0,85B 0,85B
cost B B B B B
1,15B 1,15B 1,15B 1,15B 1,15B
Annual cost 0,135B 0,135B 0,135B 0,135B 0,135B
0,15B 0,15B 0,15B 0,15B 0,15B
0,165B 0,165B 0,165B 0,165B 0,165B
Fuel cost 0,05 0,05 0,05 0,05 0,05
0,07 0,07 0,07 0,07 0,07
0,10 0,10 0,10 0,10 0,10
Range 500 km 500 km 500 km 500 km 500 km
300 km 300 km 300 km
200 km 200 km 200 km
Emissions 100% Diesel 25% 25% 0%
50% 50% 0%
100% 100% 0%
Trunk space 100% 100% 100% 100% 100%
30% 30% 30%

1.6. Model estimation

In this section we use survey estimated choice models to analyse the choice
making behaviour.

To compare different models we use the log-likelihood statistic. This is a
strictly negative value, with a higher figure (or smaller in absolute value)
indicating a better model fit.

Any statement regarding significance of coefficients and model improve-
ments in this section is considered at p < 0,05.

Different variables will enter the estimation process, we will divide them in
three clusters (see table 1.10). First we have the generic variables, these are the
technology attributes that enter the deterministic utility Vj,,, as continuous
variables and for which no alternative-specific coefficients will be estimated
(i.e. one generic coefficient). Although given our factorial design (see section
1.5.7) it is possible to estimate alternative specific coefficients, we will limit
our analysis to generic coefficient estimations in order to limit the number of
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coefficients to be estimated.?’ This approach is in line with past research (see
section 1.3) where the focus was on generic coefficients.

The second group of variables are the dummies. They enter the determinis-
tic utility Vj,,, as a binary variable (value 0 or 1). These variables represent
the technology type (e.g. hybrid). Most of them are by definition alternative
specific, an exception being the hybrid technology dummy for which a generic
coefficient will be estimated.>!

The last group of variables are the interaction variables. These are generic
variables or dummies that interact with a respondent specific attribute (hence
the n in Vj,). We will motivate the selection of interaction variables further
down this section.

We will start with a simple multinomial logit specification, next move to a
nested logit setting and finally study mixed logit models.

30Note that the the selected factorial design (see table 1.9) treats battery and fuel cell tech-
nologies as a single alternative (Car 5) with the energy source as a variable. Because of the main
effects only factorial plan it would not be possible to estimate specific coefficient values for battery
or fuel cell technologies for the other variables (such as a battery-specific coefficient for range)
describing the alternative.

31Technically the dummies for fuel cell and battery are attributes of the fifth choice alternative
in the factorial design (see table 1.9). We will threat them in our analysis as if they were genuine
alternative specific dummies.

Table 1.10. Variables in model estimation

Generic variables Purchase cost
Annual cost
Fuel cost
Available luggage space
Emissions
Range
Hybrid

Dummies Diesel
LPG
Alternative fuel
Fuel cell
Battery

Interaction variables Emissions x woman
(diesel or alternative) x man
Battery x class<5
Luggage X class<5
Emissions x family size>3
Luggage x family size>3
(diesel or LPG or alternative) x family size<4
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1.6.1. Multinomial logit

A first multinomial logit specification is limited to the generic variables and
dummies which enter the deterministic utility Vj;,, in a linear way. The second
step is to allow for quadratic terms, after which we study the introduction of
interaction variables.

First Degree: the linear terms

The stated preference data set collected in the survey was first used to estimate
a multinomial logit choice model with all generic variables and dummies (see
section 1.5.7) entering the utility function in a linear way. We used the STATA
application (Stata Corporation, 2002) for all model estimations, the resulting
coefficients are in table 1.11.

We see that all the generic variables enter the model significantly. The
sign of their coefficients is acceptable. Negative signs are observed for all
cost variables and emissions, meaning that an increase in the value of these
variables decreases the deterministic utility Vj,,, of the choice alternative
(recall formula (1.2)).

The significance of the emissions coefficient together with the negative
sign shows that the respondents of the survey prefer cleaner cars over more
polluting ones all other things being equal. This result is in line with earlier
studies (see section 1.3). However, we should remind that we are working in a
stated preference setting. Batley et al. (2003) suggest that for this issue stated
preference results may differ from actual purchase behaviour. Respondents
may choose a socially-acceptable alternative rather than what they would buy
in a real world setting. Based on focus group findings a formulation for the

Table 1.11. Multinomial logit choice model

Variable Unit Coefficient p-value 95% conf. interval
Purchase cost 1000€ —0,1224 0 —0,1557 —0,0891
Annual cost 1000€ —0,5031 0,003 —0,8336 —0,1727
Fuel cost €/km —10,6868 0 —13,9568 —7,4168
Luggage space 0-1 0,9934 0 0,7044 1,2823
Emissions 0-1 —0,8575 0 —1,3075 —0,4076
Range 100km 0,2614 0 0,1852 0,3376
Diesel 0,4641 0 0,3145 0,6138
LPG —0,8228 0 —1,1633 —0,4822
Alternative fuel —0,3325 0,039 —0,6486 —0,0163
Fuel cell —0,1507 0,571 —0,6721 0,3707
Battery —0,4041 0,131 —0,9286 0,1203
Hybrid 0,0025 0,974 —0,1446 0,1496
Log likelihood —1751,8061
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emissions variable was chosen in order to avoid such associations as much as
possible (see section 1.4).

The 95% confidence interval provides an indication of the influence of
the sample size (209 respondents) on the estimation results: it indicates the
range around the estimated value in which the real coefficient (of the whole
population) is with a probability of 95% for a random sample. The confidence
interval is linked with the p-value: a 95% confidence interval that has 0 as
delimiting value will result in a p-value of 5%.

For the dummies only the diesel, LPG and alternative fuel coefficient differ
significantly from zero (p < 5%). This means that we could not measure
a significant preference (be it positive of negative) for fuel cell, battery and
hybrid cars that is not the result from differences in the values of the generic
variables (e.g. purchase cost). For the fuel cell and the battery cars this is
not too surprising, as these dummies concern only one choice alternative in
half of the choice sets, the amount of information on the influence of these
properties is hence limited. The hybrid dummy however is present for four
choice alternatives in every choice set. The hybrid property does clearly not
have a significant influence on the choice outcome. This finding is in line with
focus group observations. We will come back to the preferences for hybrids
in section 1.6.3.

Both the LPG and alternative fuel dummies have negative coefficients,
meaning that these choice alternatives have a lower deterministic utility Vj,,
compared to the gasoline alternative (which has no alternative specific dummy
and serves as the reference alternative) when all other properties are equal
(purchase cost, emissions, etc.). The diesel dummy coefficient has a positive
sign, which may be explained by reference dependence considering the large
share of diesel cars in the current stock (see section 1.6.3).

The willingness to pay (WTP) for a change in the value of the different
variables can be calculated by dividing the corresponding coefficient by the
purchase cost coefficient. The ratio of the coefficients of two variables is a
measure for the trade-off that is made by the respondent: the respondent is
indifferent to the corresponding changes as the net impact on deterministic
utility Vjy,, is zero (see formula (1.1)). The resulting WTP is shown in table
1.12 for selected choice variables.

For emissions we observe a willingness to pay of €701 for a 10% reduction
which is about half of what has been observed in California (Bunch et al.,
1993) or UK (Batley et al., 2003). For luggage space there is a willingness to
accept of €811 for a decrease in luggage space of 10%. Similarly a reduction
in range of 100 km is valued at €2136, which is in line with Batley et al. (2003)
and about half of Bunch et al. (1993).

The dummy coefficients provide rather high WTP estimates. There is
clearly opposition against LPG, which was somewhat expected based on
observed discussions in the focus group. It seems that LPG cars still bear
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Table 1.12. WTP in multinomial logit technology choice model (in €)

technology change WTP in €
reduction in trunk space of 10% (compared to diesel/gasoline car) —812
reduction in emissions of 10% (compared to gasoline car) 701
100km shorter range —2136
diesel instead of gasoline 3770
LPG instead of gasoline —6722
Alternative fuel instead of gasoline —2717

the negative image of bombs-on-wheels, although the focus group observation
indicated that factual information regarding technical safety records of retrofit
LPG cars did reach potential buyers. This is confirmed by the much lower
willingness to accept for alternative fuel cars: there seems to be no reason to
believe that they are more or less explosive than common LPG cars, the only
observable difference is the absence of the notorious LPG-label.

Second Degree: the quadratic terms

Further specifications of the multinomial logit model have been estimated in
order to include quadratic terms for the generic variables entering the choice
sets at three levels (see table 1.9). However, for most variables we could not
find any significant influence of the quadratic terms on the choice behaviour,
in contrast to e.g. Ramjerdi and Rand (1999) and Bunch et al. (1993).

The only exception is the annual cost variable for which the coefficient
of the quadratic term is significant. The estimated coefficients of the linear
and the quadratic term together however result in a positive relation between
annual cost and choice probability for the larger values of the annual cost,
which requires more detailed investigation. By dividing the population in
two clusters based on the value of B in the survey,*? we could explain the
quadratic term. By replacing the linear and the quadratic term by two linear
terms, one for B < 17500 and another for B > 17500, the estimation result is
further improved (Log Likelihood value). For the lower segment the linear
coefficient was significant, whereas for the upper segment it was not. This is
a more realistic result than the quadratic term specification.

However, even with the two linear terms the phenomenon remains difficult
to explain. Not all respondents did specify a value for B in the first phase of
the survey. The missing values in the data set have been replaced by a default
value of B = 10000 (see section 1.5.7). This way respondents who did not state
a value have been included in the lower segment in this estimation.

32We recall the reader here the definition of B: the amount the respondent indicated in the
first phase of the survey he/she would spend in case the respondent had to buy a new car at the
moment of the survey (see section 1.5.7).
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Because of the interpretation difficulties that may arise when including two
annual cost coefficients, we decided to stick to the original linear specification
of a unique coefficient in subsequent estimations.

Interaction: the respondent interaction terms

In this section we study the further extension of the multinomial logit estima-
tion by including interaction variables (or covariates).

Before we turn to estimating any model specification, we feel that we
should address two issues that largely limit the scope of the estimated interac-
tion effects.

A first issue relates to the size of the survey population. The survey population
is n = 209. Including an interaction variable (e.g. emissions x age<55)
comes down to estimating a separate coefficient for the corresponding generic
variable (or dummy) for each population cluster defined by the definition of
the interaction variable. Hence, one of both coefficients is estimated based on
results by 104 respondents or less. This still seems to be acceptable as long as
both clusters have more or less the same size. However, if we add a second
interaction effect that clusters the population along another determinant, we
get four clusters of which the smallest one can have less than 50 respondents
and this may be a too small sample. This is confirmed by some tentative
estimations showing that as one cluster becomes smaller this tends to result
in increasing log likelihood values, a likely indication of over fitting.

We therefore limit estimations to interactions with only one respondent
specific attribute, defined such that the smallest cluster for which the inter-
action effects are estimated still includes at least 25% of the respondents in
order to avoid over fitting.

The second issue relates to the scale factor which is included in the coef-
ficient estimates 3 and which reflects the variance of the stochastic utility
€jmn (see equation (1.3)). What we want to estimate here is how the trade
off between the car variables varies over segments of the population. If we
allow all technology variables to interact with a given respondent specific
attribute (e.g. age<55), we may end up with two coefficient vectors (one for
each population cluster) which only differ in the scale parameter. This means
that in such a setting the variance of the stochastic utility €jmn Varies over
the population rather than the trade off between the variables. Such an effect
where scaling effects are confounded with choice variable trade-off makes
coefficient estimation interpretations difficult and should be avoided. We
therefore decided not to consider interactions with the cost variables: by keep-
ing these coefficients constant over the population, we control for variation of
the scale parameter ¢ over the population.

The character of the estimation procedure changes somewhat when interac-
tion variables enter the model specification. Whereas the dummy and generic
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variables are uncorrelated® by design, this does not hold for the respondent
specific attributes. As an example we could consider the attribute gender and
head of family. The introduction of correlated variables makes the estimation
procedure less straightforward: whereas in an uncorrelated setting omitting a
variable should not influence the estimation results for the other variables 3
this is not longer the case with interaction variables which are correlated at
least in some way.

The scope of the interaction variables considered here is somehow limited.
First we decided to omit respondent specific attributes that are obviously
correlated to other attributes which are expected to have more explanatory
power. Next, we omitted some attributes for which not all respondents
provided a value, more specifically the B variable (see section 1.5.7) as well as
the intended mileage: the missing observations would further reduce the size of
the usable sample which seems a sufficient motivation not to consider them.

All these considerations limit the scope of potential estimation specifica-
tions.

We estimated specifications for different interaction variables. In table
1.13, 1.15 and 1.14 we present some of the more promising results, where
interaction variables group the respondents along gender, family size or
socio-demographic classification.

The first model (table 1.13) clusters the population along the gender vari-
able. Two interaction effects are added to the model and both are significant.
The results reveal that women care more about emissions than men do. The
coefficient of the generic emissions variable is not significant any more, hence
we decide that we did not find a significant preference for emissions for men.
As for diesel and alternative fuel cars, these are less preferred by man. The
remaining dummy for alternative cars is close to zero and insignificant, indi-
cating that women do not have significant preferences regarding alternative
cars.

If we compare the coefficients of the variables for which no interaction
effect was estimated to the values obtained in the original MNL model (see
table 1.11), we observe that they do not change significantly. This was expected,
as the choice set where designed such that the variables are uncorrelated (see
factorial design in section 1.5.7).

The specification of interaction effects along socio-demographic classification
(table 1.14) results in a model that has a somewhat lower log-likelihood value
than in the case of gender clustering. The interaction effects were defined

33This is not 100% correct, as some correlation has been introduced by customising the cost
variables and probably also by a slightly different response rate for different values of the blocking
variable. We however tested for the influence of this correlation by estimating partial multinomial
logit specifications and comparing the resulting coefficients to the full multinomial logit results.
This indicated that we can safely stick to the assumption of no correlation between generic
variables and/or dummies.

34This has been verified for our survey dataset.
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Table 1.13. MNL model with gender interaction effects

Variable Unit Coefficient p-value
Purchase cost 1000€ —0,1224 0
Annual cost 1000€ —0,5014 0,003
Fuel cost €/km —-10,7673 0
Available luggage space 0-1 1,0047 0
Emissions 0-1 —0,4157 0,089
Range 100km 0,2648 0
Diesel 0,7567 0
LPG —0,7843 0
Alternative fuel —0,0469 0,790
Fuel cell —0,1137 0,670
Battery —0,3597 0,180
Hybrid 0,0028 0,970
Emissions X woman 0-1 —0,8502 0
(diesel | alternative) x man —0,5239 0
Log likelihood —1734,6794

Table 1.14. MNL model with social class interaction effects

Variable Unit Coefficient p-value
Purchase cost 1000€ —0,1239 0
Annual cost 1000€ —0,5036 0,003
Fuel cost €/km —10,7551 0
Available luggage space 0-1 0,4077 0,034
Emissions 0-1 —0,8680 0
Range 100km 0,2648 0
Diesel 0,4646 0
LPG —0,8154 0
Alternative fuel —0,3199 0,048
Fuel cell —0,1405 0,598
Battery —0,1730 0,553
Hybrid 0,0031 0,967
Battery x class<5 —0,4616 0,041
Luggage X class<5 0-1 1,1455 0
Log likelihood —1736,1368
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based on the socio-demographic classification of the respondent: the four
lowest classes of the ESOMAR standard (see section 1.5.4) were included in
the interaction, this corresponds to 59% of the respondents.

We observe that the lower classes care more about luggage space, and
dislike battery cars more than the higher classes do. Both effects are significant,
but it is unclear if they tell us much.

A third interaction effects model studies interaction with family size and is
presented in table 1.15.

From the table 1.15 we observe that respondents from larger families care
more about emissions and value luggage space more positively. Respon-
dents from smaller families tend to be more negative towards diesel, LPG or
alternative fuel vehicles.

The gender based interaction specification has the best estimation statistic
(log likelihood), we hence decide to stick to this setup in further estimations.

In past studies, household income proved to have a significant influence
on car technology choice. However, it is also a variable that is very difficult
to measure in a survey. To avoid running the risk of failing to measure
household income, we made use of a standardised demographic classification
by ESOMAR (see section 1.5.4). For each ESOMAR class, the average income is
determined based on population statistics. We have tested different modelling
specifications for the income variable specified as a continuous variable (not
discrete) interacting with dummy technology variables, however no significant
influence on purchase behaviour was found. Probably the size of the survey
is too small to provide enough variance across respondents.

Table 1.15. MNL model with family size interaction effects

Variable Unit Coefficient p-value
Purchase cost 1000€ —0,1235 0
Annual cost 1000€ —0,4988 0,003
Fuel cost €/km —10,7843 0
Available luggage space 0-1 0,7549 0,034
Emissions 0-1 —0,5964 0,013
Range 100km 0,2635 0
Diesel 0,8942 0
LPG —0,3931 0,049
Alternative fuel —0,0979 0,605
Fuel cell —0,1107 0,679
Battery —0,3439 0,201
Hybrid 0,0069 0,927
Emissions x family size>3 0-1 —0,6772 0
Luggage x family size>3 0-1 0,6619 0,028
(diesel | LPG | alternative) x family size<4 —0,6251 0
Log likelihood —1738,4169
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1.6.2. Nested logit

The next step in model estimation is to switch to a nested logit specification.
This allows for correlation in unobserved preferences (stochastic utility) for
different alternatives in the same choice set.

In estimating nested logit specifications,” we tested for several nesting
structures but only one was found to result in a significant better modelling
structure ()x-square test on log-likelihood with one degree of freedom): all
internal combustion engine technologies in a nest (see figure 1.1). The model
coefficients are shown in table 1.16.

Comparing our modelling results to past research, we note that the nesting
structure identified by Ramjerdi and Rand (1999) and Bunch et al. (1993) is
similar to what we observed.

The further interpretation of the model coefficients will not be discussed
here, as most conclusions on the significance, signs and WTP-values observed
in the multinomial logit model still hold. Only alternative-specific dummies
do show some changes.

The log-sum coefficient (see appendix A) is a measure for the correlation
in unobserved preferences (or stochastic utility) for the alternatives in the
nest. We should however stress here that in the nested logit specification,
different choices are considered as independent. Correlation hence concerns
only alternatives in the same choice set. This is a drawback as it seems realistic
to assume that correlation in preferences is much stronger at the level of the
respondent rather than at the choice set level. To overcome this limitation of
the nested logit model, we will continue our analysis with the mixed logit
specification.

35

35For nested logit estimation, the nlogitrum command in Stata was used to ensure consistency
with random utility maximisation (Heiss, 2002)

Technologies

Internal combustion engine | Battery | Fuel cell

Gasoline Diesel LPG Alternative fuel

Figure 1.1. Nesting structure
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Table 1.16. Nested logit choice model

Variable Unit Coefficient p-value
Purchase cost 1000€ —0,0971 0
Annual cost 1000€ —0,3955 0,004
Fuel cost €/km —8,3326 0
Available luggage space 0-1 0,8824 0
Emissions 0-1 —0,2848 0,125
Range 100km 0,2270 0
Diesel dummy 0,5351 0
LPG dummy —0,4879 0,002
Alternative fuel dummy —0,0367 0,775
Fuel cell dummy —0,3489 0,775
Battery dummy —0,5974 0,009
Hybrid dummy 0,0090 0,869
Emissions X woman interaction —0,6589 0
(diesel | alternative) x man interaction —0,3653 0,001
A (log-sum) 0,7058 0
Log likelihood —1731,8291

1.6.3. Mixed logit

The major enhancement of the mixed logit specification over NL or MNL for
the analysis of our stated preference data set is that allows to account for the
repeated choice character: every respondent answered six choice sets.>® The
structure of the data is illustrated in figure 1.2.

The different mixed logit models described in this text have all been
estimated making use of the gllamm command®” in Stata.

We recall equation (1.5) for the utility Uj,, in a mixed logit setting, allow-
ing for distributed coefficient values: a here contains the mean value of the
coefficient, whereas the variance is captured by the error terms y; (which in
turn have mean zero).

The estimation of mixed logit model specifications is computationally more
demanding than the nested logit or multinomial logit, due to the absence of
a closed form expression for the choice probabilities (see appendix A). This

36There are various ways to address issues in estimation related to repeated choices in the
observations. One way is to allow for correlation structures by specifying the deterministic part
of utility accordingly. This can be done by introducing covariates (choice variables that interact
with respondent specific attributes) as demonstrated in section 1.6.1. An alternative would be to
estimate respondent-specific coefficients g, provided that enough choice information is available
at the respondent level (barring a blocked setup as applied in our survey). A more generic way
is to allow for correlation in unobserved choice preferences (represented by random utility in
discrete choice models). The multinomial and nested logit specification of random utility do not
allow for the appropriate correlation structures by definition, therefore the application of a mixed
logit specification is required.

37Rabe-Hesketh (2005); applications to discrete choice data are discussed in Skrondal and
Rabe-Hesketh (2003, 2004)
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N respondents
(N=209)

v

M choice sets per respondent
(M=6)

v

J alternatives per choice set
=5

Figure 1.2. Structure of stated preference data set

precludes the estimation of a mixed logit specification including several error
terms yn.38

The approach we applied is to look first at error terms p, for the dummies
and generic variables one by one.?’. Such an approach may seem to be rather
rough, but we should remind here that the levels of the variables in the choice
sets are uncorrelated as they have been fixed using an orthogonal plan. The
estimation of the different mixed logit specifications is provided in table 1.17

We should add here that the approach applied misses out on covariance,
however in most past research error terms 1, have been specified as indepen-
dent. We will come back to the issue of covariance when we study selected
combinations of error terms.

The variance of the error term y; of the dummy variable for gasoline, diesel,
LPG, alternative fuel, fuel cell and battery is significant and provides for a
considerable improvement of the model fit. The improvement in log likelihood
value (compared to the MNL specification with interaction variables) is of a
much larger order of magnitude than what we could attain with the nested
logit specification, indicating that by modelling correlation in stochastic utility
at the respondent level rather than at the choice set level results in a more
realistic modelling of the choice behaviour.

If we look into the mean coefficient values a (not reported here), we observe
that these are generally larger in the mixed logit estimations compared to
the multinomial logit specification. This is a scaling effect: larger a values

3There are some possibilities to speed up model estimation. First the combination of gllamm
and Stata version 7 is not optimised, later versions should do the job in less time. Alternatively
other software may allow for shorter estimation times, e.g. the open source application Amlet
(Bastin, 2004) which implements a different and probably more efficient numerical approach.
Finally as faster computers become available estimation speed should go up as well—estimations
discussed here were ran on computers with CPU speed varying from 0,4 to 1,5 GHz.

3This comes down to fixing the variance of all but one error terms i, to zero.
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Table 1.17. Mixed logit specifications with one error term

Error term py, Variance of i, Log-Likelihood
value p-value value p-value

Gasoline 5,09 0,000 —1614,1 0,000
Diesel 6,76 0,000 —1549,3 0,000
LPG 1,84 0,001 —-1717,7 0,000
Alternative fuel 1,45 0,001 —1718,0 0,000
Fuel cell 6,59 0,000 —1687,4 0,000
Battery 7,00 0,001 —1694,2 0,000
Hybrid 0,11 0,381 —1734,2 0,320
Purchase cost 0,20 0,711 —1734,6 0,698
Annual cost 1,00- 10712 1,000 —1734,7 1,000
Fuel cost 0,01 0,994 —1734,7 1,000
Range 0,51 0,000 —1668,5 0,000
Emissions 9,73 0,000 —1548,4 0,000
Luggage 5,63 0,000 —1702,7 0,000

indicate a smaller variance on the i.i.d. €,; term: this variance is now captured
by the error term y,. This is in line with the observation that the larger the
improvement in log-likelihood, the larger the scale effect: a smaller variance in
€yj generally indicates that the choice process is better captured by the other
utility terms (&' Xy + 3y Xjmn)-

The absolute value of the variance of the gasoline, diesel, fuel cell and
battery error term p; does not differ significantly. The value itself is rather
large compared to the order of magnitude of the corresponding dummy
coefficients a. This indicates that there is a large variance in fuel-based
preferences over the respondents: some respondents apparently would buy a
diesel car without really considering the other alternatives. It is somehow in
line with the focus group observation that car buyers link fuel to a lot of other
car attributes (like driving behaviour) and that the choice for a fuel may be
inspired by e.g. family tradition.*?

In a comparable way the value of the variance for the LPG and alternative
fuel dummy error term y, do not differ significantly, but the value itself is
much smaller than for the other technology specific dummies.

If we look into the mixed logit model specification with an error term
#n on the dummy for hybrids, we observe that the variance of this error
term does not differ significantly from zero. Again we can not identify any

40 An issue that is not considered here is the inclusion in the model of a decision variable
that represents current vehicle ownership. Literature on reference dependence (Kahneman and
Tversky, 1979; List, 2004) suggests that respondents may have status quo bias. In our model
estimations the technology dummies account for the influence of current (aggregate) technology
shares on technology choice, without however making this relationship explicit at the level of the
individual respondent.

38



Modelling the choice for alternative cars

significant preference for the hybrid car variable. As the values of this variable
in the choice sets is uncorrelated with the values of the other attributes, we
can draw the conclusion that we obtain a result that is identical to what we
would have obtained if we did not include the variable in the choice sets (but
did include it in the estimation procedure).

The model estimations where an error term is added to the coefficients of
the cost variables do not result in a significant improvement of the model fit
statistic (LL). At first sight this is in line with our assumption that we should
keep the coefficient cost variable fixed over all respondents. However, there
is an additional consideration to be made here. The distribution of the error
term in the models presented in table 1.17 is normal, the gllamm procedure in
Stata not allowing for a different specification. For the dummy variables this
seems not problematic, as we did not expect a specific sign for their coefficient
value. For cost variables this expectation does not hold: a negative coefficient
value is not acceptable. In such case a log-normal distribution would be more
appropriate, but lacking this possibility in the software solution used in this
study we decided to limit the analysis here.*!

As for the remaining generic variables (luggage space, emissions and range)
the addition of an error y,, term does result in a significant improvement of
the model fit. Apparently the default of a normally distributed error term did
allow here for a model improvement, although the same consideration as for
cost variables that a change in sign seems unrealistic applies here. Especially
for emissions the improvement in model fit is rather large.

Now that we have discussed a one-by-one estimation of error terms y,, we
will focus somewhat more on selected combinations of dummies in order to
better understand the correlation in the stochastic utility. We will specify error
terms i, for two variables which are not independent (the error terms). This
results in the estimation of three coefficients: the variance of the two error
terms and the covariance.

In a first exercise we go back to the observation by Batley et al. (2003) that in
their survey the respondents could clearly identify the (unlabelled) alternative
car through the survey design. In our setup we analogously wonder whether
a fifth car effect plays for the fuel cell and battery car. Considered the strong
fuel related preferences, it seems realistic to expect that respondents identified
the fuel cell or battery car as the fifth car in the choice sets and hence expect
them to be somehow similar.*?

To study this behaviour, we define two error components i, one for
battery and one for fuel cell, and allow for covariance. The resulting model is
presented as Model A in table 1.18.

#10ther software solutions such as Amlet (Bastin, 2004) do provide for the possibility of
log-normal distributed error terms

“2We recall here that as opposed to gasoline, diesel, alternative fuel and LPG technologies
which entered all choice sets, the fuel cell and battery car technologies alternated and each
entered only half of the choice sets.
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Table 1.18. Mixed logit model for battery and fuel cell technologies

Model A Model B

Variable Unit Coefficient  p-value Coefficient p-value
Mean value w
Purchase cost 1000€ —0,1454 0 —0,1453 0
Annual cost 1000€ —0,5854 0,001 —0,5878 0,001
Fuel cost €/km —12,5772 0 —12,5759 0
Available luggage space 0-1 1,3461 0 1,3428 0
Emissions 0-1 —0,4985 0,065 —0,4953 0,065
Range 100km 0,3530 0 0,3528 0
Diesel 0,7752 0 0,7752 0
LPG —0,6403 0 —0,6387 0
Alternative fuel 0,1356 0,455 0,1368 0,450
Fuel cell —0,9363 0,017 —0,9673 0,008
Battery —1,3403 0,001 —1,4399 0
Hybrid —0,0219 0,780 —0,0227 771
Emissions X woman —0,8349 0 —0,8351 0
(diesel | alternative) x —0,5458 0 —0,5461 0
man
Variance of error term iy
Fuel cell 6,6958 0
Battery 6,3234 0
(fuel cell | battery) 6,7274 0
Correlation of error terms yy

0,9864 0,001
Log likelihood —1602,0355 —1601,6083

We observe a correlation of 98,6%, which means that the variation over
respondents in preferences for fuel cell and battery technologies is practically
fully correlated. Technically this correlation could be attributed to the battery
and fuel cell cars not being equipped with an internal combustion engine as
opposed to the other technologies (this was indicated as such in the survey).
Given the strong fuel related preferences for the internal combustion technolo-
gies, we however attribute (at least part of) the correlation to the fifth car effect
induced by the survey design.*?

The near-perfect correlation together with the level of the variance of
both error terms being of the same order of magnitude motivated us to re-
estimate the model with one error term y,, for all non-ice* technologies. The

43The choice sets in the survey all include five cars. Whereas all choice sets include a diesel,
gasoline, LPG and CNG car, the fifth car alternated between electrical battery and fuel cell
technology. With the fifth car effect we indicate the possible perception by the respondent that
electrical battery and fuel cell technology may have something in common as they alternate in
the choice set as opposed to the other technologies.

#Internal combustion engine
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estimation results of this specification are presented as Model B in table 1.18.
As expected this results in a model that behaves roughly identical to Model
A. The improvement in log-likelihood however seems to be an aberration:
this is technically impossible and should hence be attributed to the numerical
approach algorithm implemented by gllamm. It provides an indication of
the accuracy of the numerical calculation.*> Assuming that both models have
about the same log likelihood value, we can draw the conclusion that no
improvement is attained by introducing two estimation variables and hence
the simpler model does the job.

A second exercise studies the correlation in preferences for conventional
diesel and gasoline technologies. We again define two error components and
allow for covariance in the estimation procedure. The resulting model is
presented as Model A in table 1.19.

We observe a correlation of 43% for the variance in preferences for diesel
and gasoline alternatives over technologies. The variance itself does not
differ significantly between both fuels. The increase in log-likelihood is
considerable—this is the best model fit we obtained so far.

To check for the impact of the correlation level on the model fit, we es-
timated a similar model where both error terms for diesel and gasoline are
defined independently (zero correlation) and their variance is set equal. This
model is presented as Model B in table 1.19. Comparing the log-likelihood val-
ues we decide that Model A is significantly better (at p < 0,05 for two degrees
of freedom) than Model B—however, we should here recall the inaccuracy of
the numerical approach which may influence this judgement on significance
as the increase in log-likelihood is not large.

We finally revisit the implicit willingness-to-pay for selected choice variables
and now calculate these figures based on Model A from table 1.19. The
resulting values are presented in table 1.20.

We observe willingness-to-pay values for the generic variables which are
generally somewhat smaller (in absolute value) than our results based on a
multinomial logit estimation (see table 1.12). Values for the dummy variables
are slightly different, although this can be explained by the interaction terms
which were not considered in the multinomial logit results. We should here
recall that the values for diesel are average values, as for this variable an error
term y,, was added in the mixed logit estimation.

1.7. Conclusions

In this chapter we studied the design and implementation of a private car
technology choice survey. The stated preference data collected allowed for the

1t is possible to rise the number of integration points in gllamm. However, calculation time
is roughly proportional to n™ where 1 is the number of integration points and M is the number
of random effects, enhancing the accuracy thus results in fast-increasing time requirements.
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Table 1.19. Mixed logit model for gasoline and diesel technologies

Model A Model B

Variable Unit Coefficient p-value Coefficient p-value
Mean value «
Purchase cost 1000€ —0,1851 0 —0,1846 0
Annual cost 1000€ —0,8029 0 —0,8018 0
Fuel cost €/km —15,8720 0 —15,9077 0
Available luggage space 0-1 1,1743 0 1,1584 0
Emissions 0-1 —0,3463 0,211 —0,3368 0,220
Range 100km 0,3154 0 0,3098 0
Diesel 1,0528 0 1,3082 0
LPG —0,4094 0,156 —0,0525 0,854
Alternative fuel 0,4468 0,140 0,8083 0,007
Fuel cell 0,3411 0,351 0,6949 0,055
Battery 0,0408 0,911 0,3982 0,271
Hybrid 0,0354 0,708 0,0342 0,719
Emissions X woman —1,2162 0 —1,2198 0
(diesel | alternative) x —0,6917 0,001 —0,7045 0,002
man
Variance of error term py,
Diesel 7,9736 0 6,4510 0
Gasoline 6,0151 0 6,4510 0
Correlation of error terms

0,4262 0,005 0
Log likelihood —1440,327 —1445,9411

Table 1.20. WTP in mixed logit choice model (in €)

technology change WTP in €
reduction in trunk space of 10% (compared to diesel/gasoline car) —634
reduction in emissions of 10% (compared to gasoline car) 657
100km shorter range —1704
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design and estimation of a range of discrete choice models for Flanders to
analyse preferences for alternative technologies.

The methodology applied allowed to estimate significant coefficients for all
generic variables regardless the limited sample size. This includes a variable
for emissions, indicating a willingness to pay for cleaner cars.

For hybrid cars, no significant preferences could be detected.

Mixed logit specifications are more flexible and allow to account for the
repeated choice character of our data set. Hence a better fit was obtained than
with multinomial or nested multinomial specifications.
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CHAPTER 2 I

Simulating the market for alternative
cars

2.1. Introduction

The research and development of a broad range of alternative fuels and private
car technologies has received much attention in recent research (overviews of
alternative fuels and technologies are provided by Arcoumanis, 2000; Burgwal
et al., 2001; IEA, 1999; Verbeiren et al., 2003). While some technologies are still
at an experimental stage (e.g. fuel cell), others have matured and are being
introduced on the market (e.g. hybrid power trains).

The environmental performances of alternative technologies are generally
better than conventional cars. This raises the question if and how the authori-
ties should act in order to increase the market share of the new technologies.
Different policy options exist, including subsidies or taxes, the (partial) ban-
ning of the more polluting conventional technologies etc. Hence the need
emerges for a flexible simulation tool that allows for an assessment of the
impact of different policy measures on consumer behaviour. In this chapter
we discuss the design of a model for the simulation of the preferences for
private car technologies in Belgium. The scope of the model includes both
conventional and alternative car technologies.

Discrete choice theory (Anderson et al., 1992; Ben-Akiva and Lerman, 1985;
K. Train, 1986/1990; K. E. Train, 2003) provides a modelling framework for
the analysis and simulation of private car technology choice. As discussed
in chapter 1, the analysis of choice preferences for alternative technologies
commonly uses stated preference data. The repeated choice character of such
a stated preference data set requires a mixed logit specification in model
estimation, a finding in chapter 1 that is in line with e.g. Batley et al. (2003).

The advent of more powerful computers has removed the barrier of compu-
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tational demands of the mixed logit specification in model estimation, resulting
in several applications of the mixed logit model in analysis of the choice for
alternative technologies (e.g. Batley et al., 2003; Brownstone and Train, 1999).
In simulation however the picture is somewhat different. The absence of a
closed expression for the choice probabilities makes the mixed logit framework
inflexible compared to the multinomial and nested multinomial logit model,
especially if the technology choice model is to be included in a larger transport
activity model. Moreover, in simulation there is no need for a repeated choice
setting, making the choice for a mixed logit specification less obvious. Recent
applications in technology choice simulation show that the implementation of
nested logit specifications is common, examples include COWI A/S (2002) and
De Borger and Mayeres (2004).!

The literature provides examples of mixed nested logit models. K. E. Train
(2003) mentions the possibility of estimating a mixed logit model that provides
correlation-substitution patterns similar to those of a nested logit model. An
application can be found in Batley et al. (2003) where the mixed logit model is
used to re-estimate and extend a nested logit specification. There seems not
to be an implementation of the mixed nested logit approach in a simulation
application as of writing this chapter.

A next issue in simulation is the use of stated preference data for model
estimation. Stated preference data have many benefits over revealed prefer-
ence data, the latter typically showing heavy correlation in choice variables
(Brownstone et al., 2000). However, the major drawback of stated preference
data is the absence of any guarantee that they reflect real world behaviour.
This problem raises the question on the possibilities to combine best of both
worlds. Joint revealed and stated preference estimation procedures have
been discussed by e.g. Ben-Akiva and Morikawa (1997) for multinomial logit
models and Brownstone et al. (2000) for mixed logit models.

In our approach to the topic we will explore the possibilities to combine
mixed logit in estimation and nested logit in simulation. The stated preference
data set collected by the survey discussed in chapter 1 will serve as a base for
model estimation.?

We will specify a mixed nested logit choice model accounting for the

11t should be noted that the examples referenced here simulate the choice for conventional
technologies rather than alternative ones. For the analysis of preferences for conventional
technologies the use of a revealed preference data set is common. The absence of the repeated
choice characteristic makes the choice for mixed logit specifications less straightforward, in
literature we commonly find nested logit specifications in this setting (e.g. COWI A/S, 2002;
De Jong, 1996; Verboven, 1996).

2The geographical scope of the simulation model developed in this chapter is the Belgian
car market, whereas the dataset collected in chapter 1 only cover technology choice observations
by Flemish car users. The choice for the scope of the simulation model is motivated by the data
requirements for the calibration of the TREMOVE vehicle stock model which are more easily
(and consistently) met at the Belgian level rather than the level of the Flemish Region. The
implicit assumption in this chapter is hence that our stated preference technology choice dataset
is representative for the entire Belgian market.
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repeated choice setting and using the insights on correlation-substitution
patterns identified in our analysis in chapter 1. Next we show how the
estimation results can be used to design an efficient and flexible nested logit
simulation tool. This is an innovating application of the nested mixed logit
model.

The mixed nested logit specification provides a modelling framework that
allows for the repeated choice character of the survey data set. Additionally,
we show how we can use the mixed nested logit model in estimation to
identify correlation-substitution patterns that are more complex than in a
pure nested logit specification. Using this information allows to design a
nested logit simulation tool that models an extended structure of correlation
in preferences for alternatives.

In a second step we study the integration of the stated preference sim-
ulation model with a revealed preference choice model for conventional
technologies.> We show how the approach discussed in literature can be
extended to allow for the integration of two nested logit models.

The joint revealed and stated preference estimation of discrete choice
models combines the strong points of both approaches. We discuss how
this methodology can be extended to nested logit and show how correlation-
substitution patterns identified in both data sets can be combined in the
integrated model.

Our final technology choice model covers a rather extended range of
alternative as well as conventional technologies. Its nested logit specifica-
tion allows for flexible application and integration in the framework of the
TREMOVE 2 transportation model. In chapter 3 we will discuss a simula-
tion (including a welfare assessment) of the environmental potential of the
alternative technologies.

The structure of this chapter is as follows. In a first section we provide a
concise introduction on the topic of discrete choice theory.

A subsequent section focuses on the design of a flexible choice simulation
tool based on stated preference data (survey chapter 1). The section compares
the nested logit to the mixed nested logit model and in a next step enhances
the model specification to account for the repeated choice setting. In a final
step it concludes with the design of a nested logit simulation tool based on
the mixed nested logit estimation results.

In the following section we provide a methodology to integrate our stated
preference model with the TREMOVE 2 revealed preference model. In a first
step the revealed preference model is introduced and we show how we can
compare it to our stated preference based simulation tool (developed in the
previous section). In a second step both nested logit simulation models are
integrated.

3The revealed preference choice model used in this chapter is based on TREMOVE 2
(G. De Ceuster et al., 2005).
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In a final section we draw conclusions.

2.2. Discrete choice

Discrete choice theory provides a broad range of modelling frameworks. An
extended introduction on the topic is provided in appendix A. An in depth
discussion on discrete choice theory can be found in Anderson et al. (1992);
Ben-Akiva and Lerman (1985); K. Train (1986/1990); K. E. Train (2003).

The consumer who considers the purchase of a car faces a discrete choice
problem. Discrete choice theory models the probability that a consumer n
chooses a given alternative j in choice situation* 7 as a function of the random
utility Ujy,y of the alternatives, expressed as:

ujmn = ijn + €jmn (2.1)
where:

® Vimn: the deterministic part of the utility for alternative j as obtained
by consumer # in choice situation m—we will in this section assume
that Vi, is linear in parameters: Vj,,, = B Xjmn With B a vector of
coefficients and x;,,, a vector of decision variables relating to consumer
n and alternative j in choice situation m;

* €jun: the stochastic part.

The consumer then chooses the alternative with the highest utility (utility
maximisation).

The multinomial logit model (MNL) assumes a Gumbel distribution with
variance 02712 /6 for the stochastic utility €j,,,. As we can see from expression
(2.1), any linear transformation does not affect the choice probabilities. This
makes it impossible to identify the value of the scale parameter o of the
stochastic part separately from the coefficients § of the deterministic part. In
estimation the utility Uj,, is scaled by a factor 1/¢ which normalises the
variance of the stochastic part to 772/6. The estimated coefficients  include
the scale parameter ¢ of the stochastic utility:

p=p/c 22)

Appendix A discusses how the scale parameter of two independent model
estimations can be compared using the ratio of their respective coefficient
estimates j.

The nested multinomial logit model (NL) extends the multinomial logit
specification by allowing for correlation in unobserved preferences (stochastic
utility) for a subset of alternatives. A partition structure defined by the

4The index for choice situation m is introduced here to account for the repeated choice
character of survey data.
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researcher groups the alternatives in subdivisions or nests S;...Sk. The
utility U, of alternative j in nest k can be expressed as:

ujmn = ijn + Nkmn + €jmn (2.3)
—_————

stochastic utility
with:

* Vimn the deterministic (observed) utility of alternative j;

* €jmy independent for all alternatives j, choice situations m and respon-
dents n;

* #kmn independent for all nests k, choice situations m and respondents #;

® €jmy iid Gumbel distributed with scale parameter Ay B

® 1kmn distributed so that max;cs, (Ujy,) is Gumbel distributed with scale
parameter ¢ normalised to unity.

For each nest k the parameter A, (0 < A < 1) is a measure for the
correlation between the alternatives in nest k, with values closer to unity
indicating less correlation.

