
Profit-based latency problems on the line

 Sofie Coene, Frits C.R. Spieksma

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Business and Economics

KBI 0813

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6347142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Profit-based Latency Problems on the Line

Sofie Coene∗ Frits C.R. Spieksma∗

Abstract

The latency problem with profits is a generalization of the minimum latency prob-
lem. In this generalization it is not necessary to visit all clients, however, visiting a
client may bring a certain revenue. More precisely, in the latency problem with profits,
a server and a set of n clients, each with corresponding profit pi (1 ≤ i ≤ n), are given.
The single server is positioned at the origin at time t = 0 and travels with unit speed.
When visiting a client, the server receives a revenue of pi− t, with t the time at which
the server reaches client i (1 ≤ i ≤ n). The goal is to select clients and find a route
for the server such that total collected revenue is maximized. We formulate a dynamic
programming algorithm to solve this problem when all clients are located on a line.
We also consider the problem on the line with k servers and prove NP-completeness
for the latency problem on the line with k non-identical servers and release dates. In
this proof we also settle the complexity of an open problem in de Paepe et al. [4].

Key words: minimum latency; traveling repairman; dynamic programming; complexity

1 Introduction

Consider the following problem. Given are a set of n clients located in some metric space
and profits pi associated with each client i, 1 ≤ i ≤ n. In addition, a single server is given,
positioned at the origin at time t = 0. The server travels at unit speed. If the server serves
client i at time t, the revenue collected by the server equals pi−t. The goal is to select clients
and to find a route for the server serving the selected clients, such that total collected revenue
is maximal. We refer to this problem as the traveling repairman problem with profits, or
TRPP for short. In this paper we restrict ourselves to the line as a metric space. Notice
that in the TRPP (i) not every client needs to be served, and (ii) the revenue collected at a
client depends on the time needed to reach that client.
In this paper we show:

• how a dynamic program solves the TRPP on the line in polynomial time, thereby
generalizing a classical result from Afrati et al. [1],

• how this result can be generalized to the problem with multiple identical servers (re-
ferred to as MTRPP on the line),

∗Katholieke Universiteit Leuven, Operations Research Group, Naamsestraat 69, B-3000 Leuven, Belgium.

1

• that the problem with multiple non-identical servers and release dates for each client,
is NP-hard.

In the proof of the latter result we settle the complexity of an open problem mentioned in
de Paepe et al. [4].
The paper is organized as follows. In Section 2 we describe the literature for the traveling
repairman problem and we motivate the TRPP on the line. In Section 3 we describe the
dynamic programming algorithm. We settle the complexity of different variants of MTRPP
in Section 4. In the 5th and last section we state some open problems.

2 Literature and Motivation

The TRPP is a generalization of the well-known traveling repairman problem (TRP), also
known as the minimum latency problem (MLT). In this problem, no profits are given and
the goal is to serve all clients with minimal total latency. Afrati et al. [1] give an O(n2)
dynamic program for the TRP on the line which was later improved to O(n) by Garćıa et
al. [7]. In [12] it is proven that the TRP on the line with release dates is (weakly) NP-
hard. Minieka [9] shows that the problem on a tree network is polynomial for trees with
unit weights and develops a polynomial time algorithm for the problem on weighted trees
when the number of leaves is bounded. The TRP on weighted trees is proven to be strongly
NP-hard by Sitters [11]. The problem on the line with multiple identical servers is solvable
in O(n4), see Wu [13] and Averbakh and Berman [2]. We refer to Wu [14] et al. and the
references contained therein for papers dealing with exact algorithms for the TRP (i.e. the
problem with an arbitrary metric space).

In de Paepe et al. [4] a framework is described dealing with the computational complexity
of dial-a-ride problems (which include latency problems, and in particular latency problems
on the line). However, as far as we are aware there is no work on latency problems with
profits. This is in contrast with the situation for the traveling salesman problem (TSP), see
Feillet et al. [5] for a survey on the TSP with profits.

