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Abstract. When hedging in futures markets, the hedge instruments typically fail to match the exposed 
asset or portfolio by expiration date and/or by underlying asset The theoretical variance-minimizing 
hedge is given by the slope coefficient of the conditional (forward-looking) regression of the spot price 
that one is exposed to on the futures price used as a hedge. We explore the hedging performance of 
simple rules of thumb and of unconditional regressions on past data, focusing on the effect of the 
choice of observation frequency, sample period, percentage vs. dollar returns, and lead/lag effects. Our 
findings are the following: (a) the effects of varying the observation frequency, sample period, etc, are 
much larger than the effects of using GARCH instead of OLS. (b) Regardless of sample size and 
estimation technique, the exposure is best estimated using percentage returns rather than (dollar) first 
differences. (c) In the case of delta hedges, and also of cross-hedges among closely related currencies, 
regressions are systematically beaten by naive rules of thumb. (d) This relatively poor performance of 
regression-based hedges is not just due to errors in data. (e) The optimal estimation technique depends 
on the situation. For cross-hedges involving two European currencies, high-frequency OLS estimates is 
flawed by EMS-induced leads and lags among exchange rate changes, and the best regressions are those 
using monthly data from longish sample periods. For delta-hedges the dominant source of estimation 
problems seems to be a time-varying relationship between the regression variables, and the best 
regressions use daily data from short sample periods. 

I. Introduction 

Relative to a tailor-made hedge in the forward currency market, a hedge in the currency futures 

market is almost invariably imperfect. First, the contract size being fixed, it is difficult to 

exactly match the position to be hedged. More importantly, also the expiration dates that are 

available in the futures markets rarely coincide with those for the currency flows that they are 

meant to hedge. Similarly, the menu of underlying exchange rates is typically limited, so that 

there may be no contract available for the desired currency. Similar matching problems arise 

when an interest exposure is hedged in the market for Eurocurrency or T-bill futures rather than 

using a tailor-made forward rate agreement. Because of its low transactions cost and the 

availability of a secondary market, a hedger may nevertheless prefer the futures markets over 

their over-the-counter forward counterparts. And when the exposure to be hedged originates 

from stock market risk or commodity price risk, tailored forward contracts typically are entirely 

absent, so that an imperfect hedge in a futures market is the only feasible option. With respect 

to the problem of fixed contract sizes, the hedger in the futures market has little choice but to 
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round the ideal number of contracts to the nearest integer. Still, the question arises as to how to 

set this ideal number of contracts-the hedge ratio-taking into account the maturity mismatch 

and the imperfect correlation between the portfolio that is to be hedged and the asset that 

underlies the futures contract. 

The usual approach is to select the number of futures contracts that minimizes the 

variance of the hedged position. The corresponding optimal hedge ratio is given by the slope 

coefficient of a regression between the future spot rate that one is exposed to and the futures 

price that is being used as a hedge. Like the market-model ~ in the Capital Asset Pricing Model 

(CAPM), the required regression coefficient is a conditional coefficient, and should therefore 

be extracted from the conditional joint distribution of future spot and futures prices. In practice, 

CAPM betas are often estimated unconditionally from past data, and a similar procedure is 

often applied for hedge ratios, typically using first-differenced spot and futures data from the 

past as regression inputs. 1 Such an approach inevitably produces errors. As Stoll and Whaley 

(1993) note, a fIrst type of problems has to do with data imperfections. For one thing, the spot 

and futures prices used in the regressions are often not fully synchronized because of reporting 

lags, infrequent trading (at least in some markets), or differential adjustment speeds reflecting 

cross-market differences in liquidity or transaction costs. In addition, futures prices contain 

bid-ask noise. Lastly, futures data have ever-changing maturities whereas the hedger is 

interested in the joint distribution of a spot value and a futures price for a single, known time to 

maturity. The familiar effect of all these errors-in-the-regressor is that the estimated slope 

coeffIcient is biased towards zero. In addition, the relation between the variables of interest may 

not be constant over time-that is, unconditional estimates from the past may be very different 

from conditional, forward-looking parameters. Kroner and Sultan (1993), for example, 

illustrate how in a delta-hedge the use of a bivariate GARCH error-correction model (ECM) 

allows one to reduce the variance of the hedged cash flow by about 6% in-sample, and 4.5% 

ISee, for instance, Ederington, 1979; Grammatikos and Saunders, 1983; Hill and Schneeweis, 1982; Stoll and 

Whaley, 1990; Stoll and Whaley, 1993, Chapter 4. 
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out-of-sample, relative to regression on fIrst differences. Lastly, even with error-free data and a 

constant joint distribution there still is estimation error because any real-world sample is fInite. 

Like Kroner and Sultan, we compare the out-of-sample performances of various 

estimation techniques and of naive rules of thumb, and the market we select for our 

performance race is the currency market. However, we focus on the impact of errors in 

variables and the (related) issue of optimal observation frequencies in the regressions, as in 

Stoll and Whaley (1993). In a nutshell, choosing a high observation frequency offers the 

advantage of a larger sample without having to go back far into the past; but the cost is that the 

errors-in-variab1es bias becomes more acute: the higher the observation frequency, the smaller 

the signal (the change in true futures price) relative to the noise (like bid-ask bounce or 

imperfect synchronization in the data). We extend Stoll and Whaley's work in the following 

ways. First, we consider not just OLS regressions on first-differenced data, but also the 

Scholes-Williams (SW) instrumental-variable estimator (which takes care of poor 

synchronization and other lead-lag patterns), and we experiment also with regressions between 

percentage changes rather than first differences in spot and futures prices. Second, we attempt 

to isolate problems of the errors-in-the-regressor type from problems associated with inevitable 

estimation noise or changes in the relationship between spot and futures prices. Specifically, 

we eliminate the impact of regressor errors by using noise-free currency forward prices

computed from midpoint spot and interest rate data-instead of actual currency futures prices. 

Relative to Kroner and Sultan (1993), the innovations in our work are as follows. First, we 

consider cross hedges, delta hedges, and cross-and-delta hedges rather than just delta hedges,2 

and the horizon is three months rather than one week. Second, we consider more than one 

naive rule, and our naive rules take into account the information in the current spot or forward 

interest rates. Lastly, our focus is on errors in variables rather than on time-varying 

distributions; we show that the impact of choosing SW rather than OLS or of selecting an 

2In a delta hedge, the expiration date of the futures contract does not match the hedging horizon. In a cross

hedge, the currency underlying the futures contract differs from the currency in which the exposure is expressed,. 
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observation frequency and a sample period are, most of the time, more important than the 

improvements they achieve with a GARCH-ECM model. 3 

The remainder of the paper is structured as follows. Section II briefly reviews the 

problem and its theoretical solution. In Section III we set out the tests. Section IV describes the 

data and presents the results. The conclusions are summarized in Section V. 

