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Abstract

Cox & Leland (2000) use techniques from the field of stochastic con-
trol theory to show that in the particular case of a Brownian motion for
the asset returns all risk averse decision makers with a fixed investment
horizon prefer path-independent pay-offs over path-dependent ones. We
will provide a novel and simple proof for the Cox & Leland result and we
will extend it to general, not necessarily complete, Lévy markets. It is
also shown that in these markets optimal path-independent pay-offs have
final values increasing with the underlying asset value. Our results imply
that path-dependent investment pay-offs, the use of which is widespread
in financial markets, do not appear to offer good value for risk averse
decision makers with a fixed investment horizon.

1 Introduction

In this paper we analyse optimal investment choices in a Lévy market for risky
assets. More precisely, let the risky asset price at time 0 be given by S0. Then,
we will assume that the stochastic process {Xt, t ≥ 0} is a Lévy process and
we define the price St of the risky asset at time t > 0 as

St = S0e
Xt . (1)

Lévy processes have proven to be successful in many areas of financial engi-
neering such as equity, fixed income, commodities and recently also credit risk
modelling. We will discuss their characteristics and properties in more detail
in Section 2. For a full theoretical background we refer to Bertoin (1996) or
Sato (2000). For more details about their applicability in finance we refer to
Schoutens (2003).
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We assume the market is frictionless, trading is continuous and there is a
constant risk-free interest r. There are also no taxes, no transaction costs, no
dividends, no restriction on borrowing or short sales and the risky asset is per-
fectly divisible. Finally, the notation EP will be used to denote that expectations
are taken with respect to a given (initial) physical probability measure P.

We will consider an investor who is facing a fixed investment horizon of
length T > 0, and who at time t = 0 is evaluating the appropriateness of a
financial security with stochastic pay-off at time t = T given by

Pg = g(Sti | 0 ≤ ti ≤ T, i = 1, 2, ..., n), (2)

for some function g. We will assume that g is such that EP[Pg] exists. When
the random variable Pg depends only on the final value ST of the underlying
risky asset then we call Pg a path-independent pay-off, otherwise Pg is path-
dependent. The price (or cost) for buying the pay-off Pg will be denoted by
C(Pg).

Cox & Leland (2000) use techniques from the field of stochastic control
theory to show that in the particular case of a Brownian motion for the log-
returns risk averse decision makers with a fixed investment horizon prefer path-
independent pay-offs over path-dependent pay-offs. We will provide a novel
and simple proof for the Cox & Leland result and we will extend it to general,
not necessarily complete, Lévy markets. Note that as compared to the use of a
Brownian motion as the traditional workhorse for modelling log-returns, general
Lévy processes provide more flexibility and potential accuracy. The latter holds
especially true in case of short-term returns because they exhibit fat tails and
auto-correlation; see e.g. Schoutens (2003).

This paper shows that for general Lévy markets path-independent pay-offs
continue to be preferred by risk averse decision makers as long as the arbitrage-
free pricing is based on the Esscher transform to generate an equivalent martin-
gale measure.

Furthermore, we will show that in these instances investors with a fixed
investment horizon T > 0 will always opt for path-independent pay-offs that
are increasing with the underlying asset value ST , a result that is related to
earlier results of Dybvig (1988a,b).

Hence, we provide more support for the result that path-dependent pay-offs
should always be avoided by risk averse utility maximisers, and they should buy
path-independent structures instead. For example, click funds, which combine
an investment guarantee with complicated path-dependent options to benefit
from increasing stock markets, are of no real interest to investors.

