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Abstract

Environmental factors add complexity to the comparison between speci�c activities

or entire entities. Decision making units with an inferior performance are tempted to

invoke that their organization is �di¤erent�from the others in the data set. By reinter-

preting and extending the metafrontier literature, we propose an all-embracing concept

to fully capture the operational environment. We suggest the �Group Speci�c Technical

E¢ ciency�as a new measure to assess the overall e¢ ciency of a utility while allowing

for environmental di¤erences. A real-world example of drinking water utilies out of 5

di¤erent countries illustrates the concept.

JEL Classi�cation: C14, C61, D24, L95

Keywords: Free Disposal Hull, E¢ ciency Measurement, Environmental Variables,

Metafrontier, Water Industry

1 Introduction

The performance comparison of an entity with a reference entity has been widely applied

for both managerial and academic purposes. There are several examples in di¤erent �elds,

such as health, utilities (water, waste, energy, etc.), defence, education, justice, either in
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the public administration or in the private sector. When comparing only two activities or

entities, it is relatively easy to pin-point the exact environmental factor which causes the

inferior performance. When comparing a bundle of activities or entire organizations, it is

more intricate to identify the precise factors causing the poor e¢ ciency. It is thus easier for

managers to argue that, due to environmental factors, their organization is �di¤erent�from

the other entities in the data set. Although these concerns are a drawback highlighted by

the benchmarking literature, frequently a benchmarking initiative is the only incentive to

trigger e¢ ciency and innovation in a natural monopolistic sector as competition in or for the

market is impractical or not desirable.

In this article we concentrate on the measurement of e¢ ciency (i.e. to which extent

resources are converted into products) by the use of deterministic frontier models. Method-

ologies such as the non-parametric Data Envelopment Analysis (DEA) and Free Disposal

Hull (FDH) are popular among scholars and practitioners. However, despite the fact that

hundreds of papers apply these methodologies, only a few of them try to take into account the

operational environment, most of them simply neglect the exogenous in�uences. Neverthe-

less, exogenous environmental factors could in�uence the e¢ ciency scores to a large extent.

Indeed, favorable environmental variables behave as a substitutive input, while unfavorable

factors absorb inputs to compensate the disadvantageous conditions.

The literature suggests various methodologies to integrate the operational environment

(i.e., the heterogeneity) into the DEA analysis, however, none of them is consensual. Fol-

lowing Fried et al. (1999), the methodologies can be divided into several groups. Firstly,

the frontier separation approach divides the observations in groups according to the envi-

ronmental characteristics. Secondly, the all-in-one approach takes the exogenous variables

immediately as an additional input (if a favorable e¤ect) or as an additional output (if an

unfavorable e¤ect). Thirdly, the frequently employed two-stage model employs a truncated

Tobit regression to estimate the direction of the in�uence of the environmental e¤ect. How-

ever, Simar and Wilson (2007) show some serious doubts with respect to the Tobit estimates.

Fourthly, the multi-stage models take into account slacks. Each of these techniques has its

own advantages and drawbacks which causes (small) changes in the results. However, an

important common disadvantage of these approaches is the necessity to speci�y a priori the

exogenous in�uences. In addition, none of these methodologies is successful in fully captur-

ing the operational environment. Evaluated entities could easily invoke other (also implicit)

exogenous factors in addition to the a priori speci�ed environmental variables. In many em-

pirical evaluations, the e¢ ciency of the DMUs could be largely in�uenced by �untouchable�

variables (e.g. corporate atmosphere) which are di¢ cult to capture in numerical data, or

by in�uences which are on its own of a minor importance (e.g. weather conditions) but in

interaction with other variables have a signi�cant impact on the observation�s e¢ ciency (e.g.

social and cultural aspects).

