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Abstract 

The aim of this paper is to apply the method proposed by Denuit, Genest 
and Marceau (1999) for deriving stochastic upper and lower bounds on the 
present value of a sequence of cash flows, where the discounting is performed 
under a given stochastic return process. The convex approximation provided 
by Goovaerts, Dhaene and De Schepper (1999) and Goovaerts and Dhaene 
(1999) is then compared to these stochastic bounds. On the basis of sev­
eral numerical examples, it will be seen that the convex approximation seems 
reasonable. 

Key words and phrases: Dependence, Stochastic Dominance, Stochastic 
Annuities 



1 Introduction 

Let vt be the present value at time 0 of an amount of at paid at time t. The 
stochastic discounted value at time 0 of payments of amount at made at times 
t = 1,2, ... ,n is then given by 

(1.1) 

Consider for instance an insurance company facing payments of amount at at 
times t = 1,2"" ,n; the present value of these n deterministic payments is 
given by (1.1). 

The Vi's involved in (1.1) are obviously correlated, so that the conve­
nient independence assumption for the summands in Zn is not realistic. As 
a consequence, an exact expression for the cumulative distribution function 
of Zn requires the knowledge of the joint distribution of the random vector 
(Vi, V2 , ... ,Vn ), which is in general not available. Goovaerts, Dhaene and 
De Schepper (1999) recently proposed to circumvent this problem by approx­
imating Zn by means of a random variable Zn dominating the original Zn in 
the convex sense. If we denote by FI, F2 , ... ,Fn the respective distribution 
functions of Vi, 1/2, ... , Vn involved in (1.1), Zn is given by 

where U is a unit uniform random variable and the Fi-1,S are the quantile 
functions associated to the Fi's. We obviously have that EZn = EZn and it 
can be shown that the inequalities 

E max{ Zn - d,O} ::; E max{ Zn - d, O} (1.2) 

hold for any d ;:::: 0 (that is, Zn is smaller than Zn in the convex order). 
Since Zn precedes Zn in the convex sense, the approximation Zn is consid­

ered as less favorable by all the risk-averse decision-makers, and the method 
is thus conservative. Moreover, the cumulative distribution function of Zn en­
joys an explicit expression and is particularly easy to handle. On the basis 
of numerical illustrations performed in a situation where the exact cumulative 
distribution function of Zn can be obtained, Goovaerts et al. (1999) showed 
that the cumulative distribution functions of Zn and Zn seem to be rather 
close. 

The problem of estimating the distribution of Zn has been studied, among 
others, by Beekman and F\lelling (1991), De Schepper and Goovaerts (1992), 
Dufresne (1990), Frees (1990), Parker (1994c,1997), De Schepper, Teunen, 
Goovaerts (1994) and Vanneste, Goovaerts and Labie (1994). This paper aims 
to carryon with Goovaerts et al.'s (1999) approach by providing lower and 
upper bounds on Zn in the stochastic dominance sense, using the method 
proposed in Denuit, Genest and Marceau (1999). This approach also provides 
upper and lower bounds on the quantiles of Zno In risk management, these 
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quantiles correspond to the Value at Risk at different probability levels. Such 
bounds cannot be obtained with the aid of the convex approximation Zn. 
Indeed, we see from (1.2) that the stop-loss premium of Zn is an upper bound 
of the stop-loss premium of Zn; more generally, E¢(Zn) is an upper bound for 
E¢(Zn) for any convex function ¢. However, there is in general no relation 
between P[Zn :::; z] and P[Zn :::; z] (since indicator functions are not convex). 

Another purpose of this work is to provide several numerical illustrations 
which enhance the practical interest of our approach. In these illustrations, we 
will examine the position of the cumulative distribution function corresponding 
to the convex approximation Zn in the admissible region delimitated by the 
stochastic bounds on Zn. As a byproduct of our results, the error in the 
approximation of Zn by Zn can be evaluated (in other words, we get an upper 
bound for the Kolmogorov distance between Zn and Zn). 