II. The Problem 

In the problem we consider there is one unit of assetj, whose value at time Tl is uncertain and 

needs to be hedged. For instance, at time Tl there may be a cash inflow of one NLG, which 

needs to be converted into USD (the hedger's home currency) with minimal risk. A futures 

contract is available for a 'related' asset or exchange rate i-for instance, the DEM against the 

USD--with an expiration date T 2 (;;::: T 1). The size of the futures contract is one unit of the 

underlying i (for instance, one DEM). Contracts are assumed to be infinitely divisible; that is, 

one can buy or sell any fraction of the unit contract. Only one type of futures contracts is being 

used as a hedge. 

Denote the number of futures contracts sold by ~t,T1 (where t is the current time), the 

stochastic time-Tl spot value of assetj by Sj,Tl, and the time-t futures rate for asset i and 

expiration date T2 by ti,Tl,T2. Ignoring the (small) effect of marking to market, the total cash 

flow generated by the futures contracts between times t and TI is then equal to -~t,T1 (hTl,T2 -

fi,t,T2). Thus, the value of the hedged cash flow is 

hedged cash flow = Sj,Tl - ~t,T1 0\Tl,T2 - fi,t,T2) . (11.1) 

3 As argued below, it is also not obvious how one should set up an ECM for cross-hedges. 



Cross- and Delta-hedges page 6 

The usual rule is to choose ~t,Tl such that, conditionally on time-t information, the variance of 

this hedged cash flow is minimized.4 Adding t-subscripts to the variance and covariance 

operators to stress the conditional nature of these distribution parameters and using the fact that, 

at time t, fi,t,T2 is known, we can formulate this problem as 

Min vart(Sj,Tl) - 2 ~t,Tl COVt(f\,Tl,T2, Sj,Tl) + ~t,Tl2 Vart(ti,Tl,T2) . (11.2) 
~t,Tl . 

The familiar solution is 

(11.3) 

This expression for ~t, T1 coincides with the population slope coefficient in the linear 

decomposition ("regression") of the relation between the future spot and futures rates: 

at,Tl. ~t,Tl: Sj,Tl = at,Tl + ~t,Tl t\,Tl,T2 + Et,Tl S.t. Et(Et,Tl) = 0 = COVt(Et,Tl, hTl,T2) 

(1104) 

As the joint distribution of the future prices, Sj,Tl and hTl,T2, is unknown, it has 

become common practice to estimate ~t,T1 from a regression on (suitably differenced) past 

data. In doing so, the issues are (a) what estimator is to be used, taking into account the 

statistical properties of the data series; (b) what differencing interval is to be chosen; and (c) 

whether one should consider simple first differences or percentage changes. A more 

fundamental question is whether simple rules of thumb may not provide useful alternatives, or 

complements, to regression-based estimators. The practical answers to these questions, as 

adopted in this paper, are described in the next section. 

4The same result can be obtained if (a) the decision maker has a mean-variance utility function with a (non

tradable) foreign-currency position as the sole source of risk and (b) the exchange rate is a martingale. See for 

instance Stoll and Whaley (1993) or Kroner and Sultan (1993). 
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III. Regression-Based vs. Naive Rules for Currency Hedging: 

Test Design 

The tests are carried out in currency markets. This choice is motivated by the following 

consideration: The problems of poor synchronization, bid-ask noise, and variability in the basis 

are avoided if one uses not the actual futures quotes, but theoretical futures prices computed 

from spot prices and net convenience yields for the exact maturity needed for the hedging 

problem at hand.5 In the case of a stock market hedge, as in Stoll and Whaley (1993), one 

component of the net convenience yield-the ex ante dividend yield-is unobservable, so that 

no noise-free shadow futures prices can be computed. In currency markets, however, the net 

convenience yields are observable from "swap" forward quotes or can be computed from 

interbank interest rates. Thus, we can use noise-free data in the regressions. This has two 

advantages. First, by ruling out errors in variables, the interpretation of differences between 

various regression-based results becomes easier. Second, in the race between regression-based 

and naive hedging rules, the dice are no longer loaded against the former; thus, if 

notwithstanding the noise-free data the naive rules still do better than the regression-based 

hedging ratios, then we can safely conclude that (a) the regression-based hedges suffer from 

more fundamental problems than just noise in the regressor, and (b) when using other data, 

naive rules must be even more recommendable. 

The availability of a theoretical forward rate for a currency hedge offers two additional 

boons beside providing noise-free input data for the regressions. First, as explained in Section 

III.e, below, it allows us to formulate additional, and somewhat more subtle, rules of thumb 

than the naive model employed by Kroner and Sultan. Second, forward rates can be computed 

for any exchange rate with unrestricted money markets. Therefore, the analysis is not confined 

to currency pairs for which a futures contract is actually traded in the US. This allows us to go 

5To be true, one can compute only theoretical forward prices, but these are virtually indistinguishable from 

theoretical futures prices. 
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beyond pure field tests and set up something of a laboratory experiment; for instance, one can 

obtain a wide sample of closely related currencies-for example, the BEF-NLG pair, where an 

intra-Benelux agreement has limited exchange rate movements to an even narrower band than 

the EMS band-which can then be compared with currency pairs that are less closely related. 

A. Computation of the Theoretical Forward Prices 

To estimate the forward-looking regression Sj,Tl = Ut,Tl + ~t,Tl ti,Tl,T2 + Et,T from past data, 

we first construct a data series that is clean from the errors-in-variables that plague the tests 

presented in Section II. We consider a hedging horizon, T 1-t, of three months, and we now 

specify that the remaining life of the hedge, ~T == T2-T1, is equal to zero (for a cross hedge) or 

one quarters (for a delta or cross-and-delta hedge).6 Thus, for every date we can compute 

forward prices with a constant time to maturity of three or six months. This eliminates the 

change in the life of futures prices as one source of errors-in-variables bias in the regression; 

and if swap forward quotes are used, or if forward rates are computed from spot exchange 

rates and interest rates or swap rates, then also synchronization of the observations is no longer 

a problem. Lastly, if midpoint data are used, also bid-ask noise is avoided. 

In practice, we have chosen to compute forward rates from interest rates rather than 

from 3- and 6-month swap rates, for the following reason. In our story, the hedge is liquidated 

on the expiration date, T1. Forthis reason we want TI to be a working day, a condition that is 

6The use of a three-month horizon has the drawback that there is overlap in the month-by-month hedging errors, 

but is dictated by data availability. Datastream provides one-, three-, and six-month interest rates, which allows 

us to analyze a problem of hedging a three-month exposure using a six-month hedge but (because of the absence 

of two-month Euro-rates) not the problem of hedging a one-month exposure using a two-month hedge. Other 

data series consulted by us provided much shorter time series and were hard to splice into the Datastream 

exchange rate files. 
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not always met for the expiration day of standard 90- or 180-day market quotes} Thus, 

starting from every working day t, we fust go to the date three months ("90 days") later; and if 

this tentative Tl-date is not a working day, we define Tl as the fust working day after that. T2 

is defined similarly. Delivery then takes place on the second working day after this date T2. 