Reinterpreting and extending the work of Battese and Rao (2002), Battese et al. (2004)
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and O�Donnell et al. (2007), we develop a methodology which fully tries to capture the het-

erogeneity by the use of a �Metafrontier�-framework. The latter concept, �rstly, evaluates each

observation relatively to the own group best practice frontier (where the units of the group

are assumed to have the same environmental characteristics) and, secondly, to the overall-

metafrontier constituting from the best practices of the di¤erent groups. The comparison of

these two e¢ ciency scores delivers the �Group Speci�c Technical E¢ ciency� (GTE ) which

measures the overall e¢ ciency of an entity while fully incorporating the explicit and implicit

environmental characteristics. Therefore, the developed metafrontier framework is relatively

easy to handle for practitioners, well explainable to stakeholders and straightforward to adapt

to di¤erent models and situations.

We adapt the metafrontier framework to the robust order-m e¢ ciencies as developed

by Cazals et al. (2002). In the second section of the paper, we show by simulation that

the robust e¢ ciency scores could solve the current problem in the metafrontier literature of

di¤erent group sizes. Indeed, as Zhang and Bartels (1998) point out, when comparing the

average e¢ ciencies of samples with di¤erent size, the results will be biased.

Finally, we apply the theory to an international data set of 122 utilities from 5 countries.

Corrected for the heterogeneity, we �nd that the benchmarked Dutch utilities, the English

and Welsh utilities regulated by yardstick competition and the regulated Australian utilities

are performing better than the Belgian and Portuguese drinking water companies.

The research is organised as follows. In Section 2, we discuss the measurement of e¢ ciency

by the use of deterministic and robust frontier models. Section 3 develops the metafrontier

concept to incorporate the operational environment. In Section 4, the model is applied to

the drinking water sector. Section 5 concludes the article.

2 Frontier models

2.1 Deterministic frontier models

Decision Making Units (DMUs) transform multiple inputs into heterogenous outputs with

a varying success. Conditional on the technology, each of the n �rms absorb p inputs x to

create q outputs y. The set of all these �rms, called technology set, is characterized by

	 = f(x; y) 2 Rp+q+ j x can produce yg: (1)

One way to estimate the relative e¢ ciency of a DMU is to assume that the best performing

units constitute a frontier which represents the best in class technology. The boundary of

the technology set 	 is represented by

�	 = f(x; y) 2 	 j (�x; y) 62 	;80 < � < 1; (x; �y) 62 	;8� > 1g: (2)

Viz-a-viz the �rms along the production frontier, DMUs which are using relatively more

resources to produce the given outputs in an input-oriented model, or DMUs which are

3



producing relatively less outputs given their used inputs in an output-oriented model are

considered as relatively ine¢ cient. These �rms are operating in the interior of the frontier

	. For a DMU located at (x; y) 2 Rp+q+ one can measure the input and output e¢ ciency as,

respectively,

�(x; y) = inff� j (�x; y) 2 	g; (3)

�(x; y) = supf� j (x; �y) 2 	g: (4)

A procedure to measure the relative ine¢ ciency scores � and � is to apply non-parametric

techniques such as Data Envelopment Analysis (DEA) or parametric techniques as Stochastic

Frontier Analysis (SFA). In this article, we concentrate on a less restrictive non-parametric

estimator than DEA, i.e. the Free Disposal Hull (FDH) estimator of Deprins et al. (1984).

Both DEA and FDH estimate the technology set 	 by the smallest set 	̂ that envelops the

observed data. But whereas DEA uses constant (CRS) or variable returns to scale (VRS),

respectively, the convex cone or convex hull of the FDH estimator, FDH relies only on a free

disposability assumption (i.e. if (x; y) 2 	, then for any (x0; y0) such that x0 � x and y0 � y,
(x0; y0) 2 	). The DEA convexity assumption is not always valid as there may be returns to
scale or non-divisible inputs and outputs. The FDH estimator is given by

	̂FDH = f(x; y) 2 Rp+q+ j y � yi; x � xi; i = 1; : : : ; ng: (5)