The choice probability Pj,;, of alternative j (in nest k) in choice situation m
by respondent 7 can in a nested logit specification be expressed as:

e/\klkmn EB/xjmn /)\k

Py = 2.4
jmn Zszl eAilimn elkmn ( )

with I, the inclusive value of nest k, defined as:
L = In Y €Vimn/ 2 (2.5)

J€SK

The mixed logit model (ML) is a further extension to the multinomial logit
that provides a very flexible modelling framework. It defines the utility Uj,

of alternative j in choice situation m by consumer 7 as:®
/ !/
ujmn = & Xjmn + Hjmn Zjmn + €jmn (2.6)
—_————

stochastic utility
with

* « a vector of fixed coefficients

® Hjmn a vector of random terms with mean zero and probability distribu-
tion f (), any distribution can be used (independence over j, m or n
is not a necessary condition)

5In fact Ay is defined as 0y /¢ with ¢ the scale parameter of max;es, (Uju,) (here normalised
to unity) and o the scale parameter of €,
6We limit here to the case of linearity in choice variables in order to keep the notations simple.
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2.3. Stated preference model estimation

* Xjmn and zjy,, vectors of observed variables

® €jmy 11.d. Gumbel distributed with scale parameter ¢ normalised to unity
(independent over all alternatives j, choice situations m and respondents
n)

The vector zj,;; may or may not include the same variables as x;,,, de-
pending on the correlation pattern studied.

2.3. Stated preference model estimation

In this section we will discuss the design and estimation of a simulation tool
based on the stated preference data set we collected in the survey discussed
in chapter 1. The structure of the data set is presented in figure 2.1.

We will start with a simple nested logit model. In the second subsection we
have a closer look to the mixed nested logit model and explore a methodology
that allows us to improve our nested logit simulation tool using mixed logit
estimations. In a first step we use the mixed nested logit specification without
accounting for the repeated choice character of the data set in order to allow
for a comparison with the pure nested logit estimation of the first subsection.
In a next step we upgrade the mixed nested logit specification in order
to account for the repeated choice setting and to refine the substitution-
correlation patterns. The last subsection discusses the technological scope of
our simulation tool.

2.3.1. Nested logit

A nested logit model has been estimated in chapter 1. To allow for an
integration in the TREMOVE modelling framework (see section 2.4) we will

N respondents
(N=209)

v

M choice sets per respondent
(M=6)

v

J alternatives per choice set
(/=5)

Figure 2.1. Structure of stated preference data set
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however propose two changes in the specification. The first change is to drop
the interaction variables, as they seem of no direct use in our application (see
chapter 3 and beyond).”

A second change is the introduction of a single composite user cost variable.
The lifetime cost per kilometre of alternative j aggregates the three cost based
variables:®
chmn(lﬁj%i + ACjmn

dn

LFCjyy = + FCipu 2.7)

with:

® PCjyy the purchase cost of alternative j in choice set m of respondent n;

* ACjmn the annual cost of alternative j in choice set m of respondent 7;

® FCjyy the per kilometre fuel cost of alternative j in choice set m of
respondent 7;

* d, the expected annual mileage: in the second phase of the survey (see
chapter 1) the respondents were asked their intended mileage d,, after
they revealed their technology choices. Some missing values could be
replaced by the value the respondent provided in the first phase as their
actual mileage. For the handful respondents where both values were
missing, a default mileage value of 20206 km was used;’

* y an expected vehicle lifetime of 9,5 years, a value based on the TRE-

MOVE 2 model for the Belgian car market;10

i a discount rate which has been fixed to 4% (value used in TREMOVE).!!

7In the TREMOVE 2 framework such interaction variables may be useful to explain differences
in choice behaviour between the different EU-countries using demographic differences as an
input. In our applications the focus will be limited to Belgium. In the estimation of interaction
variables in chapter 1 we noted that the size of our data set limits its potential for the estimation
of interaction variables.

8The definition applied here follows the specification of the TREMOVE 2 model. This
definition allows an integration with the TREMOVE 2 revealed preference choice model in section
24.

9This default value is based on TRENDS project data (Samaras et al., 2002), and was found
to be close to the sample average. An alternative approach would have been to eliminate from
the estimation dataset the choices made by respondents for which no specific mileage value is
available.

19The expected lifetime values in TREMOVE 2 are calculated on stock composition parameters
provided by the TRENDS project (Samaras et al., 2002). In this chapter we use data issued from
TRENDS on 29 December 2003.

"There has been discussion in the literature as to the rationality of the consumer in trading
off current costs for future expenses. A 2006 review of the TREMOVE model (Skinner et al., 2006)
discusses consumer myopia for lifetime costs, and indicates that discount ranges have been found
to range between 0 and 41% (based on the review by K. Train, 1985). Most of the evidence for this
range dates from the early 1980s, and higher values for the discount rate can probably in part
be attributed to higher inflation rates prevailing in that monetary era. More recently Verboven
(2002a) reported a discount rate of 11,5% for the period 1990 to 1994 based on the analysis of
revealed preference car purchase records. This finding is in line with the suggested value of 4%
(in constant prices) if we take into account interest rates on capital markets in the early 90s.
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2.3. Stated preference model estimation

After substituting the new lifetime cost variable for the original three cost
variables, we re-estimate the nested logit model (nesting structure see figure
2.2)!2 and present the result in table 2.1.

Throughout this section we will use the p-value as a measure of significance
in the different models discussed. The p-value of a coefficient estimation 3
indicates the probability that, given that the null hypothesis (true coefficients
are zero) is true, the coefficients f assume a more extreme value than the
observed (estimated) ﬁ As a rule to decide on significance, we will use in this
chapter p < 0,05. Although any threshold value for significance is entirely
arbitrary, insights gained in simulations (see chapter 1) resulted in the selected
level.

The 95% confidence interval (see table 2.1) provides an indication of the
influence of the sample size (209 respondents) on the estimation results: it
indicates a range around the estimated value in which the real coefficient
(of the whole population) is situated with a probability of 95% for a random
sample. The confidence interval is linked with the p-value: a 95% confidence
interval that has 0 as delimiting value will result in a p-value of 5%.

Table 2.2 provides a comparison of the model (table 2.1) to the correspond-
ing nested logit model estimated in chapter 1. We observe a log likelihood
value which is somewhat larger (absolute value) than what we obtained by
the more extended specification. The overall difference is not large although,
based on the test statistic (x square with 4 degrees of freedom), the extended
model still performs significantly better.

This model is about the best we can get in a pure nested logit specification.
However, we did not account for the repeated choice character of the survey
data set in estimating the model. In chapter 1 we showed that by accounting
for this (using a mixed logit), the model fit improved dramatically indicating

12We have represented a nest elc on the figure. This is a single member nest, its use will be in
the nested mixed logit discussion in section 2.3.2.

Technologies

Internal combustion engine | Battery | Fuel cell
nest: ice (4 spu. ) nest: elc (u

elc, mn)

ice,mn

Gasoline Diesel LPG Alternative fuel

Figure 2.2. Nesting structure
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Table 2.1. Estimation of nested logit choice model for simulation

Variable Unit coefficient p-value 95% conf. interval

low high
Lifetime cost €/km —5,399 0 -7,3715 —3,4266
Luggage space 0-1 0,7443 0 0,4497 1,0389
Emissions 0-1 —0,5624 0,001 —0,9045 —0,2202
Range 100 km 0,2081 0 0,1333 0,2829
Diesel 0,2902 0 0,1522 0,4283
LPG —0,4378 0,003 —0,7311 —0,1444
Alternative fuel -0,1273 0,259 —0,3486 0,0940
Fuel cell —0,4670 0,030 —0,8893 —0,0447
Battery —0,7206 0,001 —1,1479 —0,2932
Hybrid —0,01257 0,793 —0,10626 0,08112
Log likelihood —1763,3508

Table 2.2. Comparison of simulation logit choice model to results from chapter 1

NL chapter 1

Simulation NL

Variable Unit coefficient ~ p-value  coefficient  p-value
Purchase cost 1000€ —0,0971 0

Annual cost 1000€ —0,3955 0,004

Fuel cost €/km —8,3326 0

Lifetime cost €/km —5,399 0
Luggage space 0-1 0,8824 0 0,7443 0
Emissions 0-1 —0,2848 0,125 —0,5624 0,001
Range 100 km 0,2270 0 0,2081 0
Diesel 0,5351 0 0,2902 0
LPG —0,4879 0,002 —0,4378 0,003
Alternative fuel —0,0367 0,775 —-0,1273 0,259
Fuel cell —0,3489 0,775 —0,4670 0,030
Battery —0,5974 0,009 —0,7206 0,001
Hybrid 0,0090 0,869 —0,0126 0,873
Emis. X woman —0,6589 0

(diesel | alt.) x man —0,3653 0,001

Aice (log-sum) 0,7058 0 0,6204 0
Log likelihood —1731,8291 —1763,3508
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that a model specification that cannot account for repeated choice should be
avoided if possible. In section 2.3.3 we will explore an approach to account
for repeated choice in estimation without having to use the computationally
demanding mixed logit framework in simulation.

2.3.2. Nested logit & Mixed logit: the link

In this section we discuss whether and how we can use the mixed logit
framework for the design of a tool that allows for fast simulations.

We start from the expression for the perceived utility Ujy,, of alternative
j in choice situation m faced by respondent n in the mixed logit model
specification (see equation (2.6)):

ujmn = “/xjmn + .”jmnlzjmn + €jmn (2.8)
with:

® x a vector of fixed coefficients

® Mjmpn a vector of random terms with mean zero and probability distribu-
tion f (jmn)

® Xjmn and zjy,;, vectors of observed variables

® €jmp 11.d. Gumbel distributed with scale parameter ¢ normalised to unity
(independent over all alternatives j, choice situations m and respondents
1)

As noted by K. E. Train (2003) and Batley et al. (2003), it is possible to define
a mixed logit specification that provides correlation-substitution patterns that
are similar to those of a nested logit by defining z;,,, appropriately. The
corresponding mixed nested logit specification for the nested logit model
estimated in section 2.3.1 (table 2.2) is obtained by defining the stochastic
vector 1y, as constant over alternatives j belonging tot the same choice set
m faced by respondent n (we will therefore drop the index j and use the
notation ymy), and defining zj,, as containing a dummy variable for each
nest. This dummy has a value one for alternatives that are in the nest and a
value 0 for alternatives that live outside the nest. In our specification we need
two dummies J;: one J;, for ice alternatives and a second é,;. for non-ice
alternatives.

The stochastic vector y,, contains two independent terms pi,,,,, one for
each dummy (Mjce,mn and pe my respectively). As mixing distribution for
Umn We choose the normal distribution with an expected value of zero. The
variance of both error terms is set to be identical. Hence both error terms
are distributed identically and are independent for all choice sets m and
respondents 7.3

13For clarity we stress here the fact that we define a dummy for the non-ice nest although this
is a single member nest and that we define both error terms to have an identical distribution. The
reason for this will become clear in the remainder of this section.
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The utility Uj,, can be rewritten as:

K
ujmn = “/xjmn + 2 HimnOk + €jmn
k=1
= “/xjmn + Hice,mn%ice + Mele,mnOelc + €jmn (2.9)

Any term of the utility U, that is constant over the alternatives j in the

same choice set m by respondent 1 drops from the choice probabilities.!* We

can hence define LI]’»mn as:

U]{m” = ujm” — Hele,mn
= ujm” - (5iC€ + ‘Selc).uelc,mn
= &% + (Hice;mn — Helemn)dice + €jmn (2.10)

Both U]{mn and Ujy, result in the same choice probabilities. From equation
(2.10) we learn that in estimation it is not possible to identify the variance
of both py,,, separately as only their sum enters the utility function (and
hence the choice probabilities), already at this point it becomes clear why
there is need to define both py,,;,, to have an identical distribution. The re-
sults are provided in table 2.3.> Note that the in the (calibrated) nested
logit approximation the willingness to pay for different technological vari-
ables is identical to the original mixed logit estimation, as the ratio of the
corresponding coefficients is constant.

So far there seems no problem in estimating a mixed logit model. The
problem however arises when we want to use such a mixed logit specification
for simulation in the framework of the TREMOVE model. Not only is the
mixed logit setting computationally demanding, also considerable coding
effort would be needed to include it in the TREMOVE framework. For this
reason we now study how we can calibrate a nested logit specification that
approximates the estimated mixed logit model in simulation.

Starting from the expression for U, (equation (2.9)), we define LI]’-,’W by
rescaling Uy, with a factor a. We remind the reader that rescaling the utility
does not affect the choice probabilities (see section 2.2), considered that utility
maximisation applies (and rescaling does not change the relative order of the

14We recall that choice probabilities are not affected by a linear transformation LI;mn =
aljuy + b of the stochastic utility Uj,,, with a and b constant over the alternatives j belonging to
choice set m faced by respondent n—note that a and b are not required to be constant over m and
n.

15As both jigy, are independent normally distributed with identical variance, their difference
(or sum as the normal distribution is symmetric) will again be distributed normal with a variance
twice the value of Var(jig,,). Using one random term rather than two results in the same model
but will significantly speed up model estimation. The estimated variance of the random term in
the estimation output has then to be divided by two to match the model specification provided
by equation 2.9.
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Table 2.3. Calibrating a nested logit model using a mixed logit estimation

ML estimation NL approximation
Variable Unit coefficient « p-value coefficient B
Lifetime cost €/km —8,6254 0 —5,4921
Luggage space 0-1 1,2006 0 0,7644
Emissions 0-1 —0,9096 0 —0,5792
Range 100 km 0,3359 0 0,2139
Diesel 0,4668 0 0,2973
LPG —0,7073 0 —0,4504
Alternative fuel —0,2068 0,224
Fuel cell —0,8599 0,065
Battery —1,2702 0,016 —0,8088
Hybrid —0,0192 0,803
Var (gmn) 2,4123 0,049
corresp. Ajee 0,6367
Log likelihood —1763,7819
utilities of the alternatives).
Uy = aly; (2.11)
with
2/6
a= 2.12
\/n2/6+Var(],tkmn) 12)

We now define a nested logit approximation of the mixed logit specification
(LI]’-,’W) by writing U}% as:
U = B/ Xjun + €t + Momn (2.13)
with

e coefficient vector f = an

® error term 6]];1]1%1 distributed independent and identically Gumbel for
all alternatives j, choice situations m and respondents n with scale
parameter o = a

* error term 7j,,, distributed so that max;e gk(U}:]n%) is independent and
identically Gumbel distributed (with scale parameter normalised: o = 1)

for all nests k, choice situations m and respondents n.

Table 2.3 provides the coefficient values for the nested logit model defined
by expression (2.13) for U]%% (we will come back at the calculation of the
inclusive value coefficients Ay later on). We will now study the difference
between UNL and U’/

jmn jmn*
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L

The first two terms of U})’m are identical to the corresponding terms in

ll]f;m. Considering that the remaining terms is constant over the alternatives j
belonging to the same nest k in choice situation m by respondent #, this term
does not affect the conditional choice probabilities'® and hence the conditional
choice probabilities are identical in both the mixed logit and nested logit
specification.

We now define €}, as

Shmn = MQX(B'Xjyn + € i) (2.14)

and from Ben-Akiva and Lerman (1985) we know that ¢;, = is independent
and identical Gumbel distributed for all nests k, choice situations m and
respondents n with scale parameter ¢ = a and expected value E(e},, ) =
aIkmn-U

Now we can rewrite max;es, (UNLY:

jmn
NL
max(ujmn) = €I/cmn + Nkmn (2‘15)
JESK —_———
Gumbel

Equation (2.15) defines the error term that controls the marginal choice
between nests. For the nested logit specification we defined #y,,, so that this
error term is Gumbel distributed with scale o = 1 and hence the marginal
choice is multinomial logit. Considering that the inclusive value coefficients
Ak are defined by equation (2.3) as the scale factor of the error terms at the
level of the conditional choice (with the scale factor at the level of the marginal
choice normalised to unity), it is easy to see that A, = a.

The error term corresponding to the marginal choice in the mixed logit
model specified by expression (2.11) is defined by:

u’ ) = o x; ae; a 2.16
max(Ujpyy ) = max(aa Yiny + a€jmn) + &tk (2.16)

normal

Gumbel
The first term is Gumbel distributed with scale parameter ¢ = a (Ben-Akiva
and Lerman, 1985), whereas the second part is normal by definition.

In figure 2.3 and 2.4 we compare the stochastic distribution of the marginal
choice error terms of the mixed logit estimation (expression (2.16)) and the
corresponding nested logit approximation (expression (2.13)) presented in
table 2.3 (A = 0,6367).18 The difference between both curves is a measure for
the difference in choice behaviour at the marginal choice level. It is easy to
see that the difference becomes smaller as A approaches one.

16The conditional choice is the choice between alternatives in the same nest (see appendix A).

17 Lun is the inclusive value of nest k in choice situation m by respondent # (see section 2.2).

8The functions have been shifted horizontally such that the expected value is zero, remember
that adding any constant factor does not change the choice probabilities so any horizontal shift in
order to better illustrate the fit of both curves does not affect the model qualitatively.
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An interesting exercise is to compare the nested logit model in table 2.3 to
the one in table 2.1. Differences in coefficient values are small, especially com-
pared to the coefficient confidence interval (table 2.1), providing an indication
that the impact of the differences in the probability distribution of the error
term controlling the marginal choice is probably small.!

As a last remark (and for completeness) we elaborate a little on our choice
for the factor a (equation (2.12)). In fact, there is no evidence that our choice for
a results in the best nested logit approximation to the mixed logit specification.
It is interesting to note that a change in the definition of 4 mainly results
in a change of the variance of #y,,,, as the scale parameter ¢ (and hence the
variance) of the Gumbel error term at the marginal choice level is fixed to
one. It can be shown that using our definition of a results in the covariance
for alternatives in the same nest to be identical in both the mixed logit and
corresponding nested logit specification (Batley et al., 2003).

2.3.3. Repeated choice

The reader may now wonder whether we did not miss the point in the
last section. Apparently our methodology allows to formulate a nested
logit model that approximates a computationally demanding mixed logit
estimation, whereas it is much easier to directly estimate the nested logit
model specification without having the drawback of being an approximation
to reality. This is a correct observation—as far as the example in the previous
section is concerned.

As it has been noted earlier, the nested logit model does not allow to
account for repeated choice situations: the #y,,, in equation (2.13) are indepen-
dent for all choice situations m and all respondents 7. As it has been discussed
in chapter 1, mixed logit model specifications that account for repeated choice
result in a significantly better estimation result using the survey data set. Table
2.4 compares both modelling frameworks.

The mixed logit model has the drawback that it is computationally de-
manding, but this is a real problem in simulation only. The disadvantage of
nested logit is the inability to account for repeated choice situation, but such a
specification is limited to estimation only.?® The methodology discussed in the
previous section allows to use mixed logit for estimation and in a next step
calibrate a nested logit model to be used in simulation—this is the real interest

19For completeness we note that we now have three similar models: a nested logit estimated
model, a mixed logit estimated model and a nested logit model specified as an approximation to
the estimated mixed logit model. All three specifications are different and finding both nested
logit models to be similar actually does not tell much about how similar any of them is to the
mixed one. The use of the comparison is however in the finding that the nested logit model
coefficients derived from the mixed logit estimation do not differ much from what we get when
we estimate the coefficients of the same nested logit specification directly on the dataset.

2In simulation we face a single choice situation.

59



2.3. Stated preference model estimation

Table 2.4. Mixed logit versus nested logit

Characteristic Nested Mixed
Can account for repeated choice No Yes
Closed expression for choice probabilities Yes No
Can account for correlation in preferences Yes Yes

of the methodology developed in section 2.3.2. This way we both account for
repeated choice and still have an efficient simulation model specification.

We will now apply the methodology by re-estimating the model in table
2.3 but defining the error terms yy, (see equation (2.9)) to be constant over
choice situations m faced by the same respondent 7 (as opposed to py,,, which
is independent over m). This results in the mixed logit estimation in table 2.5.
We have added the calibrated nested logit approximation to the same table.
In the simulation model we do not include insignificant coefficients.?!

So we now got up to the point where we have calibrated a nested logit
simulation model that accounts for the repeated choice character of the estima-
tion data set. We can however go one step further and estimate the two-level
structure in figure 2.5. This model is represented in table 2.6. At two levels we
define error terms i1y, and iy k,, for all nests k, with a variance Var(py ) at
the lower level and Var (i, ) at the upper level and distributed independent

21Remember that in the stated preference data set the choice variables Xjmp are uncorrelated
(orthogonal design of choice sets).

Table 2.5. Calibrated nested logit model using a mixed logit estimation (accounting
for repeated choice in the estimation data set)

ML estimation NL approximation
Variable Unit coefficient « p-value coefficient B
Lifetime cost €/km —9,5847 0 —5,4590
Luggage space 0-1 1,3158 0 0,7494
Emissions 0-1 —0,9357 0 —0,5329
Range 100 km 0,3454 0 0,1967
Diesel 0,4683 0 0,2667
LPG —0,6851 0 —0,3902
Alternative fuel —0,1765 0,284
Fuel cell —1,0304 0,005 —0,5869
Battery —1,5074 0 —0,8585
Hybrid —0,0264 0,731
Var(pg,) 3,4260 0
Aice 0,5695
Log likelihood —1629,4757
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for both levels, all nests k and all respondents n. The corresponding inclusive
value coefficients are A, and Aice- 22

To limit the computational demands of the estimation process we limited
the accuracy to a lower level compared to the previous estimations with one
or two error terms. Although this considerable speeds up the estimation
procedure, estimating the model with the gllamm procedure in Stata was still
time consuming (in the order of days).?3

The second level cannot be estimated in a nested logit specification, as
single choice sets do not provide information on correlation in preferences for
e.g. diesel cars (each choice set contains only one diesel car). This can be easily
verified from equation (2.4) where the log-sum coefficients for single-member
nests drop in the expression for the choice probabilities. However, by account-
ing for repeated choices this correlation can be measured across different
choice sets faced by the same respondent in a mixed logit specification.

The reader may now get the impression that we got somehow lost in
calibrating coefficients that drop from the choice probability expressions in a
nested logit simulation setting. This is again a correct observation at this point,
but in the next section we will show the interest of the estimated two-level

22WWe could also define a A, but this coefficient drops from the choice probabilities and is of
no interest for the further discussion. In the specification of this model some error terms add up
such that the estimation procedure could be limited to five independent error terms, four of them
having an identical variance (see also section 2.3.2).

2To get an indication of the possible impact of accuracy level, we estimated a simple model
with one error term y, at different levels of estimation accuracy. The results indicated that a
higher accuracy results in a lower LL (absolute value) and typically higher estimated variance for
Un. So it may be that we here understate the variance of y, and hence obtain a value for A which
is closer to unity.

Technologies

Internal combustion engine Battery | Fuel cell

nest: ice nest: elcl

(/lice; 'u2,ice,n) (’ule/c,n)

Gasoline Diesel LPG Alternative fuel Battery | Fuel cell

nest: gs!/ nest: gdo nest: Ipg nest: alt nest: elc2

()f/uel; ’ul,gsl,n) (iﬁlel; ’ul,gdn,n) (iﬁml; ’ul,lpg,n) ()f/uel; ’u1,al/,n) (iﬁml; ’u1,elc,n)
Gasoline Diesel LPG Alternative fuel Battery | Fuel cell

Figure 2.5. Extended nested structure
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Table 2.6. Extended nested structure estimated as mixed logit

MXL estimation NL calibration
Variable Unit coefficient p-value coefficient
Lifetime cost €/km —14,0789 0 —7,2608
Luggage space 0-1 1,5721 0 0,8108
Emissions 0-1 —1,1880 0 —0,6127
Range 100km 0,4147 0 0,2139
Diesel 0,7759 0 0,4002
LPG —0,9448 0,001 —0,4873
Alternative fuel —0,2065 0,458
Fuel cell —0,3492 0,409
Battery —0,8453 0,050 —0,4360
Hybrid —0,0217 0,824
Var(pip kn) 1,5420 0,017
Aice 0,8664
Var(pq k) 2,9977 0
Afuel 0,5952
Log likelihood —1428,9027

structure when we discuss the technological scope of the simulation tool.

2.3.4. Technological scope

At the point where we are now, we pushed the estimation of the mixed
logit and the corresponding approximation by nested logit to the limits of
the information contained by our data set—even up to the point that we
calibrated coefficients that drop from the choice probabilities in our nested
logit simulation model. There is however still one main limitation of the
simulation tool designed: it accommodates for five alternative technologies
only, whereas it seems useful if we could add some more in simulation, such
as two technologies running on alternative fuels (e.g. hydrogen and CNG),
or a hybrid and a conventional version of the diesel car. In this section we
propose an extension of the model to overcome this barrier.

We will first examine the situation of a conventional and hybrid diesel.
Based on equation (2.13) we can express the utility U};’L of both alternatives

as:24

URE = B'xju + €l + 1icen + M gdon (2.17)

The conditional choice between both alternatives (conventional and hybrid)
is the conditional choice in the diesel nest of the nested logit model represented
in figure 2.5. We can hence accommodate for both alternatives in the nested

24The single choice simulation setup allows us to drop the index m from here on in order to
avoid clutter in the expressions.
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logit choice model by including both in the fuel nest at the lowest level of the
structure (see figure 2.5).

Extending the model to account for a battery and fuel cell car in the same
choice set can be done in a similar way.

If we want to include two alternatives running on an alternative fuel (e.g.
ethanol and CNG), the methodology becomes somewhat less straightforward.
One could argue that they should simply enter the nest of alternative fuel
technologies, but it may be more appropriate to define a separate error term
12,a112,n Teflecting the observation that the nesting structure is fuel based, and
it concerns two different (alternative) fuels, a separate nest should be defined
for each fuel. We will opt for the last choice here, as it better matches our
intuition.

Applying the methodology presented in this section, we constructed a
nested logit simulation tool that accommodates the full technological scope
defined in table 2.7 (based on Verbeiren et al., 2003). Figure 2.6 provides an
overview of its nested structure. The coefficients  and the inclusive value
coefficients A; are those presented in table 2.6.

2.4. Integration in TREMOVE

In the previous section we discussed how to design a flexible simulation tool
based on stated preference data. In this section we compare the result to a
revealed preference based technology choice model. In a second step we study
the integration of both simulation models in order to combine the strong
points of the stated and the revealed preference approach.

Table 2.7. Technological scope of the simulation tool

Technology

Gasoline
Gasoline hybrid
Diesel

Diesel hybrid
LPG

CNG

CNG hybrid
Hydrogen
Hydrogen hybrid
Hydrogen fuel cell
Battery electric
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Technologies

Internal combustion engine

(ice)

Gasoline Diesel

@/uel) (lfuel)

CNG Hydrogen Battery | Fuel cell
(;{ﬁlel ) (/lﬁtel) (lﬁlel)

Hydrogen|
Fuel cell

Conv/[Hybrid [Conv] Hybrid Conv/[Hybrid [Conv]Hybrid Batteryl

Figure 2.6. Nested logit simulation model covering the full technological scope

2.4.1. The TREMOVE 2 RP model

In this section we provide an overview of a revealed preference (RP) private
car technology choice model that was designed for the TREMOVE 2 partial
equilibrium model (G. De Ceuster et al., 2005). The discussion will focus here
on the RP estimated part of the private car technology choice model, this is
without the extension for hybrids.?

In the TREMOVE 2 model the car market is segmented based on fuel
(diesel and gasoline) and engine size (small < 1,41; medium 1,4-2,01 and big
> 2,01), resulting in six segments. The technical specifications of the larger
TREMOVE framework results in two separate technology choice models, one
for the segments (diesel and gasoline) with an engine size under 1,41, and
another for engine sizes over 1,41 (4 segments). The discussion in this and
next section will focus on the model for the larger engine sizes, the extension
to the small size class is straightforward.

The segmentation over engine size class is rather uncommon in technology
choice modelling and stems from the emissions model applied in TREMOVE 2.
The COPERT III methodology (Ntziachristos and Samaras, 2000) specifies
emission factors which are function of the engine size class. The scope of
the technology choice model has hence been defined to cover preferences
for different engine sizes. There seems to be correlation between the engine
size class and the marketing based body type classification as used e.g. by
Verboven (1996), COWI A /S (2002) and Verboven (2002b). We should however
be careful in comparing different models, as different car variables tend to
correlate in RP data sets.?

25The extension to include hybrids in TREMOVE 2 was not implemented making use of RP
data, considered the very limited supply of hybrid technologies in the period covered by the RP
data set.

26E.g. Brownstone et al. (2000) mention this correlation as a major difficulty in estimating RP
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The estimation procedure followed for the TREMOVE 2 technology choice
model is somewhat different from what is typically found in literature. Ver-
boven (1996), De Jong (1996), COWI A/S (2002) and Verboven (2002b) all use
extended data sets of sales of individual car models, whereas for the estima-
tion of the TREMOVE 2 technology choice model aggregate, market share
data were used. The combined cross-section and time series data set covers
national quarterly sales data over a period of about two years (1999-2000)
for 17 European countries. The model specification is nested logit (nested
structure see figure 2.7) and the coefficients  and A are presented in table 2.8.

The TREMOVE 2 technology choice model includes two generic variables:
the lifetime cost and the acceleration. The lifetime cost variable has been
discussed in section 2.3.1 and is a composite user cost variable reflecting all
purchase, annual and per kilometre costs. The acceleration is a variable that
acts as a proxy for performance. The GDP per inhabitant variable enters the
model as a proxy for (average) income.

Experience with the TREMOVE 2 model has caused some discussion
regarding the impact of changes in user prices on the diesel-gasoline market
shares. Some experts feel that price sensitivity of the car technology choice
model may be underestimated. We decided to stick in our application to the
existing approach and leave the issue to be addressed by further research on
the topic.?”

2.4.2. Integration of SP and RP model

In the previous section (2.4.1) we introduced a revealed preference estimated
nested logit choice model, whereas in section 2.3 we designed a nested logit
simulation model based on stated preference. In this paragraph we will

car choice models.

¥Using a more extended data set (covering an extended time span) or a more detailed
technology classification scheme that closer follows consumer preferences rather than emissions
characteristics may enhance consensus on the technology choice model specification, alternatively
one may think of a model that is calibrated using evidence from existing research.

Medium | Big technologies

Medium technologies  Big technologies
nest: med () nest: big (/lbl_g)

Gasoling Diesel Gasoling [Diesel

Figure 2.7. Nested structure of the TREMOVE 2 choice model for medium (1,4-2,01)
and big (> 2,01) technologies
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Table 2.8. TREMOVE 2 revealed preferences estimated car technology choice model
for Belgium

Variable Unit coefficient B
LFC/quarterly GDP per inh. LFC in €2000/km; —0,4585
GDP in 10k €95

Acceleration s from 0 to 100km/h —0,04557
Diesel (Belgium) dummy 0,1939
Big dummy —2,5105
Quarterly GDP x big interaction in 1000 €95 0,1738
Ammed 0,1101
Abig 0,1563

discuss the integration of both models into one tool that allows to cover the
full technological scope for private cars (see table 2.7) and take advantage of
the strong points of both the SP and RP approach.

How do both models differ?

If we compare the stated preference (5P) model (table 2.6) and the revealed
preference (RP) model (table 2.8), we see that both models have the lifetime
cost variable in common. In the RP model this variable however enters in a
relative way, divided by the GDP. To allow for a comparison of both models,
we rescale the lifetime cost variable in the SP model by dividing it by the
Belgian GDP per capita at the time of the survey. We provide an overview of
both the SP and the RP model (for Belgium) using the relative lifetime cost
variable in table 2.9.

When comparing both models, we should take into account two issues.
A first issue is related to the definition of the nested logit model, which
normalises the variance of the stochastic utility of the marginal choice at the
top level (see section 2.2). The top level choice is not the same in both models:
in the RP model this is the choice between the medium and big technology
nests, whereas in the SP model the top level choice considers ice technologies
versus battery electric or fuel cell cars.

A second issue is that through the normalisation at the top level, a scaling
factor (representing the variance in stochastic utility) is confounded with the
coefficient values (see equation (2.4)). This scaling factor may be different
between data sets.

The first issue can be addressed by considering the conditional choice at a
level that is common to both models. Both the RP and the SP model feature the
choice between diesel and gasoline technologies. To avoid notational clutter
in the expressions, we will simplify the nesting structure of the SP model (see
figure 2.6) somewhat and exclude the diesel and gasoline hybrid technologies,
such that the diesel and gasoline nests in the SP simulation model collapse
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Table 2.9. SP and RP nested logit model coefficients

Variable Unit SP coefficient RP coefficient

LFC/quarterly GDP LFC in €/km —4,4164 —0,4585
GDP in 10k €

Luggage space 0-1 0,8108

Emissions 0-1 —0,6127

Range 100 km 0,2139

Acceleration S —0,04557

Diesel 0,4002 0,1939

LPG —0,4873

Battery —0,4360

Big —2,5105

quarterly GDP x big 10k € 1,738

Aice 0,8664

A Fuel 0,5952

Mined 0,1101

Mar 0,1563

(single member nests). For the SP model, this conditional choice probability
for the diesel (gdo) technology is then:?®

e(.BSP)/xgdo /)‘;";Clz

2.18
eIice ( )

spP —
Pgdolsice -
For the RP model, the conditional choice probability for diesel in the

medium nest is: ARP P
6(13 )/xgda//\med

RP _
Pl = g (2.19)

To compare the variances in unobserved utility between both marginal
choice models, we cannot apply formula (2.2) straightforwardly. We should
remind here that the estimated coefficients 3 in the nested logit equals to the
original § divided by the ¢ associated to the upper model (marginal choice
between nests):

‘BSP _ IBSP/O'SP (220)

With /\fclg = Uiscf /5 (see section 2.2), this becomes:
sp_ B°F ASP 291
Uice - Bsp ice ( . )

Similarly, for the conditional choice in the medium nest of the RP model:

RP __ ﬁRP )\RP
Tined = BRP med (2.22)

28From here on, we drop the index 1 considering the TREMOVE 2 model does not distinct
different consumer categories. The variables however do evolve over time, this time-dependency
is not specifically included in any notation here.

67



2.4. Integration in TREMOVE

The ratio r of variance in unobserved utility associated to the conditional
choice diesel-gasoline is then:

sp\ 2 SP 5 2
U /A N Y (2.23)
T BSP AR,

Using the relative lifetime cost coefficient of the two models, we get:??

_ ( 0,8664 —0,4585

2
= (0,8174)% = 74 2.24
—44164 0,1101 ) (0,8174)" = 0,66 (2.24)

This means that the variance in unobserved utility for the marginal choice
between diesel and gasoline is lower in the stated preference than in the
revealed preference data set by a factor of approximately 1,5.

There seems no obvious reason for this ratio k to be smaller or larger than
one. In a joint RP/SP model estimation exercise by Brownstone et al. (2000)
scaling factors (this is the square root of the r reported above) both smaller
and larger than one were reported depending on the model specification. The
scale ratios are in the same order of magnitude of what we obtain.

The higher variance observed in the RP choice model can be explained
by the different choice situation studied compared to the SP model. In the
survey used for the SP model, alternatives were mentioned to differ only in
the attributes indicated (and captured in model estimation). In the RP data
set technologies were defined by average engine size, fuel, lifetime cost and
acceleration of the cars sold in the corresponding segment, but probably also
differ in other characteristics which were not included in the model.

Referring back to the remark on the sensitivity of the TREMOVE 2 RP
model (see section 2.4.1) we add to the discussion our finding of a rather
moderate scale difference between the RP and the SP model to the discussion.

Integration of the RP and SP models

In the previous paragraph we showed how the RP and the SP models differ
in variance of unobserved utility. Furthermore, we indicated differences in
the nested logit structure between both models. To integrate both models, we
will propose a methodology that results in a unified nested model.

The joint estimation of SP/RP models is discussed in Ben-Akiva and
Morikawa (1997); Brownstone et al. (2000). The methodology applied comes
down to including in the estimation process an additional parameter which
scales the SP estimation data. Brownstone et al. (2000) applies this method-
ology to the multinomial logit model and the mixed logit model, whereas

We report in this chapter rounded figures with four decimals, therefore any calculated
results may marginally deviate from the result obtained by using the rounded figures as input.
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Ben-Akiva and Morikawa (1997) defines the problem as a nested logit model
in order to use the log-sum coefficient as the scaling parameter.

The setting we are using is however somewhat different from past research.
First of all, we observe that both data sets have only one generic variable in
common (the lifetime cost).>? We will see that with only one common variable,
estimation for both data sets can be done separately and scaling of one data
set can be done afterwards—the resulting model will be identical to what
we would obtain if the log likelihood was optimised in a joint estimation
including the data set scaling parameter.

A second difference is that in most past studies, the SP and RP data set
considered choices made by the same respondents. This is not the case in our
study. The data sets used for both models differ in many characteristics: the
SP data set is based on individual choices made by a sample of the Flemish
households, whereas the RP data set included aggregate (quarterly) data of
all car sales in EU countries over a two year period. This means that the
difference in scale between both models (SP and RP) reflects these differences
in data set specifications (and not only the difference between revealed and
stated behaviour).

Finally, we want to integrate two nested logit models with different nesting
structures, which is an extension to most past studies where both separate
models had been specified as MNL or MNL and MXL.

The stochastic utility of alternative j in the revealed preference and stated
preference models when estimated separately can be expressed as (see section
2.2):

{ URP = RPx; + BrrcLFC) +eX + L 225)

SP __ S
ujp_,B y]+:BL1;CLFC +€ +’7fuel+l’lzce
with:

* LFC; the lifetime cost (see equation (2.7)), x; the vector of variables that
only enter the RP model and y; the vector of variables that only enter
the SP model

. e]RP independently Gumbel distributed over all alternatives j and choice

Asize

nXP independent over all choice situations and size nests such that
maxjesize(UJRP ) is Gumbel distributed with scale parameter o = 1 (nor-

situations with scale parameter ¢ =

malised)
¢ ¢5P independently Gumbel distributed over all alternatives and choice

uati ; SP 4SP
situations with scale parameter o = A Fu o1 Nive

30Both models also have the dummy variable for diesel technologies in common. The role of
the dummies in model estimation is to capture all choice preferences that could not be explained
by the generic and/or interaction variables. As the RP dummy is estimated based on observed
market shares, we will use this dummy in simulation rather than the SP estimated one.
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. 17}{581 independent over all choice situations and fuel nests and ice nests®!
such that maxjeice(UfP ) is Gumbel distributed with scale parameter

oc=A"
ice
RP independent over all choice situations and ice nests such that
maX;e fyel (U].SP ) is Gumbel distributed with scale parameter ¢ = 1 (nor-
malised)

For the integrated model (IG) we will first propose an expression for the
stochastic utility U/C that allows for the correlation-substitution patterns of
the individual RP and SP models. In a next step we calibrate the values for the
IG model coefficients using the separate RP and SP estimations. The stochastic
utility Ujl G of alternative j is:

IG IG IG IG IG IG IG IG
uj = pxxj+ :By yi+ IBLFCLFCj + € + M fuel +ice + size (2.26)
with

o e}G independently Gumbel distributed over all alternatives j and choice

; ; ; — AIG KIGyIG
situations with scale parameter o = A u i Vice Msize

. 17}5 ol independent over all choice situations, fuel nests, ice nests and
size nests such that max;c fuel(UjI G) is Gumbel distributed with scale

parameter 0 = /\llg)\gge
L Ilc(é independent over all choice situations, ice nests and size nests such

that max]-eice(ll]«[c) is Gumbel distributed with scale parameter o = Agg .

* 17IC independent over all choice situations and size nests such that
maxjesize(llj[ G) is Gumbel distributed with scale parameter o = 1 (nor-
malised)

The corresponding nesting structure is presented in figure 2.8.

We will now show how to identify the values for B.C, %G’ ,Bi,G based on
the RP and SP estimated models specified by equation (2.25).

To replicate the choice behaviour of the RP model, it is easy to see that
following conditions have to apply to the coefficients of the IG model:

16 = gl
IG. = BRE (2.27)

LFC — FLFC

IGyIG _ »RP
Aice/\size - )\size

In our calibration of the integrated model U on the information con-
tained by the SP estimated model, we follow the approach discussed in

3IWith ice nests we indicate two nests, one including the alternatives with an ice engine and a
second nest regrouping the non-ice alternatives.
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literature and add a scaling parameter s to the choice variables in expression
(2.26):
SP - :B sy + :BLFCSLFC + el + nfuel 17166 ﬂszze (2.28)

The role of the scaling parameter s in the calibration procedure is in fact setting
the scale of the stochastic utility of U!C equal to the (stochastic) behaviour
captured by the RP model which is expected to reflect real world behaviour
(Brownstone et al., 2000).32

Before we can compare this expression to the SP estimated model, we need
to transform it. In the stated preference model the choice alternatives all have
the same size, so the error term 77;(2; ", is a constant within each choice set rather
than a stochastic variable. Recalling that any linear transformation of the
stochastic utility does not affect the choice outcome under utility maximisation
(as long as transformation parameters are constant over each choice set), we
drop 771G, and rescale the utility U!© with a factor A, in order to re-normalise
the scale parameter of the stochastic utility®® to unity:

Ugs = AIG (:5 sy + BLEcSLFC + €' + i, + ’71’5) (2.29)
size

From the expressions for ULS and U follows the calibration of the
integrated model:

178/ Mg, = B°PLFC = s = AlZ BPEc/ BiFc
5IG = ﬁip)‘gge /s = IB;PﬁLFC Birc
MBI, =8 > M =T .
/\fuez/\zlg)‘ige/ Agzcze = /\fuel/\fclej fuel = )‘fuel

As discussed above, we see that there is no need for a joint estimation to
determine s when only one (generic) variable is common to both data sets.

Provided that all resulting log sum coefficients A are between zero and
one, the model is consistent with random utility maximisation.

The final model combines the strong points of RP and SP estimation:

e SP allows for a clear identification of trade-off between variables, as the
choice sets were constructed to avoid correlation.

» SP allows to collect information on choice behaviour regarding alterna-
tive technologies as well as alternative (ranges of) variables.

¢ RP provides information on the real world variance in the stochastic
utility.

32Note that under utility maximisation scaling the deterministic part of utility is equivalent to
scaling the stochastic part.
33The stochastic part of the utility Ué CiselC + 17}581 + '71'15 which is by definition distributed

Gumbel with a scale parameter o = AG .
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* RP provides information on some variables that had been excluded
in the survey, such as performance (through acceleration) and vehicle
engine size.

The final integrated model is presented figure 2.8 and its coefficients § and
A in table 2.10.

2.5. Conclusions

In the chapter we studied the design and estimation of an efficient simulation
model based on stated preference. We provided a methodology that allowed
to stick to the nested logit in simulation while applying the mixed logit
specification in estimation in order to account for the repeated choice character
of the survey based data set.

The stated preference model was further integrated with the existing
revealed preference model from the TREMOVE 2 framework. We discussed an
approach that allows to combine the advantages of both modelling approaches
and indicated how the nested structures can be merged in order to create an
integrated model.

