
DEPARTEMENT TOEGEPASTE 
ECONOMISCHE WETENSCHAPPEN 

ONDERZOEKSRAPPORT NR 9630 

Formal Specification Techniques in Object-Oriented 

Analysis: A Comparative View 

by 

Monique Snoeck 

Jozef Wijsen 

Guido Dedene 

Katholieke Universiteit Leuven 

Naamsestraat 69, 8-3000 Leuven 



ONDERZOEKSRAPPORT NR 9630 

Formal Specification Techniques in Object-Oriented 

Analysis: A Comparative View 

D/1996/2376/30 

by 

Monique Snoeck 

Jozef Wijsen 

Guido Dedene 



Formal Specification Techniques in Object-Oriented 
Analysis: A Comparative View 

Presented at the Workshop on Evaluation of Modeling Methods in Sytems Analysis and Design 

CAiSE*96, Crete, 20-21 May 1996 

Monique Snoeck*, JozefWijsen°, Guido Dedene* 

*Katholieke Universiteit Leuven 
Department of Applied Economic Sciences 

Naamsestraat 69 
B-3000 Leuven, BELGIUM 
phone: (+) 3216326612 

fax: (+)32 16 32 67 32 
e-mail: Monique.Snoeck@econ.kuleuven.ac.be 

Guido.Dedene@econ.kuleuven.ac.be 

·Vrije Universiteit Brussel 
Department of Computer Science, 

Pleinlaan 2 
B-1050 Brussels, BELGIUM 

phone: (+)32 2 629 34 87 
fax: (+)32 2 629 34 95 

e-mail: jwijsen@vub.ac.be 

Abstract. During the last decade, object orientation has been advanced as a 
promising paradigm for software constmction. In addition several authors have 
advocated the use of formal specification techniques during software 
development. Formal methods enable reasoning (in a mathematical sense) about 
properties of programs and systems. It is clear that also object oriented software 
development can benefit from the use of formal techniques. 
But although the object oriented analysis (OOA) methods claim to provide the 
necessary concepts and tools to improve the quality of software development, 
they are in general informal. This is surprising as the modeling techniques used 
in OOA have a high potential for formalization. The purpose of this study is to 
compare the specification techniques used in current OOA-methods. In 
particular, the degree of formality provided by most of the methods is discussed 
and evaluated from a quality control perspective. 

1 



Introduction 

In comparison with classical development methods, object oriented analysis (OOA) methods 

have the advantage that they allow for a seamless transition from analysis to design and 

implementation. Although seamless transition is a major advancement in software 

engineering practice, the quality of specifications in terms of correctness and consistency 

remains crucial from a quality control perspective. Several authors have advocated the use 

of formal specification techniques during software development [9]. Formal methods enable 

reasoning (in a mathematical sense) about properties of programs and systems [8]. 

Eventually, one may prove that certain anomalous system behaviour, such as deadlock, 

cannot occur [10, 19]. It is clear that also object oriented software development can benefit 

from the use of formal techniques. 

Formal techniques are not necessarily mathematical specification languages but can be 

graphical techniques as well, provided that the syntax and semantics of these techniques are 

precisely described. This paper concentrates on OOA-methods which primarily use 

graphical specification techniques. The purpose of this study is to look to what extent these 

graphical specification techniques are fonnalised. 

The next section lists the criteria used to compare the methods under consideration and 

motivates each one by illustrating some problems related to the use of informal specification 

techniques. Section 3 lists the object oriented analysis methods that are considered in this 

study and briefly describes how they apply well-known techniques. Section 4 addresses the 

actual evaluation of the methods. Finally, section 5 presents a conclusion and discussion. 

Criteria for Comparison and Motivating Examples 

An objective appraisal of methods for their level of formality is not an obvious task. The 

first step in eliminating subjectiveness is the definition of evaluation criteria. As explained 

in the introduction, the methods will be evaluated with a quality control perspective in mind. 

Quality of specifications is defined as internal consistency and correctness. 

Internal consistency. In object oriented modeling, static, dynamic and interaction aspects are 

described with equal emphasis. The methods under consideration in this paper, all use 

different techniques for modeling each aspect. Even if these techniques model different 

2 



aspects of objects, they model the same Universe of Discourse and might have overlapping 

semantics. As a consequence, specifications must be checked for internal consistency. 