The e¢ ciency scores �̂FDH can be measured relatively to this frontier via

�̂FDH(x; y) = min
ijy�yi

max
j=1;:::;p

 
xji
xj

!
: (6)

Alternatively, the input-oriented FDH e¢ ciency scores can be obtained by solving the mixed

integer linear programming problem

�̂FDH(x; y) = minf� j y �
nX
i=1

iyi; �x �
nX
i=1

ixi ;

nX
i=1

i = 1; i 2 f0; 1g ; i = 1; : : : ; ng: (7)

2.2 Robust frontier models

Another, less deterministic, procedure are the robust order-m e¢ ciencies as suggested by

Cazals et al. (2002). This non-parametric estimator of the technology set 	 is related to the

FDH estimator but instead of constructing a full frontier as FDH does, it creates a partial

frontier which envelops only m (� 1) data points. The order-m e¢ ciency score is de�ned as

�m = E

"
min

i=1;:::;m

(
max

j=1;:::;p

 
xji
xj

!)
j yi � y

#
(8)
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where the p-dimensional random variables x1; : : : ; xm are drawn randomly and repeatedly

from the conditional distribution of X given yi � y. The estimator is based on the �expected
minimum input function�which allows to compare the e¢ ciency of an observation with that

of m potential units that have a production larger or equal to y. As it does not include all

observations, it is less sensitive to outliers, extreme values or noise in the data. Although

the estimator converges to the FDH estimate when m increases, this is only an asymptotic

result.

Correcting for sample size by order-m e¢ ciencies

As Zhang and Bartels (1998) indicate, a dissimilarity in sample sizes makes the comparison

of average e¢ ciency scores impossible. To solve this problem, we propose to use the order-m

e¢ ciencies of Cazals et al. (2002) in the spirit of the bootstrap ideas of Zhang and Bartels

(1998). The latter suggest to focus on the group with the largest data set (n1 > n2) and after

drawing n2 random �rms without replacement from the largest group�s sample, to carry out

an e¢ ciency measurement (e.g. by FDH) to �nd the e¢ ciency for these n2 �rms. To make

a valid comparison between the mean e¢ ciencies of group 1 and 2, this has to be replicated

a number of times (bootstrapping). Indeed, the idea of the partial frontier in the order-m

approach, as introduced above, is similar to this bootstrapping procedures. In contrast to

Zhang and Bartels (1998), we set m equal to the smallest data set as this �ts better in the

metafrontier framework (see infra).

To show the merits of this approach, we simulate a data set and compute for di¤erent

sample sizes the input-oriented FDH and the order-m e¢ ciencies. We create 100 observations

which use one input to produce two outputs. Both input and outputs are created from

random numbers between 0 and 1: x = rand1 � 15, y1 = rand2 � rand3 � 10, y2 = 6:5 �
(rand1 � rand2)=rand3. There is no signi�cant correlation between the three variables. The
estimation results, as presented in Table 1, reveal the decrease in average FDH-e¢ ciency.

The decline in terms of percentage relatively to the average FDH-e¢ ciency estimates of a

sample of 10 observations is drawn in Figure 1. As a striking contrast, the average order-m

e¢ ciencies (with m = 10 and B = 100) initially decline, but from a sample size of 50 on,

they remain more or less constant on values above one which shows the decreased in�uence

of outlying observations. Remark that both the ranks of the observations and the values of

the e¢ ciency scores are highly correlated for di¤erent values of m (a correlation of 0.95). The

main advantage of a lower trimming valuem is the reduced sensibility to outlying observations

in the sample.