The chapter finally provides an extended simulation tool that covers the
technological scope as presented in table 2.7.

In a subsequent chapter we will include the model presented here in
the TREMOVE framework in order to make an environmental and welfare

Scope of SP model

Medium | Big technologies
Scope of RP model

Medium size technologies Big size technologies

) (4,

)

med

big

Internal combustion engine

(lice)
Gasoline Diesel CNG Hydrogen Battery | Fuel cell
LPG
G G Y Gy Gy )
Conv.|Hybrid [Conv] Hybrid Conv[Hybrid [Conv] Hybrid Batteryl Plf,ﬁcc}iocge?

Figure 2.8. Final nested logit simulation model
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Table 2.10. Coefficients of final nested logit simulation model

Variable Unit coefficient B¢
LFC/quarterly GDP LFC in €/km —0,4585
GDP in 10k €
Luggage space 0-1 0,08418
Emissions 0-1 —0,06361
Range 100 km 0,02220
Acceleration s —0,04557
Diesel 0,1939
LPG —0,05059
Battery —0,04526
Big —2,5105
quarterly GDP x big 10k € 1,738
Aice 0,8664
Afuel 0,5952
Ammed 0,1270
Aar 0,1804

assessment of the different private car technologies.
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CHAPTER

Do we want cleaner cars?

3.1. Introduction

Concerns about environmental pollution linked to transport activity raise the
question on how we can reduce emissions from private cars. Considerable
research efforts have been devoted to the development of cleaner fuels and
car technologies, which seem to have some environmental potential. The aim
of this chapter is to make an assessment of the environmental and welfare
impact of a shift from conventional to alternative vehicle technologies.

In this chapter we conduct an analysis of the environmental performances
of conventional gasoline and diesel technologies and compare them to a
selection of new fuels and technologies for private cars: hybrid transmission,
electrical battery cars, CNG cars, LPG cars, hydrogen fuel cell cars, etc (figure
3.2 defines the technical scope of this chapter).

We describe how we include the new technologies in the framework of the
TREMOVE Belgium model. TREMOVE is a partial equilibrium representation
of the transport markets (all modes for passenger and freight transport) that
was originally developed for the European Commission during the Auto-Oil II
program in 1998-1999 and updated to version 2 in 2005. We discuss how
we can apply the TREMOVE modelling framework, integrate the technology
choice model that has been developed in chapter 2, and define a baseline
evolution for the alternative technologies reflected in figure 3.2.

The simulation of an emission tax guarantees that emissions are reduced
at the lowest cost for society (Kolstad, 2000). By simulating such a scenario
with TREMOVE we can study how this reduction is obtained and which tech-
nologies contribute to it. The size of the environmental benefits is compared
to corresponding social costs to draw conclusions on the net welfare impact.
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3.2. Modelling transport emissions

The focus of this chapter is to study the contribution of new technologies to
a reduction of overall transport emissions, and the related welfare impact of
this environmental improvement. To allow for such an assessment we need a
modelling tool that represents all transport markets, includes a vehicle stock
representation, has an emissions module and translates impacts to welfare
costs. The TREMOVE Belgium modelling framework provides most of the
features we need (see figure 3.1—extensions to the model discussed in this
chapter are indicated in italics) and therefore we select it as a starting point
for the simulations in this chapter.

A concise overview of the TREMOVE Belgium model specification as well
as its calibration is provided in appendix C. We will discuss in this chapter
the emissions module and the extensions (indicated in italics in figure 3.1) to
the model necessary for our study.

3.2.1. The choice for alternative technologies
Private cars

In chapter 2 we discussed the design of a model for the simulation of the
choice for conventional and alternative private car technologies. The model
was designed to be compatible with the TREMOVE framework so its appli-
cation here is straightforward. The structure of the TREMOVE framework
requires two technology choice models, one for small engine size technolo-
gies and a second for medium and big engine sizes. We present the nested
structure of the medium-big choice model in figure 3.2. The model for small

Speed & Load
E N
TRE MOVE MOVE
Cost & traffic Traffic Stock Stock Emissions
demand, alternative structure alternative
technologies technologies
Base case, Base case, ex-ante | ex-post
. . . . Technolo :
Policy assumptions Policy assumptions . '
environ-
Stock |Usage mental tax
structure
Usage < Fuel consumption
Cost Modal environmental tax

Figure 3.1. The TREMOVE Belgium modelling framework (italics: extensions discussed
in this chapter)
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technologies has the same structure (without the top-level size choice). The
model coefficients are presented in table 3.1.

Some special attention has to be paid to the class of small diesel vehicles
(engine size under 1,4 litre). This conventional car technology class had only
very small market share in the past. More recently more car models became
available on the market and their market share increased. Studying a random
sample of car types that are sold in the small gasoline class, we observed
that the corresponding diesel type often has an engine that is slightly larger
than 1,4 litre and thus is classified as medium sized. Hence, we assume the
potential of this small engine diesel class to be more limited compared to the
medium and large classes. In the design of our discrete choice model the
estimation of the dummy variable for the diesel technologies was based on
observations for the medium and large class only. We hence feel the need
for an adapted dummy for the small class. Lacking sufficient data, we fixed
this dummy to an arbitrary value of —0,1, which corresponds to a simulated
market share of about 8% of the small cars in 2005 (more details on the
baseline simulation in section 3.4).!

The dummy for the LPG technologies was estimated in chapter 1 making
use of a stated preference data set (survey) where the LPG cars were pre-
sented as dedicated new vehicles. Using this dummy (with value —0,05), the
simulated market shares (in the order of magnitude of 10%) are significantly

1 As indicated in chapter 1 the role of the dummies in the choice model is to represent all
choice preferences for a technology that can not be explained by the generic variables. In the
estimation procedure the value of the dummy coefficient is determined such that modelled
technology shares are brought in line with the shares observed in the estimation dataset.

Medium | Big technologies

Medium size technologies Big size technologies

*) ()

big

med

Internal combustion engine

(ice)

Gasoline Diesel

R R

CNG Hydrogen Battery | Fuel cell
() (U] ()

fuel fuel fuel fuel fuel

Conv] ybrid Conv] Fiybrid ~ [Conv]ybrid Conv] [iybrid Batiery Eﬁﬁgjj

Figure 3.2. Structure of the nested logit choice model for medium and big private car
technologies
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Table 3.1. Coefficients of nested logit simulation model based on chapter 2

Variable Unit Coefficient
chapter 2 TREMOVE
LFC/quarterly GDP LFC in €/km —0,4585 —0,4585
GDP in 10k €
Luggage space 0-1 0,08418 0,08418
Emissions 0-1 —0,06361 —0,06361
Range 100km 0,02220 0,02220
Acceleration S —0,04557 —0,04557
Diesel (small) 0,1939 —-0,1
Diesel (medium|large) 0,1939 0,1939
LPG (small) —0,05059 —0,4
LPG (medium|large) —0,05059 -0,3
Battery —0,04526 —0,04526
Large —2,5105 —2,5105
quarterly GDP x large 10k € 1,738 1,738
Aice 0,8664 0,8664
Afuel 0,5952 0,5952
Ained 0,1270 0,1270
Mar 0,1804 0,1804

higher than real world observations indicating that the stock share of retrofit
LPG cars is probably limited to 1-1,5%. Aspects that have been excluded from
the survey may imply a barrier to the choice for a LPG car, e.g. the retrofit
operation as well as some other factors such as limited access to parking
infrastructure. To bring simulations in line with observation we decided to
adapt the dummy for LPG technologies to a value of —0,3 for medium and
large engine sizes and a somewhat larger (absolute) value of —0,4 for small
engine sizes.2 This results in a baseline share for LPG cars of 1,1% in 2000.

The correction of the dummy for small diesel cars and LPG cars aims
at bringing the model in line with observed choice behaviour. We note that
these changes mainly affect the reference stock shares. In the simulation of
an emission tax (see section 3.5), the lifetime cost coefficient plays a far more
important role in the simulation of the technology shift, the value of this
coefficient is not changed here.

3.2.2. Emissions

The TREMOVE Belgium model includes an emissions representation for road
modes based on COPERT III methodology and some TREMOVE 2 extensions.

2The values for the LPG dummies were chosen to result in acceptable shares. It should be
noted that accurate statistics on the LPG share in the stock seem difficult to obtain, different
sources range from 0,5% to over 1,5%.
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We here discuss the extension of the emissions model for the simulations
of this chapter. A first extension concerns the alternative technologies which
are not covered by COPERT III or TREMOVE 2. A second extension of the
TREMOVE emissions module is more technical and relates to the necessity in
this study to also calculate ex-ante emission data rather than the ex-post only
used in previous simulations.’

Alternative technologies

The approach of this chapter in modelling emissions of alternative technologies
is to start from the COPERT III framework which covers the conventional
technologies.

The COPERT III methodology provides emission factors that are a function
of the average speed. However, such detailed information seems not to be
available for alternative technologies. In this section we will discuss the
emissions modelling for the alternative technologies.

A short note on hybrids Although emissions as a function of average speed
may differ when comparing hybrid to non-hybrid technologies, there seems
to be no clear evidence on the exact relationship.

If we look at the existing diesel and gasoline (non-hybrid) technologies,
we observe that their emissions profile is determined by mandatory European
emission standards.* As the corresponding hybrid technologies are primarily
promoted for their fuel efficiency record, it seems a reasonable assumption
that these technologies will be tuned such as to optimise fuel efficiency given
the mandatory emission standards which are identical for hybrids as for the
non-hybrid technologies. Under such a setting the order of magnitude of
emissions will not change, apart from those components such as CO; that are
correlated to fuel efficiency.

Hence we decided to model emissions of hybrid technologies to be identical
to the corresponding non-hybrid technology, except for fuel consumption
related emissions.

CNG fuelled technologies For CNG technologies we use emission informa-
tion from the MEET project. The MEET project (Hickman et al., 1999) provides
emission correction factors for private cars running on CNG.> We decided

3Ex-post means in this context that we calculate emissions making use of the existing stock
composition and modal transport activity. The ex-ante calculation assesses for a given year the
emissions that new cars will emit over their entire expected lifetime.

*As of writing this chapter the Euro 4 standard applies.

5Tt may be argued that the application of a generic set of correction factors over distinctive
emissions classes is a bit tentative. The approach is motivated by (Hickman et al., 1999) citing the
limited amount of experimental data as main argument.
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to apply these values to the emission factors of the corresponding gasoline
technology (values are presented in table 3.2).

It is obvious that the values for VOC, NMVOC and CH, emissions are
not independent.® In our implementation we decided to calculate VOC and
NMVOC emissions by applying the corresponding factor, and calculate the
emission levels of CHy as the difference between both components. It should
be stressed that for our application the split of VOC emissions into different
components is not of a major concern as we will apply a unique external cost
coefficient for all VOC emissions.”

Hydrogen fuelled technologies The information available on emissions of
hydrogen fuelled technologies is rather limited. We decided to use exhaust
emission data from Markal by Vito (Katholieke Universiteit Leuven, Center for
Economic Studies [CES KULeuven] and Vlaamse Instelling voor Technologisch
Onderzoek [VITO], 2001).

The intrinsic specification of hydrogen technologies somehow results in
a shift of exhaust emissions to fuel production related emissions. Although
production of conventional fuels (diesel, gasoline, LPG) also results in some
life-cycle emissions, these are considerably higher for hydrogen production
as we assume here that hydrogen is produced through steam reforming
of methane.® As we are studying the impact of technology shifts towards
alternative technologies, we decided to include CO, emissions released in this
steam reforming process in our model (see figure 3.3 for a comparison of CO,
emissions by different technologies).

Appendix D provides the energetic efficiency for the hydrogen technolo-
gies. The calculation of the corresponding CO; emissions follows from the
stoichiometric balance of the steam reforming process, assuming an efficiency

5VOC=NMVOC+CH,

7See appendix C for the marginal external emission cost coefficients.

8 According to Verbeiren et al. (2003) the CH, steam reforming process seems to be the most
promising approach for the production of hydrogen.

Table 3.2. Emission correction factors for private car CNG technologies (source: Hick-
man et al. (1999); reference is a petrol car with TWC)

Pollutant Factor
CcO 0,383
vVOC 1,810
NOx 0,367
NMVOC 0,128
CH, 9,452
CeHg 0,003
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Figure 3.3. Baseline specific CO, emissions of new private cars with medium engine
size in 2020 (index: gasoline level = 100)

for this process of 80% (based on Markal). We additionally assume 0,05g per
kilometre emissions of NOx by ICE technologies (based on Markal).

Battery cars Battery cars typically do not have any exhaust emissions. Sim-
ilarly as for the hydrogen technologies, emissions are related to electricity
production rather than consumption. To allow for a more or less consistent
assessment of the environmental impact of a technology shift, we decided
to include in our model emissions related to the production of the electrical
energy used to charge the batteries. The factors for Belgium have been based
on available country-specific data from the TREMOVE 2 model (G. De Ceuster
et al., 2005).”

Ex-ante emissions

A last upgrade of the emissions model relates to the necessity to calculate
ex-ante emissions for an emission tax simulation.

The TREMOVE model typically only calculates ex-post emissions: first
the demand for passenger kilometres and the stock composition is calcu-
lated, and these results are fed in the emissions module which calculates the
corresponding emissions (see figure 3.1).

9The emission factors for electricity production evolve over the modelling period, reflecting
assumptions on the evolution of electricity production mainly based on the RAINS and PRIMES
energy models (G. De Ceuster et al., 2005).
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In our setup we however need ex-ante emissions of the different car
technologies, as the upgraded private car technology choice model (see section
3.2.1) uses this information to calculate the stock composition. In our model
for technology choice a variable that expresses the emissions level (relative
to a conventional technology) is included. Furthermore in our simulation we
will assess the impact of an emission tax on stock composition, for this we
also need ex-ante emission calculations for the different technologies.

The ex-ante calculations use the same technology specific emission fac-
tors as the ex-post module. For every year in the modelling period ex-ante
emissions are calculated for all available technologies. The emissions Eg)
of pollutant p at vehicle age a are based on these emission factors and the
expected annual mileage. The resulting emission cost is then calculated by
multiplying E,, by the external cost coefficient C,, of pollutant p.!°

Ex-ante emission cost over the expected vehicle lifetime y are aggregated
using a discounted total external cost approach based on Kolstad (2000) to
calculate the ex-ante total expected emission cost EC of a new vehicle. To
allow the comparison of technologies with different expected lifetimes, we
finally calculate the external emission cost as an annuity over the vehicle
lifetime that corresponds to the present value of the external emission cost.

Zp Eapcp
(141i)"

i
=i L G

a<y

For the discount rate i we use the default TREMOVE value.

3.3. Alternative technologies

In this section we present our selection of alternative technologies and discuss
how they enter the baseline scenario!! in order to allow for a consistent
simulation of an emission tax.

We start with an overview of the different fuels and their properties. In
the second part of this section we have a closer look at the technologies.

We limit the discussion here to the selection of technologies present in our
private car choice model (see figure 3.2).

The technology choice models (see section 3.2.1) are driven by cost data,
functional car properties (e.g. luggage space), expected lifetime, mileage and
GDP per inhabitant. Several sources have been used for the design of a
baseline evolution (see section 3.4) for all of these variables; we limit ourselves
here to an overview of the most important ones.

10Tn this section we make abstraction of the modelling year to avoid clutter in the notations.
In the model both the emissions and the external emission cost factors evolve over the modelling
period 1995-2020.

Gection 3.4 discusses the baseline.

82



Do we want cleaner cars?

Full details on the baseline evolution for alternative technologies (including
fuels) can be found in appendix D.

3.3.1. Fuels

Conventional fuel properties have been based mainly on the International En-
ergy Agency [IEA] (2003) for the base year fuel prices and taxes. The evolution
of the ex-tax price!? was based on the PRIMES-transport model (Knockaert,
Van Regemorter, and Proost, 2002, we refer to the PRIMES-transport documen-
tation for full details on the assumptions behind this evolution), the evolution
of tax levels only accounts for the Cliquet excise tax increase implemented by
the Belgian federal government (Federale Overheidsdienst, Kanselarij van de
Eerste Minister, 2003).

Prices of alternative fuels have been based on FEBIAC (n.d.); Verbeiren et
al. (2003); Vrije Universiteit Brussel, ETEC [VUB-ETEC] and Université Libre
de Bruxelles, Centre d’Etudes Economiques et Sociales de I’"Environnement
[ULB-CEESE] (2001). Taxes on alternative fuels have been assumed identical
to gasoline.!® Full details on fuel cost evolution are provided in appendix D.

3.3.2. Technologies

The baseline evolution of private car technologies (both conventional and al-
ternative) has been based on a broad range of sources, including TREMOVE 2,
Verbeiren et al. (2003) and Vrije Universiteit Brussel, ETEC (2001). The ex-
pected lifetime and mileage per car data have been taken from the TRENDS
project (see appendix C). The resulting lifetime costs are presented in figure
3.5 for medium engine size technologies.

Some attention has to be paid to the issue of the introduction date of
the alternative technologies. The year that new technologies will leave the
prototype stage and enter the market is very uncertain. After a first market
entry it may again take several years before a technology becomes fully
available with all manufacturers and car types. Many factors may speed
up or slow down this process; several of them are beyond the scope of the
TREMOVE modelling framework. This process can be described by the
theoretical framework of experience curves as discussed by International
Energy Agency [IEA] (2000). We want to stress that such a process is not
included in the TREMOVE model. To summarise: in TREMOVE technologies
are fully available or not available at all at a given point in time. This seems

2The ex-tax price is the resource cost (excl. taxes).

13There are no or only small existing excise taxes on LPG, CNG and electricity. As we assume
hydrogen to be based on natural gas, we assumed they are freed from excises as well. However,
this would imply an indirect subsidy for CNG, electric or hydrogen powered cars when they are
introduced. For that reason, we implement an excise tax per unit of energy that is identical to
gasoline.
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not too bad an assumption for a long run model, the only disadvantage of
this limitation is that it is not possible to simulate a shift of the introduction
date depending on e.g. the number of units sold in the year before or efforts
in research and development funded by the government.

That said, we need to fix an introduction date in TREMOVE for every alter-
native technology, and this date has to be the same in both the baseline and the
environmental tax simulation. We have chosen to be rather optimistic on the
full market availability of the different technologies (see table 3.3). This may
be too optimistic, but here we should draw again the attention of the reader
to the focus of this chapter: study whether a technological and/or modal shift
can contribute to a reduction in emissions. In case pessimistic introduction
dates were selected (e.g. 2019), not much shift between technologies could be
simulated as the modelling period ends in 2020 and no stock turnover would
happen. The option exists to shift the introduction date exogenously between
the baseline and the environmental tax simulation. However, this would make
abstraction of actual policy (unless one assumes the Belgian authorities would
start producing the alternative cars themselves).

Baseline emissions of alternative technologies are modelled as described
in section 3.2.2.

3.4. Reference scenario observations

A baseline scenario is implemented for the period 1995-2020. This business-
as-usual scenario simulates what happens in a situation where no new policy
measures are implemented apart from those already decided. The aim of the
baseline is to function as a reference for the environmental tax simulation (see

Table 3.3. Assumed introduction year of private car technologies (loosely based on
Verbeiren et al., 2003)

Technology Size class Introduction
Diesel conventional small 2002
Diesel conventional medium, big 1995
Gasoline conventional all 1995
LPG (retrofit) all 1995
CNG (retrofit) all 2008
Hydrogen ICE all 2013
Diesel hybrid all 2011
Gasoline hybrid all 2006
CNG hybrid (retrofit) all 2013
Hydrogen ICE hybrid all 2013
Battery small, medium 2008
Hydrogen fuel cell all 2013
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section 3.5), to allow for a consistent assessment of the impact of the tax on
technology shift, modal shift, emissions reduction and welfare cost.

This section discusses some aspects of the specification of the baseline
scenario. For a more comprehensive discussion we refer to appendix C.
Here we provide a summary overview of the baseline evolution for transport
activity, vehicle stock composition and emissions.

3.4.1. Transport activity

The evolution of transport activity in the baseline scenario is exogenous to
the model and is based on draft TREMOVE 2 specifications for Belgium.
The activity level for the historical period has been brought in line with
observations (European Commission Directorate-General for Energy and
Transport [DG TREN], 2004). The baseline activity evolution is represented in
figure 3.6 and figure 3.7.

3.4.2. Vehicle stock

The vehicle sales composition reflects the evolution in the properties of the
different technologies. The share of alternative technologies increases over
time as their lifetime costs are assumed to decrease. The sales composition for
selected years is presented in figure 3.8.

130

80 7_”-.'/,_

70 T T T T

1995 2000 2005 2010 2015 2020
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---- Rail (non-urban) Motorcycle —— Non-motorized

Figure 3.6. Baseline evolution of passenger transport activity demand in pkm (index:
2005 level = 100
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We observe that alternative technologies enter the market rather effortless,
considered that no supporting measures are included in the baseline.

The corresponding stock composition is provided in figure 3.9 for private
cars. One may consider the simulated penetration of new technologies as
rather optimistic. We should however not forget the market introduction
assumptions made in the baseline scenario (see section 3.3.2), in order to allow
for a consistent emission tax simulation.

3.4.3. Emissions and external costs

The results of the emissions module (see section 3.2.2) for the baseline are
presented in figure 3.10. We see a decline in most regulated emissions, only
for CO; there is an increase. The decrease is the sharpest for SO, emissions.
The reason is that the more stringent fuel standards are reflected immediately
in overall emissions whereas technology related emission reductions need
stock turnover to become effective. As such the sharp decline in the beginning
of the modelling period is mainly the result of technological improvements
introduced before 1995.

Combining the data provided by the emissions module with the external
cost coefficients (see appendix C) we can compare the average external emis-
sion cost!* per passenger kilometre (pkm) or ton kilometre (tkm) for each

4More precisely it is the activity weighted average value of marginal external emission costs
per passenger or ton kilometre. Marginal external costs of transport activity may for instance
vary across technologies and vehicle ages used by the same mode.
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Figure 3.9. Baseline private car stock composition
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Figure 3.10. Baseline evolution of overall transport emissions (index: 2005 level = 100)

mode.!® The results for the year 2020 are presented in figures 3.11 and 3.12.

The lower external cost for small cars is mainly a result of a lower share
of diesel technologies in this class. Contrary to common opinion we observe
buses not to be a more environmentally friendly mode. For passenger rail
transport the picture differs between urban and non-urban, mainly because we
assumed all urban rail transport to be electric.!® For freight the external cost
of the different modes in non-urban areas are in the same order of magnitude
apart from light duty vehicles which are less environmentally friendly (mainly
because of low load factors and rather loose emission standards for this
category of vehicles).

The ex-ante data provided by the emissions module allow us to compare
the external emission costs per vehicle kilometre (vkm) for new technologies
(see figure 3.13).

We observe the alternative technologies to be cleaner than the conventional
diesel and gasoline car. Especially the fuel cell hydrogen car seems to be
a very environmentally friendly alternative. We want nevertheless to draw
the attention of the reader to the overall order of magnitude of the emission

15Translating transport demand levels expressed in passenger or ton kilometre to vehicle
activity expressed in vehicle kilometre (or inversely) is done using constant market-specific
occupancy rates (or load factors) which are calibrated on an externally provided baseline scenario.
We refer to appendix C for a discussion of the TREMOVE model structure.

16Note that we only consider external costs by emissions here, emissions-free nuclear electricity
production has a rather large share in the Belgian electricity production.
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cost, which is even for conventional diesel and gasoline technologies!” rather
low. This is a result of the successive tightening of emission standards by
the EU Commission, resulting in a major decrease of emissions. We present
this evolution in figure 3.14. The decrease is convincing, and we should add
that in the pre-'96 period already an impressive decrease was achieved, as is
reflected in the overall emissions evolution presented in figure 3.10.

3.5. Simulating an emission tax

A reduction of emissions of a given pollutant can be obtained at the lowest
social cost (excluding external effects) by levying the same tax per ton of
emissions for all polluters (Kolstad, 2000). As we want to reduce external
emission costs rather than the amount of emissions, the level of the tax has to
be equal to the marginal external cost of the emissions C;, (per mass-unit of
emission; see appendix C).

The emission tax we simulate is levied for all modes. For road modes
the tax per kilometre differs according to technology, vehicle age and region
(urban or non-urban) because external impact by emissions differs along these
dimensions. We recall that we try to reduce the external costs by the pollutant

7The baseline conventional diesel and gasoline technologies in 2020 are Euro 4 cars running
on sulphur free fuel. The Euro 4 standard is mandatory from mid-2005 on, sulphur free fuels
enter the model in 2009.
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Figure 3.14. Baseline evolution of external emissions cost of new private cars with
medium engine size for conventional technologies (in €/vkm)

rather than the amount of mass emitted. In the latter case the tax would have
to be equal for all regions.

In our emission tax simulation, we expect to achieve two objectives. First,
we will achieve a given emission reduction in each region at the lowest cost.
Second, we will push the emission reduction up to the point where the
marginal cost of one ton of extra emission abatement effort in the transport
sector equals the marginal external emission cost that is avoided.

The emissions considered are tailpipe emissions only. The rationale behind
this is that the remaining part of the life cycle emissions has to be addressed
by measures targeting other activity sectors. However we added non-tailpipe
emissions for some technologies/modes in order to allow for a more realistic
emission tax simulation as discussed in section 3.2.2.

The tax income generated in the simulation is explicitly assumed to be
used for reduction of labour taxes.!

In a first simulation we will average the taxation level of the different
technologies in order to neutralise the existing differences in tax levels which
are not environmentally motivated.

In a next step we will tax different pollutants at their marginal external
cost. We assume here that the marginal external cost of each of the pollutants

18This assumption is reflected in the level of the marginal cost of public funds, which in our
simulation amounts to 6,6% of the change in tax income. We refer to the introduction for an
overview of the different cost components contributing to the welfare assessment.
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is only a function of the emission level of that pollutant and the location of
the polluter.'

3.5.1. Levelling the playing field

Before we look at the simulation of an emission tax we will in this section have
a closer look to the existing taxes and study in how far they reflect differences
in marginal external cost. The baseline figures for 2000 are provided in figure
3.15.

We observe that existing taxes do not reflect marginal external emissions
cost by the different technologies. Taxation differences for different engine
sizes may be based on non-environmental motivations (e.g. equity), but for
the same engine size there seems not to be any ground on which a taxation
difference could be motivated apart from external emission cost. We therefore
decided to simulate in a first step a taxation scheme that levels differences
over technologies of the same size class (and mode).

In this simulation we replace the existing taxes (from 2006 on) by a kilome-
tre tax that amounts to the average tax level per vehicle kilometre (vkm) in
the baseline scenario.

Time (hour of the day, season) can also influence the level of the external emission cost but
is not included in TREMOVE due to modelling framework limitations.

Gasoline (small) |

Gasoline (medium) |

Gasoline (big)

Diesel (medium)

P09 _

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

\l environmental damage O tax\

Figure 3.15. Baseline taxes compared to marginal external emission cost for new private
cars in 2000 (in €/vkm)
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The less taxed technologies lose market share as a result of this levelling
of the playing field (see figure 3.16). Especially the share of diesel vehicles
becomes smaller. We also observe a shift away from hybrid vehicles towards
their conventional counterparts. This is mainly explained by the high fuel
taxes in the baseline scenario which magnify the fuel efficiency difference.

For light duty freight vehicles (LDV, gross mass under 3,5 ton), we observe
a rather big technology shift (5 to 10 percentage point share change) reflecting
the higher price sensitivity assumed on this market (see appendix C). For
motorised two-wheelers, no technology shift is observed as we do not change
these taxes.

The corresponding change in emissions is presented in figure 3.17. Using
the marginal external cost coefficients C, (see appendix C) we calculate the
emission cost reduction for every year in the modelling period. The 2005
present value of the annual external cost reductions is then added up, resulting
in a net emission cost reduction.

We limit the discussion of the levelled tax simulation to the induced
technology shifts and related emission changes as this is the only focus of this
simulation. Small modal shifts do occur in the simulation but they do not
provide much insight.?

The environmental gain observed in this simulation results from a change
in the taxation policy such that it is environmentally neutral rather than
promoting whatever technology for no apparent reason. Eliminating this
distortionary tax should be feasible without a loss of consumer surplus,
producer surplus and tax income. A net welfare gain (that includes an
environmental gain) is therefore obtainable.

This levelled technology tax simulation provides a neutral comparison
base that allows for a better understanding of subsequent environmental tax
simulations that aim at a shift towards a cleaner technology stock composition.

3.5.2. Emission tax simulation

In this section we discuss the simulation of an emission tax. This simulation
considers a tax on all emissions and the tax level is fixed at the marginal
external emission cost level.2!

The tax is levied from 2006 onwards on all technologies and modes, and
the level (per mass unit) is identical for all vehicles but is differentiated over

2]deally, the level of the tax should be chosen such that no modal shifts or overall change
in transport demand is induced. However, the TREMOVE model does not allow for this kind
of optimisation and therefore the baseline scenario tax level was used which does result in
small changes in modal demand. This consideration also explains the small net shifts between
technologies of different engine sizes.

2IThis simulation aims at setting the benchmark for efficiency by implementing a first-best
scenario. A discussion on the role of the first best scenario in cost benefit assessment is provided
in the introduction.
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metropolitan (Brussels), other urban and non-urban areas.?

For particulate matter (PM), only diesel and electrical technologies are
taxed, as there is too much uncertainty regarding the level of PM emissions
for the other technologies.>> COPERT III does not include PM emission factors
for gasoline cars.?

The emission tax simulation is compared to the levelled tax simulation:
the emission tax is added on top of the levelled tax. This way, the only tax
difference between the technologies of the same mode and size reflects the
marginal external cost of the pollutants considered. Hence, a realistic insight
in the environmental potential of the different technologies can be obtained.

The generalised price variable is the main driver in the evolution of demand
for transport activity. This composite cost variable covers all resource costs,
taxes and time costs per passenger kilometre (pkm) or ton kilometre (tkm)
and is calculated for all transport markets. A shift between modes as well as

22The exercise done her is strictly limited to the question of the impact of such a tax on
transport activity and does not discuss the specifications of the technical implementation of the
tax. It seems to us that it should be feasible technologically, but such a system may come at a
considerable cost (which is not taken into account here) and there may also be issues related to
privacy concerns.

BLacking sufficiently detailed information on electricity production it is assumed in our
model that electrical energy is produced in the area where it is consumed.

241n the case that we would have included PM emission factors for non-diesel technologies,
the differences in emission tax between the technologies would be smaller and hence smaller
technology shifts would result.
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an increase or decrease in global transport activity results from any change in
the generalised prices, which are presented in table 3.4.2°

We observe that in the equilibrium the generalised user prices increase
for most modes as a result of the emissions tax. Only for passenger rail is
there a small decrease. The relatively favourable environmentally footprint of
electric rail (which constitutes a large share in passenger rail activity) induces
a modal shift upon the introduction of the emissions tax. This increase in rail
demand leads to shorter waiting times, which in turn decrease the generalised
user cost to a larger extent than the original emission tax increase.

The overall decrease in transport activity amounts to 3,0% for freight
transport in 2020, for passenger transport a smaller decrease (0,5%) is observed
(in 2020).

If we look to the urban area of Brussels (figure 3.18), we see mainly a move
away from large cars towards small cars, buses and metro, which is in line
with generalised price evolutions. For freight transport we observe a small
shift from small trucks (LDV) towards bigger vehicles (HDV) in the long run
(2020).

In the non-urban area (figure 3.19) the decrease in waterways activity is

ZNote that in the initial equilibrium, prices may be wrong for the different modes because
of other reasons than environment (subsidies, congestion, etc.)—so getting it right for external
emission cost is 70 guarantee that it improves things. We will discuss this issue in the welfare
assessment in section 3.5.3.

Table 3.4. Impact of emission tax on generalised prices in €2000 per pkm or tkm (in %
change compared to the levelled tax simulation)

2010 2015 2020
Urban Small car 0,99% 0,82% 0,78%
Large car 2,56% 2,01% 1,77%
Bus 1,69% 0,78% 0,46%
Metro and Train —0,23% —0,33% —0,35%
Moped & motorcycle 5,39% 4,11% 4,83%
Non-motorised 0,02% 0,01% 0,01%
Small truck 4,73% 3,31% 3,09%
Big truck 8,80% 4,58% 3,82%
Non-urban Small car 0,44% 0,43% 0,46%
Large car 1,36% 1,17% 1,06%
Bus 3,42% 2,23% 1,87%
Train 3,03% 3,05% 3,72%
Moped & motorcycle 4,81% 3,24% 3,97%
Small truck 3,33% 2,43% 2,30%
Big truck 7,89% 4,74% 4,28%
Freight Train 2,44% 2,03% 1,80%
Waterways 9,03% 8,05% 7,01%
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Figure 3.18. Impact of emission tax on passenger transport activity in Brussels (in %
change compared to levelled tax simulation)

rather obvious (and reflecting the change in generalised price). The lower
generalised cost of waterways transport combined with its rather bad envi-
ronmental record (see figure 3.12) results in a higher relative impact of the
emission tax compared to the other freight modes. For the other modes we
observe similar shifts as for the Brussels area.

Freight train activity increases in the short run but this shift becomes
smaller in the long run. This is the result of the evolving vehicle stocks for
the road modes: in the short run one can only react to the new tax by a
modal shift (and overall activity decrease), whereas in the longer run the stock
composition changes as a function of the tax and modal shift becomes less
important.

In the private car stock composition (figure 3.20) we observe the shift
from diesel to gasoline and a smaller shift from conventional towards hybrid
technologies. Gasoline vehicles produce less PM and NOx emissions, whereas
hybrid vehicles are more fuel efficient and hence emit less CO, compared to
their conventional counterparts. Also some other technologies see an increase
in their vehicle stock share.

For the light duty freight vehicles we see a shift from diesel to gasoline (see
figure 3.21. This shift is bigger in percentage point compared to the private car
shift, reflecting the assumptions made regarding price sensitivity (see section
3.2.1).

The change in fuel consumption (figure 3.22) shows a clear shift from
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Figure 3.19. Impact of emission tax on passenger transport activity in non-urban areas
(in % change compared to levelled tax simulation)

diesel to gasoline. Also the consumption of CNG increases, due to a shift
towards CNG technologies (private cars). In absolute figures, this increase is
however much smaller than the increase in gasoline demand.

Looking at the emissions (figure 3.23), we see a reduction of about 5% in
the NOx and PM emissions. For CO, the reduction is smaller (about 2%). For
CO and benzene emission we observe an increase, resulting from the shift to
gasoline technologies.

An important reduction for SO, emissions is obtained. This is a result of
the reduction in inland waterways activity, where less stringent fuel standards
apply compared to road modes.

For completeness we add here that some measures which fall beyond
the scope of our study can change the picture for conventional technologies.
The baseline technological evolution for inland waterways transport was not
allowed to change under the emissions tax, although one could imagine a
switch to cleaner (low sulphur content) fuels in order to reduce the external
emission cost. In a similar way we did not consider further improvements of
conventional diesel private car technologies, although the EU Commission is
preparing for Euro 5 standards as of writing this chapter.

99



3.5. Simulating an emission tax

-1.0% -0.8% -0.6% -04% -02% 0.0% 02% 04% 0.6%

Cars, diesel

Cars, gasoline

Cars, Ipg

Cars, cng

Cars, hydrogen ice

Cars, diesel hybrid

Cars, gasoline hybrid

Cars, cng hybrid

Cars, hydrogen hybrid

Cars, battery

Cars, hydrogen fuel
cell

Cars, small

Cars, medium

Cars, big

W 2010 O 2020

Figure 3.20. Impact of emission tax on private car stock composition (change of
technology share in percentage point compared to levelled tax simulation)
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Figure 3.21. Impact of emission tax on vehicle stock composition for LDV, buses and
motorcycles (change of technology share in percentage point compared to levelled tax
simulation)
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Figure 3.22. Impact of emission tax on total fuel consumption (in % change compared
to levelled tax simulation)
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Figure 3.23. Impact of emission tax on overall transport emissions (in % change
compared to levelled tax simulation)
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3.5.3. Welfare assessment

In this section we study the overall welfare impact of the emission tax sim-
ulation by calculating its social cost.2® In a first step we look at the cost to
consumers, in a next step we include the external costs.

The breakdown of the annual cost to society (figure 3.24) of the emission
tax scenario shows a net gain over the entire modelling period (all costs are
expressed in €2000). There is a net cost faced by both consumers and freight
transport, but the increase in income for the government is nearly as big. The
MCPF term (marginal cost of public funds) represents the efficiency gain of
lowering labour taxes through a shift of taxes (via higher transport taxes) to
non-labour income taxes.?”

Next, we have a look at changes in external costs resulting from the change
emissions (figure 3.24). We see that for the emission tax simulation this cost is
negative, hence it is a gain.

Here it is interesting to have a closer look at the determinants of the
environmental gain by the reduction in emissions. The global decrease of
activity contributes to about 65% of the environmental gain in the short run

26The definition of the different cost components contributing to the social costs of a scenario
is discussed in the introduction.

27We assume that there are also other sources of income that are taxed but that only taxes on
labour income are reduced.

-2,000
2010 2015 2020
M Total cost O Consumers B MCPF term
i Government Freight transport [ Emission damage

Figure 3.24. Annual welfare cost of emission tax in million euro compared to levelled
tax simulation—positive values represent a social cost whereas negative values are a
benefit
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(2010). With the technological shift, the attainable environmental gain goes
up to 90%, the remaining 10% being a result of a modal shift. In the long run
(2020) we observe a smaller contribution of global activity decrease (45,9%),
whereas adding the technology shift results in 92,4% of environmental benefits.
In the long run, only 7,6% is contributed by a modal shift.

This result indicates that modal shift does not contribute much to a cost
efficient reduction of external costs from emissions. The major contribution
comes from a technological shift. As the technology stock turnover takes some
time, in the short run a larger contribution from a global activity decrease is
observed.

Finally we calculate for the emission tax simulation the 2005 net present
value of the emission tax compared to the levelled tax simulation. Excluding
external emission costs, the emission tax has a 2005 net present value of —162
million euro, which is a social gain. Adding the change in external emission
costs further decreases the net present value to —809 million euro.

3.6. Conclusions

The TREMOVE Belgium model was selected as tool for the assessment of the
environmental and social impact of reducing emissions in the transport sector.
We successfully implemented important extensions to the model in order to
allow for a comprehensive simulation of the impact of an emissions tax on
transport activity and vehicle stock composition.

The baseline scenario suggests that a market exists for alternative tech-
nologies. It further indicates that existing taxes are distortionary as they
promote less environmental friendly technologies. An elimination of these
taxes results in a technological shift to gasoline technologies and provides an
environmental as well as a net welfare gain.

An emission tax guarantees that a reduction in external emission costs is
obtained in the most cost-efficient way considered that as a result abatement
costs are equal on all markets. We observe that under such a context the major
contribution to emission cost reduction comes from a technology shift rather
than a modal shift. The overall welfare result is a net gain. The technology
shift is again in the first place towards gasoline vehicles.

The absolute figures are however not tremendous, considered that existing
conventional technologies are already rather clean as a result of past techno-
logical improvements. In the long run, private car transport may become as
clean as public transport, an observation that we will study more closely in
chapter 5.
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CHAPTER

The welfare cost of more fuel efficient
cars

4 1. Introduction

Concerns on climate change have urged policy makers to develop a strategy to
reduce greenhouse gasses. The transport sector is a major contributor to these
emissions and hence receives much focus in the debate on where emission
cuts have to be realised.

The call for more fuel efficient private cars seems to have reached the EU
Commission who put forward the ambitious target of reaching an average
120 g/km of CO, emissions by 2012 for new cars sold in the EU. There is
however no free lunch: more efficient cars come at a higher (purchase) cost.

Research on the impact of fuel efficiency on technological production costs
has come up with cost curves that are based on engineering estimates of
efficiency enhancing technological improvements. P. ten Brink et al. (2005)
present retail price increase as a function of a reduction in per kilometre CO,
emissions (which are heavily correlated with fuel efficiency). The purchase
cost curves are further detailed to account for car engine size and fuel. Other
examples of this direct approach are National Research Council [NRC] (2002)
and DeCicco and Ross (1996) who study an improvement in fuel efficiency
and the corresponding retail price increase for the US private car market.

The link between fuel cost and fuel efficiency is researched in different
studies in the field of econometrics. Different estimates for the fuel price
elasticity of fuel efficiency have been presented, some examples include
Johansson and Schipper (1997) and Small and Van Dender (2006). As noted
by Small and Van Dender (2006), this elasticity can be calculated from the fuel
price elasticities of fuel consumption and traffic level, for which an extended
set of estimations can be found in past research. Goodwin (1992) provides a
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review of the topic.

A qualitatively comparison of fuel efficiency policies in the EU and Japan
has been presented by Plotkin (2001). Simulations of policy scenarios to
improve fuel efficiency have been limited so far to modelling the impact on
new car sales only. COWI A/S (2002) discusses different fiscal measures and
assesses their impact on car sales, CO, emissions and tax revenues for the
government. P. ten Brink et al. (2005) use the estimated cost curves (see above)
to compare the welfare impact of different implementations of corporate
average fuel economy standards.

In our approach to the topic we will start from the link between fuel cost
and fuel efficiency and develop an indirect methodology based on assumptions
on consumer and supplier behaviour in order to relate fuel efficiency to overall
car user cost.

Integrating our methodology in the TREMOVE transport modelling frame-
work for Belgium allows for a comprehensive simulation of fuel efficiency
policy and its impact on welfare and environment. In contrast to earlier
research our model includes a representation of the entire vehicle stock com-
position and covers all transport markets. This allows for the simulation of
policy measures that go beyond new vehicle sales and also target the existing
stock or other modes (such as a CO, emission tax).

Comparing the EU policy of an average new car efficiency standard to an
emission tax on all private cars, we reveal that a tax has a smaller welfare cost.
This is in line with the intuition: an emission tax guarantees that emissions
are reduced at the lowest cost for society (Kolstad, 2000, see section 3.5).

The social cost of a reduction in CO; emissions from private cars is however
much higher than the corresponding reduction in external emission costs,
even under the CO, emission tax scenario. Again this is a finding in line with
intuition considering that the existing fuel taxes are already above the level of
the corresponding external CO, emission costs.

In the first section we present the methodology and compare it to the
literature. The second section assesses EU policy on private car fuel efficiency
and a third section looks to a next policy horizon. In a fourth section we
identify some limitations to our methodology and in a last section we draw
some conclusions.

4.2. Modelling fuel efficiency

In this section we propose a methodology to assess the environmental and
welfare impact of fuel efficiency. We proceed in four steps.