The paper is structured as follows. In Section 2 we briefly recall some basic
results from the field of Lévy processes, the ordering of risks, risk preferences,
and we also discuss the Esscher transform as a tool to perform arbitrage-free
pricing. In Section 3 we prove the optimality of path-independent investment
strategies for Lévy processes and we give an example that allows explicit veri-
fication of our results. In Section 4 we show that an optimal path-independent
pay-off is one where the pay-off values are increasing in the underlying asset
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Distribution ν(dx)
Poisson(λ) λδ(1)
Normal(µ, σ2) 0
Gamma(a, b) a exp(−bx)x−11(x>0)dx
IG(c, λ) (π)−1/2cx−3/2 exp(−λx)1(x>0)dx
VG(C,G,M) C|x|−1(exp(Gx)1(x<0) + exp(−Mx)1(x>0))dx
NIG(α, β, δ) δαπ−1|x|−1 exp(βx)K1(α|x|)dx
CGMY(C,G,M, Y ) C|x|−1−Y (exp(Gx)1(x<0) + exp(−Mx)1(x>0))dx
Meixner(α, β, δ) δx−1 exp(βx/α) sinh−1(πx/α)dx

Table 1: Lévy measure for some Lévy Processes (at time t = 1)

value at the end of the investment horizon T . Finally, Section 5 concludes and
summarises.

2 Background

2.1 Lévy Processes

Suppose φ(u) is the characteristic function related to some distribution function.
If for every positive integer n, φ(u) is also the nth power of a characteristic
function, we say that the distribution is infinitely divisible.

One can define for every such infinitely divisible distribution a stochastic
process {Xt, t ≥ 0}, called a Lévy process, which starts at zero, has independent
and stationary increments and such that the distribution of an increment over
[s, s+ t], s, t ≥ 0, i.e. Xt+s −Xs, has (φ(u))

t as its characteristic function.
The cumulant chacteristic function function ψ(u) = lnφ(u) is often called the

characteristic exponent and it satisfies the following Lévy-Khintchine formula :

ψ(u) = iγu−
σ2

2
u2 +

∫ +∞

−∞
(exp(iux)− 1− iux1{|x|<1})ν(dx), (3)

where γ ∈ R, σ2 ≥ 0 and ν is a measure on R\{0} with

∫ +∞

−∞
inf{1, x2}ν(dx) =

∫ +∞

−∞
(1 ∧ x2)ν(dx) <∞.

We then say that our infinitely divisible distribution has a triplet of Lévy char-
acteristics (or Lévy triplet for short) [γ, σ2, ν(dx)]. The measure ν is called the
Lévy measure of X.

From the Lévy-Khintchine formula, one can easily derive that, in general, a
Lévy process consists of three independent parts: a linear deterministic part, a
Brownian part, and a pure jump part. The Lévy measure ν dictates how the
jumps occur. In Table 1 we summarise the Lévy measure for some popular Lévy
processes.
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Further, for t = (t1, t2, ..., tn) and x = (x1, x2, ..., xn) ∈ R
n let Ft(x) denote

the multivariate distribution function of the random vector (Xt1 , Xt2 , ..., Xtn):

Ft(x) = Pr(Xt1 ≤ x1,Xt2 ≤ x2, ...,Xtn ≤ xn). (4)

When (Xt1 , Xt2 , ..., Xtn) is a continuous random vector we denote its density
by ft(x)

ft(x) =
∂n

∂x1∂x2...∂xn
Ft(x). (5)

On the other hand, when (Xt1 , Xt2 , ..., Xtn) is discrete we define ft(x) as

ft(x) = Pr(Xt1 = x1,Xt2 = x2, ...,Xtn = xn). (6)

Finally let mt(u) denote the moment generating function (mgf) of Xt. We
have that mt(u) = (m1(u))

t and we will use the short-hand notation m(u)
instead of m1(u).

2.2 Ordering of Risks

Definition 1 (Convex Ordering of pay-offs ) The pay-off Pg is said to pre-

cede the pay-off Ph in the convex order sense, written as Pg ≤cx Ph, if the

following conditions hold:

EP [Pg] = EP [Ph] ,

EP

[
(Pg − d)+

]
≤ EP

[
(Ph − d)+

]
, for d ∈ R, (7)

In general, the pay-off Pg will depend also on intermediate prices S(ti) with
0 < ti < T. Consider now the conditional expectation EP [Pg | ST = s] which
can be interpreted as the P-weighted average of Pg, given that the final price
ST of the underlying stock equals s. Then, we let s vary and we obtain the
random variable EP [Pg | ST ] . By construction we have that EP [Pg | ST ] is a
function of the final stock price ST only, and hence is path-independent. Note
that EP [Pg | ST ] meets the requirements of definition (2) and has the same
expectation as Pg.