2.3 Taking into account the operational environment

The ability of e¢ ciently transforming the resources into products does not only depend on the

technical e¢ ciency of the DMUs but also on the operational environment that characterizes
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Table 1: Di¤erence between average FDH e¢ ciencies and order-m e¢ ciencies
FDH order-m (B=100)

m = 10 Average Average Average

e¢ ciency e¢ ciency st. deviation

n = 10 0.8523 0.9499 0.0179

n = 20 0.8146 0.8886 0.0131

n = 30 0.6969 0.8668 0.0294

n = 40 0.6592 0.8479 0.0353

n = 50 0.6897 1.0538 0.0531

n = 60 0.6323 1.0358 0.0573

n = 70 0.6409 1.0255 0.0515

n = 80 0.6353 1.0871 0.0518

n = 90 0.6300 1.0286 0.0465

n = 100 0.6337 1.0609 0.0473

Figure 1: Di¤erence between FDH and order-m
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them. Therefore, the results of the benchmarking frontier models have a limited value if the

operational environment where the DMUs perform is not taken into account (see Daraio and

Simar, 2007; Fried et al., 1999].

For example, for the water utilities it is argued that the ownership has an impact on the

DMU e¢ ciency. Other factors are the consumers�density, the percentage of non-domestic

volume required or the water quality at its source. Hence, if the environmental variables

are not adequately taken into account, some DMUs can be considered as e¢ cient when they

are ine¢ cient or vice-versa, which is misleading. The operational environment, de�ned here,

comprises all the explanatory factors that interfere, to a larger or lesser extent, with the

DMU performance. There is not a precise de�nition of explanatory factors in the literature.

They can be contextual or not. The environment (annual rainfall and topography) are con-

text factors but the level of outsourcing is not, although the managers can only in�uence the

latter factor in the long-term. However, these explanatory factors should not be confounded

with non-discretionary (or non-controllable) inputs or outputs that are part of the productive

process. To illustrate this in a water utilities context, the input mains length, representative

of the input capital, is not controllable, at least in the short run, by the DMUs, so it cannot

be classi�ed as discretionary (controllable), even though it remains an input. From a dif-

ferent perspective, the peak factor is clearly an exogenous factor, in spite of having a great

importance in the productive e¢ ciency.

The classi�cation of the variables into inputs, outputs and explanatory factors is somewhat

complex, but fundamental in non-parametric studies. Lovell (2003) suggests that all the non-

discretionary variables (non-controllable) should be considered in a second stage. This issue

is discussed later. Unhappily in the water sector few studies try to encompass the in�uence of

the explanatory factors in e¢ ciency. Byrnes (1985), Woodbury and Dollery (2004), Resende

and Tupper (2004) and De Witte and Marques (2007) are some of the exceptions.

However, in the comparison of entities, it is intricate and sometimes (almost) impossible

to identify and measure the environmental factors which create the heterogeneity among

the entities. In a similar benchmarking process, observations can easily claim that they are

totally di¤erent and do not �t in the benchmark. Therefore, in the next section, we develop

a framework which tries to fully compare the entities of several groups without the a priori

selection and determination of exogenous characteristics.

3 A Metafrontier Approach

3.1 Metafrontiers

By reinterpreting and extending the ideas of Battese and Rao (2002), Battese et al. (2004)

O�Donnell et al. (2007), we develop an attempt to fully (with explicit and implicit determined

environmental variables) take into account the operational environment by the use of what
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they call �Metafrontiers�. Although not explicitly referred to, the idea of metafrontiers is used

in other studies as well, see e.g. Morita (2003) and Portela and Thanassoulis (2001). In this

section we analyze and enrich the literature on metafrontiers.

In a world withK groups, each having their speci�c state of technology and environmental

factors, a metafrontier is de�ned as the boundary of the unrestricted technology set. Hence,

the metafrontier envelops each of the separate group frontiers. For each of the K groups, the

production process is constrained by the state of technology which transforms for each of the

nk observations in group k the p inputs xk into q outputs yk (for k = 1; : : : ;K). The group

speci�c input e¢ ciency is measured relatively to the nk DMUs in the group sample such that

�k(xk; yk) = inff�k j (�kxk; yk) 2 	kg (9)

where the technology set 	k for group k is de�ned as

	k = f(xk; yk) 2 Rp+q+ j xk can produce ykg: (10)

If technology is freely interchangeable and thus if the k di¤erent groups have potential ac-

cess to the same technology, we can apply the previously explained group frontier analysis

relatively to the metafrontier. By pooling the observations of the K subgroups, the DMUs

are evaluated with respect to the same standards. In this sense, the metafrontier represents

an over-arching metatechnology where the technology set is de�ned by

	 = f(x; y) 2 Rp+q+ j x can produce yg (11)

where x and y denote, respectively, the input and output vector of an observation of any of

the k groups. The (pooled) sample size is the main di¤erence between the meta-concept and

the group-concepts.