First we discuss two methods to relate fuel efficiency and user cost at the
level of the individual vehicle. Two approaches are compared: a direct method
based on engineering estimates of production costs and an indirect approach
based on assumptions on consumer and supplier behaviour. Second we have
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a closer look into autonomous progress in fuel efficiency that is made over
time. Third we compare test cycle to real world fuel consumption. Fourth
we discuss how we can integrate these findings in the TREMOVE partial
equilibrium model.

4.2.1. Direct or indirect cost curves
Methodology

To calculate the impact of improved fuel efficiency on the user cost, basically
two approaches are possible.

The direct approach considers bundles of fuel efficiency enhancing technolo-
gies and links them to engineering estimates of the corresponding production
cost. Such an approach is applied by P. ten Brink et al. (2005), providing
retail price functions for different engine size classes. These functions express
the purchase cost increase as a function of reduction in specific CO, emis-
sions!. DeCicco and Ross (1996); NRC (2002) study an improvement in fuel
efficiency and the corresponding retail cost increase for the US private car
market (including light trucks).

The indirect approach considers the market outcome to link fuel efficiency
to an increase in user cost. Two assumptions are used: one on consumer
behaviour and one on the behaviour of suppliers. The basic assumption for
the consumer is that he chooses between vehicle technologies based on the total
user cost of each technology. This user cost variable is function of all monetary
resource costs and taxes over the vehicle lifetime: fuel cost, purchase cost,
repair and maintenance cost etc.

The second assumption in the indirect methodology is that, in a competi-
tive market and for a given fuel price p, car manufacturers offer cars that have
an optimised user cost with respect to fuel intensity?: if a manufacturer can
produce a car with a lower user cost by changing the fuel intensity, he will do
it.> We express here the user cost UC per vehicle kilometre as the sum of a
resource cost (and tax) RC(f) and fuel costs (including tax):

UC =RC(f)+f-p (4.1)

with f the fuel intensity and p the volumetric fuel price (including taxes).

IThroughout this chapter we use the expression specific emissions to indicate the per vehicle
kilometre (vkm) emissions of an individual private car.

2Throughout this chapter we use the expression fuel intensity to indicate the volumetric
fuel consumption per vehicle kilometre. A decrease of the fuel intensity corresponds to an
improvement of fuel efficiency.

3Tt is suggested that the car market is oligopolistic. This may result in fuel efficiency decisions
that depart from the assumption made here that competitive car manufacturers offer fuel intensity
optimised cars. In section 4.5 we will discuss a number of caveats of the approach applied in this
chapter.
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Optimising the user cost UC gives:

auc dRC
= = 4.2
We can now calculate the resource cost ARC(f) resulting from a change in
fuel intensity from fj to f:

ARC(f) = /ff —pdf (43)

The relation between the fuel price p and the fuel intensity f is captured
by the elasticity € of fuel efficiency with respect to fuel price, which is a result
of the technology of firms:

_df/f _dfp _ . eln(p/po)
Saplp apg TS “d

with fy the fuel intensity and p the fuel price in a reference situation.

Substituting relation (4.4) in (4.3) and solving the integral provides us with
an expression for the increase in resource cost ARC(f) as a function of the
increased fuel intensity f:

. 1+1/€
ARC(f) = fi 1f/°€ [1— <}{;> ] (4.5)

Whereas for the direct approach there is a need for engineering estimates of
production costs (and assumptions on the link between production costs and
retail price), we need for the indirect approach estimates of the technological
parameter € (property of cost and production functions). We will come back
to this issue in the next section where we compare both approaches.

Illustration

In this section we compare the cost of fuel intensity using the indirect and
the direct approach. To allow for an integration of the methodology in the
TREMOVE modelling framework (see section 4.2.4), we here analyse the test
cycle fuel intensity of a vehicle with a given engine size. An overview of diesel
and gasoline private car technologies included in TREMOVE is provided in
table 4.1.

To apply the indirect approach, we need a value for the fuel price elasticity
of fuel intensity €. Johansson and Schipper (1997) estimated a value of about
—0,4 for the mean fuel intensity of the car stock. Values provided by Goodwin
(1992) for the long run petrol price elasticities of fuel consumption (about
—0,7) and traffic level (—0,3 to —0,5) imply a value for € in the range —0,4 to
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Table 4.1. TREMOVE private car technology classes

Category Fuel Engine size Availability
small diesel diesel <141 2002-2020
medium diesel diesel 1,4-2,01 1995-2020
big diesel diesel >2,01 1995-2020
small gasoline gasoline <141 1995-2020
medium gasoline gasoline 1,4-2,01 1995-2020
big gasoline gasoline >2,01 1995-2020

—0,6.* A more recent estimate is provided by Small and Van Dender (2006),
presenting a value of about —0,2 for €. Brons (2006) conducted a meta-analysis
on fuel price elasticities and suggests a value of —0,22 for the elasticity of fuel
efficiency with respect to gasoline price. We decided to use the value of —0,2
for € in this chapter.’

Purchase cost functions for the direct approach are based on P. ten Brink
et al. (2005) for the different TREMOVE private car classes. The cost functions
represent (packages of) fuel efficiency technologies most promising/likely
to be applied in the period 2002-2012 and relate an increase in purchase
cost (inclusive of taxes) to a reduction in specific CO, emissions in gram
per kilometre compared tot 2002 base year data. As CO, emissions are
proportionally to fuel intensity we can (using base year specific CO, emissions)
easily convert them to a relative increase in fuel intensity.

The indirect approach is implemented by applying formula (4.5) using the
same 2002 base year data. The obtained increase in per kilometre resource cost
has to be translated to a corresponding increase in purchase cost to compare
it to the direct approach. We here used the cost formula implemented in
TREMOVE Belgium (see appendix C) where an increase in purchase cost
results in an increase in repair and maintenance costs as well as an increase in
insurance costs. All these costs are converted to an annuity over the expected
vehicle lifetime,® and finally divided by the expected annual mileage to obtain
a per kilometre cost increase.”

The direct and indirect approach for medium and big diesel technologies
is presented in figures 4.1 and 4.2. Whereas for smaller improvements in fuel
efficiency the cost increase simulated by the indirect methodology is clearly
higher than with the direct methodology, the difference (nearly) disappears

4Small and Van Dender (2006) provide the expression for the relationship between the
elasticities.

5We here assume a constant value for € over the entire modelling period (1995-2020) for all
engine sizes, fuels, and all values of fuel intensity.

%The TREMOVE model assumes that a private car buyer makes a rational decision in trading
off the different cost components. We refer to chapter 2 for a discussion of this assumption.

"We here assume a discount rate of 4%, an expected lifetime of 9,5 years and an expected
annual mileage of 13475km.
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for larger increases.

For the small diesel class the difference is larger (see figure 4.3), but this
may be related to the fact that this vehicle class is rather new making an
application of the direct methodology less straightforward. On the other hand,
the parameter € for the indirect approach may differ over vehicle sizes, an
aspect that we have not taken into consideration here, mainly due to a lack of
evidence on the qualitative aspects of such a differentiation.

For gasoline cars, the difference between both methodologies is rather
large, especially for medium and big sized engines (see figures 4.4, 4.5 and
4.6).

Given the large difference between both approaches, it is appropriate to
have a more detailed look to the different assumptions behind both approaches.
The direct approach presented by P. ten Brink et al. (2005) covers technological
innovation over an entire decade. It looks forward to 2012 and compares the
forecast availability of fuel efficiency technologies to a reference situation in
2002. As such, it allows for the inclusion of technologies with a negative user
cost impact: these are technologies that are (implicitly) expected to make it to
the market regardless of supporting policy measures.

The indirect approach however expresses how the user cost is optimised
with respect to fuel efficiency at a given point in time. In the indirect approach
the reference point is hence explicitly allowed to shift over time. It is here that
the technologies with a negative net user cost fit in the indirect approach: the
reference average new car becomes more fuel efficient over time at the rate
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Figure 4.1. Cost of fuel efficiency for medium diesel cars (1,4-2,01)
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Figure 4.2. Cost of fuel efficiency for big diesel cars ( >2,01)
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Figure 4.6. Cost of fuel efficiency for big gasoline cars (>2,01)

these technologies become available. We will call this evolution the autonomous
progress and discuss it in the next section.®

This difference in approach may also explain why the formulae by P. ten
Brink et al. (2005) result in a smaller cost increase for gasoline compared to
diesel cars for an identical decrease in fuel intensity, an observation which is
not in line with formula (4.2).

A smaller issue that may also imply a difference between both approaches
is that P. ten Brink et al. (2005) included measures that affect real world
fuel intensity rather than test cycle behaviour. The European Conference of
Ministers of Transport [ECMT] and International Energy Agency [IEA] (2005)
discusses such fuel efficiency improvements that are not reflected in test cycle
figures and may result in a net user cost reduction. Imperfect information
is identified as the reason for non-implementation of these technologies. As
such measures fall beyond the scope of our study, we will not further discuss
them here.

Technology curves which include negative cost figures are not a useful
approach of a welfare analysis where the reference point should be the user
cost optimised technology at each point in time in order to correctly identify
the impact of policy scenarios. In our assessment of different fuel efficiency

8Blok, Jager, Hendriks, Kouvaritakis, and Mantzos (2001) do a similar comparison of CO,
abatement costs in the bottom-up GENESIS model and the top-down PRIMES model. They find
negative cost figures in GENESIS in the range between the 2010 frozen technology level and the
baseline level. For the PRIMES model they point out that such negative cost options are already
incorporated in the baseline.
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policies (sections 4.3 and 4.4) we therefore decided to apply the indirect
approach combined with an autonomous progress assumption (see next
section). This approach also provides a clear link between fuel price and
fuel efficiency. We will discuss the implementation of our simulation tool in
section 4.2.4.

4.2.2. Autonomous progress

In the previous section we studied the evolution of fuel efficiency resulting
from an increase in fuel prices. Here we look at what happens to fuel efficiency
over time if fuel prices do not change (in real terms).’

There seems to be some evidence that a constant improvement of fuel
efficiency should happen as a result of research and development efforts as
well as of learning-by-doing (IEA, 2000). This is confirmed by Verbeiren et
al. (2003) who expect an annual improvement of 0,6% for the conventional
technologies. Small and Van Dender (2006) identify an annual improvement
of even 2,0% for the fuel intensity of the US vehicle stock over the period
1980-2001 which cannot be explained by the evolution in fuel costs, mandatory
efficiency standards (CAFE), income or urbanisation.

At the other hand, R. M. M. Van den Brink and Van Wee (2001) observe no
decrease in fuel intensity for the average new private car in the Netherlands
in the 1985-1997 period. The authors study the evolution of the technological
properties over this period and find that the observed technological improve-
ments were cancelled out by mainly an increase in vehicle mass of the average
car resulting in a constant fuel intensity. This confirms the existence of tech-
nological progress but does not directly allow to draw the conclusion that it
should result in more fuel efficient cars.

If we study the results by R. M. M. Van den Brink and Van Wee (2001)
more closely, we observe that part of the weight increase is the result of a
shift towards larger engine sizes. The authors indicate that without this shift
over the period 1985-1997 the average new private car (in 1997) would have
been 6% more fuel efficient. Correcting for this evolution results in a decrease
by 4,1% for the fuel intensity of a gasoline car with a constant engine size
over the 1985-1997 period. We also observe gasoline fuel prices in 1997 to
be lower than in 1985 (constant prices), which should have resulted in an
increase of about 3% of the fuel intensity (based on formula (4.4)) if there
was no autonomous progress. Assuming that the difference between both
evolutions is the autonomous progress, we find an average annual decrease of
the fuel intensity of about 0,6% for a constant engine size gasoline technology.

The past research referred to in this section does not provide evidence on
differences in autonomous progress between engine size classes or fuels.

9Throughout this chapter we express all costs in constant prices (i.e. compensated for inflation).
The monetary unit used is the value of the euro in 2000.
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4.2.3. Test cycle is not real world

There seems to be some evidence that fuel efficiency differs significantly
between test cycle and average real world driving behaviour.

R. M. M. Van den Brink and Van Wee (2001) provide a comparison between
real world fuel consumption and test cycle measurements. The real world
consumption for the average new 1997 gasoline car is reported to be 10%
higher than Eurotest (93/116/EC) figures. For Germany, the difference would
amount to 17%. The authors expect the difference to increase due to the
introduction of direct injection gasoline cars and the increasing share of
airco-equipped cars in new sales.

ECMT and IEA (2005) provide a literature review on the difference between
test cycle and real world consumption. However they do not provide evidence
that the gap should increase as a result of new technologies. As for the existing
gap they draw the conclusion that for Europe not much is known because
only a few studies are available.

4.2.4. TREMOVE Belgium

In this section we discuss how we implement the link between fuel price, fuel
intensity and resource costs in the TREMOVE modelling framework. This
allows to assess the environmental impact and welfare cost of the implemen-
tation of fuel efficiency policy measures.

The Model

We use the TREMOVE model for Belgium. An overview of the model spec-
ification is provided in appendix C, in our application here we include the
extensions that are discussed in chapter 3 (e.g. technology choice model for
private cars). The model implemented in this chapter limits the availability
of car technologies to the conventional ones (see table 4.1): three engine size
classes for diesel and three classes for gasoline technologies (as opposed to
chapter 3 where the availability of a range of alternative technologies was
considered). The share of LPG technologies is fixed to 1% of the sales of
gasoline technologies.

We here explicitly assume that the technology categories presented in table
4.1 cover all private car sales. As indicated by NRC (2002) failing to properly
define the distinction between private cars and trucks led to aspects of USA
fuel efficiency standards (CAFE program) not having functioned as intended.

We implement the indirect approach presented in section 4.2.1 as it allows
for a consistent welfare assessment. This link between fuel prices, fuel intensity
and resource costs is assumed to apply to all road technologies (not only
private cars).!

101 the simulations in sections 4.3 and 4.4 we will mainly focus on private cars. For other
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The straightforward implementation of the indirect approach includes an
implicit assumption of reversibility: if fuel prices first go up and then go
back down to the original level, the fuel intensity will finally come back to
the original level (apart from any autonomous progress over time). There is
some evidence that this reversibility does not hold and that a hysteresis effect
plays (Dargay, 1997; Gately, 1992; Walker and Wirl, 1993). In contrast Small
and Van Dender (2006) assume the link between fuel prices and fuel to be
symmetric. As the focus of our study here will be limited to decreases in fuel
intensity, we decided not to implement asymmetry in order to keep the model
simple.!!

The existing emissions module includes an assumption on the difference
between test cycle and real world fuel efficiency. At the EU level a difference
of 15% was assumed (constant over time). The emissions module we use here
is based on the TREMOVE 2 model. We refer to the documentation of the
TREMOVE 2 model (G. De Ceuster et al., 2005), for a full discussion of its
implementation. The exact implementation does not matter much for our
simulations here, as we will explicitly focus on improvement of test cycle fuel
efficiency. Any fixed supplement (be it 5% or 15%) will only be reflected in
total emissions figures (and corresponding external costs).

The Baseline

A baseline scenario is constructed for the period 1995-2020. This business-as-
usual scenario simulates what happens in a situation where no new policy
measures are implemented apart from those already decided. The aim of the
baseline is to function as a reference for the fuel efficiency policy simulations
(see sections 4.3 and 4.4), to allow for a consistent assessment of the impact of
the policy measure on technology shift, modal shift, emissions reduction and
welfare cost.

One should however not consider the baseline scenario as a projection or
forecast, TREMOVE not being a forecast model. The TREMOVE model is a
simulation tool providing a consistent framework for the assessment of what
would happen if the exogenous variables follow a given evolution.

This section discusses the baseline evolution for fuel prices/taxes and fuel
efficiency of private cars. For a more comprehensive discussion of the baseline
scenario (including fuel prices, taxes and efficiency of other modes) we refer
to the model specification in appendix C.

modes there will be only small changes in fuel intensity resulting from the baseline evolution of
fuel prices.

n the baseline scenario an occasional decrease in fuel price may result in a small increase
in fuel intensity. However, these effects are of a smaller order of magnitude compared to the
simulations in sections 4.3 and 4.4.
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The welfare cost of more fuel efficient cars

Fuel cost Fuel cost per litre consists of ex-tax costs and taxes. The ex-tax
costs for the historical period (1995-2002) are based on statistics by IEA (2003).
The evolution beyond 2002 is based on PRIMES-transport forecasts (Knockaert
et al., 2002) on evolution of crude oil and refining costs, assuming a constant
margin for fuel distribution.

The introduction of sulphur free (10 ppm) fuels in 2009 is assumed to raise
the ex-tax cost by 3% for gasoline and 5% for diesel.

The baseline ex-tax fuel price evolution is illustrated by figure 4.7.

Taxes are based on IEA (2003) for the historical period and kept constant
at the level of 2003, apart from the Cliquet system (Federale Overheidsdi-
enst, Kanselarij van de Eerste Minister, 2003) that has been implemented to
determine excise rises for the period 2004-2008 (diesel and gasoline).

Fuel Efficiency As part of the EU strategy on specific CO; emissions from
new private cars a data collection system was implemented (European Par-
liament and Council of the European Union, 2000). From this database we
obtain CO, emission figures for the different vehicle classes (engine size
and fuel) for the year 2000. To convert these emission figures to volumetric
fuel consumption we applied the methodology of the TREMOVE emissions
module.

The historic evolution 1995-2000 has been based on the monitoring reports
by the EU commission. These reports provide evolution of average CO,
emissions for new vehicles by fuel (but not by engine size). We applied this
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Figure 4.7. Baseline evolution of ex-tax fuel cost for private cars (in €/1)
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evolution to the 2000 figures.

For the application of formula (4.4) we need a reference fuel price py and
fuel intensity fj for each year in the modelling period (2000-2020). For the
fuel price we take the year 2000 value as reference for the 2000-2020 period,
whereas for the fuel intensity we start from the year 2000 values and assume
an annual autonomous progress of 0,6% (see section 4.2.2).1> Together with
the baseline fuel price evolution (see above) this allows us to apply formula
(4.4) to calculate the baseline fuel intensity (see figure 4.8) and formula (4.5)
for the corresponding baseline resource cost.

Emissions Emissions (and fuel consumption) of road transport activity are
calculated making use of the emissions module of TREMOVE 2 which is based
on COPERT II methodology. For an extensive discussion of the emissions
module we refer to the respective model documentation (G. De Ceuster et al.,
2005; Ntziachristos and Samaras, 2000).

The baseline evolution of the most important pollutants is presented in
figure 4.9. We remind the reader that the baseline simulates a situation where
no additional policy measures are implemented (apart from those already

12Qur rate of autonomous progress is based on the literature reviewed in section 4.2.2. An
alternative approach would be to use the direct cost curves presented by P. ten Brink et al.
(2005) and select the technologies with a negative fuel efficiency cost to provide a measure for
autonomous progress.
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Figure 4.8. Baseline evolution of fuel intensity of new private cars with medium engine
size (in 1/km)
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decided). This implies that no further improvements of emission technologies
are considered beyond Euro 4 (for private cars) or Euro 5 (for heavy duty
vehicles). This explains the status quo in overall transport emissions level
from 2015 on in the baseline. To assess external costs from transport emissions
we apply marginal external emission cost coefficients for all pollutants.!3

Emissions of CO, by road modes are linked to fuel consumption based
on the carbon content of the fuel. The marginal external cost coefficient
for CO, emissions reflects a reference value for economy wide abatement
cost (see figure 4.10). The rationale for using abatement cost (rather than
environmental impact) is that total EU-wide CO, emissions are capped by the
Kyoto agreements. An increase of CO, emissions in one sector needs hence
to be compensated by a decrease elsewhere in the economy. The value we
use for external abatement cost is provided by TREMOVE 2 and is based on
Holland, Hunt, et al. (2005). This value is of a similar order of magnitude
of values provided in literature for marginal environmental impact by CO,
emissions.

13Marginal external emission cost coefficients are based on TREMOVE 2 values. An overview
is presented in appendix C, we refer to the model documentation (G. De Ceuster et al., 2005) for
a full discussion of the issue.
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Figure 4.9. Baseline evolution of overall transport emissions (index: 2005 level = 100)
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4.3. EU-policy: the agreements

Three agreements have been made between the European Commission and
the car manufacturers. These commitments have been concluded with the
European (ACEA), the Japanese (JAMA) and Korean (KAMA) automobile
industries. The manufacturers mainly commit to improve fuel efficiency by
technological improvements to reach an average level of specific CO, emissions
from new private cars of 140 g/km by 2008.1 In this section we study the
welfare and environmental impact for Belgium of an implementation of this
policy approach.

4.3.1. Literature

Whereas the set target of 140 g/km seems to be straightforward, the agree-
ments are not clear on how it is to be reached. An important issue that has
been raised in past research is that of the share of diesel vehicles by 2008: a
shift towards diesel basically reduces specific CO, emissions. In the reports
monitoring the evolution of CO, emissions of new cars,® the average CO,
emission factor is used to evaluate the progress made by the manufacturers.

14To be correct, the target year is 2008 for ACEA and 2009 for JAMA and KAMA. In this study,
we will assume one target year of 2008 for simplicity.

BA yearly report is issued as a result of the monitoring decision (see above), we will refer to
these reports further on in the text as the CO, monitoring reports.
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The observed reduction is clearly partially a result of a shift from gasoline
to diesel cars. It is not clear in how far this can be considered as being a
technological improvement: the agreements indicate that the reductions to
meet the 140 g/km target have to be realised by technical measures taken by
the manufacturers.!®

Earlier research by COWI A/S (2002) assumed the reduction target to
be realised for both fuels separately. That would mean a 25% reduction
of fuel intensity between 1995 and 2008. Above this improvement, a 2-
3% CO, reduction is assumed as resulting from the introduction of 10 ppm
sulphur fuels.!” Finally, a rebound effect!8 is expected by COWI, requiring
an additional reduction of 1,7-2,9%. The overall reduction in fuel intensity
necessary in the 1995-2008 period is estimated to amount to 28,7% for diesel
cars and 30,9% for gasoline cars. Plotkin (2001) follows a similar interpretation
in fixing the reduction target at 25% assuming no change in fuel mix.

P. ten Brink et al. (2005) assume that the market split diesel-gasoline
evolves to reach equal shares by 2008 on the basis of market insights and expert
judgement. In this setting they simulate the least cost option (based on direct
cost curves) to reach the 140 g/km measure for different implementations of
corporate average fuel economy standards.

4.3.2. TREMOVE

To avoid problems of inconsistencies as well as the uncertainties linked to
expert judgement on the optimal diesel-gasoline share under the policy sce-
nario in consideration, we here use the TREMOVE modelling framework for
Belgium with the implementation of the indirect approach in order to simulate
a least cost realisation of the 140 g/km approach and to provide insight in
the environmental impact and welfare cost of this policy measure for the
2000-2008 period.!?

16The 2003 report by the Commission (Commission of the European Communities, 2004) states
on this issue: In addition, as requested by Article 10 of Decision 1753/2000, the Communications for
the intermediate target year (monitoring year 2003 for ACEA and JAMA, and 2004 for KAMA) will
address questions related to the reasons for the observed reductions. It has to be thoroughly assessed whether
reductions registered are due to technical measures by the manufacturers, or due to changes in consumer
behaviour.

7COWI A/S (2002) expects that the reduction of fuel sulphur content induces a reduction of
CO; emissions due to lower carbon content and new technology.

181t is expected that improved fuel economy incites consumers to buy bigger cars, which in
turn increases average CO, emissions.

19We here implicitly assume the year 2000 as the starting point for the agreements. The
publication of the agreements in the Official Journal is in 1999 and 2000. As the TREMOVE
model uses year 2000 data as base for private car user cost, it seems appropriate to use 2000 as
starting point. Note however that the formal agreement between the association of European car
manufacturers (ACEA) and the EU Commission dates from somewhere in 1998.
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Implementation

One issue that arises in applying the TREMOVE model for Belgium is that it
is not specified how the effort to reach the EU targets is to be distributed over
the countries. As the existing levels of fuel intensity differ over the countries
it is probable that the target will not be reached in all countries (only the EU
average target is set).

Our study is focusing on the Belgian market only. As the 2000 specific
emission figures on this market are close to the EU average, we assume for
our assessment that the 140 g/km is to be met for the Belgian car market.

We assume that the car manufacturers will change fuel efficiency such that
the 140 g/km target is met at the least cost for the consumer.? Referring to
formula (4.1) and with e; the per kilometre CO, emissions of technology i this

means that dig has to be equal over all technologies i:

- auG; _ TdRC(fi) dfi  [dRCi(f) o
Vi: de; B [ df; +p:| dT?l = |:dfz +P:| v; =—C (4.6)

with v; the CO; emissions per fuel unit (for the fuel consumed by technology
i) and C a constant.
From equation (4.5) we obtain dﬁfff as a function of f;:

dRC; ﬁ)i
dfi = —Pio (fi,O (47)

By substituting dgfci in equation (4.6) by expression (4.7) and reworking

somewhat we obtain:

. i+v;-C €
Vi:fi=fio (p) (4.8)
Pz,o

This formula expresses how the efficiency standard in 2008 should be
implemented such that it results in the lowest average cost for the users.

For the period beyond 2008 we assume a fuel efficiency standard that
becomes more stringent at the pace of the autonomous technological progress.

In a final step the period 2000-2008 has to be filled in. We decided to use
figures from the monitoring database for 2001 and 2002. Beyond 2002 we
linearly interpolated with the optimal 2008 fuel intensity figures, assuming an
identical (absolute) effort to improve fuel efficiency for all intermediate years.

20Least cost for the users here means lowest average user cost disregarding consumer reactions
in terms of car use. The specification of the TREMOVE modelling framework includes a fixed
annual mileage assumption. Such a least cost scenario could be achieved using tradable specific
emission rights between car manufacturers.
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As for the introduction of low sulphur fuels we assume that this does not
have a direct impact on fuel efficiency (but rather facilitates new technologies
to be introduced after 2009).2!

The specification of the TREMOVE modelling framework includes a fixed
annual mileage per vehicle. A change in generalised user cost leads to a
change in vehicle activity demand and a proportional change in the vehicle
stock size. Consumer reactions in terms of annual mileage per car are not
modelled. The literature describes a rebound effect where lower fuel costs
induce an increase in mileage per vehicle. This effect is not included in our
modelling, we will briefly discuss its potential impact in section 4.5.

Results

The fuel efficiency evolution is presented in figure 4.11. The baseline fuel
intensity is somewhat above the autonomous technological progress as a result
of an observed decrease in fuel prices after 2000. The difference becomes
smaller towards 2020 in line with increasing fuel prices (see figure 4.7 for
the baseline evolution of ex-tax fuel prices). The effect of the fuel efficiency
standard in the policy simulation scenario is obvious.

21COWI A/S (2002) expects that the reduction in sulphur content induces a 2-3% reduction of
specific CO, emissions due to lower carbon content and new technologies.
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Figure 4.11. Impact of EU policy on fuel intensity of new private cars with medium
engine size (in 1/km)
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The resulting least-cost (for the users) reduction of specific CO, emissions
to 140 g/km is realised by reducing fuel intensity for diesel technologies by
16,7% (same for all engine sizes) compared to baseline levels, whereas for
gasoline cars a smaller improvement of 12,9% is optimal.

The optimal burden sharing resulting in a larger (relative) contribution by
diesel technologies could be expected from expression (4.2), considered that
the volumetric price (including taxes) of diesel fuel is lower than gasoline in
Belgium.

The impact of the fuel intensity decrease on the technology lifetime user
cost is illustrated by figure 4.12. We observe a limited impact on simulated
user cost in 2008 in the order of 1% to 1,5% depending on fuel and engine
size.

The increased user cost is reflected in small changes in the vehicle stock
composition, as presented in figure 4.13. We see a small shift from medium
and big to small cars.

The change in lifetime user cost of private car technologies results in an
increase of the generalised prices of private car transport of about 0,2% in
urban areas and slightly over 0,4% in non-urban areas (see figures 4.14 and
4.15). The relative increase in generalised prices (figures 4.14 and 4.15) is
smaller than the corresponding increase in new private car user cost (figure
4.12). This difference can be explained by conceptual differences between
the generalised transport cost and the vehicle lifetime user cost: the former
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Figure 4.12. Impact of EU policy on lifetime user cost of new private cars with medium
engine size (in €/km)
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Figure 4.13. Impact of EU policy on private car stock composition (change of technology
share in percentage point compared to base case levels)

includes time costs which the latter does not, and the former reflects the user
costs of the average car (in the vehicle stock) whereas the latter only reflects
cost levels of new cars. For the other modes we observe a status quo or small
reductions in generalised prices: higher prices for private car result in lower
traffic levels, a corresponding increase in average speed and hence a reduction
in the time costs for the other modes.

The reduced time costs for the other modes together with the increase in
generalised prices for private cars result in a modal shift (figures 4.16 and
4.17). Part of this shift is towards public transport, resulting in an increase in
frequencies and the corresponding decrease in waiting time further contributes
to the decrease in time costs for these modes. The shifts increase over time,
reflecting the increasing share of more expensive technologies in the private
car stock as a result of the fuel efficiency standard. The decrease in total
passenger transport demand aggregated over all modes amounts to 0,3% by
2020.

The impact of the fuel efficiency standard on activity demand does take
into account the effects of changes in income level resulting from the measure
(through changes in tax income for the government). However, the physical
distribution of activities as well as the supply of road infrastructure are kept
constant. We will come back to the limitations of the TREMOVE model in
section 4.5.

The changes in modal demand and private car stock composition result
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Figure 4.14. Impact of EU policy on modal generalised prices in urban regions (in %
change compared to base case levels)
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Figure 4.15. Impact of EU policy on modal generalised prices in non-urban regions (in
% change compared to base case levels)

126



The welfare cost of more fuel efficient cars

0.6%

0.4%

0.2% -

-0.2% -

-0.4%

-0.6%
2010 2015 2020

M large car Osmall car HE bus
@ metro motorcycle F3 non-motorised transport
B big truck M small truck
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Figure 4.17. Impact of EU policy on non-urban passenger transport activity (in %
change compared to base case levels)

127



4.3. EU-policy: the agreements

in a change in emissions presented in figure 4.18. The overall transport
activity CO, emissions decrease by 7%. For other pollutants we observe small
decreases. The decrease in SO, emissions is somewhat larger.

The social cost of the efficiency standard is presented in figure 4.19. As
discussed above the increase in user cost of private car technologies results
in an overall loss of consumer surplus in passenger transport activity. For
freight transport there is a small gain resulting from reduced congestion. We
also observe a net cost for the government which corresponds to a loss in
tax income. The MCPF term (marginal cost of public funds) represents the
efficiency gain of lowering labour taxes through a shift of taxes (via higher
transport taxes) to non-labour income taxes.??> The loss in consumer surplus
and decrease in tax income is much larger than the overall reduction in
external emission cost, hence the net welfare effect is a cost. This is reflected
in the 2005 net present value of the efficiency standard which amounts to 3651
million euro (3782 if excluding the change in external emission cost).

Studying the change in consumer surplus for passenger transport activity
(see figure 4.20), we observe a shift from fuel cost to non-fuel cost. It is
interesting here to note that the share of taxes in both user cost components
is not equal: fuels are more heavily taxed than other costs. As a result, the
shift away from fuel expenses results in a decrease in tax income for the

22We assume that there are also other sources of income that are taxed but that only taxes on
labour income are reduced. The value of the MCPF coefficient used in our simulations is 6,6%.
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Figure 4.18. Impact of EU policy on overall transport emissions (in % change compared
to base case levels)
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Figure 4.19. Annual welfare cost of EU policy (in million €2000 compared to base case)

government as we already noted. The improved fuel efficiency forces the user
to substitute taxes for resource costs, resulting in the cost for society being
much higher than the cost to the user.

The simulation indicates that the fuel efficiency standard is effective (it
reduces CO, emissions) but comes at too high a cost: the cost to society is
many times the reduction in external emission cost. The reduction of CO,
emissions comes at a cost of 270 €/t in 2010. The high cost of CO, reductions
in the private car transport sector indicates that it may be more advisable to
reduce CO, emissions in other sectors where abatement costs are lower.

This finding is in line with Stern (2007) who presents marginal abatement
costs for the UK in 2020 for selected technologies. Private car fuel efficiency
comes in as by far the most expensive technological approach at about 275
euro per ton of COs.

4.4. Beyond 2008: standard or tax?

As the 2008/9 horizon of the CO, emission policy for private cars approaches,
the EU Commission prepared for a next round of fuel efficiency improvements,
setting out an ambitious target of 120 g/km for new private cars to be met by
2012.

P. ten Brink et al. (2005) made an assessment of the further reduction
towards 120 g/km and studied how this could be realised at the smallest
cost for society. They compare different settings based on how the target
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Figure 4.20. Decomposition of change in consumer surplus in passenger transport
activity (in million €2000 compared to base case)

is formulated: on a per car basis, per manufacturer or per association of
manufacturers (as is the existing tax). They further study different scenarios
on how the burden should be shared between fuel and size classes. Their
study however does not include an assessment of modal demand evolution.
In this section we will simulate an efficiency standard for the 2008-2012
period in the same way as we did for the pre-2008 era. In a next step we will
compare it to a CO, emission tax. Such a tax guarantees that a given external
emission cost reduction is realised at the lowest cost for society as it levels the
abatement costs over the different transport markets (Kolstad, 2000).

4.4.1. Implementation

The further reduction of the CO, emissions by a subsequent efficiency standard
is simulated much in the same way as for the 2008 standard. We refer to
section 4.3.2 for the details.

In a next step we simulate a CO, emission tax for private cars as an alter-
native measure to reduce CO, emissions. This is implemented by replacing
existing fuel taxes on gasoline and diesel (for private cars) by a tax that is
proportional to the carbon-content of the fuel in the post-2008 period.
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4.4.2. Results
Efficiency standard

The least user cost implementation of the 120 gram CO, per kilometre effi-
ciency standard is by reducing by 2012 the fuel intensity by 27,0% for diesel
and 22,8% for gasoline technologies compared to the baseline level, or a
further improvement of 13,4% (diesel) or 11,7% (gasoline) compared to the
140 g/km fuel efficiency standard. This evolution is presented in figure 4.21
for medium engine size technologies.

The increase in per kilometre user cost is presented in figure 4.22. The
impact in 2012 is in the order of magnitude of 4-5,5%, which is larger than
for the original 140 g/km standard.

The relative changes in user cost do not induce major technological shifts
(see figure 4.23).

The modal generalised prices follow an evolution which is qualitatively
much the same as for the 140 g/km standard, be it that the order of magnitude
is somewhat larger now reflecting the larger user cost increase of the private
car technologies.

Changes in generalised prices result in demand changes. Overall demand
for passenger traffic decreases by 0,7% in 2020 (compared to 140 g/km stan-
dard), whereas freight activity remains stable. Changes in modal demand
(and hence modal shift) follow a pattern which is qualitatively similar to what

0.000

0.080 \-\‘*7':::; '''''''''' e

0.070 e —

00601 TS oommmmeemeo el

e

0.040

0.030 T T T T

1995 2000 2005 2010 2015 2020

---diesel-baseline - diesel-1409(2008) — diesel-120g(2012)
---- gasoline-baseline gasoline-140g(2008) ---- gasoline-120g(2012)

Figure 4.21. Impact of enhanced fuel efficiency standard on fuel intensity of new
private cars with medium engine size (in 1/km)
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Figure 4.23. Impact of enhanced fuel efficiency standard on private car stock composi-
tion (change of technology share in percentage point compared to EU policy simulation
levels)
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happened under the implementation of the 140 g/km standard, be it that the
order of magnitude is now larger.

Also the evolution of emissions under the enhanced standard shows a
pattern similar to that of the original standard (see fig 4.24), be it that the
order of magnitude is now smaller. This can be explained by a decreasing
contribution of private cars in overall transport CO, emissions, hence any
further reduction for this mode has a decreasing impact on overall emissions.

For the change in consumer surplus (compared to the 140 g/km fuel
efficiency standard) we observe that under this scenario the reduction of fuel
cost (corresponding to the decreased fuel intensity) requires relatively much
more investment in other costs (see figure 4.25). As a result the loss in tax
income for the government will be relatively smaller. Note that the net change
in consumer surplus in 2020 is 2,5 times larger than under the 140 g/km
scenario.

The total social cost is presented in figure 4.26. The loss in tax income (cost
for the government) is now smaller (corresponding to the decrease in fuel
intensity) but the much larger loss in consumer surplus results in a net cost to
society that is much larger than for the 140 g/km standard. The impact of the
new 120 g/km standard on external cost by emissions (see figure 4.26) is of a
smaller order of magnitude compared to the loss of consumer surplus.

It is not surprising that the further reduction of fuel intensity beyond
140 g /km is relatively more costly while it contributes less to the reduction of
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Figure 4.24. Impact of enhanced fuel efficiency standard on overall transport emissions
(in % change compared to EU policy simulation levels)
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Figure 4.25. Decomposition of change in consumer surplus in passenger transport
activity (in million €2000 compared to EU policy simulation)
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Figure 4.26. Annual welfare cost of enhanced fuel efficiency standard (in million €2000

compared to EU policy simulation)
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emissions. This is reflected in the net reduction cost of 302 €/t of CO, in 2015.
The 2005 net present value of the measure is 3182 million euro (compared to
EU policy simulation) excluding the change in external emission cost. If we
add the environmental gain to the account, the cost of the measure decreases
somewhat to 3076 million euro.

CO» emission tax

In this section we simulate a substitution of the existing fuel taxes by a tax
that is proportional to the marginal emission cost by CO, emissions. This tax
is implemented from 2009 on and applies to all private cars, both new and
existing, and follows the evolution of the external emission cost coefficient
(see figure 4.10).2% The level of the tax is optimised such that the net present
value of reductions in external emission cost from transport CO, emissions
over the modelling period (1995-2020) is identical to what is obtained by the
enhanced efficiency standard.

The impact of the CO, taxation regime on fuel prices is presented in figure
4.27. Fuel prices go up by 50 to 100% in 2009 and then continue to rise in
line with the evolution of the CO, external emission cost coefficient to reach
a 2020 level that is above 2€/1. It is quite obvious that this tolling scheme
will have an impact—the tax mounts to about 40 times the external CO; cost,
which already at this point provides us with an indication on what we may
expect as net welfare result.

Interesting to note here is that whereas in the baseline diesel is cheaper
than gasoline (on a volumetric base), the relative order switches under a
CO; tax, meaning that the cost increase for diesel is relatively larger than
for gasoline. This supports findings in chapter 3 that diesel technologies are
promoted (over gasoline) under the existing taxation scheme and there seems
to be no rationale to support such a setting. Similarly, De Borger and Mayeres
(2004) find in their study on optimal taxes that efficient pricing requires
substantial increases in the relative user tax on diesel cars as compared to
gasoline cars.

The increase in fuel cost has an important impact on lifetime user cost (see
figure 4.28). The user cost increase for medium engine size diesel technologies
evolves from about 20% in 2010 to nearly 35% in 2020. The impact on gasoline
technologies user cost is some percentage point smaller.

The evolution in fuel efficiency under this scenario is linked to the evolution
of the fuel price (formula (4.4)). The resulting fuel efficiency is presented
in figure 4.29. We observe fuel intensity levels which are typically above
the 120 g/km standard (but under the 140 g/km standard). We remind the
reader that the overall environmental cost of CO, emissions in the taxation

2For completeness we note that the non-fuel taxes are not changed under this simulation,
including the registration taxes which are higher for diesel than for gasoline vehicles.
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Figure 4.27. Impact of CO; tax on fuel price (inclusive taxes) for private car use (in
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simulation is identical to the 120 g/km efficiency standard scenario. As under
the taxation scheme specific CO, emissions are higher than for the standard,
we can expect that CO, emissions have been reduced in other ways (modal
shift or global activity decrease). We also note that closer to the year 2020
fuel intensity comes closer to the enhanced standard. Apparently it is more
efficient to postpone some of the reductions to a later point in the modelling
period as the external cost coefficients are then larger (avoiding the same
ton of CO, emissions then has a greater impact on inter-temporal external
emission cost).

One could expect the impressive change in lifetime user cost to have a
seizable impact on technology stock composition. This is however not the
case (see figure 4.30). On the short run there is an adjustment of the stock
(compared to the EU policy simulation levels) to the shock introduction of
the increased fuel taxes in 2009: the shift from big towards small cars also
includes a shift towards gasoline. In the period beyond 2009 fuel shares in
new vehicle sales are not much different compared to existing EU policy
simulations. What actually happens is that the logit choice functions in
TREMOVE simulate technology shares based on absolute price differences.
Up to 2012 the absolute increase in lifetime user cost is somewhat smaller
for gasoline technologies so they increase their market share a little. By
somewhere 2012 price increases for diesel and gasoline technologies of the
same engine size are nearly identical, and beyond 2012 the absolute lifetime
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Figure 4.29. Impact of CO, tax on fuel intensity of new private cars with medium
engine size (in 1/km)
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user cost increase is smaller for diesel technologies, resulting in an opposite
shift in the stock.

Generalised prices follow technologies” user cost increase resulting in a
large cost increase for private car transport activity (see figures 4.31 en 4.32).
The corresponding modal growth rates are provided in figures 4.33 and 4.34.
Note the 20% increase of transit demand in the Brussels metropolitan area.
The higher service levels that come with the increase in public transport
activity result in a decrease in waiting time cost and as a result there is an
additional shift from non-motorised transport to public transport. In non-
urban areas less substitution to public transport occurs. Overall passenger
transport activity declines by 4,0% in 2020, whereas freight transport grows a
very little.

Overall CO, emissions by transport activity (see figure 4.35) show a de-
crease of the same order of magnitude as in the efficiency standard scenario
(see figure 4.24). However, also for the other pollutants the CO, tax results
in a significant reduction. These reductions will have a far more important
impact on the overall emission cost reduction as their external cost impact is
large. The small increase in methane (CH,4) emissions reflects an increased
demand for electrical energy by rail transport.

Studying the cost to society (see figure 4.36) we see that the net cost is
lower than for the efficiency standard (figure 4.26). Consumers of passenger
transport do face an important increase in costs, however most of this increase
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Figure 4.30. Impact of CO, tax on private car stock composition (change of technology
share in percentage point compared to EU policy simulation levels)
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Figure 4.31. Impact of CO, tax on modal generalised prices in urban regions (in %
change compared to EU policy simulation levels)
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Figure 4.32. Impact of CO; tax on modal generalised prices in non-urban regions (in
% change compared to EU policy simulation levels)

139



4.4. Beyond 2008: standard or tax?

30%

25%

20% +

15% A

10% -

5% +

2010 2015 2020
M large car Osmall car E bus
M metro motorcycle F1 non-motorised transport
B big truck m small truck

Figure 4.33. Impact of CO; tax on Brussels passenger transport activity (in % change
compared to EU policy simulation levels)

4% 4

-6%

-8%

-10%
2010 2015 2020
Olarge car B small car B bus
Dtrain motorcycle B big truck
M small truck freight train inland waterways

Figure 4.34. Impact of CO, tax on non-urban passenger transport activity (in % change
compared to EU policy simulation levels)
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Figure 4.35. Impact of CO; tax on overall transport emissions (in % change compared
to EU policy simulation levels)

is due to the fuel tax which can be recycled and hence does not result in a
welfare loss.