The following result was proven in Kaas et al. (2000) and is essentially an
application of Jensen’s inequality.

Theorem 2 (Convex Ordering for Conditional Expectations) Using the

notation above we have that

EP [Pg | ST ] ≤cx Pg. (8)

It is well-known that in both von Neumann & Morgenstern’s ‘Expected
Utility Theory’ as well as in Yaari’s ‘Dual Theory of Choice under Risk’, convex
ordering represents the common preferences of risk averse decision makers with
regards to risks with equal expectations; see for example Wang & Young (1998)
for more information. From the theorem above we conclude that the pay-off
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EP [Pg | ST ] will dominate the pay-off Pg from the point of view of all risk
averse decision makers.

Hence, a risk averse decision maker who has to choose between the path-
independentEP [Pg | ST ] and the path-dependent Pg will always takeEP [Pg | ST ]
when the prices C(EP [Pg | ST ]) and C(Pg) are equal.

2.3 Financial Pricing using the Esscher Transform

The pay-offs Pg as defined in (2) depend on the dynamics of the stochastic
process {St, t ≥ 0} . It is well-known that the absence of arbitrage opportuni-
ties essentially amounts to determining the price C(Pg) for Pg by taking the
discounted expectation of Pg, not with respect to the (initial) physical probabil-
ity measure P, but with respect to another probability measure Q. We will use
the notation EQ when expectations are taken with respect to this new probabil-
ity measure Q. Furthermore, Q has to be determined such that the discounted
process {e−rtSt, t ≥ 0} becomes a martingale, which means that for all t ≥ 0 :

EQ
[
e−rtSt

]
= S0, t ≥ 0. (9)

We refer to e.g. Harrison & Kreps (1979) or Harrison & Pliska (1981) for exten-
sive theory on arbitrage-free pricing. We conclude that the price C(Pg) of the
financial pay-off Pg is given by

C(Pg) = e−rtEQ [Pg] , (10)

for some martingale measure Q, and we will now show how the so-called Esscher
transform can be used in deriving Q .

The Esscher transform with parameter h of a continuous stochastic process
{Xt, t ≥ 0} is the process where for t > 0 the modified probability density

function f
(h)
t (x) of Xt is defined as:

f
(h)
t (x) =

ehxft(x)

mt(h)
, (11)

where h ∈ R. We will denote the modified mgf of Xt by m
(h)
t . The Esscher

transform effectively modifies the initial probability measure P of the process.
Note that since the exponential function is positive, the modified probability
measure is equivalent to the physical probability measure and and also that
when h = 0 we obtain the original probability measure.

The Esscher transform as such has a long history in the actuarial science
literature and in mathematical finance. It was first introduced in Esscher (1932)
and it was used in actuarial science by Gerber & Shiu (1994a) for the pricing of
financial pay-offs. They have shown that when the price follows an exponential
Lévy process it can always be used, in the absence of arbitrage opportunities,
to construct a (not necessarily unique) equivalent martingale measure.

More precisely, following Gerber & Shiu (1994a) we seek h = h∗ such that
the discounted stock price process {e−rtSt, t ≥ 0} is a martingale with respect
to the probability measure Q that is induced by the parameter h∗.
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Distribution Esscher transformed distribution
Poisson(λ) Poisson(exp(h)λ)
Normal(µ, σ2) Normal(µ+ σ2h, σ2)
Gamma(a, b) Gamma(a, b− h)
IG(c, λ) IG(c, λ− h)
VG(C,G,M) VG(C,G+ h,M − h)
NIG(α, β, δ) NIG(α, β + h, δ)
CGMY(C,G,M, Y ) CGMY(C,G+ h,M − h, Y )
Meixner(α, β, δ) Meixner(α,αh+ β, δ)