To compute the t-to-Tl forward exchange rate, we next need to consider the replicating 

deposits (or loans) made at time t. Such a deposit earns interest from the second working day 

following day t and until the calendar day before the delivery date. We therefore compute the 

number of interest-earning days between these dates as a fraction of a year, either from the 

number of calendar days and a 365-day year (the interbank convention for the GBP and the 

BEF), or using the 30-days-per-month, 360-days-per-year rule applicable for other currencies. 

We compute the return on the deposit or loan by multiplying the time to maturity, Tl-t, by the 

three-month interest rate; that is, following interbank practice, we ignore the fact that Tl-t may 

be one or two days off the three-month mark. Our three-month forward rate then follows. For 

the six-month rate the procedure is analogous, except that we start from date Tl rather than t. 

As mentioned before, we use midpoint rates so as to eliminate bid-ask noise. 

B Estimation of Backward-Looking Hedge ratios 

We fust consider a number of regression-based estimators. In estimating the forward-looking 

regression Sj,Tl = at,Tl + ~t,Tl 1\,Tl,T2 + Et,T from past data, one generally starts from the 

conceptual linear decomposition of the relationship between these variables: for every date t 

there always exist conditional parameters <X.t and ~'t such that 

(III. I) 

7The delivery day is, of course, always a working day, but this is not always true for the expiration day. For 

instance, a 90-day contract taken out on February 25, 1997 (a Tuesday) expires on April 25, 1997 (a Sunday). 

The delivery day would then be April 27 (a Tuesday), but on Sunday April 25 itself we cannot trade. 
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The simplest operationalization of (ill. 1) is obtained by assuming that ~'t is an intertemporal 

constant and that U-t is, at most, linear in time. Differencing (Ill.1) so as to eliminate problems 

of non-stationarity, and setting a,; - U-t-l = a, we then obtain the regression equation that is 

standard in this literature, 

[Sj,'t - Sj,'t-d = a + ~ [Fi,'t - Fi,'t-ll + et . (III. 2) 

One potential problem with (I1I.2) is that, if the level of the variables changes substantially 

through time, there may be heteroscedasticity in the variables. In fact, the accepted view in 

capital market studies is that percentage changes are closer to I.I.D. than dollar price changes. 

Thus, one could also consider a regression that relates percentage changes, 

[~ - 1] = a + b [~i,'t - 1] + e~ . 
SJ,'t-l F1,'t-l 

(III. 3) 

In (llI.3), the coefficient b has the dimension of an elasticity, while Ws dimension is that of a 
"-

partial derivative; thus, we now compute ~ as 

(I1I.4) 

where t refers to the last day in the estimation sample. 

Another problem, which may affect both (III.2) and (llI.3), is that, especially at high 

observation frequencies, problems like imperfect synchronization between spot and futures data 

may become relatively important. True, with our data there cannot be any (spurious) lead-lag 

relationships due to imperfect time stamping; but for intra-European currency pairs the 

exchange rate mechanism (ERM), or managed floating, may very well introduce (non-

spurious) cross-correlations among changes in two exchange rates. The reason is as follows: 

when there is an ERM band or an informal target zone linking two currencies, exchange rate 

changes relative to the USD must be either perfectly identical (which we know is not the case), 

or they must follow each other's movements within a relatively short time span-thus creating 

a lead-lag relation akin to the one caused by poorly synchronized data. Whatever the cause of 

the cross-correlations, OLS estimators that consider only contemporaneous returns will 
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underestimate the link between the two currencies as soon as the hedging horizon exceeds the 

observation period. Accordingly, we also experiment with the Scholes-Williams (1977) (SW) 

instrumental variable estimator, which is designed to pick up lagged responses between the 

regressor and the regressand: 

1\ 
. cov(RS't, IV't) 

SWestunator = c'dv(Rf't, IV't) . (111.5) 

In (111.5), RS't and Rf't stand for either the first-differenced spot and futures price, 

respectively, as in (III.2), or the percentage changes in spot and futures prices, respectively, as 

in (111.3); and IV't, the Scholes-Williams instrumental variable, is defined as Rf't-1 + Rf't + 

RfH 1.8 

We estimate (111.2) and (ll.3) using OLS and SW using various sampling frequencies 

and periods. To streamline the programming of the regressions, we used either all London 

working days ("daily"), or every fifth working day ("weekly"), or every tenth working day 

("biweekly"), or twentieth working day ("monthly"). For daily and weekly sampling, we use 

two years of data. As a two-year interval leaves rather few observations for regressions with 

biweekly and especially monthly sampling, we also show results from four-year samples for 

the estimation of bi-weekly and monthly regressions. 

Our data base eliminates errors in the regressor as a source of bias, the focus of this 

article and also the prime problem discussed in Stoll and Whaley (1993). In contrast, Kroner 

and Sultan (1993) stress over-differencing of the data and GARCH-effects as potential 

shortcomings in standard regression tests. While their results are positive and interesting, in the 

case of cross- and cross-and-delta hedges there are practical problems in implementing a 

GARCH error-correction model. Specifically, while there is little a priori doubt that spot and 

8See Apte, Kane, and Sercu (1994) for a theoretical justification and application of the Scholes-Williams 

estimator to lead-lag situations other than those caused by thin trading. As in Apte, Kane and Sercu (1994), or 

Fowler and Rorke (1983) one could extend the lead-lag window to more than one period (one day, here), but tests 

in Sercu and Wu (1997) reveal that there are no significant cross-correlations beyond the one-day interval. 



Cross- and Delta-hedges page 12 

forward rates for one given currency (as in a delta hedge) are cointegrated, for a cross-hedge or 

a cross-and-delta hedge the existence of a cointegration relation between non-related currencies 

is not clear at all; and for EMS pairs, the relation imposed by the exchange rate mechanism is 

not constant over time, being subject to "trend breaks" (realignments) that are, ex ante, difficult 

to predict. Thus, it is not clear how an ECM for cross hedges should be constructed and 

estimated. In addition, over a three-month horizon GARCH-effects are likely to be less 

important than over a one-week interval. For these reasons, our regression-based hedge ratios 

are confined to standard estimation techniques. 

C. Naive Forward-Looking Estimators for Currency Hedges 

In the empirical application, the regression-estimated hedge ratios put forward in the preceding 

section are competing against simple strategies that require no statistical analysis of past data. 

Thus, while the naive estimators may very well be biased, they nevertheless have zero 

estimation error. To understand the logic of these naive hedge ratios, consider a situation where 

the US investor's currency-j inflow, occurring at time Tl, is hedged using a currency-i future 

that expires at T2 (~Tl). For instance, a 3-month NLG inflow is hedged using a 6-month DEM 

futures contract. The conditional regression relation that is to be estimated is 

Sj,Tl = Ut,Tl + ~t,Tl ti,Tl,T2 + £t,Tl,T2. (111.6) 

To obtain a simple forward-looking estimator of ~t,T, we consider two elementary no-arbitrage 

conditions. First, forward rates satisfy Interest Rate Parity. Thus, our first no-arbitrage relation 

is 

(111.7) 

where fTl,T2 is the effective rate of return, without any annualization, on a risk-free investment 

between times Tl and T2 in the domestic currency (the USD), and rh,T2 is the effective return 

on the currency-i (DEM) risk-free investment. Rearranging, we obtain the following relation 

between the spot value of the hedge currency and its futures price: 
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= l+rh'T2 1-
1 - l,Tl,T2· 

+rTl,T2 
(III. 8) 

Note that the futures price on the right hand side is the regressor in (111.6). The spot rate on the 

left hand side of (111.8) is not yet the regressand in (111.6), except in the case of a pure delta 

hedge. We can, however, make a link with the regressand by invoking a second arbitrage 

relationship, triangular arbitrage: 

(111.9) 

where Sj,T is the cross-fate (the value of the exposure currency, j, in units of the hedge 

currency, i). For example, when the currency to be hedged (j) is the NLG and the hedge 

currency (i) is the DEM, the relevant cross-rate is the time-T value, in DEM, of one NLG. 