The lower welfare cost is obtained by reducing CO, emissions by other
means than a fuel efficiency improvement only. Comparing the tax scenario to
the efficiency standard we observe that with the efficiency standard, passenger
transport activity is too high from a welfare optimising point of view, requiring
a too stringent efficiency standard in order to reach the overall emissions target.
Moreover, under the efficiency scenario all reductions have to come from new
private cars, whereas the emission tax allows us to target the existing stock as
well.

The net present value of both the enhanced efficiency standard and the
CO; tax is compared in table 4.2. We see that the efficiency standard comes
at about double the social cost of the emission tax whereas the reduction in
external cost from CO; emission is identical. This is reflected in the per ton of
CO; reduction cost of 127 euro in 2015 (compared to 302 €/t for the enhanced
fuel efficiency standard). Nevertheless, it still is a high cost compared to the
external emission cost which is assumed to be in the 8-20€/t range.

4.5. Caveats

In this section we discuss some limitations to our analysis.
First, perfect competition in car supply is an important assumption behind
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Figure 4.36. Annual welfare cost of CO; tax in million €2000 compared to EU policy
simulation

Table 4.2. 2005 net present value of measures to further reduce transport activity CO,
emissions in million €2000 compared to EU policy simulation

enh. eff. standard CO; tax
Social cost excl. external emission cost 3182 1759
Total social cost 3076 1380

our modelling of the relationship between fuel efficiency and resource cost.
This assumption greatly simplifies the modelling framework, however as
shown by Verboven (1996) this assumption is not generally valid.

A second limitation is the specification of the TREMOVE modelling frame-
work that includes a fixed per car annual mileage assumption. As such we
do not explicitly allow for a rebound effect that describes how increased fuel
efficiency results in increased mileage per car.* Properly accounting for this
effect may result in lower savings in CO, emissions for the emission standards
scenarios, resulting in a higher per ton abatement cost.

A third caveat in our approach is the TREMOVE technology choice model.
Two aspects of this nested logit choice model (see chapter 2 for its specification)
may impact our results. At first there is some discussion on the price sensitivity

2For clarity we emphasise that the demand model used in TREMOVE does consistently
account for all changes in user cost, including fuel cost and resource cost. The only limitation
is that fixed costs (such a purchase cost and annual cost) are translated to a per kilometre cost
using constant annual mileages per car.
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of the diesel-gasoline share (see chapter 2). Given that the TREMOVE 2
technology choice model was designed to reproduce observed shares (in
2000),%°> a more price-sensitive model would result in larger changes in the
market shares but would not affect the sign of the change. In the simulations
we mainly observed a shift from gasoline to diesel. If this shift becomes
bigger, this would contribute to the reductions of specific CO, emissions and
hence require smaller contributions of technological improvements. The net
result of a more sensitive technology choice model is thus likely to simulate a
somewhat lower welfare cost of the measures (the reduction in CO, emissions
being a fixed target).

A second aspect of the TREMOVE modelling specification applied in this
chapter is that we do not study the availability of alternative fuels. As studied
in chapter 3, some of these technologies have a rather good emissions record
and might be able to contribute in a more cost-effective way (compared to
conventional technologies) to a reduction in specific CO; emissions.

A last caveat in our approach to modelling fuel efficiency are the (indirect)
cost curves, and more specifically the elasticity € which is behind it. As we
already indicated in section 4.2.1, cost curves may vary over engine sizes and
fuels, further research is required to allow for a refinement of the curves. In a
similar way, the rate of the autonomous progress (determining the reference
point for the cost curves) may not be identical for all engine sizes and fuels.

4.6. Conclusions

The TREMOVE framework was selected as modelling tool for the assessment
of the environmental and social impact of the EU policy regarding setting fuel
efficiency (and CO, emissions) standards for new private cars. We successfully
implemented an important extension to the model in order to allow for a
comprehensive simulation of private car fuel efficiency as a function of fuel
prices (including taxes).

The baseline evolution indicates that under a business-as-usual setting
(and in the absence of a fuel efficiency policy) the gain in fuel efficiency is
limited to autonomous technological progress (if any). This does not suffice
to compensate for the growth in transport activity resulting in a net increase
of overall CO, emissions.

A fuel efficiency standard for private cars allows to obtain a significant
reduction in transport CO, emissions. We however show that such a reduction
comes at too high a cost. It may be advisable to dedicate efforts to sectors
where CO, abatement comes at a lower cost.

The comparison of the efficiency standard to a CO, tax for fuels used by
private cars reveals that the tax reduces the cost to society by half compared

ZThe observed shares in 2000 determine the values of the technology-specific dummy coeffi-
cients in the technology choice model.
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to the efficiency standard. The main reason is that an efficiency standard does
not use reductions in the car use of new and of existing cars to reduce CO,
emissions. A CO, tax optimally balances a reduction in private car transport
activity necessary for a welfare optimisation.
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CHAPTER

Bus transit and the environment

5.1. Introduction

Urban air pollution from transport activity receives a lot of attention in envi-
ronmental and transport policy. In order to reduce pollution levels to improve
urban environmental quality, several measures have been considered and im-
plemented, ranging from cleaner transport technologies, pricing measures and
even going as far as ruling out all car use during periods of heavy pollution.
Apart from targeting private car activity directly, it is often considered to
improve transit quality in order to have travellers shift to this transport mode
that is considered to be cleaner.

Research on optimising transit supply historically focuses on optimal user
price, service frequency and stop density. The seminal paper by Mohring
(1972) defines the playing field for first best optimisation of urban transit
operations. The key transit property identified are the economies of scale
that exist in transit operations. In a subsequent paper, Turvey and Mohring
(1975), while considering the stop density to be fixed, further iterate on the
optimal prices and service frequency. The scope of the model is extended by
Jansson (1993) who accounts for both urban and rural transit. All these models
typically consider demand to be given rather than being a function of prices
and frequencies. Moreover, the scope of operational costs is limited to internal
costs only such as vehicle costs and driver wage, leaving out externalities.

Environmental externalities in urban transport activity are studied by
Mayeres, Ochelen, and Proost (1996), identifying an external emission cost
per vehicle kilometre for buses that is 15-20 times larger than for private cars.
The comparison between cars and buses is studied in more detail by Romilly
(1999), revealing that substituting bus for car travel may result in an increase
in environmental damage costs. Both studies however are limited to a one
by one comparison of a broad range of externalities per passenger kilometre

145




5.1. Introduction

and do not consider other social costs such as the impact on user cost or
government budget.

To allow for a more comprehensive welfare assessment of urban transport
policy measures, new models have been developed. These models typically
cover the choice between two or more transport modes and a time of use
decision. Most models consider an extended range of transport externalities
and allow for an optimisation of decision variables under both first and second
best conditions.

The model by De Borger, Mayeres, Proost, and Wouters (1996) includes
three modes (private car, bus and rail) and two periods (peak and off-peak).
The decision variables to be optimised are user prices only. Transit is modelled
in a rather coarse way with fixed occupancy rates. An update of the model
is presented in De Borger and Wouters (1998), now extending the scope to
include transit supply decisions as well as road infrastructure supply.

A more detailed model is presented by Van Dender and Proost (2003). The
TRENEN model simulates 30 transport markets covering all urban modes
for two time periods. The transit sector is represented in a less detailed way,
assuming fixed occupancy rates but allowing for economies of density.

A somewhat different look to the two-mode problem is presented by Kraus
(2003). By combining the road transport bottleneck model (Arnott, Palma,
and Lindsey, 1993) with a mass transit counterpart, they take an innovative
approach to modelling the time of use decision. The decision variables covered
include both user cost and transit supply.

A limitation of all these static models is the absence of a detailed vehicle
stock representation. As discussed in chapter 3, the environmental impact of
road vehicles is rapidly decreasing over time as new technology standards
become mandatory. In order to allow for the environmental assessment
of policy measures that have an impact on the vehicle stock composition,
the TREMOVE model (version 1.3a) was developed (European Commission,
Standard & Poor’s DRI, and Katholieke Universiteit Leuven, 2000; European
Commission, Transport Directorate-General, 1999). The representation of
transport markets is similar to the TRENEN model (Van Dender and Proost,
2003) on which it was based. The vehicle stock turnover representation carries
much detail for all road modes except buses. Transit (both rail and road)
representation is somewhat summary, allowing for economies of density
but assuming a fixed occupancy rate and no vehicle stock representation.
Moreover, only emissions of road modes are modelled, limiting somehow the
use of the model for transit policy simulations.

In this chapter we study the contribution that transit can make to a cleaner
urban environment. In a first step we look how ticket prices and transit
supply levels can be optimised and assess the net welfare and environmental
impact of such a scenario. After optimising the pricing of transit, we have a
further look to the potential contribution that can be expected from technical
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improvements. We consider two technical scenarios: one where older and
more polluting bus vehicles are retrofitted to meet a more advanced emission
standard and a second scenario where cleaner technological options are chosen
for new buses that enter the vehicle stock.

The modelling framework that will be used to simulate the impact of
different policy scenarios is that of the TREMOVE Brussels model. We start
from the TREMOVE Belgium model that was implemented in chapter 4 and
further extend it to allow for optimal pricing of transit and retrofitting of
vehicles. A base case scenario for the Brussels area is designed to calibrate the
model. The geographical scope of the simulations discussed in this chapter is
hence limited to the Brussels metropolitan area.

5.2. Transit pricing, vehicle technology and the environment

The three operational variables that we will study in this chapter are the
frequency, ticket price and vehicle technology. In the next sections we will
discuss how their welfare and environmental impact can be studied and assess
their potential to improve urban air quality. For completeness we note that
other operational variables such as stop density do exist, however they fall
beyond the scope of this study.!

For clarity we point out that, throughout this chapter, all cost values are
expressed in constant prices of 2000, unless mentioned differently.

5.2.1. Optimal transit pricing and the environment

In this section we study how transit should be priced from a welfare point of
view including external costs related to emissions. This section is based mainly
on Mohring (1972) and Turvey and Mohring (1975), whose fundamental
insights on optimising transit activity are extended here in order to include
environmental externalities.

As noted by Mohring (1972), transportation differs from the typical com-
modity in that travellers play a producing and not just a consuming role: the
generalised cost of a trip is determined by resource costs as well as time costs.

Contrary to other modes, time costs for transit users do not only depend
on average vehicle speed, but also include waiting time and the time necessary
to walk to the nearest stop. Increasing the frequency reduces waiting time
cost but increases operating costs as well as emission levels. To minimise the
total social cost of transit, an optimal frequency level needs to be determined.
In a similar way the location of stops can be optimised, but as noted before
this variable falls beyond the scope of this study.

! The framework of the TREMOVE model that we will use for policy simulations in section 5.4
is lacking the spatial dimension that is required for a comprehensive simulation of characteristics
such as stop distance.
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Another characteristic of transit is that an increase in transit patronage
results in an increase in supply which means higher frequencies and hence a
decrease in time costs for all users, both the new and the existing ones. Or to
put it differently: the social marginal cost of transit activity is smaller than
the average cost. Optimising welfare requires pricing at the marginal social
cost level, which means in this case below the average cost, hence requiring
subsidies. We study here how optimal pricing should be done when there
also exist environmental externalities.

Optimal occupancy rates

The social cost of transit activity (in euro per pkm) can be formulated as:?

Co, Vo  Cu Ce
= VT = 1
C +2th+ +ViT+ 3 (5.1)

where

* C, is the operating cost in euro per vehicle kilometre (vkm)

* D is the average occupancy rate (in travellers per vehicle)

¢ Vy is the value of time during waiting (in euro per hour)

e f is the average frequency (in departures per hour per direction)
® L;is the average trip length (in pkm)

* Cy is the walking cost from/to the stop

® V} is the in-vehicle value of time (in euro per hour)

* C, is the marginal external emission cost (in euro per vkm)

* T is the commercial travel time (in hour per km)3

The first term represents the operating cost of the transit network. The
second term is the waiting cost, assuming an average waiting time of half
the interval between two departures. The third term is the walking cost. The
fourth term is the own time cost during the trip on the vehicle and the last
term is the external emission cost.

At a given level of demand g, the required bus fleet size B follows directly

from the occupancy rate D:
B_gq
T=D (5.2)
In a similar way, the occupancy rate D and frequency f are linked through

the network length L, for a given level of demand g:

q = Df2L, (.3)

2We assume a steady state route. Mohring (1972) also discusses an alternative specification for
a feeder route.

3Throughout this chapter T is the commercial travel time and 1/T is the transit commercial
speed. It is the time/speed that reflects both travelling as well as calling at stops to allow travellers
to (dis)embark. Technical operations such as turning times between different runs are however
excluded.
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where
¢ g is the level of demand (in pkm per hour)
* L, is the network length (in km)

The factor 2 results from the definition of L,:s in this study we assume all
network links to be bidirectional. Using this relationship between f and D
allows to express the social cost C as a function of occupancy D:

_ C0+CE+VwDLn+C

¢ D th Lt

4T (5.4)

Optimising the occupancy rate* for a given demand level § now comes
down to solving:

dC _ VuLy _Co+Ce+[ L (dc° dcﬁ)} Ty 55

i~ g, b2 \“"Tolar Tar)|ap =

In the absence of transit congestion (dT/dD = 0), a closed expression for
optimal occupancy rate D exists as pointed out by Mohring (1972). In the next
section we will discuss the issue of transit congestion more in detail.

We do not specify here the relation between operating cost C, or external
environmental cost C, and travel time T. Mohring (1972) limits C, to a fixed
cost per hour, but more detailed functional relationships seem to allow for a
more realistic modelling of operating costs: part of C, may be a function of
mileage (e.g. maintenance costs) and hence is not a function of T, whereas
another part is rather time-based (e.g. driver wages, capital costs) and still
another part may have a mixed character (e.g. fuel costs where the fuel
consumption is both a function of distance driven and speed). The same
holds for C,. In our model implementation we will discuss the functional
relationship for both variables as implemented in TREMOVE.

Optimal ticket price

The focus of Mohring (1972) are the economies of scale that exist in bus transit.
As the demand g increases, optimal frequencies also go up resulting in shorter
waiting times and hence smaller generalised user costs. Or to put it differently:
marginal social costs of a bus trip go down as demand goes up. This is a
situation of increasing returns to scale.

To optimise welfare the user cost has to be equal to the marginal social
cost.> We assume that there are, in the rest of the economy, no pricing
distortions. To calculate the short run social cost, we assume that the number

“We repeat here for emphasis that through equations (5.2) and (5.3) occupancy rate, frequency
and vehicle fleet size are linked. So optimising occupancy rate corresponds to optimising
frequency and vehicle fleet requirements (and vice-versa) throughout this chapter.

5We note that under optimised frequency (or occupancy rate) short run and long run marginal
social cost are equal.
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of buses is fixed at B. Using relation (5.2) we can write the short run® social
cost of a pkm as:

(CotCo)B 4 Yolln | Co | ViT (5.6)

€= qT LB ' L

The social cost of an additional user is then:

d(qC) ~ WWTL, | Cy
g LB o, T

own time cost

Voln B d(Co+Ce) Co+Ce] dT
LB " qT 4T b= |1q,  ©7

system cost

+ |Vi+

The first three terms represent the own time costs of the user, the last term
is the system cost: if the additional traveller causes a small decrease in speed,
this has a social cost.

Van Dender and Proost (2003) study second best optimal pricing assuming
no transit congestion (dT/dq = 0) using the TRENEN model which is an
optimisation tool. In such a second best setting the optimal user price is
function of distortions on other (transport) markets. In this study however
we focus on first best pricing: what is the optimal transit price under the
assumption of undistorted markets. In a next step we will use TREMOVE to
simulate the impact of this first best pricing in the presence of distortions on
other transport markets.”

In a first best setting, a no transit congestion assumption seems unrealistic
as equation (5.7) shows that it leads to a zero optimal ticket price (when
dT/dgq = 0 the system cost that is not paid by the user is zero). We therefore
use the transit congestion function proposed by Mohring (1972):

1 2D & _wy
— — - — _ L
T S+Lt€+d(1 e Lt ) (5.8)
dT  _e+oe 1"
€ e t

where:

* S the no-travellers speed®

®The difference between the short and long run is the possibility to adapt the size B of the
vehicle fleet (we follow here the setting discussed by Turvey and Mohring, 1975). The long run
optimal vehicle fleet size is determined by the optimal occupancy rate as expressed by (5.5).

"For clarity: TREMOVE is a simulation tool and does not allow to optimise for second best
constraints.

8In the evolution of the baseline (section 5.3.2) and in the simulation of transport scenarios
(section 5.4) the value used for S will reflect the level of road congestion as illustrated in figure
5.6.
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* ¢ the time (in hours) necessary to slow down, open and close the doors
and to re-accelerate at a stop

¢ ¢ the time (in hours) necessary to let a user embark/disembark

* d the average stop distance

The first term in equation (5.8) is the travel time without travellers. The
second term represents the time necessary to let the travellers embark and
disembark the vehicle. The last term represents the time necessary to make
an additional stop. This last term is not proportional to the number of
travellers, as an additional stop is only required if no other traveller wants
to embark/disembark at a stop. We note that in metro or train operation ¢
is zero, considered that the vehicle does always call at all scheduled stops,
independent of whether travellers actually want to embark or disembark.

Substituting B (expression (5.2)) in equation (5.7), the ticket price C;; (in
euro per pkm) should be equal to:

B VwlyD 1d(Co+C.) Co+Cc] dT
Con= Vit = r7 "5 ar ™ |Tdq (510)
where
_2Dy
2TD (€ + de Lt
T _ (5.11)

_2Dy
TLy —2D e+ de Tt

The first term in equation (5.10) represents the increase of in-vehicle time
costs of all travellers caused by the additional user. The second term expresses
the impact of the additional user on the waiting costs of all travellers at the bus
stop. The third term represents the impact of a change in speed dependant
operating and environmental costs (for instance the wage of the bus driver),
whereas the last term represents the decrease in vehicle mileage caused by
the additional user (remember that the fleet size is fixed at B).

Let us have a closer look at the impact of the operating and environmental
cost (C, + Ce) on the ticket price Cy; (equation (5.10)). At first it may seem
odd that the reduction in vehicle mileage caused by the traveller reduces the
optimal ticket price he or she faces. However, for costs that are purely time
related (such as the driver wage), both terms cancel out (a finding in line with
Mohring, 1972). Indeed: the number of drivers needed is a function of the
fleet size B which is fixed here (short run condition), so the level of the drivers’
wages has no impact on optimal ticket prices. At the other hand, an increase
in purely distance related costs does reduce optimal ticket prices. But as noted
by Turvey and Mohring (1975), such an increase has also an impact on the
long run optimal fleet size (equations (5.2) and (5.5)). Under such conditions
the optimal occupancy rate D increases, which in turn leads to fare increases.
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Peak load pricing and optimal fleet size

Equations (5.5) and (5.10) express how occupancy rate (and corresponding
vehicle fleet) and user prices are optimised for a given demand intensity level
q expressed in passenger kilometre per hour. In transit provision it is however
common that demand intensity levels vary over time. For this study we will
differentiate demand intensity over two time periods: peak and off-peak.

Optimising occupancy rates and ticket prices for different time periods
calls for an integrated approach. The vehicle fleet size is determined by the
period with the highest demand level. As a result it is appropriate to set ticket
prices higher during peak periods (to manage fleet-determining demand) and
lower during off-peak (when the peak-dimensioned fleet is available anyway
and as a result there is no marginal capital cost in service production).

We will limit the discussion here to the case where off-peak transit supply
does not make use of the entire fleet (hence in the equilibrium a strictly
positive number of vehicles are redundant for off-peak operations).” The
fleet size is in that case determined by characteristics of peak operations only
and follows from formula (5.5) applied to peak demand. As discussed by
Williamson (1966), the peak demand should then bear the entire burden of
vehicle fleet capital costs. The approach of attributing capital costs to the peak
demand period is known as peak load pricing.

The Brussels metropolitan area

Different transit operators are active within the borders of the Brussels Capital
region. Heavy rail is operated by NMBS, light rail (metro and tram) by MIVB
and bus by MIVB, De Lijn and TEC. None of these operators limit their
operations to the Brussels area, and reported activity figures are usually not
split up geographically. It is however obvious that the main share of activity
by MIVB is on the Brussels territory and for simplicity we mainly use figures
reported in their annual reports!® to represent Brussels transit activity.

The framework of the TREMOVE model, that we will use for our policy
simulations, accounts for only one rail mode, rather than the three different
networks that are present in the Brussels metropolitan area (tram, metro and
train). In most cases adding up the characteristics of the three networks is
rather straightforward in order to determine parameter levels for the rail
mode representation in TREMOVE. This composite rail mode is nevertheless
somewhat abstract in some characteristics, e.g. average speed is a somewhat
intangible characteristic given that travellers travel faster than vehicles do on

°This condition has been checked to apply throughout baseline and scenario simulations in
sections 5.3.2 and 5.4.
10Maatschappij voor het Intercommunaal Vervoer te Brussel [MIVB] (2004, 2005) provides base
year figures for the 2002-2004 period. Throughout this section we will only provide approximate
figures based on these three base years, exact figures for each of the three years are available from
the author.
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average. We will have to simplify in order to fit rail transit activity in the
TREMOVE framework.

Trip length L;, network length L, and stop distance d The MIVB average
trip length L; is about 5,08 km. We assume this trip length to be constant over
modes (bus/rail) and periods (peak/off-peak). Together with the reported
number of travellers we obtain the passenger kilometre activity, which for bus
covers about 94% of total baseline activity (see section 5.3.2 for a discussion
of baseline activity). We assume the remainder of the market to be equally
shared between De Lijn and TEC. We assume the L; value to apply to the
other operators as well, as we do not have separate figures for them (NMBS
for rail and De Lijn and TEC for bus).

Network length L, reported by MIVB is about 350 km for bus and 167,5 km
for light rail. For heavy rail a number of 163,2 km is reported by Studiedienst
van de Vlaamse Regering (2006). Network length here is not equal to the
sum of the length of the transit lines, as different lines may share a common
network link. For train the figure seems somewhat high, it may be that
freight-only diversion lines are included. At the other hand the same railroad
stretch may be operated by intercity as well as local trains, which could be
considered as sufficiently different to allow for some double counting. For
De Lijn and TEC we have no figures, we decide therefore to assume identical
occupancy rates and frequencies and adapt the MIVB bus network length
figure accordingly. Averages stop distance d for light rail and bus is based
on annual reports by MIVB, for heavy rail we use annex 10 of the network
statement 2005-2006 by the Belgian rail network operator (Infrabel, 2005) to
calculate a figure of 2167 metre.!!

Adding up different rail modes we obtain a network length L, of about
330 kilometre and an average stop distance d of about 1300 metre for the
composite urban rail mode.

Calibrating the transit congestion function (equation (5.8)) Values for
and e for bus transit are based on Mohring (1972). For rail operation we
assume J to be zero, which obviously holds for heavy rail and metro where
all scheduled stops are called at independently of travellers’ intentions to
(dis)embark but is somewhat less realistic in tram operations where some
scheduled stops are called at upon request only. A value for € is calibrated
using metro commercial speed observations (1/7T) for different periods and
linking them to differences in baseline transport demand (g), obtaining a value
of 0,17 to 0,21 s. The assumption is here that no other sources of congestion
exist, an assumption that seems realistic in metro operation. We use the metro
figure for the composite rail mode.

1This number is a rather rough approximation, it is however of minor importance considered
that we will not study the impact of a change in this parameter.
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The value for the no-travellers speed S is calculated using the values of §
and e. For bus we use observed commercial speed (1/T) figures for different
periods together with baseline flows (7). For rail speed is a somewhat complex
issue: the composite rail mode mixing up tram, metro and train ends up in
average travellers travelling at higher speeds than vehicles do, considered the
smaller observed occupancy rate of the slowest vehicles (tram). We decide
to deliberately simplify the matter and to calculate S from representative
commercial speed values (1/T) provided by TREMOVE 2 (G. De Ceuster et
al., 2005) for Brussels rail activity and baseline demand g.

Walking cost C;, and other time costs The level of the in-vehicle value of
time V; is based on values provided by TREMOVE 2. Past research indicates
that value of walking and waiting time is higher than in-vehicle time, suggest-
ing factors up to 12 (Wardman, 2001). In this study we decide to stick to a
value of 3 times the in-vehicle value of time V; as applied by Mohring (1972)
for both walking and waiting time: V;, = 3V;.

Walking costs Cy, are calculated as the time necessary to cover half the
average stop distance d at a walking speed of 4,2 km/h (speed figure based on
TREMOVE 2): C, = Vd/4,2. This may seem to be a rather rough approach
but as stated before, changes in walking cost C;, are not the focus of this
chapter.

Operating cost C, The marginal operating cost C, per vehicle kilometre has
to be specified for both modes (bus/rail) and time periods (peak/off-peak).
In this study we follow an approach much similar to Peirson and Vickerman
(2001). It mainly boils down to excluding sunk costs and attributing capital
costs to the peak period. The rationale is that sunk costs have nothing to do
with marginal operating costs and that the vehicle stock is dimensioned for
peak operations, hence marginal operating cost in the off-peak period should
not be affected by capital costs.

As indicated in the discussion on peak load pricing, the practise of attribut-
ing the full burden of capital costs to the peak period is optimal only in the
case where there off-peak transit supply does not make use of the full fleet
size.

It should be noted that identifying marginal operating costs is not straight-
forward. Available data sources are limited and available cost figures are
not always well specified, e.g. it is sometimes unclear in how far infrastruc-
ture maintenance costs are related to actual use or merely sunk costs. It is
suggested by Peirson and Vickerman (2001) that, in transit operation, large
economies of scale exist, e.g. for urban rail transit marginal operating costs
may amount to only 20 to 50% of average operating cost. This leaves much
space for misspecifications.
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The marginal operating costs as defined in this chapter consist of fuel costs,
repair and maintenance costs, driver wages and capital costs (peak-only).
Driver wages and capital costs are not distance related but rather time related.
Reference scenario per vehicle kilometre costs are provided as an illustration
in section 5.2.2.

For bus transit the diesel/CNG fuel cost will be determined endogenously
in our simulations by the TREMOVE stock turnover module using stock
composition and commercial speed (1/7T) as an input to calculate average fuel
efficiency using the COPERT III methodology (Ntziachristos and Samaras,
2000). Capital costs as well as repair and maintenance costs are also provided
by the TREMOVE vehicle turnover module. Driver wage cost is fixed at 19,8
€/h (Uythethofken, 1998).

Marginal operating costs for rail are based on cost figures provided by
different sources: Uythethofken (1998) for tram and metro and De Maesschalck
(2004) for rail.

Environmental cost C, The marginal external emission cost C, of transit
activity is calculated by multiplying emission factors with external cost coeffi-
cients.

Bus transit emissions are based on the COPERT III methodology (Ntzi-
achristos and Samaras, 2000). The per vehicle kilometre emissions E are a
function of commercial speed 1/T:

1 b
E=a <T> (5.12)

with a2 and b technology specific parameters provided by COPERT III

For rail transit we assume the entire Brussels rail network to be electric.
This is a realistic assumption: all tram and metro operations are electric, and
for trains only a handful of diesel trains run on Brussels territory: diesel
train operations are strictly limited because of tunnel railway stations on all
Brussels rail lines. Electricity consumption factors for tram, metro and train
are collected from the TREMOVE 2 documentation (G. De Ceuster et al., 2005).
The obtained average electricity consumption factor for 2005 is 6,33 kWh per
vkm.!?

In a final step the electricity consumption is translated to emissions by us-
ing average electricity production emission factors provided by TREMOVE 2.13

12Note that in our model (see section 5.3) there is no explicit representation of vehicles for
non-road modes. As such the only relevance of the electricity consumption factor quoted here
is in combination with average vehicle occupation rates. The implicit assumption is that the
relative shares of tram, metro and train in the composite rail mode are constant in the scenario
simulations.

13We should stress some important assumptions that are behind the approach applied here.
First we assume that transit is consuming the average electricity mix, which may not be fully
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The external emission cost coefficients relate emissions from transport
activity to external impact. A state-of-the-art overview of environmental
external costs methodology is provided in Friedrich and Bickel (2001). In
this study we decide to apply external cost coefficients from the TREMOVE 2
model, we present them in table 5.1.

The marginal external cost coefficient of VOC emissions is not differenti-
ated over methane (CHy) or benzene (CgHg) components“, although actual
external cost of the VOC emissions do differ (Friedrich and Bickel, 2001).
However, the information on the composition of VOC emissions from rail
transit activity is rather limited and hence it seems better to stick here to the
single external cost coefficient for VOC emissions.

5.2.2. Cleaner bus technologies

In the previous section we discussed optimal transit pricing. Apart from
pricing and service level policies, also technological improvements can be
considered to improve environmental performances of bus transit.

Contrary to common opinion, bus transit using diesel technologies is not
necessarily better for the environment compared to other modes. In figure
5.1 we compare the impact of emissions of different modes for both peak
and off-peak periods under baseline conditions (for the baseline see section
5.3.2; the baseline occupancy rates are presented in table 5.3). In off-peak
conditions, bus transit is the most polluting mode in 2010. When by 2015
and 2020 older polluting buses are replaced by cleaner Euro 5 compliant
vehicles, external emission cost will be reduced by over 50%. However, under
all simulated conditions small cars are still less polluting than buses. The

realistic considered peaks in demand. A second more important assumption made here is that all
emissions from electricity production are emitted in the Brussels region, whereas it is possible
that production is in far-away rural areas.

14The external cost difference between CH, and non-methane VOC (NMVOC) emissions in
table 5.1 results from a difference in climate change impact only.

Table 5.1. Marginal external emission cost coefficients in € per ton (source: TRE-
MOVE 2)

Pollutant 1995 2000 2010 2020
co 3,15 3,15 3,15 3,15
NOx 14000 14000 14000 14000
PM 540000 540000 540000 540000
NMVOC 7100 7100 7100 7100
CHy 7284 7284 7376 7560
SO, 31000 31000 31000 31000
N,O 2368 2368 3552 5920
CO, 8 8 12 20
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relative environmental advantage of small cars over big cars is linked to the
assumption that small cars are mainly gasoline fuelled, whereas for big cars
diesel engines have an important share. Finally we note that rail is very clean.
We add however that nuclear energy has a large share in Belgian electricity
production and that external cost here is limited to cover emissions only.

In this section we provide a short introduction on two technological ap-
proaches that are considered by transit operators to reduce environmental
impact of bus transit operations.

CNG technology for new bus vehicles

A first possible technological improvement is a fuel switch towards com-
pressed natural gas (CNG). Many transit operators have experimented with
this technology, e.g. MTA in Los Angeles county where CNG technologies
have a large share in the vehicle stock but also MIVB in Brussels is operating
20 CNG-fuelled buses. A switch to CNG technology reduces emissions for
most pollutants by a substantial amount compared to conventional diesel
technology (see table 5.2).

Emission factors for CO, VOC, NOx and PM are based on Hickman et al.
(1999). Values for NMVOC and benzene are not available. We can however
calculate similar factors for light duty vehicles (LDV) based on correction
factors for gasoline LDVs (Hickman et al., 1999) and the baseline emission
factors for gasoline and diesel LDVs which are mainly COPERT III based. We
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Figure 5.1. Baseline marginal external emission cost from passenger transport activity
(in €/pkm)
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assume the obtained factors to hold for heavy duty vehicles as well.

The difference in emission factors between diesel and CNG bus tech-
nologies corresponds to a reduction in external emission cost of 30 to 35%,
depending on the reference diesel technology (Euro 4 or Euro 5).1°

However, the switch to CNG comes at a cost. Apart from a (sunk) capital
cost to adapt refuelling and maintenance infrastructure (not considered here),
also the buses themselves are more expensive, as well as the fuel. The
cost components required for the calculation of the marginal operating cost
increase are mainly based on Vrije Universiteit Brussel, ETEC (2001), which
reports data mainly from an actual CNG bus experiment by MIVB in the
Brussels region.

The CNG fuel price excluding taxes is €0,69 per m> 37,1 M]/ m3, which is
an energy content similar to a litre of diesel fuel) in 2001. Energetic efficiency
of CNG technology is assumed equal to diesel buses.

Capital cost (purchase cost) of CNG buses is assumed to be 20% higher
than for conventional diesel technology (Verbeiren et al., 2003). Annual repair
and maintenance costs are also 20% higher (Vrije Universiteit Brussel, ETEC,
2001).

The expected lifetime for CNG buses is assumed somewhat shorter than
for diesel buses based on Verbeiren et al. (2003). We note however that this
external assumption has only a small influence on stock turnover considered
that most scrapping is determined endogenously in TREMOVE.

Full details on CNG technology characteristics are provided in appendix
D.

Retrofitting existing bus vehicles

New technologies have the drawback that it takes some time until they get
a seizable stock share, due to stock turnover which is rather slow for buses:
the realised lifetime of the vehicles is typically about 15 years. An alternative
approach hence consists in retrofitting older (more polluting) vehicles in order

15For Euro 3 the difference is 60%

Table 5.2. Emission correction factors for bus CNG technologies (reference is a diesel
bus)

Pollutant Factor Source

CcO 0,464 MEET-project (Hickman et al., 1999)
VOC 3,38 MEET-project (Hickman et al., 1999)
NOx 0,583 MEET-project (Hickman et al., 1999)
PM 0,085 MEET-project (Hickman et al., 1999)
NMVOC 0,5 own calculation (see text)

CeHg 0,015 own calculation (see text)
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to meet more stringent emission standards. Figure 5.2 provides an overview of
the environmental impact of subsequent emissions standards for both vehicles
and fuels. There is obviously some environmental potential in retrofitting
recent buses.

Technology is available to upgrade Euro 2 to Euro 5 standards. Although
it is difficult to obtain exact cost figures, such a retrofit may come at a per
vehicle cost of €22500 and result in an additional operating cost of €0,05 per

vehicle kilometre as a result of increased repair and maintenance cost and
ureum consumption.'®

5.3. TREMOVE Brussels

The focus of this chapter is to evaluate the contribution bus and rail transit
can make to a reduction of overall urban transport emissions, and the related
welfare impact of this environmental improvement. To allow for such an
assessment we need a modelling tool that represents all transport markets, in-
cludes a vehicle stock representation, has an emissions module and translates
impacts to welfare costs. The TREMOVE Belgium model provides most of

16Rough cost figures were quoted at a workshop by RET (Rotterdam urban bus transit
operator). It is unclear how precise these amounts are given the competitive character of the
Dutch bus transit operating market. We provide them here as an illustration. Note that the
baseline assumes a cost increase for new diesel bus vehicles of €15000 between 2005 and 2010
based on Verbeiren et al. (2003), which roughly corresponds to the shift from Euro 3 to Euro 5
emission standards.
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Figure 5.2. Baseline evolution of external emission cost by new vehicles (in €/vkm)
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the features we need (see figure 5.3). An overview of the TREMOVE Belgium
model specification is provided in appendix C.

In this section we discuss the implementation of the first best optimal
frequencies and ticket prices, as well as the introduction of advanced bus
vehicle technologies in the TREMOVE modelling framework. This allows to
assess the environmental impact and the corresponding social cost of transit
policy measures.

The assessment of the impact of policy measures on social welfare is the
sum of changes in consumer surplus (passenger transport), producer surplus
(freight transport), government income (taxes) and external emission cost.

We want to repeat here that the optimisation of frequencies and ticket
prices presented in section 5.2.1 is a first best approach, this means that it
optimises welfare when no distortions exist in other markets. It is however
obvious that this is not always the case. But the framework of the TREMOVE
model does not allow for the optimisation of any variable given the existence
of distortions (second best approach)—simply because TREMOVE is not
designed as an optimisation tool but rather as a simulation tool. In the scenarios
we will therefore split external emission cost and government income between
a transit-related term and the rest.

5.3.1. The model

We use the Brussels metropolitan area representation of the TREMOVE Bel-
gium model as implemented in chapter 4 as a starting point for the TREMOVE
Brussels model. We implement the first best optimal frequencies and ticket
prices as discussed in section 5.2.1—this is fairly straightforward.

The implementation in TREMOVE of a technology shift to CNG buses
does not require any special extension of the model.

Speed & Load
E
TRE MOVE MOVE
Cost & traffic Traffic Stock Stock Emissions
demand’ structure)
Base case, Base case,
Policy assumptions Policy assumptions
Stock |Usage
structure
Usage Fuel consumption
Cost <

Figure 5.3. The TREMOVE Belgium modelling framework
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As for the retrofit, we include two additional cost components. The
first cost component is the capital cost of retrofitting the buses which is
attributed to peak operations, the second component reflects additional repair
and maintenance cost as well as ureum consumption and is defined as a
per vehicle kilometre cost. For completeness we note that the retrofit cost
components do not enter the endogenous scrapping model, i.e. the retrofit
operation as modelled here does not influence the economical vehicle lifetime.

5.3.2. The base case scenario

The TREMOVE Belgium model provides a base case scenario for the Brussels
metropolitan area that is used to calibrate the model. The base case scenario
is a business-as-usual transport activity evolution that is considered as an
input to the model. This baseline evolution should reflect what happens to
the transport markets in case all decided transport measures are implemented
but no new policy initiatives are added. In this section we revisit some aspects
of the baseline in order to match the transit policy focus of this chapter.

Full details on the baseline are available with the author, we will limit here
to a presentation of selected indicators that provide a global impression of
baseline activity.

Base case transport demand

As a starting point we use the Brussels metropolitan area of the TREMOVE
Belgium model implemented in chapter 4. Our special focus in this chapter
on transit scenarios requires a review of selected baseline transport demand
categories. A first one is the split up of transport activity over peak and
off-peak. Whereas in the previous chapters the main motive for this split was
to get a consistent representation of road network congestion, in this chapter
it heavily influences peak load pricing of transit and as such the split should
reflect peaks in bus and rail fleet usage. A second one is the split up of transit
activity over bus and rail modes where a minor issue arises when applying
baseline evolution to base year statistics.

In TREMOVE Belgium peak transport demand (in pkm or tkm) has a
rather small share in overall activity (less than 20%). Considered that peak
demand is denser than off-peak and that 90% of traffic the flow occurs in the
period 6h—22h (Marcial Echenique & Partners Ltd, 1999), this peak demand
corresponds to a time period of about 3h (240 days per year). In the modelling
of urban transit we feel the need for a more extended peak period: capital
costs are attributed to peak activity and based on MIVB (2004, 2005) the peak
in vehicle operation is observed during about 6 hours per day. We therefore
decide to double the peak activity and reduce off-peak activity accordingly.

Special attention is paid to rail transit. The (urban) rail mode in TREMOVE
is in fact kind of a composite mode that covers light rail (trams, metro) and

161



5.3. TREMOVE Brussels

heavy rail (train) operations (see section 5.2.1). Based on annual reports from
the operators we review activity levels of the different rail technologies for
some base years. The baseline evolution of the different rail modes beyond
the statistical period is based on the TREMOVE 2 baseline which provides a
separate evolution for light and heavy rail operations. Only in a final step the
different rail modes are taken together and used to calibrate the TREMOVE
Brussels model. We use the separate light and heavy rail baseline evolutions to
determine the level of other characteristics of the composite rail mode. Finally,
to account for the higher rail activity in later years of the modelling period,
bus activity is decreased somewhat in order to keep total transit activity
constant for each year.

In a last step the evolution of transport activity over the historical period
is brought in line with statistical information where available (mainly up to
2002). The final baseline transport activity evolution is presented in figure 5.4.

We observe the highest growth rate in freight transport. A small increase
in road passenger modes is foreseen, whereas a negative growth is projected
for non-motorised and rail passenger transport activity.

The calibration of a linear speed-flow network congestion function is based
on TREMOVE 2 average speed figures.

The TREMOVE Belgium framework models urban transport activity for
two separate groups: inhabitants and commuters, a specification that is
not available from the TREMOVE 2 baseline. The number of commuters is
assumed as 0,5 million in 1995. The number of inhabitants as well as the
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Figure 5.4. Baseline evolution of transport activity demand (index: 2005 level = 100)
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evolution of the size of both groups is based on the TREMOVE 2 baseline.
In order to attribute transport activity to both groups, we decide to split
commuting and business passenger transport proportionally over both groups,
the remaining transport activity is by inhabitants only.

Base case stock composition and emissions

The stock turnover module is calibrated by providing a base year (1995) stock
composition. For all modes except buses we use the TREMOVE 2 base year
stock figures for Belgium and scale them proportionally to the Brussels share
in baseline vehicle kilometre activity.

For buses, we first calculate the annual number of peak hour activity per
vehicle based on vehicle activity (in vkm), commercial speed and vehicle
stock size figures from annual reports by the operator MIVB (MIVB, 2004,
2005). Based on this per vehicle peak-time activity we calculate the size of
the stock necessary to cover baseline 1995 activity and scale the TREMOVE 2
base year stock accordingly. It should be stressed here that the base year
stock composition (over vehicle ages) does not reflect any actual observation
of the Brussels bus stock, but rather the different vehicle ages are assumed
to have the same share in Brussels as they have in overall Belgian vehicle
registrations.!”

The stock composition beyond the base year is generated by the stock
turnover module of the TREMOVE model. The baseline stock composition
together with transport activity allows for the calculation of baseline emissions
as presented in figure 5.5. We observe a strong decrease for most pollutants,
reflecting incremental emission technology standards that are implemented up
to 2008 (Euro 5 for heavy duty vehicles) as well as fuel standards (e.g. sulphur
free fuels). We note a decrease in CO, which is opposite to most other forecasts.
The increase in CO, emissions that is commonly projected for transport activity
is mainly a result from the increase in freight transport. At the urban level
we are studying here, freight transport has a much smaller share in overall
transport activity hence the decrease of CO, emissions presented here.!8

Base case transit characteristics

Average bus occupancy rates for the baseline are based on data from annual
reports of MIVB (MIVB, 2004, 2005), and are assumed to apply to the share
of De Lijn and TEC in bus transit operation as well. For metro and tram we
again use MIVB data to calculate occupancy rates. For heavy rail we only

7The most obvious bias introduced here is that we do not take into account the existence of a
small number of CNG-powered vehicles in the MIVB bus stock.