Correctness. If behaviour of object types is modelled by means of Finite State Machines, 

executable systems are a set of Concurrent Finite State Machines. Concurrent State 

Machines are a well known specification technique in the domain of protocol validation, 

where they are used to check protocols for fairness and deadlock-freedom in a strictly formal 

way. As Finite State Machines are used in a different way in OOA, these algorithms for 

correctness checking cannot be transposed to OOA in a straightforward manner. This, 

however, does not mean that it is impossible to define algorithms that check object oriented 

specifications for correctness, as demonstrated in [10, 19]. 

A prerequisite to fonnal consistency and correctness checking is that syntax and 

semantics of the concepts employed by a particular method are rigourous1y and 

unambiguously defined, which is evaluated by the following two criteria: 

Criterion 1: Syntax. Is the syntax of the method defined in a rigourous manner, or is it 

merely loosely described? 

Criterion 2: Semantics. Is each concept of the method provided with a formal semantics, or 

is the meaning of concepts only paraphrased in natural language ? 

Many OOA-methods are superficial about the syntax and semantics of the concepts they 

use. This may compromise the quality of the specifications made by these methods. We 

give two examples, one from data modeling and one from process modeling, to illustrate the 

importance of precise syntax and semantics definitions. 

Example. Conceptual schemas often look very natural and intuitively clear. Yet intuition 

can be misleading. It may suggest certain aspects which, in fact, are not modelled. The ER­

schema of figure 1 [15] describes a mail course company. Each course consists of several 

parts, and students have to complete a homework per course part. Intuitively, the schema 

looks all-right. Nevertheless, a closer inspection reveals that the schema fails to model an 

3 



obvious constraint: a student must not receive parts of courses for which no subscription was 

made. One may believe that this constraint is implied by the schema, yet, in fact, it is not. 

O:M 

HOME­
WORK 

0:1 

COURSE 

O:M 

PART 

Fig. 1. Intuition may be misleading. 

A rigourous definition of semantics allows to precisely determine what constraints are 

modelled by a particular schema. 

Example. Most OOA-methods use Finite State Machines (FSMs) or Harel Statecharts (an 

extension of FSMs) to model object behaviour. Regular Expressions, Regular Languages 

and Finite State Machines have been extensively used and formalised for the development of 

programming languages and their parsers [1]. However, their use in the context of object 

oriented analysis requires that the semantics of Finite State Machines be refined to model the 

concept of a lifecycle more accurately. For example, the FSM shown in figure 2(a) follows 

the syntax of a FSM, but is unacceptable from our viewpoint. Indeed, as there is no path 

from the initial to the final state, the FSM is not meaningful in the context of modeling object 

lifecycles. Reversing all transitions results in a new FSM with a path from the initial to the 

final state (figure 2(b)). If other diagramming techniques of the method allow to define the 

events create_P, destroy_P and modify_P as creator, modifier or destructor of class 

occurrences respectively, the FSM does not fit our intuition about a meaningful life cycle (the 

destroy event precedes the create event). This example shows that the basic semantics of 

FSM deserve further extensions. 

4 



(a) 

modify_P 

(b) 

modify_P 

Fig. 2. A Finite State Machine for an object type P. 

Criterion 3: Consistency between schemas. Static, dynamic and interaction aspects of 

objects are generally modelled by different techniques. Nevertheless, the resulting schemas 

are likely to be interrelated. The relation between static, dynamic and interaction schemas 

should be made explicit and checked for consistency. The third criterion looks whether a 

particular method defines a formal procedure to check the consistency between subschemas. 

Example. The possibility to define generalisation/specialisation hierarchies is seen as a key 

element in the OO-paradigm. However, the question of how behaviours of generalisation 

and specialisation relate to each other deserves special attention. Examples of relevant 

questions are [20, 19]: 

- Does a specialisation inherit the statemachine of its parent? 

- Can it refine this statemachine by adding, removing or redefining states, transitions or 

events? 

- Can it restrict the behaviour of its parent or extend it or both? 

Many methods do not answer these questions in a precise fashion. For example, in OOSA 

[18] the life-cycle of a subtype corresponds to a part of the life-cycle of its supertype. This 

definition violates the broadly accepted notion of inheritance where SUbtypes inherit data and 

behaviour of their supertype. [20] gives an in-depth study of this particular problem. 