Combining (111.8) and (111.9), we obtain the following no-arbitrage condition, 

S'T! = Si l+rh ,T21-J, J,n 1 - 1,Tl,T2 . 
. +fTl,T2 

(111.10) 

The variables on the right- and left-hand sides of (111.10) now correspond to the ones 

appearing in regression (111.6). We see that if the time-Tl cross rate and the interest rates were 

known, then there would be no need to estimate ~t,n; in fact, the exposure would be a priori 

equal to 

~t,T1 Si 1 +rh,T2 = J,n 1 +rTl,T2 
(certainty model) . (111.11) 

In practice, the future cross-rate and interest rates are, of course, unknown, but we can 

experiment with simple predictors. For example, the unbiased expectations (UE) hypothesis 

suggests Et(Sj,T) = Fj,t,T, where F},t,T is the forward cross rate. Alternatively, if spot rates are 

random walks (RW), then Et(Sj,T) equals Sj,t, the current cross rate. Thus, our alternative 

price-based estimators for the future spot rate in (III. 11 ) are 

DE: (111.12) 

and 
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RW: sjTl = sj,t. (IlL 13) 

This already provides two naive estimators for ~t,Tl in a cross-hedge problem (where Tl = T2, 

that is, where no future interest rates need to be predicted.) Analogously, as alternative 

predictors for the future interest rates we use either the current relative return ratio for the same 

time to maturity (T2-Tl)-the no-change or random-walk: (RW) forecast: 

RW: 
1 Ai 

+rTl,T2 

l+rTl T2 , 

l+r~,t+T2-Tl 
= 

1 +rt,t+T2-Tl ' 

or the current forward interest rates-the unbiased-expectations (UE) forecast: 

l+rLT2 

UE: = l+rtTl 
1 +rt,T2 
1 +rt,Tl 

(IlL 14) 

(III. 15) 

Expressions (III. 14 ) and (III. 15) provide our alternative naive estimators for the exposure in a 

delta hedge (where j = i, that is, where no future cross rate needs to be predicted.) Note, in 

passing, that these naive hedge ratios do take into account the information in the current spot or 

forward interest rates. As such, they are somewhat more sophisticated than the naive rule 

adopted in Kroner and Sultan (1993), who match the sizes of the spot and forward positions 

(that is, they set ~ = 1). 

Lastly, for a cross-and-delta hedge we use the following four combinations of the 

random-walk (RW) and unbiased expectations (UE) estimators: 

UE/RW: A pi 1 +rtt+T2-Tl 
~t,Tl = j,t,Tl 1 +rt,t+ T2-Tl . (IILI6) 

1 +rLT2 

UEIUE: A pi 1 +rt.Tl 
I-'t,Tl = J,t,Tl 1 +rt,T2 ' (IlL 17) 

1 +rt,Tl 

RW/RW: 
A • 1 +rl 
~t,Tl = SJ t tMT2-Tl 

, 1 +rt,t+T2-Tl ' 
(III. 18) 
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1+rLT2 

RW/UE: 
" . 1 +rLTl 
~t..n = st,t ----'-1 ----"~-

- 1. +ft,T2 
(111.19) 

1 +rt,Tl 

D. Performance Evaluation Criterion 

We make two alternative assumptions regarding the assumed size of the forex cash flow 

contracted at t for delivery at Tl. Under the first approach, the size of each foreign-currency 

inflow is set such that, at the hedging date, its spot value corresponds to one USD; that is, the 

number of foreign currency units one is exposed to at time t is assumed to be equal to l/Sj,t. 

The alternative procedure is that each cash flow is one unit of foreign exchange, regardless of 

this currency's USD value at the hedging date. We discuss the pros and cons of either approach 

after we have set out the evaluation procedures. 

This procedure works as follows. We set aside the fIrst four years of data for the initial 

estimation of the regression coeffIcients. Thus, at the beginning of the 49th month of data we 

determine the hedge ratio, using either the beginning-of-the-month prices (for the naive rules) 

or two to four years of daily, weekly, biweekly, or monthly data (for the regression-based 

estimators). Let the competing estimation rules be indicated by subscripts h = 1, ... H. For 

each of the proposed hedge ratios ~h,t, the cash flow contracted and hedged in month t is then 

computed as Zt [Sj,Tl - ~h,t(ti,Tl,T2 - fi,t,n)]' where Zt is equal to either l/Sj,t or unity. This 

cash flow is usually non-stationary; and so is its conditionally stochastic component, Zt [Sj,Tl -

~h,t i\,Tl,T2]' To obtain a better-behaved variable, we follow standard procedure and subtract 

the initial spot rate; that is, we study the variable Zt {[Sj,Tl - Sj,tl- ~h,t[hTl,T2 - fi,t,n]}. The 

entire procedure is repeated for every subsequent month, each time resetting the naive hedge 

ratios or re-estimating the regression coefficients. For each time series of hedge ratios {~h,t}, 

the N monthly hedge errors are then summarized by their mean square (MS):9 

9The rankings are not affected when the mean in subtracted, i.e. when the standard deviation is computed rather 

than the RMSE. We prefer the latter because the mean is (insignificantly different from zero and) not known, ex 
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N 
MSh = L {Zt [(Sj.t+~T - Sj,t) - ~h.tZi.t+~T.t+n~T - fi,t.t+n~T)] }2 (III.20) 

t=l 

where n (in the subscript for the forward rate) is equal to unity in a pure cross hedge, and equal 

to two in a delta or cross-and-delta hedge. 

We now briefly discuss the alternative assumptions regarding Zt, the size of the 

contractual exposures. The first procedure works with a dimensionless (percentage) number, 

[(S j,Tl - Sj,t) - ~h,t(f\Tl,T2 - fi,t,Tl)]/Sj,t, and eliminates the time-varying level of the 

exchange rate as a potential source of heteroscedasticity. In contrast, the dimension of the 

variable in the second procedure, [(Sj,Tl - Sj,t) - ~h,t(hTl,T2 - fi,t,Tl)], is a number of USD 

per unit of foreign exchange, and its variability is partly detennined by the level of the exchange 

rate. Percentages offer the twin advantages that the division by the initial level eliminates one 

source of heteroskedasticity aild the measures of volatility are more comparable across 

currencies; in fact, percentage changes are the standard transfonn in studies of speCUlative 

markets. In the hedge literature, however, one often works with changes in dollar prices for 

both the regression estimation and the evaluation, presumably because then the regression 

coefficient immediately has the dimension of a number of foreign currency units. In this study, 

both approaches are used, and they lead to similar conclusions. 