Table 2: The Esscher transform with parameter h of some popular distributions

From (9) and (11) it follows that this corresponds to solving the equation

ert = m
(h∗)
t (1). Since it holds that m

(h)
t (x) =

(
m(h)(x)

)t
we can write the

equation for h∗ as follows:

r = ln(m(h∗)(1)). (12)

From Gerber and Shiu (1994b) we observe that h∗ is always unique, and also
that in the case of a Brownian motion there is only one equivalent martingale
measure possible in which case we call the market complete. For general Lévy
processes the market will not be complete and the Esscher transform is only one
of the methods that can be used to perform arbitrage-free pricing. Note however
that the use of the Esscher transform to perform arbitrage-free pricing is also
supported using arguments that stem from maximising utility or minimising
entropy; see Gerber & Shiu (1994a), Chan (1999) and Raible(2000).

We finally note that if φ is the characteristic function and [γ, σ2, ν(dx)] is
the Lévy triplet of X1, then the characteristic function of X1 under the Esscher
transformed measure will be denoted by φ(h) and is is given as

lnφ(h)(u) = lnφ(u− ih)− lnφ(−ih). (13)

Moreover this law remains infinitely divisible and its Lévy triplet [γ(h), (σ(h))2, ν(h)(dx)]
is given by

γ(h) = γ + σ2h+

∫ 1

−1
(exp(hx)− 1)ν(dx)

σ(h) = σ

ν(h)(dx) = exp(hx)ν(dx). (14)

From (13) it becomes straightforward to derive the effect of applying the
Esscher transform on the distributions that we mentioned previously in Table 1,
and we show the results in Table 2. Notice from Table 2 that not all parameters
of the distributions will necessarily change when applying the Esscher transform.
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3 Inefficiency of Path-dependent Pay-offs

3.1 Main Result

In Section 2 it was shown that EP [Pg | ST ] ≤cx Pg. So, if we can show that the
costs (or prices) of EP [Pg | ST ] and Pg are equal then any risk averse investor
will always opt for the path-independent pay-off EP [Pg | ST ] .

We note that in order to show that the financial prices C(EP [Pg | ST ]) and
C(Pg) are equal it is sufficient that

EP [Pg | ST ] ≡ EQ [Pg | ST ] , (15)

because in this case

EQ [Pg] = EQ[EQ [Pg | ST ]]

= EQ[EP [Pg | ST ]]. (16)

Furthermore, (15) will hold if for all x = (x1, x2, ..., xn) and t = (t1, t2, ..., tn) ∈
Rn, and y ∈ R we have that:

ft(x | XT = y) = f
(h∗)
t

(x | XT = y). (17)

Now, since {Xt, t ≥ 0} is a Lévy process it follows that:

ft(x | XT = y)

= ft1,t2,...,tn(x1, x2, ..., xn | XT = y)

= ft1,t2−t1,...,tn−tn−1(x1, x2 − x1, ..., xn − xn−1 | XT = y)

= ft1(x1 | XT = y)× ft2−t1(x2 − x1 | XT = y)× ...

×ftn−tn−1(xn − xn−1 | XT = y). (18)

Hence, it will follow eventually that the financial prices C(EP [Pg | ST ]) and
C(Pg) are equal if for all real x, y and t > 0 the following is true:

ft(x | XT = y) = f
(h∗)
t (x | XT = y), (19)

and this will be proven in the next theorem.