18CO, emissions from passenger transport activity decrease partially as a result of a baseline
decrease in fuel efficiency of new private cars as a result of the greenhouse gas policy by the
EU-Commission. A detailed discussion of this policy is provided in chapter 4, on which we based
the baseline fuel efficiency evolution implemented here.
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Figure 5.5. Baseline evolution of overall transport emissions (index: 2005 level = 100)

have national average figures and assume that they are also representative for
the rail traffic in the Brussels region.

Diversifying the occupancy rates over the time periods (peak and off-
peak) is not straightforward. The split over periods of vehicle activity in
TREMOVE 2 seems not consistent, resulting in lower occupancy rates in the
peak period. We therefore decide to review the TREMOVE 2 baseline on this
point. Considering that annual reports by the operators do not provide much
information on the peak/off-peak split of the activity (be it pkm or vkm), we
make the assumption that peak occupancy rates are twice the off-peak rates.
This is a rather rough assumption. We however remark that if we further
rise this factor that peak period frequencies become smaller than off-peak, a
smaller factor however yields peak occupancy rates which seem to us to be
too low to be realistic.

Table 5.3. Baseline frequencies and occupancy rates for the 2002-2004 period

mode period occupancy rate frequencies (per hour)
2002 2003 2004 2002 2003 2004
bus peak 18,82 20,54 25,91 6,16 6,17 6,05
bus off-peak 9,41 10,27 12,95 4,71 4,73 4,64
rail peak 100,21 103,42 106,32 8,55 8,65 8,47
rail off-peak 57,3 59,13 60,78 5,81 5,69 5,63
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Occupancy rates before and after the statistical period (2002-2004) are
assumed constant in the baseline. We note that for rail the peak occupancy is
not exactly a factor two larger than for off-peak. The factor-2 assumption is
made at the level of the composing rail modes (tram, metro and train).

Baseline ticket revenues'® are based on annual reports by De Lijn?’, MIVB2!
and NMBS?2. We assume the average ticket price to be equal over all periods
and over the whole network of each operator (both within and out of the
Brussels territory), lacking any information on how to diversify this figure.
For TEC we assume a revenue per pkm which is identical to De Lijn. Calcu-
lating the weighted average we obtain ticket prices (per passenger kilometre)
presented in table 5.4. In the same table we also provide an overview of 2004
time cost levels.?

We observe that ticket costs are only 10 (rail) to 20% (bus) of total gen-
eralised user costs. Waiting costs for rail are higher than for bus although
waiting time itself is smaller: this is a result of differences in value of time V.

Ticket prices before and after the statistical period (2002-2004) are assumed
constant in the baseline. The ticket prices for the composite rail mode in
TREMOVE are calculated from constant values for metro, tram and train and
aggregated based on the baseline activity of light rail and heavy rail.

Values for the 6 and € parameters in the transit congestion function are
assumed not to change over the modelling period and are presented in table
5.5. The value of the no-travellers speed S for rail is based on the TREMOVE 2
baseline (see section 5.2.1). For buses the value of S is linked to the congestion
function of the TREMOVE model. First a value of S is calculated based on
observed commercial speed (see section 5.2.1). In a next step the ratio of this
no-travellers speed to the network speed value provided by the heavy duty
vehicles congestion function of the TREMOVE model is calculated. It is this

9The ticket revenues are here defined to be equal to all direct ticket related payments collected
from the passengers (including season passes). We exclude all other revenues such as subsidies
by employers (as far as these subsidies are paid directly to the operator).

20Vlaamse Vervoermaatschappij [VVM] (2004, 2005)

2IMIVB (2004, 2005)

22Nationale Maatschappij der Belgische Spoorwegen [NMBS] (2005)

23Table 5.4 is limited to cost data based on 2004 observations, cost data for 2002 and 2003 are
calculated in an identical way and are only slightly different (or identical for the walking cost).

Table 5.4. Baseline generalised user cost (ticket and time cost) for 2004 (in €/pkm)

mode period ticket walking waiting in-vehicle total
bus peak 0,090 0,081 0,133 0,173 0,477
rail peak 0,077 0,371 0,141 0,161 0,750
bus off-peak 0,090 0,080 0,171 0,153 0,494
rail off-peak 0,077 0,348 0,197 0,147 0,768

165



5.3. TREMOVE Brussels

factor (of about 80 to 85%)%* that we assume constant over the modelling
period. A schematic overview of the congestion calibration and simulation is
presented in figure 5.6.

Operating costs for buses are determined in the vehicle stock module of the
TREMOVE model based on fuel costs, resource costs and driver wage.

Base year fuel prices are based on IEA (2003) and for CNG on Vrije
Universiteit Brussel, ETEC (2001). Baseline evolution of fuel prices is based
on projections of crude oil and natural gas evolutions based on the PRIMES-
transport model Knockaert et al. (2002).

An average fuel consumption of 39 litres per 100 km os assumed for diesel
buses in 2000. The specific fuel consumption decreases by 0,6% per year up to
2008 (Verbeiren et al., 2003). Baseline fuel efficiency is further affected by the
endogenous fuel efficiency evolution described in chapter 4.

Purchase cost of new vehicles is fixed to €200 000 in 2000 and increases
with €15000 between 2005 and 2010 reflecting the implementation of more
stringent emissions standards.

Calibration of repair and maintenance cost functions for buses is based on
Vrije Universiteit Brussel, ETEC (2001).

The driver wage is assumed constant over the modelling period to 19,8
€/h (see section 5.2.1).

Rail operating costs enter the model exogenously and are assumed constant
over the modelling period. Based on the modelled commercial speed value
(1/T), the model translates per hour costs (wages and capital) to per vehicle
kilometre values.

Baseline operating cost values for selected years are provided in table 5.6.

Baseline emission factors for bus vehicles are provided by the COPERT III
methodology (Ntziachristos and Samaras, 2000). Buses are assumed to evolve
up to Euro 5 standards and to keep this emission levels to the end of the
modelling period (2020).

For rail the baseline electricity consumption is aggregated based on data

241t seems realistic that the no-travellers commercial speed is somewhat lower than road
network average values, considered the near-absence of priority measures for transit as well as
the fact that the bus transit network does only make very limited use of the faster urban freeways,
as most of them are paralleled with rail transit. The calculated factor does only differ slightly
between peak and off-peak (order of magnitude of some percentage points). This observation
together with the value of the factor provide an indication that both the values for J and € as well
as the calibration of the TREMOVE congestion curve are realistic.

Table 5.5. Baseline values for parameters of speed-flow relation (in seconds)

bus rail
1) 18 0
€ 1,8 02
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Figure 5.6. Modelling of commercial speed for transit in TREMOVE

Table 5.6. Baseline transit operating costs C, (in €/vkm)

mode period 2005 2020
bus off-peak 1,38 1,39
bus peak 2,94 3,06
rail off-peak 6,03 6,00
rail peak 9,77 9,70

from TREMOVE 2 (G. De Ceuster et al., 2005).

5.4. Policy simulations

In this section we present four policy simulations (see table 5.7). A first
simulation focuses on optimising occupancy rates (and through equations (5.2)
and (5.3) also frequencies and fleet size) and ticket prices, however without
including external emission cost (i.e. C, = 0). This simulation mainly serves to
gain insight in first best optimal transit pricing. A second simulation studies
how the optimal prices change if we include environmental considerations. A
third simulation adds to optimal environmental pricing the midlife retrofit
of existing Euro 2 buses in order to meet Euro 5 emission standards. A last
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simulation studies the environmental and welfare potential of a shift away
from conventional diesel technologies to CNG fuelled buses.

All simulations cover the 2006-2020 period, i.e. in the 1995-2005 period
the baseline is reproduced.

For completeness we note here that in the simulation where we optimise
occupancy rates D we implicitly assume unlimited vehicle capacity. This is not
directly an issue as we will see that under all simulations optimal occupancy
rates are lower than baseline values. We further note that we assume no
change in trip length L; and network length L,. Finally we repeat that stop
distance d is not optimised and fixed to baseline values.

5.4.1. Scenario 1: Optimal pricing

In a first step we look at optimal pricing of urban bus and rail transit excluding
external emission cost (C, = 0).

Using equations (5.5) and (5.10) to determine occupancy rates and mone-
tary user costs for peak and off-peak periods results in a change in generalised
user cost presented in figure 5.7. The waiting cost in peak periods does only
change a little, indicating that baseline frequencies and occupancy rates are
close to optimal levels. In off-peak periods, waiting times reduce significantly
as a result of optimal frequencies which are significantly higher than in the
base case scenario. The message here is that as a result of peak load pricing
the user price in off-peak periods is much lower resulting in a high welfare
optimal supply level. Although the optimal frequencies are still lower what is
technically feasible with the peak-dimensioned vehicle stock (so part of the
fleet is redundant for off-peak operations), the off-peak frequencies for buses

Table 5.7. Definition of the 2006-2020 period in policy simulations

Scenario Occupancy rates, frequencies, fleet size  Bus technology
and ticket prices

Base case fixed to base case level Conventional diesel

Scenario 1  welfare optimal excluding external Conventional diesel

emission cost (equations (5.5) and
(5.10) with C, = 0)

Scenario 2 welfare optimal including external Conventional diesel
emission cost (equations (5.5) and
(5.10))

Scenario 3  welfare optimal including external Conventional diesel +
emission cost (equations (5.5) and retrofit Euro 2 — Euro 5 in
(5.10)) 2006

Scenario 4  welfare optimal including external CNG for new buses
emission cost (equations (5.5) and
(5.10))
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are above peak levels as a result of the higher commercial speed.

Optimal ticket prices are in all periods much lower than baseline levels.
The actual tendency in regional Belgian transport policy (Flanders region) to
lower these prices seems in line with the findings of this optimisation.

The important reduction in generalised user cost results in a corresponding
evolution in transport activity depicted in figure 5.8. For all transit modes and
periods, occupancy rates go down and hence frequency goes up, which results
in vehicle km activity increasing more than passenger km. In the off-peak
period an increase of 50 up to 100% in transit supply results in an increase by
about 40% of the passenger activity.

Studying the impact on transport activity of other modes (figure 5.9) we
observe a decrease in private car activity. Overall passenger transport activity
increases by about 1,1%. The change in transport activity has an impact on the
vehicle stock size: a reduction of about 12% is resulting for private cars. For
buses an increase of the stock size of more than 25% is observed. We recall
here that the bus stock is dimensioned to fulfil peak demand (see section
5.2.1), and from figure 5.8 we know that the supply of vehicle km during the
peak period increases under optimised occupancy rates and ticket prices.

The impact on overall transport emissions is presented in figure 5.10.
The increase in emissions of CH,; and SO, results from increased electricity
production for rail transit. The relative impact figures are impressive, but
the baseline emission levels of these components are very low. The external
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Figure 5.7. Impact of scenario 1 (section 5.4.1) on transit generalised user cost in 2010
(in €/pkm compared to base case (section 5.3.2) levels)
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Figure 5.8. Impact of scenario 1 (section 5.4.1) on transit activity (in % change compared
to base case (section 5.3.2) levels)
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Figure 5.9. Impact of scenario 1 (section 5.4.1) on passenger transport activity (in %
change compared to base case (section 5.3.2) vehicle kilometre levels)
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cost related to the change in PM emissions is much more important than the
change in CHy4 and SO; emissions.

The welfare impact of the optimisation of transit markets (bus and rail)
may depend on distortions that exist in other markets (see section 5.2.1 and
5.3 on first best versus second best). Figure 5.11 presents the welfare impact.
We observe a considerable gain in consumer surplus that is larger than the
cost for the government of the change in transit supply. Distortions on the
other transport markets do not change this picture significantly: the reduction
of private car activity results in a loss in tax income for the government, but
the order of magnitude is small compared to the transit supply (and related
subsidies) impact on the government budget. The same holds for the MCPF
term? in the welfare balance.

The impact on external emission cost shows that the increase of transit
supply has an environmental cost, however this cost is smaller than the
environmental gain resulting from the decrease in private car activity. The net
environmental effect is a gain.

Taking all welfare effects together we observe that the welfare optimisation
(with C, = 0) of transit generalised user cost results in a net welfare gain.

25The MCPF term stands for the marginal cost of public funds. It reflects an additional welfare
gain if an increase in tax income from transport activity is used to reduce existing distortions in
other markets. In this chapter we assume that additional tax income is used for a reduction of
labour taxes, the value of the MCPF term used here is 6,6% of the increase in tax income for the
government (European Commission et al., 1999).
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Figure 5.10. Impact of scenario 1 (section 5.4.1) on overall transport emissions (in %
change compared to base case (section 5.3.2) levels)
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Figure 5.11. Annual welfare cost of scenario 1 (section 5.4.1) in million EUR2000
compared to base case (section 5.3.2)

The 2005 net present social cost of the realisation of this scenario (compared
to the baseline) excluding environmental impact is —450 million euro, adding
the change in external emission cost this value further goes down to —460
million euro. For clarity we emphasise that a negative cost means a net gain
to society.

If we compare our results to findings in past research, we see some obvious
parallels. De Borger and Wouters (1998) find optimal prices for public transit
that are below baseline levels. On the supply side, vehicle activity levels (in
vkm) are to increase much more in off-peak than in peak periods, which
is in line with our optimisation results. Also for transit demand (in pkm),
both exercises reveal larger increases in off-peak than in peak, be it that these
increases are of a much larger magnitude in De Borger and Wouters (1998)
compared to our model. This could be explained by the fact that De Borger
and Wouters (1998) optimise price levels on the private car market at the same
time. The corresponding cost increases for car use likely result in a substantial
modal shift towards buses and trams. We should also note that the scope of
their exercise covered the whole of Belgium whereas in this chapter we limit
our scope to the Brussels region.

The study by Van Dender and Proost (2003) reveals that, for the Brussels
area, first best welfare maximisation requires an increase in transit prices
combined with a decrease in supply. Their results may be explained by the
absence of returns to scale in their model as well as a different road congestion
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curve applied. Their findings with respect to change in modal shares are
broadly in line with our findings, including a strong increase in the share of
rail activity but a smaller increase in bus activity.

Based on our simulation we draw the conclusion that welfare optimal
frequencies are above baseline levels, especially in the off-peak period when
operating costs are lower. We should however remind here that the baseline
levels for peak and off-peak frequency are mainly based on an assumption
(on occupancy rates) and that only the average frequency (over both periods)
is based on actual observations. Conclusions on the exact welfare impact of
optimal frequencies may depend on how close we approach real world with
our baseline assumption.

Further on we want to remark that the ratio of value of waiting time
to value of in-vehicle time has an important impact on optimal frequency
levels.?® As stated before, a broad range of values has been reported in past
research for this factor for which we chose the value of 3. Lower values may
result in optimal frequencies that are smaller than baseline levels.

Next also operating cost figures have an important impact on optimal
frequency levels. Here again we note that the level of the marginal operating
cost leaves some space for interpretation as discussed before.

As for the ticket price, we note that the optimal level simulated here is
significantly below baseline observations. Changes in value of § and € have
an important impact on this optimal level, however based on some sensitivity
analysis we noted that even large increases in these parameters still result in
ticket prices which are smaller than or about the same size as baseline levels.

5.4.2. Scenario 2: Optimal pricing and the environment

In the previous section we studied the optimal price level considering the
user’s own time costs and the transit operator’s production cost. In this
section we will include external environmental costs related to emissions. The
impact figures shown in this section compare the optimal pricing simulations
with and without the environmental cost.

First we have a look at the change in transit general user cost (figure 5.12).
The increase in user cost is mainly a result of an increase in optimal occupancy
rates, resulting in lower frequencies and hence higher waiting costs. For bus,
the higher occupancy rate also reduces commercial speed, resulting in an
increase in travel time cost. Only a small increase in ticket price is observed.
The higher occupancy rates reduce the marginal external emission cost per
passenger kilometre by up to 10% for buses and 1% for rail. The increase in
total generalised user cost for bus passengers amounts to approximately 60

26 As can be derived from expression (5.1), it is assumed in calculating average waiting time
that passengers arrive at bus or rail stops at a random time without taking into account published
timetables. In our setting where intervals are smaller than 13 minutes this seems an acceptable
approach.
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to 70% of the average emission cost, whereas for rail users the difference is
smaller.

The impact on transport activity of the environmentally optimised user
costs are presented in figure 5.13. Including environmental considerations
mainly impacts off-peak bus supply: a reduction in vehicle kilometre by 12%
is observed, resulting in a 2% reduction of transit demand in 2010. Towards
the end of the modelling period the impact becomes smaller for bus transit,
reflecting the changing composition of the vehicle stock which becomes less
polluting as cleaner technologies (Euro 5) enter the stock and replace older,
more polluting vehicles (mainly Euro 2).

The change in optimal occupancy rates has an important impact on bus
transit supply, the impact on the activity of other modes is much smaller (see
figure 5.14). The evolution of overall passenger transport activity is only very
small (decrease of less than 0,1%).

Overall emissions from transport activity decrease for most pollutants
(figure 5.15). This results in a net reduction in external emission cost (figure
5.16). Note that the decrease in transit environmental cost is larger than the
corresponding increase from other modes.

The cost to society of the change in transit generalised user cost is pre-
sented in figure 5.16. The loss in consumer surplus is larger than the reduction
in government cost for operating the transit network. The gain in tax income
from the increase in private car activity together with the MCPF term switches
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Figure 5.12. Impact of scenario 2 (section 5.4.2) on transit generalised user cost in 2010
(in €/pkm compared to scenario 1 (section 5.4.1) levels)
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Figure 5.13. Impact of scenario 2 (section 5.4.2) on transit activity (in % change com-
pared to scenario 1 (section 5.4.1) levels)
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Figure 5.14. Impact of scenario 2 (section 5.4.2) on passenger transport activity (in %
change compared to scenario 1 (section 5.4.1) vehicle kilometre levels)
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Figure 5.15. Impact of scenario 2 (section 5.4.2) on overall transport emissions (in %
change compared to scenario 1 (section 5.4.1) vehicle kilometre levels)

the net result (excluding external emission cost) from a cost to a gain. Dis-
tortions in other markets here result in a social gain rather than a social loss.
Adding the change in external emission cost further increases the welfare
gain.

To conclude, including external environmental costs in the optimisation
of transit generalised user cost results in both an environmental and a net
welfare gain. By internalising the environmental cost through the waiting
time rather than through the ticket price, polluting bus transit supply can be
reduced by over 10% with only limited impact on other transport markets.

The 2005 net present welfare cost of the realisation of this scenario (com-
pared to the implementation of scenario 1, section 5.4.1) excluding environ-
mental impact is —14 million euro. Adding the change in external emission
cost this value further goes down to —22 million euro. Both welfare and
environmental impact over the modelling period show a net gain.

5.4.3. Scenario 3: Retrofitting buses

In this section we study the potential welfare impact of retrofitting Euro 2
buses to meet Euro 5 emission standards. The retrofit is implemented in the
model year 2006. In the simulation presented here, this retrofit is added to
the optimal environmental transit pricing scenario presented in the previous
section. The simulation of the previous section will serve as the reference
throughout this section: all changes reported here are relative to environmen-
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Figure 5.16. Annual welfare cost of scenario 2 (section 5.4.2) in million EUR2000
compared to scenario 1 (section 5.4.1)

tally optimal pricing without retrofit. This allows to fully understand the
potential of retrofitting.

Retrofitting part of the existing vehicle stock mainly comes down to re-
ducing its environmental impact. As such, this scenario partially reduces the
impact of environmental user pricing. However, the retrofit operation comes
at a cost which further impacts optimal pricing. The resulting impact on
transit generalised user cost is presented in figure 5.17. Changes in optimal
user costs are minimal. Ticket prices increase for both periods reflecting an
increase in per vehicle kilometre operating costs. Waiting costs increase in the
peak period as a result of peak load pricing of the capital cost to retrofit the
vehicles. For the off-peak period, the reduced external emission cost allows to
rise frequency and hence reduce waiting and in-vehicle time costs.

The change in transit activity is presented in figure 5.18. The biggest
change in supply is noted in the off-peak period where bus vehicle activity
increases by some 1,5%. From 2015 on most upgraded Euro 2 vehicles have
left the stock hence the small activity impact. The simulation shows only a
very small impact on activity of other modes (decrease for private car activity
of less than 0,1%).

The impact on overall transport emissions (figure 5.19) is significant com-
pared to the very limited impact on activity of the retrofit implementation.
Levels of NOx and PM decrease by over 1,5%.

The welfare impact of the retrofit operation is presented in figure 5.20.
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Figure 5.17. Impact of scenario 3 (section 5.4.3) on transit generalised user cost in 2010
(in €/pkm compared to scenario 2 (section 5.4.2) levels)
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Figure 5.18. Impact of scenario 3 (section 5.4.3) on transit activity (in % change com-
pared to scenario 2 (section 5.4.2) levels)
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Figure 5.19. Impact of scenario 3 (section 5.4.3) on overall transport emissions (in %
change compared to scenario 2 (section 5.4.2) levels)

The higher bus supply in the off-peak period results in a welfare gain for
consumers. The gain is smaller than the additional transit operating costs for
the government. Adding the external emission cost we however note that the
balance is largely positive and results in a net gain in 2010. We again note that
the distortions of the other markets do not change the results fundamentally.

The 2005 net present social cost of the realisation of this scenario (compared
to the implementation of scenario 2, section 5.4.2) excluding environmental
impact is 6 million euro, adding the change in external emission cost this
value goes down to —3 million euro. Although the measure results in a cost to
society, adding the impact on the environment changes the net welfare impact
to a gain.

5.4.4. Scenario 4: CNG buses

In this section we study the introduction of CNG bus technologies. The
simulation assumes that from 2006 on all new buses are CNG fuelled. We
should remember here that optimising the frequencies and the ticket prices
from 2006 on resulted in an increase of the bus stock by over 25% (see
discussion of scenario 1 in section 5.4.1). This increase is in this scenario
realised by the purchase of CNG buses rather than diesel buses as in the other
scenarios. As a result, CNG technology takes up a sizeable share in the stock
already in 2006. Beyond 2006, the CNG share further increases at the normal
stock turnover rate.
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Figure 5.20. Annual welfare cost of scenario 3 (section 5.4.3) in million EUR2000
compared to scenario 2 (section 5.4.2)

We first consider the impact of the CNG vehicles on optimal user cost
(figure 5.21). Because of the stock dynamics explained above, we here study
the user prices in 2015 rather than 2010. We again note that the main part
of the price change comes from a change in waiting cost. Prices go up here,
rather than down, an indication that the introduction of CNG technologies
has an impact on operating costs that is larger than its impact on external
emission cost.

Changes in transit activity are presented in figure 5.22. The impact on
passenger transport activity (pkm) is limited. The increased optimal occupancy
rate results in a lower vehicle kilometre supply. The change in demand for
other modes is very small, private car activity increases by about 0,1%.

The CNG vehicles enter the stock from 2006 on, and by 2020 nearly all
diesel vehicles (buses) have been replaced.

The impact of the technology measure on emissions (figure 5.23) indicates
a large increase in CHy emissions. It is not surprising that CNG vehicles emit
more CHy than diesel vehicles. The increase is so large mainly because the
CH4 emissions in the reference scenario are so low (mainly from electricity
production for rail operation—in which natural gas has a share as primary
energy source). As for the external emission cost, the relatively smaller
reduction of NOx and PM emissions will have a much more important impact.

The overall welfare impact of the (mandatory) introduction of CNG bus
technology under optimal user prices is presented in figure 5.24. The loss in
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Figure 5.21. Impact of scenario 4 (section 5.4.4) on transit generalised user cost in 2015
(in €/pkm compared to scenario 2 (section 5.4.2) levels)
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Figure 5.22. Impact of scenario 4 (section 5.4.4) on transit activity (in % change com-
pared to scenario 2 (section 5.4.2) levels)
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Figure 5.23. Impact of scenario 4 (section 5.4.4) on overall transport emissions (in %
change compared to scenario 2 (section 5.4.2) levels)

consumer surplus is approximately as large as the increase in transit operation
expenses by the government. The reduction in external emission cost is
however of a much smaller order of magnitude, resulting in an overall welfare
loss.

The 2005 net present social cost of the realisation of this scenario (compared
to the implementation of scenario 2, section 5.4.2) excluding environmental
impact is 60 million euro, adding the change in external emission cost this
value goes down to 42 million euro. Although the simulation shows a net
environmental gain, this gain does not suffice to cover other costs to society,
resulting in a net welfare loss over the modelling period.

We draw the conclusion that the environmental impact of CNG buses is
rather small compared to the costs incurred for the society.

5.5. Conclusions

In this chapter we studied first best welfare optimal ticket prices and frequen-
cies for urban transit and discussed the environmental potential of technologi-
cal measures in order to reduce environmental impact of bus transit.

The TREMOVE partial equilibrium model was chosen as a tool to assess
environmental and welfare impact of different policy simulations.

Welfare optimal transit frequencies in this simulation are above baseline
levels, whereas ticket prices are much lower than under existing transport
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Figure 5.24. Annual welfare cost of scenario 4 (section 5.4.4) in million EUR2000
compared to scenario 2 (section 5.4.2)

policy. This scenario implies a subsidy for transit operations, at a level above
the existing situation.

Internalising marginal external emission cost in public transport should
be done by reducing frequencies (and hence increasing waiting times) rather
than increasing ticket prices in order to maximise welfare. This environmental
first best scenario implies a reduction in subsidies for transit operations.

As for technical measures, the retrofit of existing Euro 2 buses to meet
Euro 5 standards results in a welfare gain, whereas the switch from diesel to
CNG fuelled technology for new bus vehicles does not improve the urban en-
vironment sufficiently to cover the increase in resource costs. The simulations
show that the welfare gain that comes with technical measures requires an
increase in subsidies.
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CHAPTER

Conclusions

In this chapter we summarise the most important results, and provide an
indication of the implications for transport emissions policy.

6.1. Summary of results

The study of modelling road transport emissions is presented in two main
parts: the analysis of behaviour of transport users with respect to vehicle tech-
nologies, and the simulations of technological and other transport scenarios
for emission reduction.

The analysis of car buyers’ preferences for alternative technologies is based
on a focus group and a stated preference experiment to establish a data set
for the Flemish car market. The experiment identifies the impact of variables
such as user costs, fuel range, trunk space on the choice between conventional
and alternative vehicle technologies. No significant preferences for or against
hybrid technologies are registered. The survey respondents indicate that
they are willing to accept a higher price for cleaner cars, even exceeding net
differences in environmental impact. Here and in the focus group it is noted
that environmental impact is not consistently assessed by car purchasers using
existing indicators as an input.

In the analysis the application of the mixed logit choice model specification
plays a central role. It allowed for a model fit that was significantly better
than the (nested) multinomial logit by accounting for the repeated choice
setting of the experiment. In order to overcome the computational barrier of
using mixed logit in simulating transport scenarios where repeated choice is
absent, we presented a methodology to design a nested logit simulation model
based on mixed logit estimation results. We applied the methodology using
the stated preference experiment data set, and demonstrated how the mixed
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nested logit specification can be used to identify detailed choice correlation in
patterns at the level of the respondent.

For the simulation of technological and other transport scenarios, we devel-
oped a baseline scenario for Belgium using an external transport scenario and
reflecting a business as usual setting. The baseline indicates that the existing
policy of tightening road transport emission standards for both fuels and new
technologies results in a significant reduction in time of environmental impact,
both at the level of the individual vehicle and at the aggregate level. Only for
CO;, is there a projected increase at the aggregate level.

In the study of transport scenarios to reduce emissions impact from private
car traffic a distinction was made between environmental damage by toxic
emissions and external costs of related to climate change by CO, emissions.
Alternative technologies were found to have a significantly smaller impact
on the environment compared to their traditional counterparts. However,
in absolute figures the differences are small provided that existing emission
standards for traditional technologies are already set tight. Internalising the
(small) difference in external emission cost by means of a differentiated charge
results in a relatively small gain both for the environment and for society. It
was however noted that levelling the playing field between traditional diesel
and gasoline technologies allowed to obtain a similar environmental improve-
ment. The environmental contribution of different behavioural adaptations
to a pricing scheme evolves in time. In the short term the main contribution
stems from overall demand reduction, whereas in the long term with the stock
turnover the contribution of technologies increases. Modal shift accounts for
10% or less of environmental improvement.

Reducing CO, emissions by private cars is a matter of energy efficiency.
The traditional policy approach is one of high fuel taxes combined with
(average) emission caps for new vehicles. In our simulations we revealed
that it is an example of a policy that is effective but not efficient. Abatement
costs per ton of CO, emissions are exorbitant compared to other sectors. Even
when the policy is limited to an optimal fuel tax setting, the implicated fuel
taxes are very high and the net cost for society remains prohibitive. The main
rationale is that when a car user substitutes more efficient technology for
fuel consumption there is a corresponding substitution of resource costs for
(fuel) taxes. This is a net cost to society that by far exceeds the corresponding
reduction in climate change impact.

Measures addressing emissions by urban bus public transport depart
from the private car scenarios in that the level of service provision provides
an additional supply variable which can be tuned for emissions reduction.
Here again alternative technologies can contribute to emission reductions,
but the relatively long vehicle lifetime compared to other passenger transport
modes also makes a case for a mid-life environmental upgrade which proved
both effective and efficient. Furthermore it was shown that internalising
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environmental externalities results in an increase in waiting time rather than
ticket price. The 10% decrease in service provision results in an environmental
improvement which is not offset by the corresponding shift towards other
modes.

6.2. Implications for transport emissions policy

Technological measures to abate road transport emissions generally proved
effective in our study. The traditional approach of emission standards for new
vehicles resulted in an impressive reduction of emissions from private cars
and heavy duty road vehicles, both at the vehicle and at the aggregate level. It
is to be expected that a similar approach may prove effective for vehicle types
and modes that lag behind in setting emission standards, such as motorcycles,
vans, rail and waterways vehicles.

Simulating scenarios where marginal external emission cost is internalised
through charges indicates that technology plays an important role in cost
effective emission reduction. This provides support for the traditional policy
approach of emission standards. For an increase in welfare the technology
costs should however not exceed the environmental impact, the latter already
being very reduced.

Car buyers’ preferences for technologies as captured by the stated choice
experiment do suggest that there is a market for alternative technologies
without supporting policy measures. There is an environmental improvement
related to such an autonomous introduction of alternative technologies.

As for energy efficiency, any improvement of traditional fuels and tech-
nologies seems exceedingly cost prohibitive, at least for road modes that face
high fuel taxes. A policy approach aiming at reducing CO, emissions at
minimal social costs (or aiming at maximal reduction for a given social cost)
should definitely focus on other sectors before addressing road transport.

Where vehicles have an extended lifetime such as buses or rail, there is
a good case for policies that set standards for existing vehicles, especially in
urban environments where emissions impact is high.

Pricing measures that aim at supporting an environmentally desirable
technological shift in private car transport show us that even with highly
differentiated charge the obtainable welfare gains are small. There is however
such a thing as a free lunch in this area, where levelling private car diesel and
gasoline taxes results in a net environmental and welfare gain. The existing
taxation difference is not environmentally motivated.

Encouraging an improvement in energy efficiency of private cars through
higher fuel taxes invariably leads to important welfare losses, even if they are
50% smaller than using an efficiency standard for new cars.

Reducing service provision of urban bus public transport can be an ef-
fective emissions policy measure. Even when accounting for substitution
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between modes, such a scenario still has a net environmental and welfare
impact.

Across the different scenarios where prices are set equal to marginal social
costs we observe that modal shift does not contribute significantly to the
reduction of environmental impact. This indicates that policies focusing on a
modal shift, even when effective, are probably not desirable from an efficiency
point of view.
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APPENDIX

Discrete choice theory

Discrete choice theory provides a broad range of mathematical modelling
frameworks. An in depth discussion on discrete choice theory can be found
in Ben-Akiva and Lerman (1985), K. Train (1986/1990), Anderson et al. (1992)
and K. E. Train (2003).

The introduction on the topic we provide in this appendix is mainly based
on K. E. Train (2003) and Heiss (2002).

A.1. Consumer behaviour

The consumer who considers the purchase of a car faces a discrete choice. To
model the behaviour in such circumstances, discrete choice theory offers several
models based on random utility theory.

In these models, the probability that a consumer chooses a given alternative
depends on the utility of the alternative as well as the utility of all the other
alternatives. This utility Uy, of alternative j as obtained by decision maker 7
at choice occasion m consists of a deterministic and a stochastic term:

Ujmn = Vimn + €jmn (A1)
where:

® Vimn: the deterministic part of the utility of alternative j at choice occasion
m as obtained by consumer #;
* €jun: the stochastic part.

The deterministic term Vj,,;, can be function both of attributes of the good
(alternative j in choice situation m) and characteristics of the consumer #n. It is
the part of Uj;,, captured by the researcher.
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The stochastic term €, accounts for all kind of influences which appear
to be random and which make it impossible to observe the choice as a deter-
ministic process. The underlying interpretation is that some characteristics
are unobserved or unobservable (for the researcher), and the stochastic term
accounts for their influence on Uj,,. The probability that the consumer n
chooses alternative j in choice situation m is then the probability that the
utility U, is bigger than the utility of all other alternatives U, with i # j
in choice set m (utility maximisation).

Depending on assumptions on the statistical distribution of the stochastic
term €, different models are distinguished. The multinomial probit (with
all stochastic terms normally distributed) and the mixed logit (with stochastic
terms identical and independently Gumbel distributed) specification are the
most flexible for discrete choice situations. However, the absence of a closed
form for the choice probabilities makes them less flexible for e.g. simulation
purposes. The multinomial and nested multinomial logit specifications do pro-
vide for closed form expressions that allow for both fast estimations and
simulations, however they allow for less correlation patterns in the stochastic
part.

In the next sections we will discuss the multinomial logit, nested logit and
mixed logit specifications.

A.2. Multinomial logit

The multinomial logit model (MNL) has been applied widely for all kind of logit
choice modelling exercises in consumer theory. It is based on the assumption
that the stochastic utility terms €;,,, (see equation (A.1)) have a double expo-
nential or Gumbel distribution with scale parameter ¢ (Var(ejmn) = 02712 /6)
and are independent for all alternatives j, choice situations m and respondents
n. The Gumbel distribution shows much similarities to a normal distribution,
but its definition allows simplified mathematical manipulation and results in
a closed form for the choice probabilities.

The choice probability of alternative j from choice set m by consumer # is
then:

evjmn /o
Pjyn = 721 1 R (A.2)

1=

If Vjyy is linear in parameters, the choice probabilities become:

eﬁ/xjmn /o
i = T e (a2)
1=

with:
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e J: the number of alternatives in the choice set!
* [: the vector of coefficients
* Xjun: the vector of attribute values of alternative j in choice set m?

In formula (A.3) we see that the coefficients  are scaled by 1/c¢. Only the
product of both can be estimated:  and ¢ cannot be identified separately. It is
common practice to normalise ¢ to unity, so that it drops out of the formulae.
The estimated coefficients 3 then indicate the effect of each observed variable
relative to the variance of the stochastic utility €j,,,. A larger variance in this
unobserved preferences leads to smaller coefficients (absolute value). The
choice probability of alternative j in the estimated model is then:

eﬁ/xjmn

Zl] eleimn (A4)

ijn =

Although the variance of €, cannot be estimated directly, it is possible to
calculate the ratio of variances in stochastic utility of two different data sets
describing the same choice situation. Take the example of a model estimated
on a stated preference (SP) and a revealed preference (RP) data set. The
estimated coefficients are 5 and RP. We know:

BSP — 'BSP/O'SP (A5)
and
BRP — ﬁRP/U.RP (A6)

The true coefficients (38" and B°) should be the same for both RP and SP,
as we assume only the variance of the stochastic utility to be different. From
(A.5) and (A.6) then follows:

RP ASP
=" (A7)

o ﬁRP

The ratio r of the variance of the stochastic terms eif over eﬁjp is then:
sP\2 2 SP N 2 ARP 2
o w-/6 o
r = 7( )2 = (RP) = ‘BASP (AS)
(eRPY 712 /6 o B

The MNL specification has however some important limitations. The
stochastic error terms €, are supposed to be independent (uncorrelated)

1We here assume the number of alternatives | to be constant over all choice situations m
faced by all respondents 7.

2The subscript # is added to allow for interaction variables, these are technology attributes that
interact with respondent specific attributes—it is straightforward from equation (A.3) that respon-
dent attributes that do not interact with alternative variables are constant over all alternatives
and hence drop from the formula.
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and to have an identical distribution (same variance, mean is always zero) for
all alternatives j, choice situations m and consumers n. As a result of this,
the alternatives have to fulfil the L.I.A. property: independence from irrelevant
alternatives.

The LLA. property can be illustrated by the red-bus blue-bus problem. As-
sume a situation where private cars and red buses have both a 50% market
share. That means the ratio of their choice probabilities is 1. Now we intro-
duce blue buses in the system. This does not change the ratio of the share of
cars and blue buses (this can be easily verified using formula (A.4)). But we
can expect the ratio of the shares of both flavours of buses also to be unity.
That means that private cars, red buses and blue buses would all have a 1/3
market share, which is highly implausible. The unrealistic behaviour of the
multinomial logit specification results from the independence assumption,
which does probably not hold for the error terms of the bus alternatives.

The same phenomenon we described above may happen when choosing
between private car technologies. E.g. preferences for diesel and gasoline may
be correlated in comparison to electrical cars. This hypothesis is confirmed
by e.g. Bunch et al. (1993) and Ramjerdi and Rand (1999) attaining a better fit
with a nested model.

In the next section we will discuss a generalisation of the multinomial logit
model in order to allow groups of alternatives to be (more) similar to each
other in an unobserved way.

A.3. Nested logit

To allow for correlation in preferences for a subset of alternatives, the nested
multinomial logit model (NL) is applied. A partitioning structure is defined by
the researcher by defining subdivisions (nests) in which the alternatives are
grouped. For simplicity we will assume a two level structure in the following
discussion of the model.

Assume a model with | alternatives partitioned in K nests, denoted Sy, ...,
Sk. Based on Ben-Akiva and Lerman (1985) we define total utility Uj,, (see
equation (A.1)) of alternative j in nest k as follows:

ujmn = ijn + Hkmn + €jmn (A9)
——

stochastic utility

with:

Vimn the deterministic (observed) utility of alternative j;

€jmn independent for all alternatives j, choice situations m and respon-
dents n;

Hmn independent for all nests k, choice situations m and respondents #;
® €jmy iid Gumbel distributed with scale parameter o};
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® 1gmn distributed so that max;es, (Ujuy,) is Gumbel distributed with scale
parameter o.

The probability of choosing alternative j is then defined as the product
of the marginal probability of choosing (an alternative from) nest k and the
conditional probability of choosing alternative j in nest k:

ijn - PSkmnpjmn|Sk (A.10)

Both the conditional probability of choosing within a nest and the marginal
probability of choosing between nests are multinomial logit. The conditional
choice probability of alternative j belonging to nest Sy can be derived directly
from (A.9), considering that €;,,, is Gumbel distributed and 7y, is constant
over alternatives in the same nest Sj:

e(vjanermn)/‘Tk evjmn /0%
P.

= = All
]mn|Sk Ziesk e(‘/inliz+77kn171)/‘7k ZiESk evimn / 0k ( )

To define the marginal choice probability of nest Sy, we first identify the
utility Uy, of nest k in choice situation m by respondent n:

Ukmn = maX(ijn + ejmn) + Mimn = max(ujmn) (A.12)
]Esk ]GSk
By definition, €jmn 18 Gumbel distributed. As shown by Domencich and

McFadden (1975), max;cs, (Vimn + €jmn) is also Gumbel distributed with scale
parameter oy, but with expected value:

E (maX(ijn + ejmn)) = Oklkmn (A.13)
Jj€5k
with I, the inclusive value of nest k, defined as:
L = In Y €Vimn/ % (A.14)
JESK

The distribution of #y,,, was defined so that Uy, is Gumbel distributed
with scale parameter ¢. The marginal choice probability of nest k is then:

N -
Psyn = W (A.15)
We can now write the probability of choosing alternative j € Sy as:
ek lkmn /@ e Vjmn/ %k
Pinn = PsyunPimnjs, = K tole o (A.16)
We define Ay as:
A =o0p/0 (A.17)
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If Vjyp is linear in parameters, formula (A.16) becomes:

B Xjmn
T A

g)\klkmn e
leil e/\iIimn eIk’”"

pjmn = (A.18)

In formula (A.18) we see that the coefficients § are scaled by 1/c. Only
the ratio of both can be estimated:  and ¢ cannot be identified separately. It

is common practice to normalise ¢ to unity, so that it drops from the formulae.
Substituting /o for  gives:

e/\klkmn eﬁlxjmn /A
ijn a ZzK:l eNilimn . elikmn (A.19)
with the inclusive value of nest k:
Ikmn =1n Z eﬁ,xjmn//\k (AZO)

JESK

The coefficient Ay is called the log-sum or inclusive value coefficient of
nest k, and is a measure for the correlation (or the degree of dissimilarities)
between the alternatives in nest k, with a smaller value for A; meaning more
correlation.

When Ay is between zero and one (Vk : 0 < A, < 1), the model is consistent
with utility maximisation. When Ay, is one, the model becomes a multinomial
logit model. For Ay larger than unity, the model has to be tested for utility
maximisation. For negative values of Ay, the model is not consistent.

Now that we have defined the nested logit specification we should add
two considerations in order to avoid any confusion on the topic.

A first consideration relates to the correct specification of the nested logit
model. The confusion may arise from the fact that fwo different specifications can
be found in literature: the one that we have adopted here and an alternative
one where the coefficients that enter the lower model are not divided by A
in the expressions for the conditional choice probabilities (expression (A.11)).
Heiss (2002) and K. E. Train (2003) point out that only the specification
used here is consistent with random utility maximisation (RUM).? Software
solutions tend to follow literature, resulting in some applying one specification,
others implementing the other one while some allow for both. It is unclear
to us what may be the use of a non-RUM specification, so we here adopt to
use the RUM version. The nlogit procedure in Stata implements the non-RUM
variant, Heiss (2002) therefore provides the nlogitrum command that allows
for estimations following the RUM compliant specification. It is the nlogitrum
procedure that we have used in our estimations in chapters 1 and 2.

3Heiss (2002) identifies some restrictions under which the alternative specification is consistent
with utility maximisation.
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A second consideration relates to the possibility of alternatives that do not
belong to a nest. The nested logit framework allows for such a specification,
although we did not provide for it in the formulae here to keep them simple.
The extension to allow for such alternatives is however trivial.*

The nested logit model allows for correlation in unobserved preferences (or the
stochastic part of utility) at the level of the choice sets m. This is an improvement
over the multinomial logit model discussed in section A.2, while not giving
up the advantage of having a closed analytical expression for the choice
probabilities (A.19), which allows for fast estimation and simulation. However,
correlation patterns are limited to the alternatives available in the same choice
set. In the next section we will discuss a more flexible extension of the
multinomial logit model that allows e.g. for correlation between alternatives
j in different choice sets m faced by the same decision maker n (repetitive
choices).