IV. Data, Results, and Discussion 

We select eleven countries that have at least twelve years of daily data (1985-1996) in the 

Datastream data base: Belgium, Canada, Denmark, France, Germany, Italy, Japan, the 

Netherlands, Switzerland, the UK, and the US. Exchange rates, originally against GBP, were 

re-expressed into units of USD (the home currency), and forward rates were computed 

following the procedure outlined in the test-design section. From the total menu of 45 possible 

ante, to the trader. Nor are the rankings are affected if one relies on mean absolute deviations rather than on 

RMSs to rate the competing hedging rules. 
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pairs that could enter into a cross-hedge problem, we select three groups of three pairs each, in 

a way that should provide a sufficient variability in the degree of relatedness between the two 

members of a pair. The first group contains intimately related currency pairs that US-based 

traders would surely consider to be excellent candidates in a cross-hedge: NLG-BEF (where 

for most of the sample period an intra-Benelux agreement imposed a I %-band around the ERM 

central rate), DEM-NLG (which the Nederlandse Bank unilaterally kept within a narrow band 

for most of the sample period), and BEF-DEM (linked indirectly through the above 

arrangements, and directly by unilateral intervention by the Nationale Bank van Belgie). The 

second group contains a straight ERM pair (DKK-FRF), two combinations between an ERM 

currency and the CHF (which, until mid-1997, was widely viewed as linked to the DEM, even 

though Switzerland's central bank denies that it actually intervenes in exchange markets), and 

the ITL-GBP pair. These four pairs still show substantial common characteristics, although 

less so than the first group. The motivations for considering the two currency combinations in 

the third group, lastly, are completeness and academic curiosity rather than realism. The 

members of each pair in the third group are, indeed, far less connected; in fact, the only 

commonalities between these probably is the USD-component in the exchange rates, and it 

extremely doubtful whether, in reality, one would ever hedge a GBP exposure using CAD or 

an ITL exposure using JPY. Still, this currency selection allows us to see to what extent the 

degree of relatedness affects the relative performance of the naive vs. regression-based hedges. 

To set the stage, Table 1 describes the results from naive hedges. Panel A of the table 

shows the rootlO MS cash flow of the exposed currency, first without hedging and then after 

applying each of the three naive no-change hedges. First consider the delta hedge, as studied by 

10In Panel A of Table I we use the root mean square for the purpose of showing risk as an absolute magnitude, 

because the root mean square percentage change is almost indistinquishable from the volatility of log changes 

(the standard measure of risk in option pricing) and squaring of the mean dollar changes would have led to 

numbers with inconveniently divergent orders of magnitude. In all subsequent tables, in contrast, we use the 

mean squares themselves, as standard in the hedging literature, and we deal with the divergent magnitudes by 

dividing this MS by the MS of the naive rule. 
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Kroner and Sultan. In all cases, the naive delta-hedge reduces the volatility by 93 percent 

(DKK) to almost 98 percent (JPY). The picture for cross-hedges and cross-and-delta hedges is, 

unsurprisingly, less homogenous across currencies: the performance of a naive hedge depends 

a lot on the degree of relatedness of the two pairs. For ERM pairs, applying the no-change rule 

of thumb reduces the risk by 82 percent (hedging BEF using NLG) to 96 percent (NLG by 

DEM); for non-ERM European pairs the risk-reduction ranges from 60-65 percent (the cases 

involving the CHF) to a lowish 33 percent (hedging ITL using GBP). For unrelated pairs, 

lastly, naive hedging achieves virtually no risk-reduction (CAD-GBP), or may actually backfire 

rather badly (lTL-JPY); recall, however, that the last two combinations are a priori not realistic 

for hedging purposes. 

Panel B compares the MS cash flows for the naive hedges other than the no-change 

rule. In that panel, as in Tables 2 and 3 discussed below, all MSs are rescaled by the MS cash 

flow of the no-change hedging rule-RW for a cross or delta hedge, and RW/RW for a cross

and-delta hedge. All ratios in Panel B of Table 1 turn out to be extremely close to unity; that is, 

the choice of a particular naive rule has no meaningful impact on the MS cash flow. Thus, even 

though it is widely accepted that the RW model beats the UE model as an exchange rate 

forecaster (Froot and Thaler, 1990), for current purposes the two models are indistinguishable, 

and our choice of the no-change rule as the basis of comparison is not material. The more 

interesting question, then, is how the regression-based hedging rules fare, across sampling 

rules or estimation techniques and relative to the naive hedging rules. 

Tables 2 and 3 show the results for non-naive hedges when the size of the foreign 

inflow, due within three months, is equal to, respectively, l/Sj,t units of foreign exchange 

(Table 2) or one unit (Table 3). For ease of comparison, the results for OLS regressions using 

two years of data (with varying observation frequency) are presented in the central part of the 

table. To the left, next to the MS ratios for daily OLS regressions, we present the ratios for 

daily SW regressions; and to the right we add the numbers for biweekly or monthly OLS 

regressions obtained with four rather than with two years of data. 
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There are four pervasive findings. First, in this study (and unlike in Kroner and Sultan, 

1993), MS ratios in excess of unity are by no means the exception. In fact, regressions seem to 

do systematically poorly for delta-hedges, as well as for cross hedges or cross-and-delta 

hedges involving strongly related currencies. Given that, in this experiment, one cannot invoke 

errors in data as an explanation of the less-than-impressive performance of the statistics-based 

hedge ratios, we conclude that the regressions must suffer from low precision and/or from 

some form of misspecification. We return to this issue below. 

A second pervasive finding from Tables 2 and 3 is that, in this study, the choice of a 

sample (period length and observation frequency) or of an estimator (OLS vs. SW) has a much 

larger impact than has the choice of OLS vs. GARCH-ECM in Kroner and Sultan (1993) for a 

given observation frequency (weekly, in their case); also, the deviations from unity are larger, 

here, than what they observe. To a large extent this is due to the fact that most of our hedging 

experiments include cross-rate risk; for the delta-hedges, which are the object of Kroner and 

Sultan's study, the impact of the sample and estimator tend to be smaller indeed, and so do the 

deviations from unity. The third general pattern, related to the previous one and already 

apparent from Table 1, is that the results for cross-and-delta hedges are quite close to those of 

pure cross hedges; that is, cross-rate volatility is the dominant source of basis risk in a cross

and-delta risk, and the delta-component is rather marginal. Lastly, for a given sample and 

estimation technique, the results from regressions using percentage-change data are virtually 

always better than the ones from regressions between first differences-even in two-year 

samples, where the variability in the level of the exchange rates is clearly lower than in four

year samples. This finding confirms the standard view that percentage changes have better 

statistical properties than dollar price changes. 