2 Stochastic bounds on Zn 

In this section, we recall how to build two functions Fmin and Fmax such that 
the inequalities 

(2.1) 

hold, as well as 

(2.2) 

To this end, we use the following result due to Denuit et al. (1999, Proposition 
2). Let FI, F2 ,' .. ,Fn be the respective cumulative distribution functions of 
Yl, V2 , .•• ,Vn. Then, the cumulative distribution function FZn of Zn = VI + 
V2 + ... + Vn is constrained by (2.1) with 

Fmin(t) = sup max {t P[V; < Vi] - (n - I), o} , 
(VI,V2, ... ,vn)E}J(t) i=1 

and 

Fmax(t) = inf min {t Fi(Vi), I} , 
(VI,V2, •.• ,vn)E}J(t) i=1 

where 

Note that Fmax is a bona fide cumulative distribution function, whereas Fm'm 
is the left-continuous version of some cumulative distribution function. The 
bounds in (2.1) and (2.2) are the best-possible bounds on Zn and Zn in 
the sense of stochastic dominance when we know the distribution functions 
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Fl , F2 , • •. ,Fn , but no assumption is made on the dependence structure be­
tween the Ws. Equivalently, these bounds hold for all sums (1.1) with given 
cumulative distribution functions for Vi, \12, . .. , Vn . 

Closed form expressions for the bounds (2.1) can in general not be obtained 
for distributions of the Vi's and one must resort to numerical evaluation. For 
more details, see Denuit et al. (1999). 

Now, assume we have at our disposal some partial knowledge of the de­
pendence existing between the Ws, namely that there exists a multivariate 
cumulative distribution function G satisfying 

G(Vl' V2, ... ,vn) :::; P[Vi :::; Vb \12 :::; V2,' .. , Vn :::; vnl for all Vb V2," . ,Vn E JR, 
(2.3) 

and a joint decumulative distribution function H such that 

P[Vi > Vb \12 > V2,' .. , Vn > vnl ~ H(Vb V2,' .. ,vn) for all Vb V2,' .. ,Vn E JR. 
(2.4) 

From Denuit et al. (1999, Proposition 5), the inequalities 

sup G(Xl,X2,"',xn ):::;Fzn (t):::;1- sup H(XbX2,"',Xn), 
(X1.X2.··· .Xn)eE(t) (XloX2.··· .xn)eE(t) 

(2.5) 

hold for all t E JR. The bOlmds in (2.5) are obviously more accurate than 
those in (2.1). 

In the literature, several notions of positive dependence have been intro­
duced in order to express the fact that large values of one of the components 
of a random vector tend to be associated with large values of the others. In 
our context, one intuitively feels that in most situations the Ws mainly "move 
together" (i.e. a large value of Vi is usually followed by a large value of Vi+l)' 
For the numerical illustrations in this paper, we will assume that (2.3) and 
(2.4) are satisfied with 

and 

n 

G(VI, V2,' .. ,vn) = II Fi(Vi) 
i=l 

n 

H(Vl' V2,' .. ,vn) = II (1- Fi(Vi)). 
i=l 

In such a case, the Vi's are said to be Positively Orthant Dependent (POD, 
in short). POD comes thus down to assume that the probability that all the 
Vi's assume "small" values (i.e. Vi:::; Vi, i = 1,2, ... ,n) is larger than the 
corresponding probability under the assumption that the Ws are mutually 
independent. The interpretation for H is similar by substituting "large" for 
"small". For more details, see, e.g., Szekli (1995, pp. 144-145). 
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3 Applications 

3.1 Stochastic annuities 

Let 6. be the force of interest at time s and let yt denote the force of interest 
accumulation function at time t, i.e. 

The random present value at time 0 of a payment of 1 monetary unit at time 
t is given by exp( -yt), t ~ O. 