Theorem 3 (Esscher transform does not change the conditional density)

We have that ft(x | X (T ) = y) = f
(h∗)
t (x | X (T ) = y).
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Proof.

f
(h∗)
t (x | XT = y)

=
f
(h∗)
t,T−t(x, y − x)

fh
∗

T (y)

=
f
(h∗)
t (x) · f

(h∗)
T−t (y − x)

f
(h∗)
T (y)

=
ft(x) · e

h∗x · fT−t(y − x) · eh
∗y−h∗x

fT (y) · e
h∗y

·
mT (h

∗)

mt (h∗) ·MT−t (h∗)

=
ft(x) · fT−t(y − x)

fT (y)

= ft(x | XT = y) (20)

The above reasoning shows that in an arbitrage-free Lévy market setting,
path-dependent financial structures can be outperformed by path-independent
structures, at least from the point of view of risk averse decision makers with a
fixed horizon and when using the Esscher transform as the pricing rule.

3.2 Example: Inefficiency of Geometric Averaging

The following example explicitly verifies that path-dependent strategies can be
dominated by path-independent strategies without increasing the cost and as
such confirms the theoretical results.

We will assume that the stochastic process {Xt, t ≥ 0} is a Brownian motion
and we consider St = S0e

Xt with 0 < t ≤ 2 and S0 = 1. Let us define the path-
dependent pay-off Pg given by

Pg = (S1S2)
1

2

= eZ1+
Z2

2 , (21)

where the random variables Z1 = X1 and Z2 = X2 − X1 are independent
and normally N(µ, σ2) distributed log-returns over the periods [0, 1[ and [1, 2[,
respectively. Note that the random variable Pg represents a geometric average
and is lognormally distributed with parameters 3

2µ and 5
4σ

2. Then, we consider
the path-independent conditional expectation EP [Pg | S2]. We find that

EP [Pg | S2] = EP [Pg | X2]

= EP [Pg | Z1 + Z2]

= EP
[
eZ1+

Z2

2 | Z1 + Z2
]
.
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From the properties of the bivariate normal random vector (Z1 +
Z2
2 , Z1 + Z2)

it follows that

EP [Pg | S2] = e
3

4
(Z1+Z2)+

5

80
σ2

= (S2)
3

4 e
5

80
σ2 ,

Hence EP [Pg | S2] is also lognormally distributed but now with parameters 32µ+
5
80σ

2 and 9
8σ

2.
Comparing the set of parameters ( 32µ+

5
80σ

2, 98σ
2) with ( 32µ,

5
4σ

2) it is intu-
itively clear that, as long as the costs are equal, the pay-off EP [Pg | S(2)] will be
preferred over the pay-off Pg by all risk averse decision makers. This intuition
can be explicitly verified by comparing the respective stop-loss premiums, which
is left as an easy exercise, or by relying on Theorem 2 directly.

We will now demonstrate that the cost C(EP [Pg | S2]) of the dominating
pay-off EP [Pg | S2] is indeed equal to the cost C(Pg) of the pay-off Pg. First,
note that under the Esscher equivalent measureQ we have that Pg is lognormally
distributed but now with parameters 3

2(r −
1
2σ

2) and 5
4σ

2, and also

C(Pg) = e−2r(e
3

2
(r−1

2
σ2)+5

8
σ2)

= e−
1

2
r−1

8
σ2 . (22)

EP [Pg | S2] is lognormally distributed with parameters 3
2µ +

5
80σ

2 and 9
8σ

2.
Consequently we have that

C(EP [Pg | S2]) = e−2r(e
3

2
(r− 1

2
σ2)+ 5

80
σ2+ 9

16
σ2)

= e−
1

2
r− 1

8
σ2 . (23)

and this shows that EP [Pg | S2] does indeed have the same cost as Pg

4 Optimal Path-Independent Pay-offs

4.1 Main Result

In the previous section it was shown that any path-dependent pay-off can be
dominated by a path-independent pay-off, and this raises the question whether
the broad class of all path-independent pay-offs can be narrowed further. In
this section we prove that the ‘best’ path-independent pay-off Pg = g(ST ) is
when g is non-decreasing. The main idea here is that we can keep the same
physical distribution for Pg by re-assigning pay-off values to certain realised
prices of the underlying stock. This will keep the distribution function of Pg
under the initial measure P unchanged but it will decrease the cost. In order
to have a stock market that makes sense economically we need to assume that
EP[St] > ert and from (11) and (12) it follows that this will imply that h∗ < 0.