Motivation

As indicated above, a variety of latency problems arise in many different settings. However,
a common characteristic is the focus on minimizing total waiting time of the clients. Here
we consider a profit-oriented objective. In situations where a server receives some revenue by
performing a service, this objective can be more appropriate. Of course, one needs to balance
in some way the waiting times and the profits. This can be done in various ways (bounding
the total waiting time by a constant from above, bounding the total revenue realized by a
constant factor from below). Here, however, we propose to combine profit and latency in a
single objective (as described in the introduction). By doing so, it is clear that a latency
problem with a profit objective is at least as hard as the corresponding “ordinary” latency
problem.
We restrict the analysis in this paper to a linear profit function (i.e. pi − t) in the objective
function. We use this particular function because it arises in the pricing problem of an inte-
ger programming formulation modeling the latency problem with multiple servers. Indeed,

2

consider a situation with K nonidentical servers (meaning that their speed may differ) whose
job is to service a set of n clients on the line. We now describe a set-partitioning formulation
for this problem. We define crk as the total latency of a feasible route r (r = 1, . . . , R; with
R the number of feasible routes) served by server k (k = 1, . . . , K). Then, variable xrk is
equal to 1 if route r is served by server k and 0 otherwise.

Minimize
R∑

r=1

K∑
k=1

Crkxrk (1)

subject to
∑

r:i∈r

K∑
k=1

xrk = 1 for i = 1, . . . , n; (2)

R∑
r=1

xrk ≤ 1 for k = 1, . . . , K; (3)

xrk ∈ {0, 1}.

The objective is to minimize total latency (1), there is a constraint for each client stating
that it must be served exactly once (2) (see also [6]), and every server can be used at most
once (3). When solving the linear programming relaxation of this integer program, the dual
variables ui (i = 1, . . . , n) corresponding to constraints (2) act as the profits in the resulting
pricing problem. Indeed, verifying for a fixed server k whether a violated dual constraint
exists, amounts to minimizing Crk −

∑
i:i∈r

ui. This corresponds to the objective function in

the TRPP.
In this paper we consider the line-metric. Practical examples where this metric is relevant
are e.g. “shoreline”-problems [10]. These problems arise when scheduling and routing cargo-
ships to visit a number of ports which are usually located along a shoreline. Friese and
Rambau [6] describe a setting with multiple elevators who need to serve a set of requests.
Summarizing, the TRPP is interesting because (i) it is a first attempt to combine a latency
objective with profits, (ii) latency problems on the line are relevant and their complexity is
often unresolved [4], (iii) the TRPP occurs as the pricing problem of an integer programming
formulation modeling the latency problem with multiple servers, as is explained above.

3 A Polynomial Algorithm for the TRPP

We represent an instance of the TRPP on the line as depicted in Figure 1. The server
starts in the origin x0 = y0 = 0. In this section, we refer to the clients left of the origin as
x1, x2, . . . , xr, and to the clients right of the origin as y1, y2, . . . , yq. To each client a profit
pxi

resp. pyj
(with i = 0, . . . , r; j = 0, . . . , q) is associated. Notice that we sometimes identify

a client with its position on the line. We make a distinction between “served” clients and
“visited” clients. A client is served when a server has performed a service at that client and
has collected profit there; when the server passes a client without performing the service,
this client has been visited but not served. The goal is to select clients and to find a route for
the server such that total profits of the clients served minus the latency of the correspond-
ing route is maximal. Clearly, the TRPP on the line generalizes the traveling repairman
problem on the line: in case each of the profits is huge, it is optimal to serve all clients,

3

0xr

pxr

. . . xi

pxi

xi−1

pxi−1

. . . x2

px2

x1

px1

y1

py1

y2

py2

. . . yj

pyj

. . . yq

pyq

¾
-

¾
-

¾
-

Figure 1: The TRPP on the line

and the problem reduces to finding a route with minimal latency. In general however, not
every client needs to be served in the TRPP; observe however that, for those clients that are
served, it is optimal to visit the client the first time the server passes by. The optimal route
thus has a spiral shape as illustrated in Figure 1 (see [4]).
Given an instance of TRPP it is not yet clear which clients, and in particular how many

clients, need to be selected. We deal with this issue by proposing a procedure that keeps
track of the number of clients to be visited.
We now define the ingredients of our dynamic program (DP). A state in our DP is denoted
by [xi, yj, l] which corresponds to the situation where the server is positioned in xi (as its
leftmost visited client), where the rightmost visited client is yj, and where l clients are to
be served outside that interval (0 ≤ i ≤ r, 0 ≤ j ≤ q, 1 ≤ l ≤ r + q). Similarly, in the
state [yj, xi, l] the server is at position yj (as its rightmost visited client), the leftmost visited
client is xi, and l clients will be served outside this interval.