We present a graphical analysis of metafrontiers for the input-oriented FDH framework

(an extension to the output-oriented framework is trivial). A simple example in the case of

a single input and output technology is illustrated in Figure 2. Z represents two coinciding

DMUs, Z1 and Z3, respectively of group 1 and group 3. As group frontier 1 envelops group

frontier 3 in this particular interval, the best performing utilities in group 1 are able to

produce the same amount of outputs with less inputs than the best performing observations

of group 3. Therefore, utilities of group 1 are part of the metafrontier. This superiority of

group 1 on the other groups could be attributed to a more advanced technology or to more

favorable environmental factors, out of control of the �rm�s managers. Measured relatively

to the group frontier, an ine¢ cient observation Z3 performs relatively more e¢ ciently than

an ine¢ cient observation Z1:

E¢ ciency of Z1 relatively to its group frontier = TEk1 =
OA

OZ
= 0:3 (12)

E¢ ciency of Z3 relatively to its group frontier = TEk3 =
OB

OZ
= 0:6 (13)
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Figure 2: Graphical analysis of metafrontiers

This implies that using the technology available in group 1, the output vector of Z can be

produced by using only 30 per cent of the input vector, while using the technology of group

3, only 60 per cent of the inputs would be necessary in comparison to the best practices.

The e¢ ciency measured relatively to the metafrontier, TE�, is the same for both DMUs

(i.e. TE� equals 0.30). As an interesting exercise, we could compare the meta and the group

technology. A �rst concept to measure this gap is the technology gap ratio (TGR) introduced

by Battese and Rao (2002). It reveals, in terms of percentage (1-TGR), the gap between

the maximum input reduction possible under the group technology and the metatechnology.

Hence, it shows the potential payo¤ from copying the best practice technology.

TGR1 =
TE�1
TEk1

=
OA
OZ
OA
OZ

=
0:3

0:3
= 1:0 TGR3 =

TE�3
TEk3

=
OB
OZ
OA
OZ

=
0:3

0:6
= 0:5 (14)

3.2 Group Speci�c Technical E¢ ciency

The TGR only indicates the potential input reduction of copying the best practice (meta)

technology. In this subsection, we introduce a composite statistic which is complementary to

the TGR and which tries to rank the observations while fully taking into account the opera-

tional environment. Relying on two assumptions, the developed indicator uses the e¢ ciency

estimates relatively both to the metafrontier and to the group frontier. Firstly, we assume,

and test in the next subsection, that DMUs of the same group face homogenous environmen-

tal factors. This is a reasonable assumption as the assignment of observations to a particular
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group is mostly clear-cut and thus the operational environment within a group will be well

comparable (e.g. utilities from the same region, sector or company). Secondly, we assume

that, although the DMUs of di¤erent groups could be exposed to di¤erent environmental

factors, the pooled observations perform relatively to the metafrontier as e¢ cient as they are

doing relatively to their group frontier. Hence, on the one hand, DMUs which are a bench-

mark in the group sample will not additionally be penalized in their e¢ ciency relatively to

the metafrontier. On the other hand, DMUs that are already ine¢ cient in the homogeneous

group sample, will be additionally penalized in their ine¢ ciency in the meta sample. The

newly obtained variable, which we label group speci�c technical e¢ ciency (GTE�), computes

the degree of ine¢ ciency if the group ine¢ ciency were unchanged and if the utilities faced

an equalized technology. It is computed relatively to the metafrontier as

GTE�i = TE
�
i � TEki : (15)

If we compare in our graphical example DMUs of group 1 with observations of group 3,

the former could have both a superior technology and more favorable environmental factors.