A.4. Mixed logit

The mixed logit (ML) specification is a further extension to multinomial logit
that provides a very flexible modelling framework. The description provided
here draws mainly on K. E. Train (2003) and Batley et al. (2003).

Analogous to the multinomial and nested logit models, we will introduce
mixed logit by defining the utility U, of alternative j in choice situation m

by consumer #:°
/ /
ujmn = & Xjmn + Hjmn Zjmn + €jmn (A.21)
—_— ———
stochastic utility

with:

* « a vector of fixed coefficients

® Hjmn a vector of random terms with mean zero and probability distribu-
tion f(yjmy), any distribution can be used (independence over j, m or n
is not a necessary condition)

® Xjun and zjy,, vectors of observed variables

® €jmy 1.i.d. Gumbel distributed with scale parameter ¢ (independent over
all alternatives j, choice situations m and respondents )

We will again normalise the scale parameter of the Gumbel distributed
error term to unity (o = 1), this simplifies the notation of the probability of

4An alternative approach could be to define single alternative nests. The inclusive value
coefficient A, of these nests drops from the choice probabilities as can easily be verified from
equations (A.19) and (A.20)—in the estimation procedure any arbitrary fixed value will do the
job.

5We limit here to the case of linearity in variables in order to simplify the notations.
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choosing alternative j:

Bjimn = f Limn (1) f (1) dpt (A22)

where L, (1) is the probability of choosing alternative j in a multinomial
logit setting:

e"‘/xjmn 'H'{/ijn

L]mn(.”) (A.23)

- 2{:1 e‘xlxjmn+y,zjnzn
Formula (A.22) indicates that the choice probability for a mixed logit is a
weighted average of the multinomial logit choice probabilities for different
values of 1. The weights are given by density f(y). Any arbitrary specification
can be used for the distribution f (), normal and log-normal being the most
common.
In order to better understand the potential of the mixed logit specification
to account for a repeated choice situation, we rewrite the utility formula (A.21)
as:
ujmn = “,xjmn + ,unlzjmn + €jmn (A.24)

with y,, a vector of random terms with mean zero which are independent for
all respondents 7 (but constant over choice sets m).

The error terms i, introduce correlation between the utility Ujy,, of alter-
natives j of the different choice sets m faced by the same respondent. The
vector zj,,,, may or may not include the same variables as x;,;,, this depends
on the correlation pattern studied. We will illustrate this by discussing two
possible definitions of zj,.°

Specifying zju; = Xjmn, equation (A.24) can be rewritten as:

ujmn = (lxl + ,un/)xjmn + €jmn (A.25)

This specification illustrates how mixed logit accounts for taste variation over
respondents.

As a second example we specify zj,,; to contain one dummy variable ¢
that has value one for say alternative j = 1 and zero for the other alternatives
j =2...] in choice set m. We rewrite again equation (A.24):

u]'mn = zx’xjmn + ‘uné + €imn (A.26)

The mixed logit here allows to account for correlations in the stochastic part of the
utility (which is here y,6 + €jy,,,) of alternative j = 1 over the choice situations
m faced by the same consumer 7. This is a clear extension beyond the nested
logit specification where correlation was only possible within the same choice
set m by consumer n.

®Based on the discussion of the mixed logit specification by Batley et al. (2003).
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The mixed logit estimation section of chapters 1 and 2 focuses on the cor-
relation in stochastic utility between choice alternatives rather than variation
in taste.”

"For completeness we note that the distinction we make here between taste variation and
correlation in the stochastic part of utility is entirely a difference in interpretation of the error term
specification only, as pointed out by Brownstone et al. (2000).
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APPENDIX

Survey choice set

This appendix documents the choice set wording and layout as used in the
survey discussed in chapter 1. All respondents received six choice sets. A
fictitious example of such a choice set is provided in figure B.1. In this example
we assumed the respondent to have indicated that the amount B he would
spend on a new car would be of 20000 euro.

The example features a random combination of levels for the different
variables. It is fictitious in the sense that the combination of the variable levels
does not follow the factorial plan used in the survey, and neither have the
variables or technology types been randomised. The levels of the variables
have been chosen such that almost all labels are shown, the purpose of this
example being to document wording and layout of the choice sets.

The fifth technology type (Voertuig E in the example) is chosen here to be
an electrical battery car. In case the fifth technology type is a fuel cell car, the
label for energy is "Brandstofcellen zetten een alternatieve brandstof om in
elektrische energie".

The six choice sets sent out to the respondent were preceded by a small
glossary, which is provided in figure B.2
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Een woordje uitleg bij de tabel

Motor Verbrandingsmotor: alle auto’s die nu verkocht worden
zijn uitgerust met dit type motor.

Energie Alternatieve brandstof: een nieuwe brandstof (geen
benzine, diesel of LPG).
De opslag en het gebruik is voor de verschillende
brandstoffen even veilig.

Aandrijving Hybride aandrijving: de verbrandingsmotor en/of een

elektrische motor drijven de wielen aan. De elektrische
energie wordt geproduceerd door de verbrandingsmotor,
en kan (tijdelijk) worden opgeslagen in batterijen (bijv. bij
stilstand).

Beschikbare kofferruimte

Voor sommige technische uitvoeringen nemen de
installaties extra plaats in waardoor de beschikbare
kofferruimte kleiner is.

Schadelijkheid uitlaatgassen voor mens en milieu

Dit zijn enkel de uitlaatgassen van de auto, dus bijv. geen
verbrandingsgassen van de productie van elektriciteit om
batterijen op te laden. Het percentage geeft aan hoe
schadelijk de geproduceerde uitlaatgassen zijn voor
mens en milieu.

Serviceplan voor onderhoud

Voor een vast jaarliks bedrag wordt uw wagen
onderhouden. Hierin is ook de vervanging van batterijen
inbegrepen.

Figure B.2. Glossary accompanying the choice sets
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APPENDIX

TREMOVE Belgium: specification and
calibration

In this appendix we provide an overview of the TREMOVE modelling frame-
work applied throughout chapters 3, 4 and 5 and its calibration for Belgium.
The specification of the model as described here is partially based on Van Her-
bruggen and Logghe (2005).

The model as described here is the starting point for the different modelling
extensions discussed in chapters 3, 4 and 5.

C.1. Introduction

C.1.1. TREMOVE 1.3

The TREMOVE 1.3 model is a partial equilibrium representation of the trans-
port markets developed for the EU Commission under the Auto-Oil I Program
(European Commission et al., 1999). The model (see figure C.1) represents
all the transport markets (passenger and freight), all modes (4 types of cars,
metro, public bus, rail etc.) and contains a crude representation of congestion
and a detailed emissions module (TRE-part). The model tracks the evolution
of the car stock per vehicle type (MOVE stock-part). The model computes the
effects and welfare costs of alternative measures to reduce emissions in the
transport sector. These measures include taxation and regulation packages
ranging from subsidies to public transport and electronic road pricing to the
obligation of installing catalytic converters.

The model version for Auto-Oil II covered the 1990-2020 period for 9 EU
countries (not including Belgium). Existing transport flow forecast data are
used to calibrate the model for every year. For a more in-depth discussion of
the TREMOVE 1.3 model we refer to European Commission et al. (1999).
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Speed & Load
TRE MOVE MOVE
Cost & traffic Traffic Stock Stock Emissions
demand) stmcture)
Base case, Base case,
PPolicy assumptions Policy assumptions
Stock |Usage
structure
Usage Fuel consumption
Cost <

Figure C.1. Structure of the TREMOVE 1.3 model

C.1.2. TREMOVE 2

A major upgrade of the TREMOVE model was conducted in the context of the
Clean Air for Europe Programme, which eventually resulted in version 2.30
of the model (commonly referred to as TREMOVE 2). The new model covers
21 countries and 8 sea regions. All relevant transport modes are modelled,
including air and long-distance maritime transport. The model covers the
1995-2020 period. Full model documentation is provided by G. De Ceuster et
al. (2005).

C.1.3. TREMOVE Belgium

The implementation of the TREMOVE modelling framework in chapter 3
was carried out in the context of the Susatrans project (funded by Belgian
Science Policy). The timing of this project did not allow to use the final TRE-
MOVE 2 model as a base, so we decided to start from the older TREMOVE 1.3
framework and where possible and relevant for this study to upgrade it.

The geographical scope in chapter 3 and 4 is Belgium, a country that was
not included in the TREMOVE 1.3 model. It was hence necessary to collect a
calibration and base year data set.

For both the upgrade of the model and the construction of a data set for
Belgium we used where possible (draft) results that were timely available
from the TREMOVE 2 upgrade.

As discussed in the chapters 3, 4 and 5 the TREMOVE modelling frame-
work was further extended to include the choice for alternative technologies.

The resulting TREMOVE model for Belgium applied in chapter 3 and 4
could be situated as somewhere in between TREMOVE 1.3 and TREMOVE 2,
extended with some unique modelling features to allow the simulation of the
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choice for alternative technologies and an emission tax and enhanced fuel
efficiency.

The TREMOVE model for Brussels implemented in chapter 5 is based
on the metropolitan area of TREMOVE Belgium as implemented in chapter
4, extended with a more refined representation of public transit including
revisited baseline calibration.

In the subsequent sections of this appendix we discuss the TREMOVE
Belgium model as implemented for this study.

C.2. TRE: Transport activity demand and supply

The TREMOVE model consists of separate country models that describe
transport flows and emissions in three model regions: one metropolitan area,
a second region that represents all the other urban areas and a third region for
the non-urban areas in the country. Trips in urban areas are further separated
in commuter and inhabitant trips. The model explicitly takes into account
that, depending on the area taken into consideration, the relevant modes and
road types differ significantly. Thus, while the numeric values of the model
differ from country to country, the structure is identical across countries.

The transport demand module represents, for a given year and transport
mode, the number of passenger kilometres (pkm), ton-kilometres (tkm) and
vehicle-kilometres (vkm) that will be realised in each model region. The model
differentiates demand over peak and off-peak periods. The demand module
allows for the assessment of the impact of policy measures on the demand for
the different transport markets.

It may be useful to state here explicitly that TREMOVE models transport ac-
tivity for each area without a disaggregated transport network representation.
This simplification allows for the calibration of a simple but complete policy
simulation model using an external baseline of transport demand (which can
be based on the output of a more detailed network model).

C.2.1. Methodology

Passenger transport and freight transport are modelled separately in the
transport demand module (TRE).

Demand side

The demand for passenger transport is the result of the decision processes
of all individuals in a country. Therefore, passenger transport demand has
been determined assuming that, with the constraints of their available budget,
individuals choose their preferred consumption bundle. Their demand for
goods and services follows then from this utility maximising behaviour.
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C.2. TRE: Transport activity demand and supply

The decision processes of individuals are modelled using nested constant
elasticity of substitution (CES) utility functions as described by Keller (1976).
Figure C.2 provides an illustration of this nested structure. Based on the
consumed quantities and current prices of all different options, a utility value
is calibrated. This represents the preference relation of all individuals for
the different transport options. The elasticities of substitution are provided
exogenously (based on literature) and allow to model the change in demand
in policy simulations.

The demand for freight transport is modelled as a result of the decision
processes within firms. The freight transport demand is determined by
generalised prices, desired production quantities and substitution possibilities
with other production factors.

It is assumed that, in any given year, the production level of all firms in
a country is given and kept constant. For a given production level, profit
maximisation is equivalent with cost minimisation. The cost-minimising
substitution process is represented by a nested CES production function. At
the highest level, there is the total production, which is a function of the
components at the lower levels. At the lowest level, the arguments are the
inputs in the production process.

The CES utility and production functions represent demand for transport
activity for each transport option (or production input) expressed in passenger
kilometre (pkm) or ton kilometre (tkm). This is translated to vehicle activity
(expressed in vkm) using a constant transport option specific occupancy rate
(or load factor for freight transport) which is calibrated using the externally
provided baseline.

Transport modes for passenger trips comprise small car, large car, mo-

Other goods

[ Motorised | [ Non-motorised & Motorcycles |

 Private | [Public| |Non-motorised || Motorcycles |

| Alone | [ Pool (& Taxi) | | Bus || Metro |

| Large car || Small car || Large car || Small car |

Figure C.2. CES utility function structure for off-peak urban passenger transport in
TREMOVE 1.3
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torised two-wheeler, non-motorised, bus and rail. Freight trips are realised by
light duty vehicles (LDV), heavy duty vehicles (HDV), inland waterways or
rail. In non-urban areas two road types are distinguished.

Supply side

The generalised price is the main driver of the transport demand model. This
composite cost variable falls apart in roughly three components: resource
costs, taxes and time costs.

The resource price for transport services consists of the monetary producer
price of all inputs necessary for these services: vehicle purchase, fuel consump-
tion, repair and maintenance etc. The resource costs are calculated in detail
in the vehicle stock module (see section C.3) for road modes. For non-road
modes, the resource cost values are fixed exogenously. For public transport
the peak load pricing principle is applied, attributing all fixed resource costs
to peak demand.

On top of the resource costs, the consumer usually pays taxes or receives a
subsidy. For road modes this is again calculated in the vehicle stock module,
for non-road modes taxes or subsidies enter the model exogenously.

The strict distinction made between resource costs and taxes is important
for the assessment of the social cost in the welfare module (see section C.5).
In the demand module however, it is the sum of both that determines the user
cost.

Time costs are the third component of the generalised price. Time costs
depend on the value of time (VOT) and the travel speed. The speed is
modelled explicitly for road modes and varies with transport demand, time
period and road type. The resulting travel speed values are also used in the
emissions module (see section C.4).

C.2.2. Calibration for Belgium

The calibration of the demand module for our model is mainly based on
a draft version of the TREMOVE 2 baseline, which is in turn based on an
updated version of the SCENES model! and the assumption of a constant
growth rate.

The evolution in the 1995-2001 period (up to 2002 for railways) has been
brought in line with statistical observations as published in the DGTREN
Pocketbook (DG TREN, 2004). For the evolution beyond the statistical period
the TREMOVE 2 constant growth rate has been applied. We verified this
constant growth rate assumption and decided not to reject it.?

1A specification of the SCENES model is provided in Marcial Echenique & Partners Ltd
(2000)

2The evolution in TREMOVE 2 is based on the SCENES model results for 2020 which take
into account the extension of the network capacity (TEN-networks). The question (not answered
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Some smaller amendments to the TREMOVE 2 activity figures had to be
made in order to fit the TREMOVE 1.3 classification (see figure C.2). This
included a split to alone/pool-taxi and the attribution of the full light duty
vehicles activity to freight transport.

In the TREMOVE 1.3 model the congestion function has an exponential
form (linking traffic flow to travel time). This functional form was originally
proposed by O'Mahony and Kirwan (2001). However our experience revealed
that there are some difficulties in using this function for simulation when
calibrated on a limited data set. Therefore a new functional form for the
congestion function was selected:

Vc,p,r,t =Acrt+ Bc,r,tFp,r,t (C1)

where

® Vi prt is the speed in year ¢ in period p on road type r for vehicle class ¢

* Fp .t is the flow (in passenger car units per hour) in period p on road
type r

e Ayt and B ,; are coefficients

e ¢ is the vehicle class: truck/bus or private car/motorcycle

¢ ris the road type: Brussels, other urban, motorway or other road

* p is the period: peak or off-peak

The coefficients A and B of the congestion function are calibrated using
TREMOVE 2 data (from the SCENES model). Speed differences between peak
and off-peak are rather small as they concern speed averaged over the whole
network, only a small part of it being congested during peak hours. These
small differences have been found to be in line with existing observations for
UK and Italy, see TREMOVE 2 documentation (G. De Ceuster et al., 2005) for
more details.

Average speed of non-road modes has been taken from TREMOVE 2.
Public transport walking and waiting times as well as speed for non-motorised
transport have been based on TREMOVE 1.3 data. Value-of-time figures have
been taken from TREMOVE 2.

Resource costs for non-road modes are not modelled in the TRE-part and
are exogenous to the model. The values for these variables have been based
on TREMOVE 2.

by SCENES) is if the growth will occur at a constant growth rate over the period 1995-2020. The
assumption made here is that the pace of the infrastructure extension is such that the generalised
price of transport (taking into account congestion) is increasing at a constant rate over time (which
seems to be a reasonable assumption). Together with the constant growth of income and constant
price and income elasticities, this results in a constant transport activity growth.
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C.3. MOVE: Venhicle stock composition

The demand module produces aggregate transport activity quantities for each
mode. The vehicle stock module further disaggregates these into detailed
vehicle kilometre (vkm) figures by technology type and age. This requires a
detailed representation of the vehicle fleet structures for each road mode. For
non-road modes, no stock representation is implemented in the TREMOVE
model applied here.

C.3.1. Structure

The MOVE stock module uses the transport activity data from the TRE-part to
calculate for each year and for each vehicle technology class (see table C.1) the
desired number of vehicles necessary to meet the transport activity demand
level. Based on this desired number of vehicles, the stock of the year before
and the number of vehicles scrapped, the level of sales of new vehicles is
determined. It is at this point that the technology choice model is applied
to determine the market shares of the different technologies for each vehicle
technology class.

The technology choice models use the levels of the technology variables as
input in order to provide technology share data as output. The technology
variables can be roughly split in two categories: cost variables and functional
variables (e.g. acceleration). A last category of inputs could be related to
the consumer (e.g. age), however these variables fall beyond the scope of the
TREMOVE model and as such their potential is limited here.

C.3.2. Technology choice

The technology choice model for private cars is discussed in much detail in
chapter 2. For the other road modes we used recalibrated choice models from
TREMOVE 1.3 and added a simple choice model for buses.

For the heavy duty road freight vehicles we decided to fix the shares of the
different weight classes to the observed 1995 shares based on TRENDS data

Table C.1. Link between transport activity demand and vehicle technology classes

TRE transport demand MOVE vehicle technology class
Motorcycles Motorcycles & mopeds

Small car Private cars (< 1,4 litre)

Large car Private cars (> 1,4 litre)

Bus Buses

Small trucks LDV

Big trucks HDV
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(Samaras et al., 2002).

The TREMOVE 1.3 model provides a representation of technology choice
for light duty road freight vehicles and motorised two-wheelers. One model repre-
sents the choice diesel versus gasoline for light duty vehicles and a second
one the choice between different engine sizes for motorcycles. The models
are multinomial logit and use one generic variable (the lifetime cost) and

dummies:
o0~ BeatLFC;

P, =
J Zieaxt eéi_ﬁcmLFCi

(C.2)

with:

cat the technology class (LDV or motorcycles)

LFC; the lifetime cost of technology j

6; the coefficient of the dummy related to technology j
Becat the lifetime cost coefficient for cat

For the calibration of the choice models we used cost data from the
TREMOVE 2 model (G. De Ceuster et al., 2005). As only one observation is
available (1995), we can calibrate the dummies for a given value of Be.

The values of B¢+ were chosen such as to result in acceptable dummy
coefficient values 4;.% (see table C.2 and C.3) The selected values for Beat are
higher for LDV where the choice between alternatives is probably limited to
engine technology only (diesel or gasoline), compared to motorcycles where
different engine sizes are considered. This seems a reasonable setting. The
LFC coefficient value for LDV freight vehicles choice is also higher than for
the diesel-gasoline choice for private cars (see chapter 2), reflecting more
attention to cost factors in the freight transport sector which is in line with
earlier observations (Parker, Fletchall, and Pettijohn, 1997).

For buses no vehicle stock model was included in the TREMOVE 1.3
framework. As our simulations will focus on the road passenger transport
market and hence modal shifts from/to bus transport can be expected, we
decided to refine the representation of that market by including a vehicle stock
model. We decided to opt for a deliberately high value for By, of 40, assuming
not only high price sensitivity considering competition being probably as
tough as in the freight transport sector, but also resulting from the observation
that price differences between diesel and CNG technologies are rather small*
and that nevertheless CNG technologies do not make it to the market in large

3Using the TREMOVE 2 data we did the calibration exercise for 17 European countries
simultaneously for given values of B¢,;. This allowed to identify values of Bcq+ for which the order
of magnitude of the calibrated country-specific é; coefficients do not take extreme values. Such
values of Bcqt were termed acceptable in this context.

4User cost data from the TREMOVE 2 model were used here. An overview of alternative bus
technologies is provided in appendix D.
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quantities.’ The limitation of the choice model to one explanatory variable
(lifetime cost) seems not problematic considering that Parker et al. (1997)
indicates that in the trucking sector the choice for alternative technologies is
based on user cost only, it seems to be an acceptable assumption that this also
holds for the bus transport sector. The bus vehicle stock turnover parameters
are based on TREMOVE 2.

C.3.3. Baseline for Belgium

The logit choice models for private cars are based on chapter 2. For the
other modes the existing approach of TREMOVE 1.3 was preserved, be it
that coefficients were updated making use of data available from the TRE-
MOVE 2 upgrade project. A simple technology choice model for buses was
implemented (not available in TREMOVE 1.3). For a discussion of this choice
models we refer to section C.3.2.

The baseline of the technical characteristics for conventional technologies
is mainly based on TREMOVE 2 data. Alternative technologies are discussed
in appendix D.

To initialise the stock module of TREMOVE, base year stock composition
data had to be collected. The base year selected is 1995. Stock composition for

5Using a lower value for By, typically results in a substantial market share for CNG vehicles,
a result which is not in line with the observation that actual CNG share in new bus sales is zero
in Belgium.

Table C.2. Lifetime cost coefficient B¢,

category cat value Begt
motorised two-wheelers 5
light duty freight (<3,5 ton gross weight) 25
buses 40

Table C.3. Technology dummy coefficient dum;

category cat technology i value dum;
motorised 2-wh. <50cm® 0
50-250cm? -0,89
250-750cm? 0,76
>750cm? 3,31
light duty freight diesel 0,57
gasoline 0
buses all 0
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this year has been taken from the TREMOVE 2 data, which are mainly based
on TRENDS project database (Samaras et al., 2002).

C.4. MOVE: Transport emissions

The emissions module calculates fuel consumption and exhaust and evapo-
rative emissions for all modes. For the TREMOVE Belgium model we used
the emissions module developed in the TREMOVE 2 project for road modes.
Emission factors for non-road modes were based on different sources.

For road modes, the emissions module implements the COPERT III
methodology (Ntziachristos and Samaras, 2000). This approach links emis-
sions to average speed figures that are calculated in the activity demand
module. Emission technology types up to Euro 4 (private cars) and Euro 5
(HDV including buses) are represented.

The COPERT III methodology was further extended to include the follow-
ing additions:

¢ Disaggregation of the COPERT diesel car fuel consumption factor into
three factors according to the engine size. This disaggregation is based
on EU CO; monitoring data.

¢ Upward scaling of COPERT fuel consumption factors for 2002 cars,
based on EU test cycle monitoring data and information on the difference
between test cycle and real-world fuel consumption (R. M. M. Van den
Brink and Van Wee, 2001).

* Introduction of fuel efficiency improvement factors. We applied the
assumptions by Verbeiren et al. (2003).

¢ Update of emission factors for motorised two-wheelers based on a more
recent study (Ntziachristos, Mamakos, Xanthopoulos, and Iakovou,
2004).

For private cars the emissions module was extended to match the scope
of the extended technology choice model presented in chapter 2. The corre-
sponding emission factors are discussed in chapter 3.

For buses the emissions representation was extended to include CNG
buses. The emission factors are presented in chapter 5.

For non-road modes we fixed the emission coefficients per vehicle kilo-
metre exogenously. Rail modes are based on TREMOVE 2 baseline data, for
inland waterways we implemented the coefficients provided by De Vlieger et
al. (2007).

C.5. Welfare module

To evaluate policies in TREMOVE, a welfare assessment module has been
developed. Differences in welfare between the baseline (reference scenario)
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and the simulated policies are calculated.

The utility and production functions of the demand module (see section
C.2) are used to calculate a change in consumer (passenger transport) and
producer (freight transport) surplus.

Additionally, welfare changes stemming from changes in tax revenues are
included by using the marginal cost of public funds. This approach accounts
for the options of the government to beneficially use additional tax revenues
from the transportation sector to lower taxes in other sectors.

The change in external costs caused by emissions, noise and accidents
are assessed and included in the evaluation of the net welfare impact of
policy measures. External emissions cost are calculated by applying marginal
external cost coefficients (see table C.4) to the emissions calculated by the
emissions module (see section C.4).

Table C.4. Marginal external emission cost coefficients C in € per ton (source: TRE-
MOVE 2)

Pollutant Region 1995 2000 2010 2020
co Brussels 3,15 3,15 3,15 3,15
Other Urban 3,15 3,15 3,15 3,15
Rural 0,83 0,83 0,83 0,83
NOx all 14000 14000 14000 14000
PM Brussels 540000 540000 540000 540000
Other Urban 270000 270000 270000 270000
Rural 135000 135000 135000 135000
NMVOC all 7100 7100 7100 7100
CHy all 7284 7284 7376 7560
50, all 31000 31000 31000 31000
N,O all 2368 2368 3552 5920
CO, all 8 8 12 20
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APPENDIX D I

Alternative private car and bus
technologies

This appendix discusses the baseline evolution of the alternative private car
and bus technologies applied in chapter 3 and 5.
Some general remarks:

¢ all costs are expressed in €2000 and can therefore differ from the original
publication;

¢ some main references used for the baseline evolution: Vrije Universiteit
Brussel, ETEC (2001) and Verbeiren et al. (2003).

D.1. Fuels

D.1.1. Ex-tax pomp prices

Ex-tax prices have been based on IEA statistics (IEA, 2003) for the 1995-2002
time span for:

¢ leaded gasoline

* unleaded gasoline

¢ diesel for commercial use (including public transport)

¢ diesel for non-commercial use

¢ electricity for commercial use (industry tariff) for 1995-2000

Ex-tax prices for other fuels have been taken from different sources for the
base years:

e LPG: FEBIAC (n.d.) (1995-2001 with an interpolation for the missing
year 1996)
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* Natural gas: €0,69 per m? in 2001, based on Vrije Universiteit Brussel,
ETEC (2001, 37,1 MJ/m?)

¢ Electricity for non-commercial use: night tariff of €0,08 per kWh in 2002,
based on Vrije Universiteit Brussel, ETEC (2001)

¢ Hydrogen (from NG): based on Verbeiren et al. (2003) for 2020 and 2010,
a linear interpolation has been assumed between these points in time

Production costs for the fossil fuels and electricity have been calculated
(for the period 2000-2020) making use of data issued by the PRIMES-transport
project (Knockaert et al., 2002). The distribution margin is then calculated as
the difference between the production cost and the ex-tax pomp prices:

* unleaded gasoline: €0,084 per litre (2002)
diesel: €0,052 per litre (2002)

natural gas: €610,27 per toe (2001)

LPG: €0,168 per litre (2001)

The evolution of the ex-tax prices beyond the base years (for all fuels) is
calculated based on the evolution of the production cost and the margin. The
margin is assumed to stay constant up to 2020. From 2009 on we assume an
additional cost increase for fossil gasoline and diesel due to desulphurisation
(European Directive). This cost increase amounts to 3% for gasoline and 5%
for diesel (Verbeiren et al., 2003).

D.1.2. Taxes
VAT

VAT is equal to 20,5% for 1995 and 21% for the years beyond (1996-2020). We
do apply VAT only for use by private cars and motorcycles.

Excise taxes

Excise taxes for the period 1995-2002 have been taken from IEA statistics
for gasoline and diesel (and domestic electricity up to 2000). Diesel used for
public transport is reduced by €0,05 per litre (Vrije Universiteit Brussel, ETEC,
2001).

There are currently no excise taxes on LPG, CNG and electricity (industrial
use only). As we assume hydrogen to be based on natural gas, they are freed
from excises as well. However, this would imply an indirect subsidy for CNG,
electric or hydrogen powered cars when they are introduced. For that reason,
we assume an excise tax per unit of energy that is identical to gasoline.

Beyond the base years, excise taxes are kept constant apart from the
following exceptions:
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¢ for diesel and gasoline the Cliquet system Federale Overheidsdienst,
Kanselarij van de Eerste Minister (2003) has been implemented to deter-
mine excise rises for the period 2004-2008

D.2. Private car technologies

D.2.1. Lifetime Cost

The lifetime cost is the expected resource cost per kilometre. It is calculated
making use of different variables.

Expected lifetime

For the conventional diesel and gasoline car, the expected (technical) lifetime
has been taken from the TREMOVE 2 project: 9,5 years.

For the alternative cars, differences to the reference car have been based
on Verbeiren et al. (2003):

¢ Hydrogen (ICE and hybrid): —2 years in 2010, —1 year in 2020
e Battery: —2 years in 2000, no difference in 2010 and +1 in 2020
¢ Hydrogen fuel cell: —5 years in 2010, —1 year in 2020

Values have been interpolated between the given points in time.

Fuel efficiency

Base year fuel efficiency of the different engine sizes for conventional gasoline
and diesel technologies has been taken from TREMOVE 2, where they have
been mainly based on statistics by DG TREN.

An improvement of fuel efficiency of 0,6% per year (1% for the pre-2000
period) has been assumed as reference evolution over time (Verbeiren et al.,
2003) from 2000 to 2005. Beyond 2005, no improvement in fuel technology is
assumed for all technologies.

The relative fuel efficiency for the alternative technologies has been based
on Verbeiren et al. (2003):

e diesel conventional: 5,51/100km (2000)

* gasoline conventional: 7,3 1/100km (2000)

¢ LPG and CNG: according to Verbeiren et al. (2003), these vehicles have
the same properties as the conventional gasoline, hence we assume the
equivalent energy consumption

¢ Hydrogen conventional: equivalent energy consumption to conventional
gasoline

¢ Diesel hybrid: 20% more fuel efficient than conventional diesel

* Gasoline hybrid: 5,1 1/100km (2000)
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CNG hybrid: equivalent to gasoline hybrid

Hydrogen hybrid: 30% less than hydrogen ICE

Battery: 75 M]/100km (2000)

Hydrogen fuel cell: 50% less than gasoline conventional

These relative fuel efficiencies have been applied to the reference evolution
of the conventional technologies’ fuel efficiency.

Annual mileage

Expected annual mileages have been taken from the TREMOVE 2 project
(they are based on TRENDS project data). They are differentiated regarding
to engine size:

* engine size <1,41: 13475 km
* engine size >1,41: 23020 km

Purchase cost (excl. taxes)

Purchase cost for conventional diesel and gasoline vehicles for the period
1995-2020 are based on TREMOVE 2 data.

The values for 2000 are mainly based on statistics, for the smallest diesel
category a review of price differences between diesel and gasoline cars of the
same car type available on the market in the first half of 2004 has been used.

For the reference evolution from 1995 to 2020 a price index from the
TREMOVE 2 project has been used.

For the alternative technologies, price differences relative to the reference
conventional technology has been based Verbeiren et al. (2003, with linear
interpolation—see table D.1).

Table D.1. Cost of alternative technologies in €2000 (in addition to cost of reference
technology)

Technology 2000 2010 2020 reference technology
LPG 1750 1750 1750 gasoline conventional
CNG 3500 3000 2500 gasoline conventional
Hydrogen conventional 5000 4000 gasoline conventional
Diesel parallel hybrid 5000 3320,2 diesel conventional

Gasoline parallel hybrid 5190 5000 3252,5 gasoline conventional
CNG parallel hybrid 8000 5752,5 gasoline conventional
Hydrogen parallel hybrid 10000 7252,5 gasoline conventional
Battery 1000 1752,5 gasoline conventional
Hydrogen fuel cell 27600 22600 gasoline conventional
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Battery leasing costs

For battery electric vehicles we include a leasing cost for the batteries. The
leasing cost calculated based on a battery lifetime of 5 years. The battery pack
cost is €15000 in 2000 and decreasing to €7500 in 2020.

On battery leasing costs, the normal VAT is levied.

Purchase taxes

These taxes include VAT on purchase as well as registration taxes.

VAT is assumed 20,5% for 1995 and 21% for 1996-2020.

Registration taxes for the year 2000 have been based on TREMOVE 2 data
(statistics) for the conventional technologies. For the smallest diesel engine
size category (<1,4]) we assumed a tax equal to the smallest gasoline engine
size class.

For alternative technologies we assumed the registration taxes to be the
same as for the gasoline cars, apart from those technologies running on diesel
paying the diesel taxes.

Repair and maintenance costs

Repair and maintenance costs for conventional diesel and gasoline vehicles
are calculated making use of the TREMOVE 2 methodology. Inputs for the
repair and maintenance costs are purchase price (exclusive VAT and taxes)
and expected lifetime, fuel and engine size. For small diesel cars, we assumed
the same formula as for small gasoline cars to apply for the calculation of
repair and maintenance costs.

For direct injection gasoline cars, we assumed the same methodology as
for indirect gasoline.

For diesel hybrid, we assumed the conventional diesel methodology to
apply.

For hydrogen ICE we assumed the conventional gasoline methodology to
apply to calculate expected repair and maintenance costs.

For LPG and CNG cars, we assumed the same repair and maintenance
costs as conventional gasoline based on Vrije Universiteit Brussel, ETEC (2001).

For the hybrid technologies we assumed the repair and maintenance costs
to amount to the same level as for their conventional counterparts using the
same fuel.

For battery cars, we used Vrije Universiteit Brussel, ETEC (2001) to estimate
repair and maintenance costs to amount to 40% of a conventional gasoline
car. Here we also add the leasing costs for the battery, which are estimated on
€7500 per five years.

For hydrogen fuel cell cars, we estimated repair and maintenance costs to
a level of 50% of the gasoline car.
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Taxes on repair and maintenance concern VAT only: 20,5% in 1995 and
21% from 1996 onwards.

Annual taxes

Annual taxes for conventional diesel and gasoline vehicles are based on
statistical data from the TREMOVE 2 project. For small diesel cars (<1,41),
we assume the annual taxes to be equal to the corresponding amount for the
smallest gasoline category increased by a supplemental tax for diesel vehicles
of €60,00 per year based on Mira data (M. J. G. De Ceuster, 2003).

For LPG a high additional tax applies (based on Mira):

e LPG <1,4: €120 in addition to the annual tax on gasoline cars of the
respective size class

e LPG 1,4-2I: €148,68 in addition to the annual tax on gasoline cars of the
respective size class

e LPG >2I: €180 in addition to the annual tax on gasoline cars of the
respective size class

The annual taxes for battery cars are considerably lower. For the smallest
engine size class we estimate the reduction to amount to €46,33 (compared to
the smallest gasoline class, based on Vrije Universiteit Brussel, ETEC (2001)).
For the other size categories we assumed a similar relative reduction.

For the other technologies, we assumed the annual taxes to be the same as
for gasoline cars (apart from the diesel hybrid, which has the same taxes as
the diesel car).

We assume the annual taxes to be constant for the whole modelling period
1995-2020.

Insurance

Insurance costs for conventional diesel and gasoline technologies have been
calculated to amount to a percentage of the purchase costs (excl. VAT and
taxes), following the methodology used in TREMOVE 2.

For the alternative technologies we assume the same percentages (diesel
for diesel hybrid, gasoline for the other technologies) apply to the respective
purchase costs to calculate insurance costs.

VAT has been added to insurance cost: 20,5% in 1995 and 21% from 1996
onwards.

D.2.2. Acceleration

Acceleration is used as a proxy for overall driving performance. For the
conventional technologies this has been based on statistics. For the alterna-
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tive technologies this value is taken the same as the conventional reference
technology.

Based on statistical data, we assume an improvement in acceleration up to
2005.

D.2.3. Range

A default value for range of 600 km has been taken for all cars.

This variable is primarily included in order to account for discomfort of
frequent refuelling due to a range which is significantly reduced by technology
design.

According to a report by TNO (Burgwal et al.,, 2001) we estimate the
refuelling range to be reduced for:

* battery cars: ranging from 100 km to 300 km; we assume a value of
100 km in 2000 increasing to 300 km by 2010 and remaining constant
afterwards

¢ fuel cell cars: about 400 km

Additionally, we assume a slightly reduced range of 500 km for hydrogen
conventional and hydrogen hybrid and a range of 350 km for LPG and CNG
cars (both conventional and hybrid).

D.2.4. Loss of luggage space

The loss of luggage space is used to express a loss induced by technological
requirements, e.g. a gas tank.

For LPG and CNG we assume a retrofit installation which causes a loss of
trunk space due to installation of a tank:

e LPG: 30 litre (this is the dimension necessary to store the spare tire)
¢ CNG: 100 litre (this assumption is based on a tank with dimensions
840 x 316)

For the other alternative technologies we assume dedicated car bodies,
hence no loss of luggage space is involved.

D.2.5. Market introduction

Market introduction year of the different technologies is mainly based on
Verbeiren et al. (2003) providing an indication on the relative time scale for
the introduction of the different technologies:

¢ gasoline hybrid: 2003
¢ diesel hybrid: 2008
e natural gas: 2005
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hydrogen ICE: 2010
CNG hybrid: 2010
hydrogen hybrid: 2010
battery: 2005

fuel cell: 2010

In the TREMOVE model we shift the introduction dates backwards by 3
years to account for full market introduction delay: the dates from Verbeiren
et al. (2003) rather indicate the first introduction of the technology. Maybe we
need to stress this point a little bit more: TREMOVE assumes full introduction
of a technology, which means that is available on all cars bodies, brands,
etc. for which the reference conventional technology is available. This also
includes the full availability of the fuel.

We also assume an introduction year for the smallest engine size diesel
category: 2002.

Conventional diesel, gasoline and LPG technologies have been introduced
before the modelling period.

D.3. Buses

For buses we only use the lifetime cost as model variable (see appendix C).

The bus transport activity is linked to both coaches and urban buses. We
assume the share of both vehicle types to stay constant.

For the coach vehicle type, we assume only conventional diesel vehicles
apply (so no choice model). For the urban bus category, all technology types
apply.

The share of coaches is based on the historical 1995 vehicle stock composi-
tion (based on TRENDS, see Samaras et al., 2002) and amounts to 20%.

D.3.1. Expected lifetime

The expected (technical) lifetime for a conventional diesel bus has been taken
from the TREMOVE 2 project: 20 years (based on TRENDS data).

For the alternative technologies, the difference to the reference has been
taken from Verbeiren et al. (2003) (with assumed interpolation):

hybrid: —5 years (2010); —2 years (2020)

CNG: —8 years in 2000 and —5 year from 2010 on

hydrogen fuel cell: —8 years till 2010 and —5 years by 2020
battery: —8 years in 2000, —5 years in 2010 and —2 years in 2020

D.3.2. Fuel efficiency

An average consumption of 391 for urban buses and 301 for coaches (per 100
km) has been assumed for a conventional diesel bus in 2000.
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Assumption regarding the efficiency of other technologies have been based
on Verbeiren et al. (2003) (for the year 2000):

* hybrid: 15% better fuel efficiency

¢ CNG: same energetic fuel efficiency
¢ hydrogen: 50% better fuel efficiency
* battery: 200 kWh per 100km

An increase in fuel efficiency of 0,6% per year up to 2008 has been assumed,
based on Verbeiren et al. (2003). Beyond 2008, no improvement in fuel
efficiency is expected.

D.3.3. Annual mileage

The expected annual mileage for buses has been taken from the TRENDS
database: 23210 km.

D.3.4. Purchase costs (exclusive taxes)

Purchase costs for all technologies have been based on Verbeiren et al. (2003):

¢ conventional diesel: €200000 in 2000, a constant reference evolution
2000-2020

¢ diesel hybrid: an additional cost of 15%

¢ CNG: an additional cost of 20%

e hydrogen fuel cell: an additional cost €57000!

* battery: no additional cost (batteries are leased and hence included in
repair and maintenance)

On top of the (constant) reference evolution we add (Verbeiren et al., 2003):

¢ oxicat, SCR and particulate filter: an increase of €15000 between 2005
and 2010 (€3000 per year), for all diesel driven vehicles

Note that the relative definition of the purchase cost of the alternative
technologies implies that they also observe a cost increase in 2010 due to the
introduction of oxicat, SCR and particulate filter on conventional diesel buses.

D.3.5. Purchase taxes

No VAT on buses.
Registration taxes have been based on Mira (M. ]. G. De Ceuster, 2003) and
TREMOVE Vlaanderen (Proost, Meire, and Knockaert, 2004):

IDifference to conventional diesel in 2020 has been defined as €42000, so we add the €15000
evolution of the diesel technology to get the reference difference.
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o €62 till 2003
e €31 in 2004 and 2005
¢ €0 from 2006

D.3.6. Repair and maintenance

Expected lifetime repair and maintenance costs for 2001 have been based
on Vrije Universiteit Brussel, ETEC (2001). This study assumes an expected
lifetime of 10 years:

¢ conventional diesel: €4637,02

hybrid: same as conventional diesel

CNG: €5564,42

hydrogen fuel cell: €1899,05

* battery: we add leasing costs for batteries (€75000 per five years)

These figures have been adapted in order to account for the different ex-
pected lifetime assumption and to allow to apply the TREMOVE methodology
(see private cars).

The evolution over time of the repair and maintenance costs is assumed to
follow the purchase cost evolution.

No VAT on repair and maintenance costs for buses.

D.3.7. Annual taxes

We assume no annual taxes to apply to urban buses.
For coaches, the annual tax is estimated to €114,46 per year, based on
M. J. G. De Ceuster (2003).

D.3.8. Insurance

The insurance cost is estimated to €145,69 per year based on M. J. G. De Ceuster
(2003) for all technologies.
No VAT on insurance costs for buses.

D.3.9. Introduction

Introduction years for bus technologies have been mainly based on Verbeiren
et al. (2003):

e hybrid: 2010

e CNG: 2000

* hydrogen: 2010
* battery: 2005
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Here a similar introduction delay by three years was implemented in
TREMOVE.
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APPENDIX E I

Extended Dutch summary:
Economische en technische analyse
van uitstoot van wegvervoer

E.1. Inleiding

De bijdrage die het wegvervoer levert aan de economie, en de ermee verbon-
den maatschappelijke welvaart, is onbetwist. De uitstoot van het wegvervoer
brengt echter ongewenste schade toe aan de leefomgeving. De noodzaak
om dit negatieve neveneffect te beperken wordt algemeen onderkend door
beleidsmakers.

De EU Commissie besteedt in het Witboek Vervoer van 2001 (Commission
of the European Communities, 2001) ruime aandacht aan energie-efficiéntie.
De Japanse en Amerikaanse autoriteiten voeren een gelijkaardig beleid (Plot-
kin, 2001). In het Groenboek stedelijke mobiliteitscultuur (Commission of the
European Communities, 2007) herbevestigt de Commissie haar streven naar
een efficiént vervoerssysteem dat de leefomgeving respecteert.