Definition 1

∀i, j, l: P [xi, yj, l] equals the maximal value of the difference between

(i) the profits of the clients served in [xi, yj], and

(ii) the latency costs incurred for these clients served in [xi, yj] taking into account
that l clients will be served outside this interval.

We refer to P [xi, yj, l] as the revenue.

Notice that the route followed by the server after having reached state [xi, yj, l] does not
depend on the route followed within [xi, yj, l]. Thus, only the set of clients yielding a maximal
value for P [xi, yj, l] will be selected in an optimal solution. This observation is instrumental
for the correctness of our DP algorithm, that we will now describe. First, we define t[xi, yj]
as the distance between clients xi and yj (for all i, j). In an initialization step we set the
revenue in all states equal to −∞; then we compute the revenue in a state as follows.

For l = 1, . . . , r + q :

4

P [x0, y0, l] = P [y0, x0, l] = 0.

For i = 0, . . . , r; j = 0, . . . , q; l = 1, . . . , r + q :

P [xi, yj, l] = max{
P [xi−1, yj, l + 1] + pxi

− (l + 1) ∗ t[xi−1, xi],

P [xi−1, yj, l]− (l) ∗ t[xi−1, xi],

P [yj, xi−1, l + 1] + pxi
− (l + 1) ∗ t[yj, xi],

P [yj, xi−1, l]− (l) ∗ t[yj, xi] } (4)

P [yj, xi, l] = max{
P [yj−1, xi, l + 1] + pyj

− (l + 1) ∗ t[yj−1, yj],

P [yj−1, xi, l]− (l) ∗ t[yj−1, yj],

P [xi, yj−1, l + 1] + pyj
− (l + 1) ∗ t[xi, yj],

P [xi, yj−1, l]− (l) ∗ t[xi, yj] }. (5)

Observe that P [x0, yj, l] = P [y0, xi, l] = −∞ for i > 0 and j > 0. Then total revenue is:

TotalRevenue = max{max
i,j
{P [xi, yj, 0]}, 0}.

Theorem 1 Algorithm DP is correct.

Proof. We establish correctness of (4) (the arguments for (5) are similar) by using induction
on i for a fixed j, thereby proving Theorem 1. Correctness of (4) is shown by arguing that
it leads to values for P [xi, yj, l] that satisfy Definition 1. In case i = 0, we already observed
that P [x0, yj, l] = −∞ (which is in agreement with Definition 1).
We will use induction and assume that P [xi−1, yj, l+1] and P [xi−1, yj, l] satisfy Definition 1.
The question now is whether P [xi, yj, l] computed using (4) satisfies Definition 1. Consider
the revenue realized when the server is positioned in xi, while yj is the rightmost visited
client. We distinguish two cases: xi is served and xi is not served. Consider first the case
where xi is served; as it is the last client visited, it is the last client served. Then, revenue
can be broken down into three terms: (i) the revenue realized after serving a set of clients in
[xi−1, yj] when l + 1 clients will be served outside this interval, (ii) the travel time between
the previous client visited and xi, taking into account the (l + 1) clients left to be served,
(iii) the profit pxi

. The previous client visited cannot lay outside [xi, yj], in fact it is either
xi−1 or yj . Indeed, all clients within [xi−1, yj] are met before xi and it is optimal to visit
them the first time the repairman passes by. Terms (ii) and (iii) are independent of the set
of clients served and thus of the revenue realized in state [xi−1, yj, l + 1]. As a consequence,
only the set of clients yielding the maximal revenue in [xi−1, yj, l + 1] can lead to an optimal

5

@
@

x1

¡
¡xr

XXXx2
...

¡
¡

y1

»»» y2

@
@ yq

...