Closer inspection of the regression MS ratios reveals some interesting differences 

between the three currency groups we chose for cross (and cross-and-delta) hedges. 

Specifically, for highly related pairs, the regression-based cross-hedges that use two years of 

data have the following characteristics: (a) they do clearly worse than naive hedges; (b) the low

frequency regressions do substantially better than high-frequency regressions; and (c) for daily 
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observations, SW resoundingly beats OLS. The last two findings imply that, at high 

frequencies, the ERM does induce substantial lead-lag patterns. Such leading/lagging 

. relationships should be picked up not just by shifting from OLS to SW, but also, within OLS, 

by increasing the observation interval. This does, in fact, happen: even though sample sizes 

become smaller and smaller, weekly still OLS does better than daily, and biweekly better than 

weekly OLS and even SW.ll However, when going from biweekly to monthly data, the 

advantage of picking up more lead/lag relations appears to be more than compensated by the 

concomitant loss of degrees of freedom. When, accordingly, the sample period is increased to 

four years, monthly sampling comes out as the winner; in fact, the results for four years of 

monthly data become close to the ones from the naive rules. 

Thus, for highly related currencies lead-lag patterns are the prime source of problems in 

the high-frequency OLS regressions with two years of data, and explain why these regressions 

are resoundingly beaten by the naive rules. These problems can be mitigated by choosing SW, 

or a large sample of low-frequency data; but the result is still not worth the effort as the naive 

rules do at least as well. To confirm this picture, we note that none of these patterns is present 

in the group of unrelated currencies-the combinations that no real-world treasurer would 

actually select: there is no clear association between MS ratio and sample period or frequency, 

and SW does not improve on OLS. In the absence of an obvious mis-specification problem, the 

regression does about as well as the naive rule (CAD-GBP), or substantially better (ITL

JPy)12. The diagnosis for group 2, finally, is somewhere in between: there is some evidence 

of cross-correlations (as shown by the superiority of daily SW, or two years of biweekly data 

or four years of monthly data relative to daily-all relative to daily or weekly OLS), but the 

11 This provides circumstantial evidence that cross-correlations may exist at horizons exceeding one day. When 

using daily data one could, of course, extend the SW instrument to account for higher-order lags. However, as 

shown in Sercu and Wu (1997), while the direct statistical evidence in favor of one-day leading/lagging is 

convincing, there is no direct evidence of significant higher-order cross-correlations. 

12In fairness, recall that, in this particular case, the application of the naive rule actually increased the risk. It 

can easily be calculated that the regressions reduce the total variability by about 1/6. 
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naive rules do not systematically outperfonn the regression-based hedge ratios, and increasing 

the sample size does not help. 

In contrast, for delta hedges (Panels C in Tables 2 and 3) there is no a priori reason to 

expect (quasi-) EMS currencies to be very different from others, nor do we see any such 

difference in the figures. Strikingly, even the best regression-based hedges tend to do worse 

than the naive rules, and in the three cases where the naive rules are actually beaten the 

difference remains rather smalL The superior perfonnance of the naive hedging rules that is 

observed here differs from the conclusion of Kroner and Sultan (1993), who find that OLS 

beats their naive rule in all cases but one. Nor is there any evidence of lead-lag relationships: 

SW is typically quite close to OLS, and the differences between the MS cash flows of these 

two go either way, without any clear pattern. As we found for cross-hedges that involve 

unrelated currencies, for delta hedges a sample of recent high-frequency data does better than 

low-frequency data; and increasing the sample period to four years actually worsens the results. 

This suggests that the main problem that plagues delta-regressions seems to be a changing 

relationship between the regression variables. The finding of Kroner and Sultan that the 

GARCH ECM does better than OLS points in the same direction. 

v . Conclusions 

When hedging an asset using a futures contract that has the wrong expiration data, or the 

wrong underlying asset, or both, the variance-minimizing hedge ratio depends on unobservable 

conditional (co)variances, which have to be estimated. If unconditional regression analysis of 

past data is used, the issues are (a) what estimator is to be used, taking into account the 

statistical properties of the data series; (b) what differencing interval is to be chosen; and (c) 

whether one should consider simple first differences or percentage changes. A more radical 

question is whether simple rules of thumb provide useful alternatives, or complements, to 

regression-based estimators. 
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In this paper we find that, regardless of observation frequency and estimation 

technique, unconditional (backward-looking) regressions are often poor proxies for the ideal 

regression, even to the extent that regression-based hedges are frequently beaten by simple 

rules of thumb. For delta hedges, this effect is rather pervasive, while for cross hedges and 

cross-and-delta hedges the superiority of the naive hedging rule is especially clear among 

closely-related currencies. As our data are free of measurement errors, this relatively poor 

performance of regression-based hedges cannot be due to errors in data. For cross-hedges 

involving two European currencies, the poor performance of high-frequency OLS estimates can 

be traced to EMS-induced leads and lags among exchange rate changes, while for delta-hedges 

the dominant source of estimation problems seems to be a time-varying relationship between 

the regression variables. Lastly, we find that regressions do better if they use (percentage) 

returns rather than dollar price changes. 
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hedg-exp 

DEM-NLG 
NLG-BEF 
BEF-DEM 

DKK-FRF 
CHF-DKK 
FRF-CHF 
GBP-ITL 

CAD-GBP 
ITL-JPY 

Table 1: MS cash flow from naive hedges 

Panel A RMS cash flow, B-2, unhedged or covered by a random-walk hedge 
Cash flow is l/Sj,t units of foreign exchange Cash flow is one unit of foreign exchange 

not hedged cross&delta cross delta not hedged cross&delta cross delta 

5.95526 0.26795 0.24010 0.17021 3.32539 0.14740 0.13464 0.09266 
6.03279 1.07683 1.08522 0.26349 0.18433 0.03107 0.03120 0.00771 
6.01958 1.26694 1.09797 0.16317 3.78570 0.76289 0.66086 0.09943 

5.71725 1.0253 0.96754 0.32070 1.05734 0.19049 0.18004 0.05878 
5.97799 2.4684 2.41083 0.43770 0.97167 0.39136 0.38297 0.07002 
6.52408 2.31984 2.29890 0.20071 4.76446 1.69084 1.65566 0.14245 
6.41942 3.6406 3.60859 0.33057 0.00515 0.00252 0.00250 0.00026 

6.04439 5.7703 5.78942 0.19197 10.86317 10.10121 10.15489 0.34342 
6.18218 8.13144 8.16641 0.14255 0.05720 0.07366 0.07372 0.00116 

P lB MS ane cas hfl f th owo 0 er naIve hd e Lges, sc a1 db th MS e e cas hfl f d ow 0 ran om-wa lkh d elge 
Cash flow is l/Sj,t units of foreign exchange Cash flow is one unit of foreign exchange 

cross and delta hedges cross delta cross and delta hedges cross delta 
hedg-exp ue/rw rw/ue ue/ue ue ue ue/rw rw/ue ue/ue ue ue 