Technologische innovatie en beprijzing zijn maatregelen die in de weten-
schappelijke literatuur zowel als in de beleidsplannen veel aandacht krijgen.
Technologie heeft in de afgelopen decennia reeds bijgedragen tot een substanti-
ele afname van uitstoot zoals erkend door de EU Commissie in haar evaluatie
van het Witboek in 2006 (Commission of the European Communities, 2006).
Een gedifferentieerd prijsbeleid is daarentegen lang beperkt gebleven tot
academische denkoefeningen.

In dit onderzoek bestuderen we de effecten en maatschappelijke kosten van techno-
logische innovaties en ondersteunende maatregelen om uitstoot van van wegvervoer
te verminderen. Voor onze analyse ontwerpen we aangepaste modellen voor het
simuleren van een reeks vervoersscenario’s.
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De uitstoot van wegvervoer wordt in belangrijke mate bepaald door de
gebruikte combinatie van voertuigtechnologie en brandstof. In ons onder-
zoek beperken we ons tot effecten van uitlaatgassen en door verdamping
vrijgekomen koolwaterstoffen.

Een breed beleidsdomein komt in beeld bij het beperken van uitstoot van
wegverkeer. We beperken ons in dit onderzoek tot maatregelen die sturen
op een uitstootafname door het wijzigen van eigenschappen van technologie-
en en vervoerswijzen zoals prijs, beschikbaarheid en brandstofefficiéntie, en
die toegepast worden in een groter geografisch gebied. De studie van het
innovatieproces alsook de beleidsvorming zelf valt buiten het bestek van dit
onderzoek.

Om de effectiviteit van een maatregel uit te drukken, volstaat het na te
gaan hoe deze de totale uitstoot in het bestudeerde gebied wijzigt. Dit volgt
uit het gebruik van technologieén in combinatie met technologie-specifieke
uitstootfactoren. We drukken de afname vervolgens uit relatief ten opzichte
van een referentiescenario. Dit referentiescenario noemen we de baseline en is
gebaseerd op een ongewijzigd beleid.

Wanneer twee maatregelen eenzelfde effectiviteit hebben, ontstaat de nood-
zaak tot een indicator die de maatschappelijk efficientie uitdrukt. We gebruiken
hiervoor de som van alle monetaire en niet-monetaire kosten in het beschouw-
de gebied. Deze som bestaat uit consumentensurplus, producentensurplus,
overheidsinkomsten en externe uitstootkosten. Het optimale maatschappelijke
scenario wordt bepaald door een beprijzingsbeleid waarin kosten voor de
gebruiker gelijk zijn aan marginale maatschappelijke kosten. Dit scenario
noemen we first-best.

De uitwerking van uitstootmaatregelen vindt plaats via een wijziging in
het gebruik van voertuigen. Elke voertuigtechnologie heeft een specifiek
uitstootprofiel en bijgevolg dient nagegaan hoe de bestudeerde maatregel het
gebruik van verschillende technologieén beinvloedt. Op korte termijn kan
daarbij de samenstelling van het voertuigbestand als constant beschouwd
worden, een wijziging in voertuiggebruik wordt dan veroorzaakt door een
afname of toename van de vervoersvraag. Deze wijziging kan verder gede-
tailleerd worden naar vervoerswijze en de daarmee verbonden voertuigtypes.
Op de langere termijn kan een wijziging in vervoersvraag samengaan met
een wijziging in de samenstelling van het voertuigbestand. De bestudeerde
maatregelen beinvloeden daarbij voornamelijk de aankoopbeslissing van voer-
tuigen. Aangezien voertuigen na aankoop een langere periode in het bestand
aanwezig blijven, duurt het enige tijd voor de samenstelling van het bestand
het gewijzigde beleid weerspiegelt.

Factoren die de uitstoot van voertuiggebruik uitdrukken zijn terug te
vinden in de literatuur. Traditionele technologieén worden in detail beschreven
door Ntziachristos and Samaras (2000), voor alternatieve technologieén zijn
meer rudimentaire factoren terug te vinden in Hickman et al. (1999).
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De samenstelling van het voertuigbestand wordt bepaald door beslissingen
rond aankoop, bezit en sloop van voertuigen. In dit onderzoek zal onze
aandacht uitgaan naar het aankoopgedrag dat uitdrukt hoe autokopers kiezen
tussen verschillende technologieén. Dergelijk keuzegedrag wordt beschreven
door discrete keuzetheorie.!

De vervoersvraag voor de verschillende vervoerswijzen wordt bepaald
door de gegeneraliseerde prijs in de verschillende bestudeerde vervoersmark-
ten. Deze is opgebouwd uit voertuigkosten (incl. taksen), brandstofkosten en
tijdskosten. De aanbodsfuncties drukken gegeneraliseerde prijs uit als functie
van technologische kosten, terwijl de vraagfuncties een gegeneraliseerde prijs
relateren aan een vervoersomvang op basis van de voorkeuren van gebruikers.
Als functionele specificatie voor de vraagcurves gebruiken we in dit onderzoek
het CES model (Keller, 1976).

De toegepaste definitie van maatschappelijke welvaart is gebaseerd op het
partieel evenwichtsmodel. Belangrijkste uitgangspunt hierbij is de afwezigheid
van verstoringen in niet-bestudeerde markten. Welvaart is dan de som van
consumentensurplus (uit CES vraagmodel), producentensurplus (uit CES
productiemodel), overheidsinkomsten (met vaste opslag voor de marginale
kost van overheidsinkomsten) en externe uitstootkost. Voor deze laatste
factor gebruiken we de waardering van de impact van uitstoot gebaseerd op
G. De Ceuster et al. (2005) en weergegeven in tabel E.1.2

Onze studie van modellering van uitstoot van wegvervoer is opgebouwd
uit twee delen. Een eerste deel bestudeert de keuze die autokopers maken voor
voertuigtechnologieén, een tweede deel simuleert een reeks vervoersscenario’s
en analyseert de impact ervan op uitstoot en welvaart.

E.2. Kiezen voor technologieén

De samenstelling van het voertuigbestand en de ermee verbonden uitstoot
wordt in belangrijke mate bepaald door de keuze die gebruikers maken
bij aankoop van een voertuig. Bij die gelegenheid worden kenmerken van
verschillende voertuigen met elkaar vergeleken, en op basis van de eigen
voorkeuren maakt de koper de keuze voor een bepaalde technologie.
Voorkeuren voor bestaande voertuigtechnologieén kunnen vastgesteld
worden op basis van geobserveerd aankoopgedrag (zie COWI A/S, 2002;
De Jong, 1996; Verboven, 1996). Om na te gaan wat het keuzegedrag is voor
nieuwe technologieén, en hoe deze voorkeuren afwijken van de keuze voor
traditionele technologieén is een andere benadering nodig bij gebrek aan
observatiegegevens. Een keuze-experiment waarin autokopers een fictieve

1Voor een uitgebreide beschrijving van discrete keuzetheorie zie Anderson et al. (1992);
Ben-Akiva and Lerman (1985); K. Train (1986/1990); K. E. Train (2003).

2De methodologie voor het waarderen van externe kost van uitstoot is beschreven in Friedrich
and Bickel (2001).
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Tabel E.1. Marginale externe kost van uitstoot van wegvervoer in € per ton (bron:
TREMOVE 2)

Component Gebied 1995 2000 2010 2020
Cco Brussel 3,15 3,15 3,15 3,15
Overig stedelijk 3,15 3,15 3,15 3,15
Niet stedelijk 0,83 0,83 0,83 0,83
NOx alle 14000 14000 14000 14000
PM Brussel 540000 540000 540000 540000
Overig stedelijk 270000 270000 270000 270000
Niet Stedelijk 135000 135000 135000 135000
NMVOC alle 7100 7100 7100 7100
CHy alle 7284 7284 7376 7560
SO, alle 31000 31000 31000 31000
N,O alle 2368 2368 3552 5920
CO, alle 8 8 12 20

keuze maken tussen voorgestelde aankoopalternatieven is dan een in de
literatuur gebruikelijke benadering (zie Batley et al., 2003; Brownstone and
Train, 1999; Bunch et al., 1993; Ewing and Sarigollii, 1998; Ramjerdi and Rand,
1999).

Het bereik van voertuigtechnologieén dat we bestuderen omvat verbeterde
versies van traditionele technologieén (hybride diesel en benzine), alsook
technologieén die gebruik maken van alternatieve brandstoffen (bv. aardgas)
en nieuwe technologieén (bv. brandstofcellen). De selectie van technologieén
is gebaseerd op de technologiescan van Verbeiren et al. (2003).

Op basis van literatuur brengen we in kaart welke eigenschappen van
technologieén autogebruikers betrekken in hun aankoopkeuze. Dit wordt
verder aangevuld met een focusgroep waarin het aankoopgedrag van autoge-
bruikers kwalitatief in beeld wordt gebracht.

Het keuze-experiment bestaat uit een aantal keuzesets waarin deelnemers
telkens moeten kiezen tussen vijf voorgestelde technologieén. De technologie-
en verschillen enkel in de eigenschappen weergegeven in de keuzesets. Elk
keuzeset bevat een dieselauto, een benzineauto, een LPG-auto, een auto op
niet-gespecificeerde alternatieve brandstof en een elektrische auto. De voor-
gestelde technologievariabelen zijn een combinatie van brandstofsoort en
aandrijving, aankoopkosten, jaarlijkse onderhoudskosten, brandstofkosten,
bereik, uitstoot en kofferruimte. Deze eigenschappen variéren over de keuzes-
ets volgens een orthogonaal factorieel ontwerp dat bestaat uit 72 keuzesets.
Elke deelnemer beoordeelt daarvan zes keuzesets.

Het keuze-experiment werd in 2004 uitgevoerd bij een selectie van ruim
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200 autogebruikers in Vlaanderen. In een eerste ronde werden deze telefonisch
benaderd met het verzoek om deel te nemen. Vervolgens werden de keuzesets
postaal toegestuurd samen met een korte toelichting. Tenslotte werden de
deelnemers opnieuw telefonisch gecontacteerd om hun keuzes te registreren.

Om de gemaakte keuzes te analyseren gebruiken we discrete keuzetheorie.
Daarin wordt aangenomen dat het individu een keuze maakt op basis van het
nut U; van de verschillende alternatieven i. Het nut bestaat daarbij uit een
voorspelbaar deel V; dat bepaald wordt door de (gekende) eigenschappen van
het alternatief en de voorkeuren van het individu, en een willekeurig deel ¢;
dat veroorzaakt wordt door niet geobserveerde eigenschappen en voorkeuren.
Het alternatief met het grootste totale nut max;(U;) zal dan gekozen worden:

U; = Vi+e (E.1)

Afhankelijk van de (aangenomen) kansverdeling van €; onderscheiden we
een aantal categorieén van keuzemodellen. Het rekenkundig eenvoudigste
model is het multinomiale logit model waarin de €; onafhankelijk Gumbel-
verdeeld zijn. Wanneer de niet geobserveerde voorkeuren €; voor bepaalde
alternatieven binnen eenzelfde keuze gecorreleerd zijn, kan gebruik gemaakt
worden van een geneste logitspecificatie.

In het uitgevoerde experiment heeft elke deelnemer zes keuzesets beoor-
deeld, bijgevolg kan verwacht worden dat €; ook gecorreleerd is over keuzes
die gemaakt zijn door dezelfde deelnemer. Een gemengde logit specificatie
laat toe om complexere correlatiepatronen te testen.

Voor de bestudeerde modelspecificaties schatten we coéfficiénten van
technologie-eigenschappen steeds generiek. Daarnaast voegen we technologie-
specifieke dummy-variabelen toe, alsook een beperkte selectie interactie-
variabelen waarin we bestuderen of keuzegedrag significant verschilt over
subpopulaties (bv. man/vrouw).

Uit de analyse komt naar voor dat bijna alle bestudeerde technologievaria-
belen een significante invloed hebben op het aankoopgedrag. Enkel de hybride
eigenschap heeft geen onderscheiden impact ceteris paribus. De correlatie
in niet geobserveerde voorkeuren komt overeen met bevindingen uit de lite-
ratuur waar voorkeuren voor conventionele technologieén gecorreleerd zijn.
Tenslotte bevestigt ons onderzoek eerdere bevindingen waaruit het belang
blijkt om rekening te houden met correlaties in voorkeuren over verschillende
keuzesets van dezelfde deelnemer.

In tabel E.2 geven we ter illustratie een gemengde logit keuzemodel waarin
de coéfficiénten van de diesel en benzine dummy-variabelen variéren over
deelnemers volgens een normaalverdeling.

De gemengde logit modellen bieden uitgebreide mogelijkheden om het
gedrag uit het keuze-experiment te analyseren en daarbij rekening te houden
met te verwachten correlatiepatronen in voorkeuren. Deze modellen hebben
echter beperkingen ten aanzien van de benodigde rekentijd. In modelschatting
is dit geen bepalende factor, maar voor toepassing in een simulatiemodel wel.
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Tabel E.2. Gemengde logit keuzemodel

Variabele Eenheid Coéfficient p-waarde

Verwachte coéfficientwaarde

Aankoopkost 1000€ —0,1851 0
Jaarlijkse kost 1000€ —0,8029 0
Brandstofkost €/km —15,8720 0
Kofferruimte 0-1 1,1743 0
Uitstoot 0-1 —0,3463 0,211
Bereik 100km 0,3154 0
Diesel 1,0528 0
Benzine 0 vast
LPG —0,4094 0,156
Alternatieve brandstof 0,4468 0,140
Brandstofcel 0,3411 0,351
Batterij 0,0408 0,911
Hybride 0,0354 0,708
Uitstoot X vrouw —1,2162 0
(diesel | alternat. brandst.) x man —0,6917 0,001
Variantie van technologie-voorkeur over respondenten
Diesel 7,9736 0
Benzine 6,0151 0
Correlatie van technologie-voorkeur voor diesel en benzine

0,4262
Log likelihood —1440,327

In de simulaties die we in het volgende deel willen uitvoeren, bestuderen
we de aandelen van voertuigtechnologieén op jaarbasis. Er is bijgevolg geen
sprake van herhaalde keuze (binnen hetzelfde jaar), waardoor de noodzaak
voor het gebruik van gemengde logit vervalt en een geneste logit volstaat voor
het simuleren van de (belangrijkste) correlatiepatronen. Daarom bestuderen
we hoe we de bevindingen uit de gemengde logit gedragsanalyse kunnen
gebruiken in het ontwerp van een geneste logit gedragsmodel.

De oplossing bestaat erin om in de gedragsanalyse gebruik te maken van
een gemengde geneste logit specificatie (K. E. Train, 2003). In dit onderzoek
bestuderen we de methodologie om een genest logit simulatiemodel op te
stellen dat de gemengde geneste logit zo goed mogelijk reproduceert in een
enkelvoudige keuzesituatie. We tonen verder aan hoe correlaties in voorkeuren
over verschillende keuzesets kunnen vertaald worden naar een enkelvoudige
keuzesituatie waarin een uitgebreider aantal alternatieven beschikbaar is.

Als voorbereiding op het simuleren van vervoersscenario’s in het volgen-
de deel, integreren we tenslotte het keuzemodel voor alternatieve voertuig-
technologieén met het bestaande keuzemodel (voor conventionele technologie-
en) van het vervoersmodel TREMOVE. Hiervoor gebruiken we de in de
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literatuur beschreven methode (zie bijvoorbeeld Ben-Akiva and Morikawa,
1997; Brownstone et al., 2000) voor gezamenlijke schatting van keuzemodellen
op basis van werkelijke en fictieve keuzes. We tonen hoe deze methode kan
toegepast worden in de context van twee geneste logit modellen die slechts een
enkele generieke variabele gemeen hebben (levensduur kost die alle kosten
over volledige levensduur van het voertuig samenneemt). Het resulterende
model is weergegeven in figuur E.1 en tabel E.3.

E.3. Leren uit simuleren

Het tweede deel van het onderzoek richt zich op het bestuderen van effecti-
viteit en efficiéntie van een reeks vervoersscenario’s waarin technologische
innovatie wordt toegepast om uitstoot van wegvervoer te doen afnemen.
Achtereenvolgens bestuderen we impact op de leefomgeving en klimaatver-
andering van personenauto’s, en impact op de stedelijke leefomgeving van
openbaar busvervoer. Voor elke toepassing gebruiken we een aangepaste
versies van het TREMOVE simulatiemodel. Dit vervoersmodel levert een
consistent referentiekader om verschillende technische en niet-technische
maatregelen met elkaar te vergelijken.

De verschillende scenario’s bestuderen telkens de gevolgen van een kleine
wijziging in externe factoren op de vervoersactiviteit en de daarmee verbonden
uitstoot tijdens de beschouwde modelleerperiode. Op die manier kunnen we
de individuele impact van geisoleerde beleidsmaatregelen inschatten.
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Figuur E.1. Genest logit simulatiemodel

233



E.3. Leren uit simuleren

Tabel E.3. Coéfficiénten van het genest logit simulatiemodel

Variabele Eenheid coéfficient
levensduur kost/kwartaal BNP levensduur kost in €/km —0,4585
BNP in 10k €

Kofferruimte 0-1 0,08418
Uitstoot 0-1 —0,06361
Bereik 100 km 0,02220
Acceleratie s —0,04557
Diesel 0,1939
LPG —0,05059
Batterij —0,04526
Grote technologie —2,5105
kwartaal GDP x grote technologie 10k € 1,738
Aice 0,8664
A Fuel 0,5952
)‘med 0,1270
Mar 0,1804

In een gesimuleerd scenario is de tijdsperiode waarover we een of meerde-
re externe factoren wijzigen volledig arbitrair. Om tot zinvolle inzichten te
komen is het echter van belang om rekening te houden met de levensduur van
voertuigtechnologieén. Om te begrijpen wat er gebeurt op de langere termijn,
is het daarom vereist dat gesimuleerde maatregelen over een voldoende lange
periode toegepast worden. Hierbij dient rekening gehouden met de model-
leerperiode die eindigt in 2020, in functie van de externe beschikbaarheid
van voldoende gedetailleerde en consistente baseline voorspellingen van de
vervoersvraag die nodig zijn om het model te kalibreren.

De essentie van de modeltoepassing in dit onderzoek is het consistent
vergelijken van individuele ingrepen. In geen geval kunnen modelresul-
taten beschouwd te worden als toekomstvoorspellingen. Om tot zinvolle
voorspellingen van de vervoersvraag te komen dient een zeer uitgebreide
verzameling variabelen beschouwd te worden. In TREMOVE daarentegen
wordt de baseline evolutie van vervoersactiviteit en prijzen over de model-
leerperiode als gegeven beschouwd bij de modelkalibratie, bijgevolg valt elke
toekomstvoorspelling buiten het bereik van het model.

Evenmin is TREMOVE geschikt om scenario’s te optimaliseren. In een
statische context kan het verhelderend zijn om welvaartsoptimale prijszetting
te bestuderen in functie van diverse beleidsbeperkingen. Echter maakt het
tijdsdynamische karakter van TREMOVE, waarin de evolutie van het voer-
tuigbestand een rol speelt, dergelijke optimalisatie complex en bovendien in
belangrijke mate afhankelijk van de toegepaste verdiscontering.

In de simulaties zijn alle waarden uitgedrukt in constante prijzen van
het jaar 2000. Waar actualisatie wordt uitgevoerd, wordt uitgegaan van een
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discontovoet van vier procent per jaar.

De gemeenschappelijke basis voor de simulaties is het TREMOVE model
voor Belgié. We passen hier een hybride versie toe die versie 1.3a (Euro-
pean Commission et al., 1999) combineert met uitbreidingen van versie 2
(G. De Ceuster et al., 2005).

E.3.1. De keuze voor schone technologieén

In een eerste reeks simulaties bestuderen we de bijdrage die schone voertuig-
technologieén voor personenauto’s kunnen leveren om de externe kosten van
uitstoot verminderen. We breiden TREMOVE hiertoe uit met het keuzemodel
dat we ontwikkeld hebben in het eerste deel van ons onderzoek.

Aanvullend op deze uitbreiding voorzien we uitstootfactoren voor alterna-
tieve technologieén op basis van MEET (Hickman et al., 1999). Voor elektrische
auto’s bepalen we de uitstoot die gepaard gaat met de elektriciteitsproductie
die nodig is om de batterijen op te laden. Tevens voorzien we in de mogelijk-
heid om impact op de leefomgeving te vertalen naar een gedifferentieerde
heffing evenredig met verschillen in marginale maatschappelijke kosten. Ten-
slotte vullen we de baseline aan met gegevens over kosten en gebruik van
alternatieve technologieén en brandstoffen.

De baseline van het uitgebreide model levert een aantal interessante in-
zichten. Vooreerst stellen we vast dat alternatieve technologieén zelfstandig
een substantieel marktaandeel kunnen verwerven mits voldoende beschik-
baarheid. Verder zien we dat de totale uitstoot van vervoersactiviteit afneemt
met uitzondering van CO; (zie figuur E.2). Alternatieve technologieén hebben
zonder uitzondering geringere externe uitstootkosten, maar het verschil met
bestaande benzinetechnologie is gering en veel kleiner dan het verschil tussen
conventionele benzine- en dieselauto’s (zie figuur E.3). Tenslotte kan opge-
merkt worden dat het beleid van steeds striktere uitstootnormen tijdens het
laatste decennium heeft geresulteerd in een spectaculaire afname van de exter-
ne uitstootkosten van diesel- en benzineauto’s. Dit beperkt de mogelijkheden
tot verdere afname door middel van technologische innovatie.

Omdat we vaststellen dat bestaande heffingen niet overeenstemmen met
verschillen in externe uitstootkosten, vervangen we in een eerste simulatie
deze bestaande heffingen door een kilometerheffing die voor alle voertuig-
technologieén gelijk is. Dit resulteert in een verschuiving van diesel naar benzi-
neauto’s, en in beperktere mate van hybride naar conventionele technologieén.
De netto impact op de leefomgeving is positief met een afname van voorna-
melijk NOx en PM uitstoot. Dit scenario levert een neutrale basis voor de
simulatie van een heffing die een verschuiving naar schone technologieén
promoot.

Vervolgens simuleren we de toepassing van een uitstootheffing die ge-
differentieerd is naar gebruikte technologie en plaats (binnen of buiten de
stedelijke omgeving) en die gelijk is aan de marginale externe uitstootkos-
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ten. De heffing komt voor alle technologieén en vervoerswijzen boven op
de hierboven beschreven gelijkgestelde kilometerheffing en zorgt ervoor dat
voor elke vervoerswijze de verschillen tussen technologieén overeenstemmen
met verschillen in externe uitstootkosten. Het beschreven scenario levert een
indicatie voor een first best evolutie waarvan de welvaartsimpact optimaal is.

Onder de gedifferentieerde heffing zien we dat naast een globale afname
van de vervoersactiviteit (van 0,5% voor reizigers tot 3% voor goederen) er
ook verschuivingen zijn tussen vervoerswijzen en technologieén. Wanneer
op langere termijn het voertuigbestand zich aanpast aan de gewijzigde om-
standigheden, gaat een verschuiving tussen vervoerswijzen een beperktere rol
spelen.

Binnen het voertuigbestand zien we voornamelijk een verschuiving van
diesel- naar benzinetechnologieén, al is de verschuiving eerder gering (grootte-
orde van een procent punt voor personenauto’s). De globale afname van
uitstoot bedraagt tot 5% voor PM en NOx (zie figuur E.4).

Wanneer we de welvaartskost van het scenario becijferen, zien we een netto
maatschappelijke winst over de volledige modelleerperiode. De waardering
van de impact van de uitstoot toont aan dat op korte termijn de afname voor
65% wordt bereikt door de globale afname van de vervoersvraag, de rest is
voornamelijk het gevolg van een verschuiving in technologiegebruik. Slechts
10% van de kostenreductie kan toegeschreven worden aan een verschuiving
tussen vervoerswijzen. Op langere termijn stijgt de bijdrage van gewijzigd

3%

2%

1%

0%

-1%

-2%

-3%

-4%

-5%

-6%

CO NOX PM C6H6 vOoC NMVOC CH4 SO2 C0o2

(02010 E 2015 @ 2020

Figuur E.4. Impact van uitstootheffing op totale vervoersuitstoot (in % wijziging t.o.v.
gelijkgestelde kilometerheffing)
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technologiegebruik tot ruim 45%, terwijl de bijdrage van verschuiving tussen
vervoerswijzen afneemt.

E.3.2. De kostprijs van zuinige auto’s

Een tweede reeks simulaties bestudeert de bijdrage die zuinige auto’s kunnen
leveren tot tegengaan van klimaatverandering en de daaraan verbonden maat-
schappelijke kost. De bijdrage van het wegvervoer aan klimaatverandering
verloopt via de uitstoot van CO,, wat op zijn beurt nauw verbonden is met
het brandstofverbruik. CO, is een chemisch erg stabiel gas en bijgevolg niet
toxisch. De uitstoot blijft meerdere decennia aanwezig in de atmosfeer. Om-
dat enkel de globale hoeveelheid CO, bepalend is voor klimaatverandering,
maakt het niet uit waar en wanneer de uitstoot plaatsvindt, dit in tegenstel-
ling tot andere uitstoot waarvan lokale concentraties bepalend zijn voor de
maatschappelijke impact.

Voor de simulaties wordt TREMOVE uitgebreid met een voorstelling van
energie-efficiéntie. Enerzijds is er een meerkost verbonden aan de productie
van zuinigere wagens, anderzijds is er ook een gedragseffect waar autokopers
de zuinigheid van een nieuw voertuig kiezen in functie van de brandstofprijs.

In onze modellering van brandstofefficiéntie kiezen we voor een indirecte
benadering op basis van geobserveerd gedrag. De literatuur (zie bijvoor-
beeld Brons, 2006; Goodwin, 1992; Johansson and Schipper, 1997; Small and
Van Dender, 2006) presenteert waarden voor de elasticiteit die het geobser-
veerde verband tussen brandstofgebruik en brandstofprijs uitdrukt. Voor ons
onderzoek gebruiken we een waarde van —0,2, wat betekent dat het brand-
stofverbruik per voertuigkilometer met 2% afneemt wanneer de brandstofprijs
met 10% toeneemt.

We nemen aan dat autokopers een voertuig kiezen op basis van totale
gebruikskosten, en dat producenten voertuigen bouwen waarvan de gebruiks-
kost geoptimaliseerd is in functie van brandstofefficiéntie. Op basis van deze
aannames kunnen we uit de geobserveerde elasticiteit (zie hierboven) de ge-
bruikskosten van voertuigen weergeven als functie van de brandstofefficiéntie.

Om een baseline op te stellen voor brandstofefficiéntie hebben we niet
enkel een projectie over de modelleerperiode nodig voor de brandstofprijzen
(gebaseerd op PRIMES-transport, zie Knockaert et al., 2002), maar dienen we
ook rekening te houden met een zelfstandige verbetering van de brandstof-
efficiéntie. In dit onderzoek gaan we uit van een jaarlijkse verbetering van
0,6%.

Vervolgens simuleren we een beleid dat uitgaat van efficiéntienormen voor
nieuwe voertuigen. We nemen als voorbeeld het EU beleid waarbij rond het
jaar 2000 een aantal overeenkomsten werden gesloten met de autoproducenten.
Deze akkoorden voorzien dat in minder dan een decennium de gemiddelde
CO; uitstoot van nieuwe personenauto’s gereduceerd wordt tot 140 g/km.

238



Extended Dutch summary: Economische en technische analyse van uitstoot van wegvervoer

Aansluitend hierop wil de EU het beleid uitbreiden om de uiteindelijke
beleidsdoelstelling van 120 g/km te realiseren in 2012.

De beleidssimulatie geeft aan dat een verbetering van de brandstofeffici-
entie van ongeveer 15% nodig is om de beleidsdoelstelling te bereiken. Deze
verbetering heeft slechts een beperkte invloed van 1 tot 1,5% op de gebruiks-
kosten (van nieuwe voertuigen), waardoor eerder kleine veranderingen in
gebruik van technologieén (van diesel naar benzine) en vervoerswijzen (van
auto naar andere) te verwachten zijn. De totale CO, uitstoot (alle voertuigen
en vervoerswijzen) neemt af met 7%.

De welvaartskosten van de beleidsmaatregel worden gedragen door de
gebruikers én door de overheid (zie figuur E.5). Wanneer autokopers kiezen
voor zuinigere voertuigen, betalen ze meer voor het voertuig en minder voor
de brandstof (figuur E.6). De heffing op beide componenten is echter niet
gelijk, waardoor er een daling is in de overheidsinkomsten.

De totale kost is veel groter dan de winst op het vlak van klimaatverande-
ring: de welvaartskost van de maatregel bedraagt ongeveer 270€/t in 2010;
dit in vergelijking met de externe kost van CO,-uitstoot die begroot wordt op
5-20€/t.

In een volgende simulatie bestuderen we het scenario waarin de uitstoot
van nieuwe personenauto’s verder teruggedrongen wordt tot 120g/km in
2012. Dit vereist een verbetering van de brandstofefficiéntie van ongeveer
25%. De stijging van de gebruikskosten van nieuwe voertuigen is hier 5%,
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Figuur E.5. Jaarlijkse welvaartskost van 140 g/km beleid (in miljoen €2000 t.o.v. baseli-
ne)
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Figuur E.6. Samenstelling van verandering in consumentensurplus in reizigersvervoer
(in miljoen €2000 t.o.v. baseline)

bijgevolg zijn de verschuivingen naar andere vervoerswijzen relatief groter
dan in het vorige scenario. Een extra afname van de totale CO; uitstoot van
6% is haalbaar in 2020. De maatschappelijke kost van de beleidsmaatregel is
302€/t, en wordt voornamelijk gedragen door de autokopers.

In een laatste simulatie vergelijken we het EU beleid met een brandstof-
heffing voor personenauto’s. Deze heffing is evenredig met de CO, uitstoot
en de hoogte ervan is dusdanig gekozen dat de heffing eenzelfde afname in
externe kosten van CO,-uitstoot realiseert tot 2020.

De benodigde heffing zorgt voor een aanzienlijke toename van de brand-
stofprijzen tot meer dan 2€/1 in 2020. Het is evident dat dergelijke heffing
een invloed zal hebben op de vervoersvraag. Ook krijgen we hier reeds een
indicatie van het netto welvaartsresultaat als we bedenken dat de heffing
overeenkomt met 40 keer de externe uitstootkosten.

De heffing resulteert in een verschuiving van diesel naar benzinevoertui-
gen, en van autovervoer naar andere vervoerswijzen. De totale vraag naar
personenvervoer neemt af met 4% in 2020.

De totale maatschappelijke kosten zijn lager dan bij een uitstootnorm.
Alhoewel de autogebruikers aanzienlijk meer gaan betalen, is dit geen wel-
vaartsverlies aangezien de heffingen overeenkomstige inkomsten opleveren
voor de overheid. De lagere kosten voor afname van CO; uitstoot worden
mogelijk gemaakt doordat de heffing toelaat dat de afname wordt gerealiseerd
op meerdere manieren en niet enkel via technologische weg. Bij een uitstoot-
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norm blijft de vraag naar vervoer te hoog waardoor grotere technologische
inspanningen nodig zijn om het beleidsdoel te realiseren. Bovendien kan
de uitstootnorm enkel de uitstoot van nieuwe wagens reduceren, terwijl een
heffing ook gebruikers van bestaande voertuigen betrekt.

De netto maatschappelijke kost van de heffing bedraagt 127€/t. Dit is
aanzienlijk lager dan in de EU beleidssimulatie, maar nog steeds boven de
externe kosten van CO,-uitstoot.

E.3.3. Openbaar busvervoer in de stedelijke leefomgeving

Een laatste reeks simulaties bestudeert mogelijkheden om met voertuigtech-
nologie de impact van openbaar busvervoer op de stedelijke leefomgeving te
verminderen. Hiervoor wordt het TREMOVE model beperkt tot Brussel en
worden enkele aanpassingen uitgevoerd in de modellering van het openbaar
vervoersaanbod.

Openbaar vervoer verschilt van andere voervoersmarkten in de aanwe-
zigheid van een bijkomende kost in de vorm van wachttijd. Deze wachttijd
is functie van het aanbod. Als het aanbod toeneemt, daalt de wachttijd
maar stijgen daarentegen de monetaire kosten en uitstoot. De rol van de ver-
schillende aanbodsvariabelen wordt beschreven door Mohring (1972) die het
verband aangeeft tussen vervoersvraag, productiekosten en optimaal aanbod
en ticketprijs.

In TREMOVE zijn de bezettingsgraden van de verschillende vervoerswij-
zen extern vastgelegd in de baseline. Het aanbod (in voertuigkilometer) volgt
dan steeds de vraag (in reizigerskilometer) in een vaste verhouding. Voor
de simulaties waar we specifiek gaan kijken naar openbaar vervoer breiden
we TREMOVE uit met de mogelijkheid om voor bus- en spoorvervoer bezet-
tingsgraad (en aanbodvolume) en ticketprijs te optimaliseren in functie van
vraag- en aanbodsvariabelen. Daarbij voorzien we tevens in de mogelijkheid
om de uitstoot externaliteit te internaliseren. De baseline voor Brussel wordt
overeenkomstig bijgewerkt voor het openbaar vervoersaanbod (bus en spoor).

Net als bij personenwagens stellen we vast dat het beleid van steeds strik-
tere uitstootnormen voor busvoertuigen over de afgelopen decennia reeds
heeft gezorgd voor een spectaculaire afname van de impact op de stedelijke
leefomgeving (zie figuur E.7). Niettemin blijft busvervoer per reizigerski-
lometer een grotere impact hebben op de leefomgeving in vergelijking met
benzineauto’s. Op korte termijn zijn zelfs dieselauto’s schoner, voornamelijk
omdat bussen een langere levensduur hebben en daardoor oudere en minder
schone voertuigen langer in het bestand blijven.

In een eerste simulatie optimaliseren we ticketprijzen en aanbodsvolume
zonder rekening te houden met de uitstootexternaliteit. Het geoptimaliseerde
aanbod leidt tot aanzienlijk lagere ticketprijzen bij een hoger aanbod. De
frequentie stijgt voornamelijk in de daluren: door het toewijzen van capaci-
teitskosten (inclusief voertuigen) aan de piekperiode zijn de productiekosten
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Figuur E.7. Baseline evolutie van impact op stedelijke leefomgeving van nieuwe
busvoertuigen (in €/vkm)

tijdens de daluren veel lager. Dergelijke resultaten komen overeen met eerdere
bevindingen (De Borger and Wouters, 1998). Naast een belangrijke stijging
in het OV gebruik, leidt dit tevens tot een daling van 12% in het autoge-
bruik. Netto is er een welvaartswinst, en ook de impact op de leefomgeving
neemt af doordat autovervoer gedeeltelijk wordt vervangen door elektrisch
Spoorvervoer.

In een tweede simulatie optimaliseren we opnieuw de openbaar vervoer
aanbodsvariabelen, maar deze keer verrekenen we in de optimale ticketprijzen
en het aanbodsvolume de externe kosten van uitstoot. We vergelijken de
resultaten met de eerste simulatie. Hierbij valt meteen op dat de impact op
de leefomgeving slechts beperkt wordt verrekend in de ticketprijs. Een groter
deel van de externaliteit wordt voor de reiziger in rekening gebracht via de
wachttijd. Op die manier wordt het aanbod in 2010 met 12% verminderd ter-
wijl de vraag slechts met 2% afneemt. De totale uitstoot neem af met ongeveer
een procent. Opvallend is hier dat het scenario een maatschappelijke winst
oplevert voornamelijk door verstoringen op andere markten (inkomsten uit
heffingen personenwagens en MCPF term). In de volgende simulaties gebrui-
ken we dit scenario als referentie om de bijdrage van voertuigtechnologieén
te bestuderen.

In een derde simulatie bestuderen we het scenario waarbij oudere voertui-
gen worden aangepast zodat ze voldoen aan de uitstootnormen van nieuwe
voertuigen. Doordat bussen een relatief lange levensduur hebben in vergelij-
king met andere wegvoertuigen, en door de sterke vooruitgang die geboekt
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is op het vlak van uitstootnormen, is dit een waardevolle toepassing. Voor
de simulatie nemen we aan dat Euro 2 voertuigen worden bijgewerkt naar
Euro 5. We zien dat deze aanpassing een vermindering oplevert van de totale
vervoersuitstoot van 1,5 (PM) tot 2% (NOx) in 2010 (zie figuur E.8). Na 2010
neemt de impact snel af wanneer de oude voertuigen alsnog uit het bestand
verdwijnen. Het scenario levert een netto maatschappelijke winst op wanneer
de impact op de leefomgeving wordt meegerekend.

In een laatste simulatie bestuderen we de vervanging van dieselbussen
door voertuigen aangedreven met aardgas (CNG). Dit scenario levert een reéle
afname op van de vervoersuitstoot. Echter zijn de technologiekosten relatief
hoog waardoor het scenario resulteert in een netto kost.

E.4. Besluit en beleidsaanbevelingen

De analyse van het aankoopgedrag van auto’s op basis van een keuze-ex-
periment levert inzicht in de voorkeuren die autokopers hebben voor nieu-
we technologieén. De invloed van verschillende technologie-eigenschappen
werd geanalyseerd. Daarbij werd voor de meeste onderzochte variabelen
een significante invloed vastgesteld. Echter voor de hybride eigenschap van
technologieén werden geen voorkeuren vastgesteld. Op basis van de geschatte
gedragsmodellen kon worden afgeleid dat autokopers bereid zijn om meer
te betalen voor schonere technologieén, alhoewel uit de focusgroep bleek dat
autokopers geen correcte inschatting maken van de relatieve impact op de
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Figuur E.8. Impact van aanpassing oude busvoertuigen op totale vervoersuitstoot
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leefomgeving van verschillende voertuigtechnologieén.

De analyse met behulp van gemengde logit modelspecificaties liet toe om
rekening te houden met het specifieke karakter van het keuze-experiment
waarin deelnemers herhaalde keuzes maken. Daarbij werden correlatiepa-
tronen in voorkeuren voor technologieén onderzocht, zowel voor nieuwe als
conventionele.

Het gebruik van gemengde geneste logit specificaties laat toe om correlatie-
patronen te identificeren op basis van het keuze-experiment en die vervolgens
(benaderend) te reproduceren met een eenvoudig geneste logit simulatiemo-
del voor enkelvoudige keuze. De methodologie om dit simulatiemodel te
ontwikkelen werd gepresenteerd en toegepast voor een simulatiemodel dat
kan gebruikt worden in het TREMOVE vervoersmodel.

De simulatie van technologische en andere maatregelen om uitstoot van
wegvervoer te verminderen werd uitgevoerd met behulp van een aangepaste
versie van het vervoersmodel TREMOVE waarvoor een baseline voor Belgié
ontwikkeld werd.

De baseline geeft aan dat zonder nieuwe maatregelen reeds een afname
van uitstoot te verwachten is, voornamelijk door reeds geintroduceerde en
steeds striktere uitstootnormen voor nieuwe voertuigen. De maatschappelijk
waardering van de resterende externe kosten van uitstoot is eerder klein op
voertuigniveau. De enige uitzondering is de totale uitstoot van CO, die in de
baseline stijgt.

Alternatieve voertuigtechnologieén voor personenauto’s hebben een sig-
nificant lagere impact op de leefomgeving. De verschillen met bestaande
technologieén zijn echter niet groot, bijgevolg heeft een (efficiénte) gedifferen-
tieerde uitstootheffing eerder beperkte mogelijkheden. Wel stellen we vast dat
de bestaande differentiéring tussen diesel en benzine niet overeenstemt met
verschillen in impact op leefomgeving, het gelijkstellen van de heffing voor
beide technologieén kan zowel voor de leefomgeving als voor de maatschappij
een netto winst opleveren.

De afname in externe kosten van uitstoot resulteert op korte termijn
voornamelijk van een afname van de vervoersvraag. Op langere termijn gaat
ook de verschuiving tussen technologieén een rol spelen. Een verschuiving
tussen vervoerswijzen levert slechts een beperkte bijdrage in het scenario van
een uitstootheffing.

De CO; uitstoot van personenauto’s is nauw verbonden met het vraagstuk
van energie-efficiéntie. De beleidsaanpak waarbij (gemiddelde) uitstootnor-
men worden opgelegd aan nieuwe auto’s blijkt wel effectief maar niet efficiént.
De kosten per eenheid CO, afname zijn een veelvoud van de overeenkomstige
externe maatschappelijke kost. Zelfs wanneer gekozen zou worden voor
een beleid van uitstootheffingen, blijven de kosten te hoog. De belangrijkste
reden is dat de traditionele brandstofkosten reeds veel hoger zijn dan de
maatschappelijke kosten van CO, uitstoot.

244



Extended Dutch summary: Economische en technische analyse van uitstoot van wegvervoer

Ook voor stedelijk busvervoer kunnen technische maatregelen bijdragen
aan een uitstootreductie. De relatief lange levensduur van de voertuigen maakt
het zinvol om oudere bussen te reviseren zodat ze aan striktere uitstootnormen
voldoen. Deze maatregel blijkt effectief en efficiént. Voor aardgasbussen
daarentegen blijken de kosten groter dan de voordelen van de lagere uitstoot.

Een beleid gebaseerd op technologische maatregelen blijkt in alle gevallen
effectief. In het verleden is op deze manier een aanzienlijke afname van de
uitstoot van wegvervoer gerealiseerd. Men kan verwachten dat eenzelfde
beleid succesvol gevoerd kan worden rond vervoerswijzen die tot nog toe
buiten beeld bleven.

De simulaties waarin de uitstootexternaliteit met een heffing wordt ge-
internaliseerd geven aan dat technologieén een belangrijke rol spelen in een
efficiént beleid waarin rekening gehouden wordt met de volledige maatschap-
pelijke kosten en baten van het gevoerde beleid. Wanneer technologiekosten
te hoog worden is het echter niet mogelijk om een netto maatschappelijke
winst te realiseren.

De maatschappelijke kost van een afname van CO, uitstoot in autoverkeer
blijkt erg hoog te liggen. Wellicht is het aan te bevelen om eerst in andere
sectoren te komen tot een afname van de uitstoot.

In verschillende scenario’s blijkt een verschuiving van diesel- naar ben-
zineauto’s wenselijk. Een eenvoudige maatregel om dit te realiseren is het
wegwerken van verschillen in bestaande heffingen.

Tenslotte merken we op dat een verschuiving tussen vervoerswijzen in de
meeste scenario’s slechts een beperkte bijdrage levert tot afname van uitstoot.
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