Criterion 4: Overall system behaviour. Once consistency between schemas is established, 

it must be possible to derive a global system behaviour from the individual schemas. More 

5 



particularly, it must be possible to compose individual object behaviour and interaction 

descriptions into a single system behaviour specification. 

Criterion 5: Anomalous system behaviour. If the overall system behaviour is specified, 

can we check it for desirable properties such as deadlock-freedom and fairness? 

Example. Most conceptual schemas define more than one object type and allow different 

object types to synchronize somehow on some event types. This means that different object 

types might impose conflicting sequence restrictions on event types. In such a case a 

deadlock occurs. This can be illustrated by an example taken from Belgian legislation: 

When a house is acquired, a deed of sale has to be signed. Property law prescribes full 

payment of the transaction's amount on the spot. In order to obtain the necessary 

funding, most buyers need to contract a loan. In general, banks are only willing to 

contract a loan provided a first mortgage can be held on a property. In its tum a 

mortgage can only be held on a property that is already owned by the mortgagor. 

Hence, anyone who acquires his first property and needs a loan to fund the acquisition is 

faced with a problem of circular prerequisites: the deed can not be signed before funding is 

available, but the funding can not be made available before the deed has been signed. This 

kind of circular prerequisite is not easy to detect if no formal consistency checking procedure 

for the overall implications of the constraints is available. 

The Methods Evaluated 

Figure 3 shows the list of object-oriented analysis methods that were taken into 

consideration in this study together with the consulted references. 

Figure 4 shows the methods under consideration together with the techniques they use for 

representing static, dynamic and object interaction aspects. 

6 



AUTHORS 

Embley et al. 
Kappel, Schrefl 
Hayes, Coleman et al. 
Rumbaugh et al. 
Shlaer, Mellor 
Coad, Y ourdon 
Booch 

METHOD 

OSA 
Object/Behaviour (OIB) 
FUSION 
OMT 
OOSA 
OOA 
OOD 

REFERENCES 

[11] 
[13] 
[12,6, 7] 
[16] 
[17, 18, 14] 
[5] 
[2,3] 

Fig. 3. Object-oriented analysis methods considered in this study. 

Data modelling. For data modelling purposes, most methods use the basic concepts of the 

EER-model [4] but add a number of proprietary concepts. These proprietary concepts are 

illustrated by one or more examples but are usually not defined in a formal way. 

Process modelling. All methods (except for OIB) use the category of Regular Languages, 

which can be represented either by FSMs, Harel Statecharts or Regular Expressions, for the 

purpose of process modeling. Again, "using" any of these formalisms is mostly limited to 

using the same notations but ignoring the syntax and semantics of the original technique. We 

illustrate this for OOA and for OMT. Coad and Y ourdon explain the use of the FSM 

technique in OOA in their handbook by means of only one example [5, p. 146]. In this 

example, the FSM shows only states and legal transitions (transitions are not labelled) and it 

has no final state. In OMT, State diagrams can consist of a set of concurrent FSMs. 

Apparently, FSMs do not always have an initial state and/or a final state ([16], figure 5.1, 

p.107). The vagueness with which the technique of FSMs is used in OMT seems to be a 

consequence of the fact that the authors of this method have not given a precise definition of 

FSMs. As a result, guide-lines for checking the dynamic model for consistency and 

completeness such as [16, p. 179]: 

"Check for completeness and consistency at the system level when the state 

diagrams for each class are complete . ... States without predecessor or successor 

are SUSplClOUS ... ", 

are too general and unprecise. Formal techniques should provide a designer with precise 

criteria about completeness, consistency and the correctness of each construct. 

7 



METHOD STATIC DYNAMIC INTERACTION 
MODEL MODEL MODEL 

OSA EER with extensions FSM Interaction Diagram 

OIB Own formalism Petri-Nets Complex Activity 

FUSION EER with extensions Harel-Statecharts Object Interaction Graph 
Regular expressions 

OMT EER with extensions Harel-Statecharts Event Trace Diagram 

OOSA EER with extensions FSM Object Communication Model 
Object Access Model 

OOA Generalization/Specialization FSM Message Connections 
WholelPart 

OOD Variant of EER Harel-Statecharts Timing Diagrams 

Fig. 4. Techniques used to model static, dynamic and interaction aspects. 