DEM-NLG 1.006 0.990 0.996 1.008 1.010 1.006 0.992 0.996 1.008 1.012 
NLG-BEF 0.996 1.000 0.996 0.996 0.994 0.998 1.000 0.998 0.996 0.994 
BEF-DEM 1.000 0.998 0.998 1.000 1.000 1.000 0.998 0.998 1.000 1.004 

DKK-FRF 1.008 0.990 0.998 1.004 0.992 1.006 0.990 0.996 1.004 0.994 
CHF-DKK 0.986 0.998 0.982 0.984 0.960 0.984 0.998 0.982 0.982 0.960 
FRF-CHF 0.996 1.002 0.998 0.996 1.002 0.994 1.002 0.996 0.994 1.002 
GBP-ITL 1.004 1.000 1.004 1.004 1.024 1.008 1.000 1.008 1.000 1.000 

CAD-GBP 1.002 1.000 1.002 1.002 1.028 1.002 1.000 1.002 1.002 1.028 
ITL-JPY 1.022 0.998 1.022 1.024 0.998 1.020 0.998 1.018 1.020 0.982 

Key to Table 1: Either one unit, or l/Sj t units, of the currency shown in column "expo(sure)" are hedged using J3 futures 
contracts of the currency shown in colm "hedg(e)". In Panel A, the MS themselves are shown, either in the absence of 
hedging (column "unhedged"), or when hedged by a six-month contract of the currency labeled "hedg(e)" (the cross&delta 
hedge), a three-month contract of the currency labeled "hedg(e)" (the cross hedge), or by a six-month contrct in the currency of 
the exposure (the delta-hedge). In all cases the hedge ratio is based on the no-change forecast in spot or interest rates. 

In Panel B, the MS cashflow of other naive rules are shown, divided by the MS of the no-change hedging rule. The naive 
hedging rules are: 
• "RW" (random walk): J3 is set assuming that exchange rates (or interest rates) will not change. 
• "UE" (unbiased expectations): J3 is set assuming that the forward exchange rate (or interest rate) is right 
• "RW/UE", "UE/RW", etc.: the fIrst entry refers to the naive forecast used for the exchange rate, the second one to the naive 

forecast used for the interest rates. 
The base case is for cross-and-delta hedges is RW/RW; for the other cases it is RW. All MSs are scaled by the MS of the base 
case. 



Table 2: MS cash flow from regression-based hedges of lISj,t units of foreign exchange, 
scaled by the MS cash flow of random-walk based hedge results 

P IA C ane ross- an e - e 1ges d d Ita h d 
using two years of data using four years of data 

day day day day week week 2week 2week mnthmnth 2week 2week mnth mnth 
hedg-exp swt. SW% OLSt. OLS% OLSt. OLS% OLSt. OLS% OLSt.OLS% OLSt. OLS% OLSt. OLS% 

DEM-NLG 1.186 1.184 20477 20430 10414 1.399 1.120 1.084 1.19 1.208 1.107 1.084 1.080 1.038 
NLG-BEF 1.077 1.010 1.390 1.313 1.156 1.084 1.125 1.056 1.146 1.072 1.124 1.034 1.084 1.002 
BEF-DEM 1.061 1.069 1.156 1.190 1.090 1.092 1.058 1.049 1.067 1.058 1.042 1.034 1.036 1.034 

DKK-FRF 0.882 0.870 0.992 0.972 0.901 0.889 0.926 0.914 0.916 0.910 0.947 0.931 0.968 0.956 
CHF-DKK 0.889 0.889 0.922 0.914 0.920 0.901 0.908 0.900 0.907 0.888 0.933 0.933 0.901 0.870 
FRF-CHF 1.040 1.036 1.153 1.153 1.059 1.044 0.994 0.989 1.003 0.998 1.002 0.986 1.044 1.030 
GBP-TIL 0.939 0.941 0.933 0.937 0.931 0.929 0.992 1.000 0.936 0.934 1.047 1.014 1.042 1.002 

CAD-GBP 1.047 1.038 1.012 1.000 1.094 1.090 1.361 1.358 1.134 1.127 1.061 1.049 1.113 1.090 
ITL-JPY 0.645 0.642 0.646 0.643 0.659 0.656 0.654 0.651 0.643 0.639 0.654 0.654 0.664 0.663 

ane ross- e 1ges P IBC hd 
using two years of data using four years of data 

day day day day week week 2week 2week mnthmnth 2week 2week mnth mnth 
hedg-exp swt. SW% OLSt. OLS% OLSt. OLS% OLSt. OLS% OLSt.OLS% OLSt. OLS% OLSt. OLS% 

DEM-NLG 1.149 1.141 20465 2.500 1.416 1.409 1.063 1.034 1.131 1.154 0.986 0.992 1.024 0.996 
NLG-BEF 1.053 1.000 1.336 1.275 1.126 1.067 1.120 1.064 1.111 1.054 1.080 1.020 1.040 0.986 
BEF-DEM 1.075 1.082 1.175 1.221 1.086 1.086 1.055 1.047 1.068 1.061 1.028 1.022 1.026 1.020 

DKK-FRF 0.903 0.897 0.982 0.964 0.872 0.869 0.867 0.874 0.896 0.903 0.960 0.960 0.927 0.937 
CHF-DKK 0.884 0.887 0.920 0.916 0.918 0.901 0.906 0.900 0.906 0.890 0.941 0.941 0.889 0.867 
FRF-CHF 1.059 1.049 1.171 1.164 1.080 1.059 0.995 0.985 1.018 1.007 1.020 0.998 1.061 1.038 
GBP-TIL 0.935 0.939 0.925 0.931 0.925 0.925 0.984 1.000 0.933 0.933 1.026 0.998 1.020 0.988 

CAD-GBP 1.034 1.024 1.008 0.996 1.075 1.071 1.315 1.313 1.121 1.113 1.059 1.047 1.103 1.084 
ITL-JPY 0.640 0.637 0.642 0.637 0.654 0.651 0.651 0.648 0.637 0.633 0.648 0.648 0.656 0.654 

ane e ta- e 1ges P lCDl hd 
using two years of data using four years of data 

day day day day week week 2week 2week mnthmnth 2week 2week mnth mnth 
hedg-exp swt. SW% OLSt. OLS% OLSt. OLS% OLSt. OLS% OLSt.OLS% OLSt. OLS% OLSt. OLS% 

NLG 1.173 1.014 1.175 1.012 1.201 1.026 1.297 1.072 1.281 1.077 1.357 1.036 1.464 1.119 
BEF 1.111 1.032 1.117 1.032 1.145 1.073 1.190 1.087 1.199 1.100 1.179 1.082 1.151 1.059 
DEM 1.332 1.107 1.320 1.094 1.350 1.115 1.376 1.109 1.366 1.113 1.488 1.080 1.605 1.173 
FRF 1.032 1.010 1.038 1.024 1.055 1.036 1.067 1.072 1.062 1.056 1.008 1.024 0.988 0.998 
DKK 0.861 0.920 0.925 0.964 0.933 0.988 1.013 1.074 0.949 1.011 0.922 0.922 0.943 1.020 
CHF 1.175 1.053 1.158 1.051 1.162 1.042 1.151 0.995 1.147 1.033 1.252 1.047 1.306 1.077 
TIL 0.986 0.882 1.040 0.925 0.941 0.878 0.925 0.925 1.02 0.918 1.098 0.947 1.105 0.956 
GBP 1.132 1.018 1.134 1.040 1.166 1.057 1.204 1.032 1.337 1.183 1.631 1.383 1.721 1.421 
JPY 1.182 1.044 1.177 1.057 1.212 1.055 1.395 1.180 1.25 1.085 1.277 1.069 1.383 1.134 