Theorem 4 (Optimal path-independent payoffs) For a path-independent

investment pay-off Pg to be optimal it must be increasing in the underlying asset

value ST .
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Proof. We will assume that ST is a discrete and finite random variable that
takes values si, (i = 1, 2, ..., n) and we denote Pr(ST = si) = pi. The general
case will then follow by taking the appropriate limits. Each realisation si for
the stock price corresponds to a realisation vi for the pay-off Pg. Let us now
assume that there exist realisations si < sj such that vi > vj . We will prove
that we can find another pay-off with the same physical distribution as Pg but
at a lower cost. Without loss of generality we can assume that i = 1, j = 2 and
also that n = 2.

Hence we will assume that v1 > v2. Consider the pair of Esscher transformed
probabilities given by

(
p1e

h∗s1

p1eh
∗s1 + p2eh

∗s2
,

p2e
h∗s2

p1eh
∗s1 + p2eh

∗s2

)
. (24)

We will first consider the case where p1 = p2. Then the price C(Pg) at time 0
is given by

C(Pg) =
e−rT

eh∗s1 + eh∗s2

[
v1e

h∗s1 + v2e
h∗s2

]
. (25)

If we switch the two outcomes then the pay-off Pg will change, but not its
distribution function, and we will denote the new pay-off by Ph. Whereas the
physical probability distribution functions for Pg and Ph coincide, the price will
change to C(Ph) given by

C(Ph) =
e−rT

eh∗s1 + eh∗s2

[
v2e

h∗s1 + v1e
h∗s2

]
. (26)

Comparing C(Pg) and C(Ph) we see that:

C(Pg)−C(Ph) =
e−rT

eh∗s1 + eh∗s2

[
v1e

h∗s1 + v2e
h∗s2 − v2e

h∗s1 − v1e
h∗s2

]

=
e−rT

eh∗s1 + eh∗s2
(v1 − v2)

(
eh

∗s1 − eh
∗s2
)
. (27)

Since v1 > v2, s1 < s2 and h∗ < 0 this is clearly positive and hence we can
dominate the original pay-off with one that is increasing with the underlying
asset price.

Next we consider the case that p1 < p2. The proof for p1 > p2 is similar.
The original price is now given by

C(Pg) =
e−rT

eh∗s1 + eh∗s2

[
p1v1e

h∗s1 + p2v2e
h∗s2

]
. (28)

We then change the pay-offs so that at the terminal value s1 there is a pay-off
of v2 with probability p1. At s2 there is a p1 probability of a pay-off of v1 and
a p2 − p1 probability of a pay-off of v2. This leaves the physical distribution
unchanged. In contrast, the price will now change to:

C(Pg) =
e−rT

eh∗s1 + eh∗s2

[
p1v2e

h∗s1 + (p2 − p1) v2e
h∗s2 + p1v1e

h∗s2
]
. (29)

10



Comparing C(Pg) and C(Ph) we see that:

C(Pg)−C(Ph) =
e−rT

eh∗s1 + eh∗s2

[
p1v1e

h∗s1 − p1v2e
h∗s1 − p1v1e

h∗s2 + p1v2e
h∗s2

]

=
e−rT

eh∗s1 + eh∗s2
p1 (v1 − v2)

(
eh

∗s1 − eh
∗s2
)
. (30)

Since v1 > v2 , s1 < s2 and h∗ < 0 this is positive, and hence we have found
another pay-off with the same distribution function under P but at a lower price.
This new pay-off takes values that are increasing with the underlying asset.

We note that results in the same vein can already be found in Dybvig
(1988b). This author investigated the optimality of investment strategies in any
complete market with the objective of determining the strategy with minimal
cost whilst preserving a given (physical) probability distribution. In contrast,
we examine Lévy markets which are not necessarily complete using the Esscher
transform to derive an arbitrage-free price.