Interaction modelling. A variety of techniques, mostly based on the concept of message 

passing are proposed for interaction modelling. Except for OIB and Fusion, the semantics of 

object interaction is never precisely defined. As a result, correctness checking for interaction 

schemes is reduced to recommendations such as [16, p.179]: 

fl ••• ; beware of synchronization errors where input occurs at an awkward time. Make 

sure that corresponding events on different state diagrams are consistent . ... ". 

The question is what is precisely meant by "an awkward time" and "consistent". 

Finale 

We have used the above criteria for comparing the object-oriented analysis methods under 

consideration. Figure 5 shows the result. Possible scores are high (_), medium (I), low (I), 

and absent (.). The given scores are motivated as follows. 

Syntax and semantics. For the first two criteria, a high score is attributed to methods with a 

proprietary definition of syntax and semantics. A method without formal definition of syntax 

and semantics gets a medium score if it uses a standard technique, possibly with minor 

extensions, for which a formal definition exists (e.g. Entity-Relationship and Finite State 

Machines). In case of major extensions or techniques that are a collection of concepts of 

diverse origin, a low score is assigned 

Most methods list the basic (graphical) symbols that can appear in a schema. How these 

symbols are actually combined into a schema, is generally illustrated by examples. Precise 

definitions appear only in OSA, alB and Fusion. OSA defines OSA-schemas by means of a 

meta model, which itself is stated in terms of aRM-diagrams (Object-Relationship-Model 

diagrams, the OSA-equivalent of ER-diagrams). The meta model describes the syntax of 

aRM-diagrams, state-nets and interaction diagrams. Fusion gives a detailed, though 

infonnal, description of the graphical symbols in the Object Model and the ways of 

combining these symbols. The syntax of the interaction model and data dictionary are given 

in BNF-notation. A syntax definition for the petri-nets in alB can be found in [13]. 

9 



OMT FUSION OSA OOSA OOA OIB OOD 

1. Quality of syntax definition 
1.1. Static model I I • I 1 1 1 

1.2. Dynamic model I • • I I • I 
1.3. Object interaction model I • • 

2. Quality of semantics definition 
1.1. Static model I I • I 1 1 1 

1.2. Dynamic model I • I I I • I 
1.3. Object interaction model • • 

3. Test for inter-schema I I 
consistency 

4. Specification of overall • • system behaviour 

5. Test for anomalous 
system behaviour 

.: High I: Medium I: Low . : Absent 

Fig. 5. Formal aspects of object-oriented analysis methods. 



The meaning (semantics) of concepts are mostly explained by means of one or more 

examples. The meaning of ORM-diagrams in OSA is defined by a mapping from ORM­

diagrams to first-order predicate calculus. The meaning of state-nets and interaction 

diagrams, on the other hand, is not defined. A recent book on Fusion [7] informally 

describes the semantics of the concepts in use. Nevertheless, in earlier work [6], the 

behaviour of single objects is described by deriving sets of traces from an object definition. 

Interestingly, this approach allows the definition of a global system behaviour. 

Consistency between schemas. Not one of the methods under consideration provides a 

fonnal treatment of consistency between schemas. In OOA and OOD the question of 

consistency checking is not even mentioned, which explains an absent score. OMT, OOSA 

and O/B deal with this topic in a very vague and informal manner, for which they deserve a 

low score. 

To the authors' knowledge, OSA has not concerned inter-schema consistency. 

Nevertheless, checking different schemas for inconsistencies seems theoretically possible. 

The authors of Fusion admit that their approach to consistency checking is intractable: 

"In practice, proof [of consistency between models] is totally impractical. Thus we do not 

expect the analyst to prove consistency between models in the general case. Informal 

reasoning about judiciously selected examples has to be sufficient." [12, p. 181]. 

This explains the medium score for both methods. No method has a formal consistency 

checking procedure. 

Overall system behaviour. As is to be expected, methods without formal syntax and 

semantics do not define overall system behaviour. This aspect is only covered by O/B and 

Fusion. Unfortunately, Fusion does not define the dynamic creation and deletion of objects 

at run time. 

Anomalous system behaviour. None of the reviewed methods investigates properties of the 

overall system behaviour. 

11 



Concluding Remarks 

OOA-methods can benefit in several ways from the availability of formal mathematical 

semantics (e.g. consistency checking). We found that most current object oriented 

specification techniques are infonnal in one way or another. Importantly, not one of the 

methods reviewed incorporates the concept of overall system behaviour. 