Figure 2: A tree with width three

solution. It follows that the induction hypothesis tells us that the first term is accurately
described by P [xi−1, yj, l + 1] or by P [yj, xi−1, l + 1]. In addition, the second term equals
(l + 1) ∗ t[z, xi] where z denotes the previous client visited (xi−1 or yj), and finally the third
term equals pxi

. Now consider the case where xi is not served. This means that only l
clients are left to be served outside [xi−1, yj] and no profit is realized in xi. Revenue can be
broken down into two terms: (i) the revenue realized after having served a set of clients in
[xi−1, yj] and l clients will be served outside this interval and (ii) the travel time between the
previous client visited (xi−1 or yj) and xi, taking into account the l clients left to be served.
Again, term (ii) is independent of the set of clients served and thus the revenue realized in
state [xi−1, yj, l]. As a consequence, only the set of clients yielding the maximal revenue in
[xi−1, yj, l] can lead to an optimal solution. It follows that the induction hypothesis tells us
that the first term is accurately described by P [xi−1, yj, l] or by P [yj, xi−1, l]. In addition,
the second term equals (l) ∗ t[z, xi] where z denotes the previous client visited.
By taking the maximum of the four terms considered above, we see that P [xi, yj, l] equals
its definition. A similar argument holds for P [yj, xi, l]. ¤
To estimate the complexity of DP with n = r + q: we have at most n3 possible states, and
since every state has 4 elements in its maximization function, the time complexity of the
algorithm is O(n3), and we can state our result.

Corollary 1 DP solves TRPP on the line in polynomial time.

Let us consider a number of directions in which Corollary 1 can be extended. First, notice
that the distances t[xi, yj] need not be symmetric. Thus, situations where the line models a
river with clients located at upstream and downstream positions are solvable by DP. Next,
we can extend Corollary 1 to other geometries. Consider n clients and one server positioned
on a circle. Observe that in an optimal solution there is a circle segment between two clients
not traversed by the server. Hence, by considering O(n) TRPP instances on the line we can
solve the problem on the circle.
We can also extend our result to the TRPP when the clients are positioned on the endpoints
of a tree with width three and with positive real lengths on the edges. The observation here
is that, in any optimal solution, the spokes at either end of the tree are visited in increasing
order of their lengths [3]. Figure 2 shows an example of such a tree with r clients on the left
side and q clients on the right side of the tree.
A state in DP [xi, yj, l] then represents the situation in which xi is the longest spoke visited
at the left side and the current position of the server, yj is the longest spoke visited at the
right side, l is the number of clients left to be served. Similarly, we can define state [yj, xi, l]
with the current position of the server being yj and xi the longest spoke visited on the other

6

side. DP can now be run using the states as defined here.
Thirdly, Corollary 1 can be extended to the TRPP on the line with common release dates.
In this variant of the TRPP, a release date M is associated with every client, implying that
a client cannot be served before t = M . Notice that, if M is large, this is equivalent to
choosing a starting location for the server, since then the server can travel and choose the
position where it will start at time t = M . Of course, in any optimal solution the server,
starting at the origin at t = 0, will at time M either be in M or in −M or at one of the
clients in between these two points and wait there until the release date is reached. Thus,
the server has at most n choices for its starting position at time t = M and again DP is able
to solve this problem.
A fourth extension is the TRPP on the line with constant repair times. Suppose that there
is a repair time h at every client which is the same for all clients. This changes the revenue
of a route only by a constant factor 1

2
S(S +1)h where S is the total number of clients visited

in the route. Thus, adding constant repair times has no influence on the computational
complexity of the TRPP.
Finally, it is interesting to consider different profit functions in the objective, such as e.g.
pi− t2. In DP, though, the waiting time t of a client i is built up gradually in every iteration.
In fact, one can argue that correctness of DP implies f(x+ y) = f(x)+ f(y), which suggests
that DP can only be applied in case of a continuous linear function f . A function for which
this property holds is pi − wit, with wi the weight of client i. DP deals with this weighted
version of TRPP by making wi copies of each client i, each with a profit equal to pi

wi
and

with a distance 0 from each other. We solve the resulting instance using DP. An optimal
solution will have the property that either all or none of the copies of a client i will be served.
Notice that - assuming a binary encoding - this is no longer a polynomial time procedure,
but pseudo-polynomial.

