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Abstract 

In the present note we deduce a class of bounds for the difference between the 

stop loss transforms of two compound distributions with the same severity distribu

tion. The class contains bounds of any degree of accuracy in the sense that the 

bounds can be chosen as close to the exact value as desired; the time required to 

compute the bounds increases with the accuracy. 
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1. Introduction 

In the present note we generalise a result from Dhaene & Sundt (1994) which 

gives bounds for the difference between the stop loss transforms of two compound 

distributions with the same severity distribution. We generalise these bounds to a 

class that contains bounds of any degree of accuracy in the sense that the bounds 

can be chosen as close to the exact value as desired; the time required to compute 

the bounds increases with the accuracy. 

2. Notation and conventions 

The following notation and conventions are to a great extent taken from 

Dhaene & Sundt (1994). 

In the present paper we shall be concerned with probability distributions on 

the non-negative integers. Identifying such a distribution by its discrete density, 

we shall for convenience usually mean its discrete density when we talk about a 

distribution. 

Let 'P denote the class of (discrete densities of) probability distributions on 

the non-negative integers with finite mean. For a distribution jE'P we denote by r f 

the corresponding cumulative distribution, by II f the stop loss transform, and by 

I-Lf the mean, that is, 

rf(x) = Ey~O f(y) 

IIf(x) = Ey=;+l (y-x)f(y) = Ey:x (l-r f(Y)) 

I-Lf= IIf(O) = EY:1 yf(y) = Ey:o (l-r f(Y))' 

(x=O,1,2, ... ) 

(x=O,1,2, ... ) 
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We shall denote a compound distribution with counting distribution pE'P and 

severity distribution hE'P by pVh, that is, 

(JJ n* 
pVh = En=O p(n)h . 

For a distribution jE'P and a positive integer r, we define the approximation 

ir) by 

(x=0, 1, ... ,r-1) 

(x=r) 

(x=r+1,r+2, ... ) 

This approximation can be interpreted as the distribution obtained by setting all 

observations greater than r equal to r. 

By the notation x + we shall mean the maximum of x and zero. 

We denote by J the indicator function defined by J( A)=1 if the condition A is 

true and J(A)=O if it is false. 

We shall interpret E. b v. = 0 and II. b v· = 1 when b<a. 
't=a ~ Fa z 

3. Main results 

3A. We shall need the following lemma. 

Lemma 1. For hE'P and x, r, and m non-negative integers such that ~ m, we 

have 
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Lemma 1 is proved as formula (38) in De Pril & Dhaene (1992) for the special 

case r=1; the proof is easily extended to the general case. 

Lemma 2. For p}hE'P and r a positive integer} we have 

(x=O,1,2, ... ) (1) 

Prooj. For x=O,1,2, ... we have 

II Vh(x) - II (r) (x) = E ~ p(n)II *(x) - (1-r (r-1))II r*(x) = 
p p vh n-r hn p h 

E ~ p(n)[II *(x)-II r*(x)]. 
n=r hn h 

Application of Lemma 1 gives 

from which we obtain (1). Q.E.D. 

The second inequality in (1) was proved under more general assumptions by 

Sundt (1991), who also showed that O~II Vh(x)-II () (x), which is weaker than 
p p r vh 

the first inequality in (1). 

If p( r)=p, that is, p( n)=O for all n>r, then the bounds in (1) become equal to 

zero. 
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Lemma 1 appears as a special case of Lemma 2 by letting p be the distributi-

on concentrated in m. 

3B. For p,q,hE'P, r a positive integer, and x a non-negative integer, we intro-

duce 

B (X;p,q,h) = II () (x)-II () (x)+JthII (r)-IIh(x)II (r), 
r p r vh q r vh p q 

which can also be written as 

Br(x;p,q,h) = E~ ~ (p(n)-q(n))II hn*(x) - (f p(r-l)-f ir-l))II hr(x) + /thIIp(r)

IIh(x)IIir). (2) 

Theorem 1. For p,q,hE'P, and r a positive integer, we have 

(x=O,1,2, ... ) (3) 

Proof Application of Lemma 2 gives for x=O,1,2, ... 

II Vh(x)-II Vh(x) ~ II () (x)+/thII (r)-II () (x)-IIh(x)IIq(r) = Br(X;p,q,h), 
p q p r vh p q r vh 

which proves the second inequality in (3). The first inequality in (3) follows by 

symmetry. 

This completes the proof of Theorem 1. Q.E.D. 

We shall look at some special cases of Theorem 1: 
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1. As for p,hE'P and r a positive integer 

(x=O,I,2, ... ) 

we see that Lemma 2 (and thus also Lemma 1) is a special case of Theorem 1. 

2. We have 

B1(x;p,q,h) = -(p(O)-q(O))IIh(x) + flhIIp(l) - IIh(x)IIi1) = 

(flh-IIh(x))IIp(l) + IIh(x)(flp-flq). 

Thus, when r=1, Theorem 1 gives the same bounds as Theorem 5.3 in Dhaene & 

Sundt (1994). 

3. If p(x)=q(x)=O for all x>r, then p( r)=p and q( r)=q, and we obtain 

that is, in this case Theorem 1 becomes trivial. 

3C. Let D/X;p,q,h) denote the difference between the upper and lower bound 

in Theorem 1, that is, 

(4) 

Then 

(5) 
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We see that Dr(x;p,q,h) decreases to zero when r increases to infinity, that is, 

we can make the difference between the upper and lower bound in Theorem 1 as 

small as desired by making r sufficiently large. 

On the other hand 

which is greater than zero except for the cases when x=O or IIp( r)=O. 

We see that D/X;p,q,h) increases from zero to Jlh(IIp(r)+IIir)) when x in

creases from zero to infinity. Thus our bounds are most accurate for low values of 

x. Furthermore, if for some f>O we choose r such that 

then D/X;p,q,h)<f for all x. 

3D. For p,q,hE'P, r a positive integer, and x a non-negative integer, let 

From (2) and trivial calculus we obtain 

b (x;p,q,h) = (f (r)-f (r))[II ( +l)*(x)-II -*(x)] + Jlh(l-f (r))-IIh(x)(l-f (r)). r p q h r h'''' P q 

(6) 

By rewriting (6) as 
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b/x;p,q,h) = (1-r p(r))[J.Lh+ II hr*(x)-II h(r+1)*(x)] + 

(1-r i r)) [II h(r+1)*(X)-II hr*(X)-IIh(X)] 

and application of Lemma 1, we see that b/x;p,q,h) is non-negative. Thus 

B/X;p,q,h) is non-increasing in r. This implies that in (3), the upper bound is non

increasing and the lower bound is non-decreasing in r, and as D (X;p,q,h) goes to 
r 

zero when r goes to infinity, both bounds converge to the estimation error 

3E. Formula (6) can be applied for recursive evaluation of B/X;p,q,h). 

Furthermore, when we have have found B (X;p,q,h), we easily obtain B (X;q,p,h) r r 

from (4) and (5). 
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