As noticed by Parker (1994b), there are mainly two possible approaches to 
model the interest randomness, namely the modeling of yt and the modeling 
of 6 •. In the first approach, we could let yt be the sum of a deterministic drift 
of slope 6 and a perturbation modeled by a Wiener process, i.e. 

(3.1) 

where u is a non-negative constant and {Wt, t E JR+} is a standardized Brow­
nian motion. In such a case, lit is log-normally distributed with parameters 
-6t and u2t. This corresponds to the approach adopted by Goovaerts et al. 
(1999) who considered a discounted cash flow Zn of the form 

n 

Zn = L exp( -6i - Xi), 
i=l 

where the Xi's are assumed to be normally distributed with mean 0 and vari­
ance iu2 , and 6 is the expected force of interest. The convex upper bound Zn 
on Zn obtained by Goovaerts et al. (1999) is 

n 

Zn = L exp { -6i - uViiP-1 (U) } , 
i=l 

(3.2) 

where iP is the cumulative distribution function of a standard normal distri­
bution and U is a random variable uniformly distributed on the lmit interval 
[0, 1]. The survival function of Zn then follows from 

P[Zn > x] = 1 - FZn (x) = iP(lIx), 

with IIx the root of the equation 

n 

L (}i exp( -6i - ViUllx ) = X. 

i=l 

Let us now investigate the accuracy of the bounds (2.1) and (2.5) on the 
distribution function of Zn in the model (3.1). In Figure 1, one sees the 
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Figure 1: Graph of the bounds (2.1) and cumulative distribution function of 
ZlO for (3.1) with 0 = 0.08 and (J" = 0.02. 

functions F min and Fmax involved in (2.1). with in between the approximation 
FZn of the unknown FZn for n = 10, 0 = 0.08 and (J" = 0.02. Figure 3 is 
the analog for n = 20. Comparing the cumulative distribution function of 
the convex approximation (3.2) with the stochastic bounds (2.1), we see from 
Figures 1 and 3 that (3.2) lies in the very middle of the admissible region 
bordered by F min and Fmax. This indicates that (3.2) could be reasonable. In 
Figures 2 and 4, we further assume that the V;'s are POD and we computed 
the improved bounds furnished in (2.1). Only the lower bound got improved. 
As it is observed in Example 3 of Denuit et at. (1999), both upper and lower 
bounds on the distribution of a sum of random variables got improved when 
the supports of the random variables are of the form [ai, bJ with -00 < ai < 
bi < +00. If bi is equal to +00 as in Example 1 of Denuit et at. (1999), only the 
lower bound will be improved with the assumption of POD. In our examples, 
the random variables are lognormally distributed with supports corresponding 
to [0, +(0). If, as in Goovaerts and Dhaene (1999), Ot is defined by a CIR 
model, then yt will be strictly positive, Vi = exp( - yt) will take values between 
o and 1, and therefore upper and lower bounds on the distribution of Zt will 
have been improved. 

A second approach to model interest randomness is to model Os. For in­
stance, the force of interest can be defined by the differential equation 

(3.3) 
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Figure 2: Graph of the bounds (2.5) and cumulative distribution function of 
ZlO for (3.1) with (j = 0.08 and (J" = 0.02. 
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Figure 3: Graphs of the bounds (2.1) and cumulative distribution function of 
Z20 for (3.1) with (j = 0.08 and (J" = 0.02. 
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Figure 4: Graphs of the bounds (2.5) and cumulative distribution function of 
Z20 for (3.1) with 0 = 0.08 and (J = 0.02. 