4 The Complexity of MTRPP

In this section we discuss the TRPP with multiple servers (denoted by MTRPP). Given
are the positions of n clients on the line and their associated profits pi (1 ≤ i ≤ n) and k
servers, characterized by a speed sj (1 ≤ j ≤ k) and a starting location. The goal is to select
clients and to find k routes serving each selected client, such that total collected revenue
is maximized. Recall that the revenue collected at a client depends on the time needed to
reach that client. Observe that, if all servers are in the origin at t = 0 and if all servers have
equal speed, the problem becomes trivial: one server travels to the left and a second server
travels to the right, and when they meet a client that contributes positively to the revenue,
the client is visited. In case the starting locations of the k servers are arbitrary (but given),
and the servers have identical speed, we claim the following:

Theorem 2 MTRPP on the line with multiple identical servers is solvable in polynomial
time.

Proof. We only give a short sketch of the proof since it is similar to the proof of Wu [13]
showing polynomial time solvability of the k-traveling repairmen problem on the line. First

7

of all, note that the servers will never pass by one another because they all have the same
speed. A solution to the MTRPP on the line with identical servers thus consists in a
division of the line into k consecutive intervals and solving the TRPP on the line for each
interval. Consider a line with n clients positioned at x1, x2, . . . , xn and k servers positioned at
z1, z2, . . . , zk. An interval on this line is denoted by I(i, j), containing clients (i, i + 1, . . . , j)
with i ≤ j. Then, define P (i, j) as the maximal revenue of a set of routes visiting clients
(i, i + 1, . . . , j) by the repairmen whose origins are within the interval I(i, j). In a first
phase compute P (i, j) for each interval I(i, j) containing exactly one origin. This can be
done by computing revenue for each server k for its largest possible interval (i.e. the largest
interval containing only server k) using DP. Then, maximal revenue for every smaller interval
containing only server k is also known. Indeed, DP computes revenue for all combinations
of i and j with l equal to zero. Total time complexity of this first phase is thus O(n4). In
a second phase we select one interval for every server. For 1 < i < k and zi ≤ m < zi+1

we compute P (1, m) = maxzi−1≤j<zi
{P (1, j) + P (j + 1,m)}, and total revenue P (1, n) =

maxzk−1≤j<zk
{P (1, j) + P (j + 1, n)}. Time complexity of the second phase is O(n2); total

time complexity is thus dominated by the first phase and equal to O(n4).¤
However, when the k servers have arbitrary speeds and clients have release dates ri ≥ 0, we
claim that:

Theorem 3 MTRPP on the line with non-identical servers and release dates is strongly
NP-hard.

We will prove NP-hardness for the MTRPP with non-identical servers and release dates by
settling the complexity of an open problem mentioned in de Paepe et al. [4], i.e. Q|s =
t, rj|line|∑ Cj. This problem is a latency problem (

∑
Cj) on the line, with k nonidentical

servers (Q) and release dates (rj); the phrase ‘s = t’ refers to the fact that the clients only
need to be visited (there is no transportation of clients). Notice that the clients do not have
profits and each client needs to be served. The goal is to find routes for every server such
that total latency is minimal. Recall that the profit variant of this problem, MTRPP with
non-identical servers and release dates, is a generalization of this problem and thus at least
as hard.
We transform numerical matching with target sums (NMTS) to Q|s = t, rj|line|∑ Cj.
In an instance of NMTS we are given positive integers xi (1 ≤ i ≤ m), yj (1 ≤ j ≤ m) and
bl (1 ≤ l ≤ m). The question is whether there exists a collection of m triples (i, j, l) such
that (i) xi + yj = bl for each triple, and (ii) each integer in the input occurs exactly once.
This problem is proven to be NP-hard by Garey and Johnson [8].

Proof. We construct an instance of Q|s = t, rj|line|∑ Cj by specifying the speeds and
the starting location of the servers, and the release dates and the location of the clients as
follows. There are k := m servers, the starting location of each server is the origin, and each
server j has speed bj (i.e. sj = bj, j = 1, . . . , m). There are 2m clients, m clients are located
to the left of the origin at −xi, 1 ≤ i ≤ m (the “left” clients), and m clients are located to
the right of the origin at yj, 1 ≤ j ≤ m (the “right” clients). The release date of each left
client equals M ≡ maxixi (i.e., ri = M). The release date of each right client equals M + 1

8

0

M

−xm

. . .

M

−x2

M

−x1

M + 1

y1

M + 1

y2

. . .