4.2 Example: Click fund

In this example we assume a Brownian motion for the stochastic process {Xt, t ≥ 0},
and we consider St = S0e

Xt with 0 < t ≤ 8 and S0 = 1. Under the physical
probability measure P we have that St is lognormally distributed with para-
meters (µt, σ2t). We also define the indicator random variable Ii as Ii = 1 if
S(i) > S(i−1) and Ii = 0 otherwise. Let us consider the path-dependent pay-off
Pg given by

Pg = 100(1 + 0.1
8∑

l=1

Ii). (31)

Pg can be interpreted as follows. There is a guaranteed amount of 100, and for
every year that the stock market increases we “click” a bonus of 10. There is
no bonus when the stock market declines. Next, after 8 years we take the sum
of the bonuses and this will be added to the guaranteed amount. It is easy to
see that Pg has the following physical probability function

Pr(Pg = 100 + 10i) =

(
8

i

)
pi (1− p)8−i , i = 0, 1, ..., 7, 8, (32)

where p = Pr(N(µ, σ2) > 0). We will denote Pr(Pg ≤ 100+10i) by ki. Further-
more, for its price we find from (10) that

C(Pg) = e
−8r(100 + 80q), (33)

where q = Pr(N(r − 1
2σ

2, σ2) > 0) and r is the yearly risk free rate. In the
remainder of the example we will take µ = 0.08, σ = 0.20 and r is set at 0.045.
Using our parameter values we find that p ≈ 0.6554, q ≈ 0.5497. and also that
C(Pg) ≈ 100.45. Then, we will consider another pay-off Ph given by

Ph = 100(1 + 0.1
8∑

l=1

Ji). (34)

11



Here Ji is an indicator random variable that takes the value 1 if S8 > αi,

(i = 1, 2, ..., 8) with αi = e8µ+
√
8σ2φ−1(ki−1) , where φ−1 denotes the quantile

function of the standard normal random variable. It is easy to verify that under
the physical measure P, the pay-off Ph has the same distribution function as Pg.
On the other hand for the price C(Ph) we find that

C(Ph) = 100e
−8r(1 + 0.1

8∑

l=1

Pr(Ji = 1)), (35)

where Pr(Ji = 1) now denotes the probability under Q that S8 > αi . It is easily
verified that C(Ph) ≈ 99.05. Hence we have constructed a pay-off Ph that under
the probability measure P has the same distribution function as the pay-off Pg
of the click-fund, but at the lowest possible cost.

5 Conclusion

In this paper we have examined the optimality of investment pay-offs in Lévy
markets under the risk-neutral Esscher martingale measure. We provide a simple
proof for the Cox & Leland result that in a Black & Scholes market risk averse
decision makers prefer path-independent strategies over path-dependent strate-
gies and we extend their results to general Lévy markets. Furthermore, optimal
path-independent pay-offs are those which are increasing with the underlying
asset value - a result that is closely related to the results of Dybvig (1988a,b).
These results imply that path-dependent investment pay-offs, the use of which
is widespread in financial markets, do not appear to offer good value for risk
averse decision makers with a fixed investment horizon.

This observation holds in a Black & Scholes market, the use of which may
be justified when the investment horizon is longer than one year and is also true
for general Lévy markets when arbitrage-free pricing is performed using Esscher
transforms. We remark that the use of the Esscher transform as the pricing
rule is also supported using arguments that stem from maximising utility or
minimising entropy; see Gerber & Shiu (1994a), Chan (1999) and Raible(2000).

When deriving our results we assumed perfect markets in particular exclud-
ing the impact of transaction costs, liquidity aspects and presence of asymmetric
information. It is easily seen that besides their intrinsic superiority for utility
maximisers path-independent structures are also preferable for liquidity reasons.
Indeed, a path-independent pay-off with a given maturity T may be approxi-
mated by a combination of a zero coupon bonds and a series of single call
options. Such a portfolio does not require intermediate trading and is immune
to liquidity risk during the horizon T of the product. In future research we will
also focus on the impact of transaction costs.
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