with non-negative constants a and (J, and with initial value 00 = 0 ~ 0; 
{Ot, t ~ O} is thus an Ornstein-Uhlenbeck process. The force of interest 
accumulation function {yt, t ~ O} is therefore a Gaussian process with mean 
function 

t f-+ /-It = ot + (00 _ 0) 1- exp(-at), 
a 

and auto covariance (s, t) f-+ Cov[Ys, yt] == w(s, t), where 

(J2 (J2 
w(s, t) = 2' min(s, t) + -3 {-2 + 2exp( -as) + 2exp(-at) 

a 2a 
- exp( -a(t - s)) - exp( -a(t + s))}; 

see e.g. Parker (1994a, Section 6). Then, 

n 

Zn = L exp( -Yi), 
i=l 

where Yi is a Normal random variable with mean /-li and variance w(i, i). In 
such a case, the convex upper bound Zn follows from Goovaerts et al. (1999): 

Zn = texp {-/-li - VW (i,i)<I>-l(U)}, 
i=l 
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Figure 5: Graphs of the bounds (2.1) and cumulative distribution function of 
ZlO for (3.3) with 0 = 0.06, 00 = 0.08, 0: = 0.3 and (J = 0.01. 

where U is a random variable uniformly distributed on the unit interval [0,1]. 
In Figure 5, you can see the bounds on the cumulative distribution function of 
ZlO in the model (3.3) with 0 = 0.06, 00 = 0.08, 0: = 0.3 and (J = 0.0l, together 
with the cumulative distribution function of ZlO' Figure 7 is the analog for 
n = 20. The comments inspired from Figures 1 and 3 still apply. In Figures 
6 and 8, we assumed that the Vi's were POD. Again, the improvement with 
POD is moderate. 

3.2 Life insurance 

Consider a temporary life annuity issued to an individual aged x with curtate­
future-lifetime K and denote P[k < K ::::; k + 1] = klq", and P[K > n] = nP",' 
We assume that K is independent ofthe random discount factors Vi, 112, V3, . ... 
The net single premium relating to this contract is given by 

with 
o if K = 0, 
ZK if K = 1, ... ,n - 1, 
Zn if K ~ n, 
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Figure 6: Graphs of the bounds (2.5) and cumulative distribution function of 
ZlO for (3.3) with 0 = 0.06, 00 = 0.08, a = 0.3 and (J" = 0.01. 
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Figure 7: Graphs of the bounds (2.1) and cumulative distribution function of 
Z20 for (3.3) with 0 = 0.06, 00 = 0.08, a = 0.3 and (J" = 0.01. 
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10 15 20 

Figure 8: Graphs of the bounds (2.5) and cumulative distribution function of 
Z20 for (3.3) with 0 = 0.06, 00 = 0.08, ex = 0.3 and (J" = 0.01. 

where Z is defined as in (1.1). By conditioning on K, the net single premium 
relating to such a contract is 

n-l 

ax;;j = L E[Zklklqx + E[ZnlnPx. 
k=l 

The cumulative distribution function of aO -I is also obtained by conditioning 
Xjn 

onK: 
n-l 

P[a:;;:;j" ::; yl = qx + L P[Zk ::; ylklqx + P[Zn ::; ylnPx' 
k=l 

No explicit expression exists for P[a:;;j ::; yl, but we use the approach devel­

oped above allows us to find stochastic dominance bounds on a:;;j' In Figure 

9, we depicted the graph of the bounds on P[a:;;j ::; yl for an individual aged 

45 in the model (3.1) with 0 = 0.08 and (J" = 0.02. Figure 10 is the analog in 
model (3.3) with 0 = 0.06, 00 = 0.08, ex = 0.3 and (J" = 0.01. For these numeri­
cal illustrations, we used the standard mortality table (Makeham model) given 
in Bowers et al. (1996). The bounds in Figures 9 and 10 give a good idea of the 
danger inherent to the stochastic interest rate combined with the stochastic 
mortality. Let us mention that the convex approximation of Goovaerts et al. 
(1999) also applies in this situation. 

10 



'" ci 

I upper bdonPt(B10<y) 
bwerlx:lllllPr(Bl0q) 

10 

Figure 9: Bounds on P[a:;Wf :::; y] for x = 45 and (3.1) with 0 = 0.08 and 
a = 0.02. 
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