M + 1

ym

Figure 3: MTRPP with release dates

(i.e., rj = M + 1). The question is: does there exist a solution to Q|s = t, rj|line|∑ Cj

such that total latency is equal to mM + m(M + 1)? This completes the description of an
instance of Q|s = t, rj|line|∑ Cj.
We now establish correspondence between the two questions. Clearly, if there exists a numer-
ical matching with target sums, we can direct each server j to the appropriate left location,
where it waits till the release date M , serves the client at that location, travels to the appro-
priate right location (as given by the matching), arrives at time M + 1 (due to the existence
of a matching) and serves the right client. Total latency equals mM + m(M + 1).
If there exists a solution with total latency mM +m(M +1), it follows that each client must
be served at its release date. This implies that the m servers have to be present at t = M at
the locations of the m left clients, and at t = M + 1 the servers need to be present at the m
right clients. Hence, each server j travels from a unique left client at −xi to a unique right
client at yj in one time unit. It follows that NMTS has a solution. ¤

Corollary 2 Q|s = t, rj|line|∑Cj is strongly NP-hard.

Notice that Yu et al. [15] show that NMTS remains hard even when xi = i (i = 1, . . . , m)
and yj = j (j = 1, . . . , m). It follows that the TRPP problem remains hard when the clients
are one distance-unit apart.

5 Open Problems

The complexity of the following latency problems with profits is open at this moment:

(i) MTRPP with non-identical servers

(Notice also that the complexity of the problem without profits is still open, see [4])

(ii) the weighted TRPP (we showed in Section 4 how DP can be used to solve this problem
in pseudo-polynomial time; this however does not settle complexity of weighted TRPP)

(iii) it is unclear whether the O(n) algorithm for the TRP in Garćıa et al. [7] could be used
for the TRPP. Potentially, this could give a speedup of the current O(n3) bound of
DP.

Acknowledgements: We are grateful to a referee whose remarks led to improved complex-
ity bounds for our DP.

9

References

[1] F. Afrati, S. Cosmadakis, C. H. Papadimitriou, G. Papageorgiou, N. Papakostantinou,
The complexity of the traveling repairman problem, Informatique Théorique et Appli-
cations 20 (1986) 79–87.

[2] I. Averbakh, O. Berman, Routing and location-routing p-deliverymen problems on a
path, Transportation Science 28 (1994) 162–166.

[3] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, M. Sudan, The
minimum latency problem, Proceedings of the twenty-sixth annual ACM symposium on
the theory of computing (STOC) (1994) 163–171.

[4] W. E. de Paepe, J. K. Lenstra, J. Sgall, R. A. Sitters, L. Stougie, Computer-aided
compexity classification of dial-a-ride problems, INFORMS Journal on Computing 16
(2004) 120–132.

[5] D. Feillet, P. Dejax, M. Gendreau, Traveling salesman problems with profits, Trans-
portation Science 39 (2005) 188–205.

[6] P. Friese, J. Rambau, Online-optimization of multi-elevator transport systems with reop-
timization algorithms based on set-partitioning models, Discrete Applied Mathematics
154 (2006) 1908–1931.

[7] A. Garćıa, P. Jodrá, J. Tejel, A note on the traveling repairman problem, Networks 40
(2002) 27–31.

[8] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness, Freeman, San Francisco, 1979.

[9] E. Minieka, The delivery man problem on a tree network, Annals of Operations Research
18 (1989) 261–266.

[10] H. N. Psaraftis, M. M. Solomon, T. L. Magnanti, T. Kim, Routing and scheduling on a
shoreline with release times, Management Science 36 (1990) 212–223.

[11] R. Sitters, The minimum latency problem is NP-hard for weighted trees, Proceedings
of the ninth International Conference on Integer Programming and Combinatorial Op-
timization (IPCO) LNCS 2337 (2002) 230–239.

[12] R. Sitters, Complexity and Approximation in Routing and Scheduling, PhD thesis,
Technical University Eindhoven, 2004.

[13] B. Y. Wu, Polynomial time algorithms for some minimum latency problems, Information
Processing Letters 75 (2000) 225–229.

[14] B. Y. Wu, Z. Huang, F. Zhan, Exact algorithms for the minimum latency problem,
Information Processing Letters 92 (2004) 303–309.

10

[15] W. Yu, H. Hoogeveen, J. K. Lenstra, Minimizing makespan in a two-machine flow shop
with delays and unit-time operations is NP-hard, Journal of Scheduling 7 (2004) 333–
348.

11