Key to Table 2. l/Sj,t units of the currency shown in column "exp(osure)" are hedged using ~ futures contracts of the 
currency shown in column "hedg(e)". The table show mean squares (MS) of these hedged cash flows, scaled by the MS cash 
flow from the corresponding random-walk-based hedging strategy. In a cross-hedge, the expiry dates of the exposure and the 
futures match, in a delta-hedge, the two currencies match, and in a cross-delta-hedge neither match. 
The ~ is set using the following regression-based rules: 
• OLS~: OLS regressions on fIrst differences (daily to monthly) 
• OLS%: OLS regressions on percentage returns (daily to monthly), with the slope rescaled into a hedge ratio using time-t rates, 

see (IlA). 
• SW~: Scholes-Williams regressions on fIrst differences (daily) 
• SW%: Scholes-Williams regressions on percentage returns (daily), with the slope rescaled into a hedge ratio using tirne-t 

rates, see (IlA). 



Table 3: MS cash flow from regression-based hedges of one unit of foreign exchange, 
scaled by the MS cash flow of random-walk based hedge results 

P lA C ane ross- an e - e 1ges d d Ita h d 
using two years of data using four years of data 

day day day day week week 2week 2week mnthmnth 2week 2week mnth mnth 
hedg-exp swt. SW% OLSt. OLS% OLSt. OLS% OLSt. OLS% OLSt.OLS% OLSt. OLS% OLSt. OLS% 

DEM-NLG 1.186 1.188 2.506 2.474 1.407 1.397 1.161 1.184 1.144 1.105 1.065 1.051 1.057 1.024 
NLG-BEF 1.075 1.008 1.454 1.374 1.166 1.092 1.156 1.080 1.114 1.047 1.138 1.044 1.092 1.006 
BEF-DEM 1.069 1.077 1.162 1.199 1.098 1.100 1.074 1.064 1.055 1.046 1.042 1.036 1.038 1.036 

DKK-FRF 0.874 0.861 0.978 0.956 0.899 0.887 0.913 0.905 0.931 0.921 0.941 0.924 0.962 0.949 
CHF-DKK 0.874 0.878 0.904 0.901 0.903 0.885 0.893 0.878 0.923 0.911 0.889 0.889 0.882 0.852 
FRF-CHF 1.024 1.022 1.158 1.156 1.075 1.036 0.991 0.988 1.010 1.005 1.002 0.982 1.024 1.008 
GBP-TIL 0.953 0.953 0.953 0.960 0.953 0.953 0.969 0.961 0.958 0.964 1.082 1.057 1.065 1.032 

CAD-GBP 1.088 1.080 1.044 1.032 1.143 0.000 1.184 1.180 1.285 1.273 1.100 1.088 1.158 1.136 
I'fL..JPY 0.667 0.666 0.672 0.671 0.679 0.676 0.663 0.661 0.638 0.633 0.667 0.671 0.674 0.676 

ane ross- Lges P 1 B C hed 
using two years of data using four years of data 

day day day day week week 2week 2week mnthmnth 2week 2week mnth mnth 
hedg-exp swt. SW% OLSt. OLS% OLSt. OLS% OLSt. OLS% OLSt.OLS% OLSt. OLS% OLSt. OLS% 
DEM-NLG 1.169 1.153 2.468 2.506 1.440 1.423 1.133 1.148 1.063 1.044 0.978 0.974 1.026 0.990 
NLG-BEF 1.057 1.002 1.409 1.341 1.145 1.084 1.130 1.072 1.102 1.047 1.094 1.034 1.051 0.994 
BEF-DEM 1.082 1.090 1.186 1.239 1.094 1.094 1.077 1.068 1.050 1.043 1.032 1.024 1.030 1.024 

DKK-FRF 0.904 0.897 0.980 0.958 0.874 0.869 0.897 0.902 0.870 0.878 0.964 0.960 0.933 0.939 
CHF-DKK 0.874 0.880 0.906 0.904 0.903 0.889 0.895 0.882 0.919 0.910 0.901 0.901 0.870 0.848 
FRF-CHF 1.038 1.030 1.177 1.169 1.121 1.047 1.003 0.994 1.016 1.004 1.018 0.992 1.038 1.014 
GBP-TIL 0.937 0.945 0.937 0.945 0.937 0.945 0.953 0.953 0.957 0.965 1.049 1.024 1.032 1.008 

CAD-GBP 1.067 1.057 1.034 1.022 1.117 0.000 1.164 1.159 1.250 1.239 1.096 1.084 1.145 1.126 
I'fL..JPY 0.666 0.664 0.671 0.669 0.677 0.674 0.662 0.659 0.629 0.624 0.666 0.669 0.671 0.672 

ane e ta- e Lges P lCDI hd 
using two years of data using four years of data 

day day day day week week 2week 2week mnthmnth 2week 2week mnth mnth 
hedg-exp swt. SW% OLSt. OLS% OLSt. OLS% OLSt. OLS% OLSt.OLS% OLSt. OLS% OLSt. OLS% 

NLG 1.138 0.990 1.145 0.994 1.171 1.004 1.248 1.056 1.348 1.108 1.341 1.018 1.430 1.084 
BEF 1.109 1.032 1.115 1.028 1.136 1.069 1.195 1.096 1.199 1.095 1.184 1.080 1.156 1.061 
DEM 1.290 1.075 1.279 1.065 1.306 1.084 1.327 1.089 1.432 1.147 1.471 1.061 1.570 1.136 
FRF 1.000 0.852 1.077 0.925 0.925 0.852 1.000 0.925 1.008 0.921 1.077 0.925 1.077 0.925 
DKK 0.865 0.927 0.924 0.970 0.939 1.000 0.955 1.024 1.001 1.053 0.893 0.893 0.949 1.038 
CHF 1.141 1.030 1.124 1.026 1.343 1.016 1.124 1.017 1.167 1.007 1.241 1.036 1.304 1.071 
TIL 1.032 1.010 1.038 1.024 1.055 1.038 1.063 1.061 1.063 1.065 1.004 1.020 0.998 1.010 
GBP 1.100 0.996 1.117 1.028 1.130 0.030 1.306 1.166 1.273 1.079 1.623 1.388 1.687 1.407 
JPY 1.162 1.034 1.124 1.034 1.199 1.034 1.218 1.088 1.387 1.167 1.275 1.069 1.374 1.124 

Key to Table 3. The table is similar to Table 2, except that the monthly inflow now is one unit of the currency shown in 
column "expo( sure)" . 