From the point of view of the quality of the software development process, the 

formalisation of OOA-methods will allow for correctness checking at an earlier stage in the 

software development process, hereby reducing development costs. The precise definition of 

the syntax of a method is a prerequisite for the development of a supporting CASE-tool. The 

precise definition of semantics and the availability of a formal procedure to check 

consistency between schemas allow to add intelligence to such a CASE-tool. Without these 

features, CASE-tools can't offer much more support than diagram-editors. 

References 

[1] Aho, A.V., and Ullman, J.D. The theory of Parsing, Translation and Compiling. 
Volume I: Parsing. Prentice Hall, Englewood Cliffs, N.J., 1972. 

[2] Booch, G. Object oriented development. IEEE Transactions on Software 
Engineering 12, 2 (Feb. 1986),211-212. 

[3] Booch, G. Object Oriented Analysis and Design with Applications. Second Edition, 
Benjamin/Cummings, Redwood City, CA, 1994. 

[4] Chen P.P., The Entity Relationship Approach to logical Database Design, QED 
infonnation sciences Wellesley (Mass.), 1977 

[5] Coad, P., and Yourdon, E. Object-Oriented analysis. Prentice Hall, Englewood Cliffs, 
N.J., 1991. 

[6] Coleman, D., Hayes, F., and Bear, S. Introducing Objectcharts or How to Use 
Statecharts in Object Oriented Design. IEEE Transactions on SofMare Engineering 18, 
1 (Jan. 1992),9-18. 

[7] Coleman, D., Arnold, P., Bodoff, S., Dollin, c., Gilchrist, H., Hayes, F. Jeremaes, P., 
Object-Oriented Development, The FUSION Method. Prentice Hall, Englewood Cliffs, 
N.J., 1994. 

[8] Cooke, J. Formal methods-Mathematics, theory, recipes or what? The Computer 
]ournal35,5 (May 1992),419-423. 

12 



[9] de Champeaux D., America P., Coleman D., Duke R., Lea D., Leavens G., Formal 
Techniques for 00 Software Development (PANEL), OOPSLA'91 conference 
proceedings, Addison-Wesley Publishing Company, pp.166-170 

[10] Dedene G., Snoeck M., Formal deadlock elimination in an object oriented conceptual 
schema, Data and Knowledge Engineering, Vol. 15 (1995) 1-30 

[11] Embley, D.W., Kurtz, B.D., and Woodfield, S.N. Object-Oriented Systems Analysis: A 
Model-Driven Approach. Yourdon Press, Prentice Hall, Englewood Cliffs, N.J., 1992. 

[12] Hayes, F., and Coleman, D. Coherent Models for Object Oriented Analysis. 
In Proceedings of OOPSLA'91 Conference, 8-10 Octobre, 1991, ACM Press (N.Y.), 
1991, 171-183. 

[13] Kappel, G., and Schrefl, M. Using an object-oriented diagram technique for the design 
of information systems. In Sol, H.G., and van Hee, KM., Eds. Dynamic Modeling of 
Information Systems, Elsevier Science Publishers B.v., North-Holland, 1991, 121-164. 

[14] Lang, N. Shlaer-Mellor Object-Oriented Analysis Rules. ACM SIGSOFT Software 
Engineering Notes 18, 1 (Jan. 1993),54-58. 

[15] Put, F Introducing Dynamic and Temporal aspects in a Conceptual (Database) 
Schema. Ph.D. Dissertation, KU.Leuven, Department of Applied Economic Sciences, 
1988. 

[16] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. Object Oriented 
Modeling and Design. Prentice Hall, Englewood Cliffs, N.J., 1991. 

[17] Shlaer, S., and Mellor, S.J. Object-Oriented Systems Analysis: Modeling the World in 
Data. Yourdon Press, Englewood Cliffs, N.J., 1988. 

[18] Shlaer, S., and Mellor, SJ. Object Lifecycles: Modeling the World in States. Yourdon 
Press, Englewood Cliffs, N.J., 1992. 

[19] Snoeck M., A process Algebra Approach for the construction and analysis of 
M.E.R.O.DE.-based conceptual models, PhD. Dissertation, KU.Leuven, Faculty of 
Science and Department of Computer Science, 1995 

[20] Snoeck M., Dedene G., Generalization/Specialization and Role in Object Oriented 
Conceptual Modeling, accepted for publication in Data and Knowledge Engineering. 

13 