Since favorable environmental factors behave as substitutive inputs, DMUs of group 1 need

relatively less resources to produce the same proportion of outputs, which yields higher

e¢ ciency scores. Utilities of group 3 in comparison to utilities of group 1, besides having an

inferior technology, could face more unfavorable environmental factors. As these behave as

substitutive outputs, they absorb resources, causing lower e¢ ciency estimates. Following our

�rst assumption, we assume that regarding to the group frontier all DMUs of group k are

working in the same environment and with the same technology. Hence, observation Z1 is

relatively to the other observations in its group very ine¢ cient (0.3), which contrasts to Z3
that is relatively to the other DMUs in the group only �somewhat�ine¢ cient (0.6). Relative

to the metafrontier, all DMUs in group 3 have a low e¢ ciency score due to the unfavorable

environmental factors.

On the one hand, the group frontier analysis can not be used to detect di¤erences in

e¢ ciency between the groups since each group has its own benchmarks. On the other hand,

although a metafrontier analysis is able to detect the group di¤erences, it pools all the

observations but does not take into account di¤erences in environmental factors. The GTE�

�lls this gap by computing e¢ ciency estimates relatively to the pooled sample and by taking

into account the operational environment. Assuming in the graphical example that Z1 and

Z3 transform their resources with the same extent of ine¢ ciency in the meta approach as in

the group approach, the GTE� ranks Z3 higher than Z1:

GTE�1 = TE
�
1 � TEk1 = 0:3� 0:3 = 0:09 GTE�3 = TE

�
3 � TEk3 = 0:3� 0:6 = 0:18

By the use of the graphical example in Figure 2, we can derive a geometric interpretation of

the GTE�:

GTE�Z3 =
OB

OZ
� OA
OZ

=
OZ �BZ
OZ

� OZ �AZ
OZ
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= 1� BZ
OZ

� AZ

OZ
+
AZ:BZ

OZ2
: (16)

We could interpret the GTE� as we would give every DMU the bene�t of the doubt (i.e.

e¢ ciency score of 1), but penalize for its ine¢ ciency relatively to the group frontier (BZOZ )

and to the metafrontier (AZOZ ) while correcting for the interaction between the group and the

meta-e¢ ciency (AZ:BZOZ2 ).

Up to now, the metafrontier literature has been using both parametric and non-parametric

estimators, in particular DEA and SFA, to estimate the relative e¢ ciency of an observation.

However, this can easily be extended to other models as well. In this paper, we concentrate

on a speci�c non-parametric estimation technique to estimate the group e¢ ciencies since the

use of DEA to compare several groups with di¤erent group sizes could create biased results

(see supra). By our best knowledge, this particular issue is still neglected in the metafrontier

literature. Many authors are using DEA to compare group frontiers with a di¤erent number

of observations. Hence, it is impossible to compare the obtained results correctly as the

relative e¢ ciency score of the DMUs depends on the number of observations in the group

sample. Also FDH faces this drawback. By the use of order-m frontiers, we propose an

alternative approach.

4 Metafrontiers to the drinking water sector

4.1 Data and model speci�cation

Due to sunk capital costs in the mains and in production plants, the drinking water sector

can be labeled as a natural monopolistic network industry. The �xed and largely sunk costs

for water distribution represent up to 70 per cent of the total drinking water price (compare

to the 40 per cent in the energy sector). Transportation di¢ culties further reinforce the

natural monopoly as a transport over 100 kilometers increases the wholesale cost of water

by about 50 percent (compared to 5% for electricity and 2.5% for gas). Another inhibitor of

competition in the water sector is the percentage of consumption of the di¤erent consumers,

which is more penalizing for the water sector than in other network industries. Industrial

consumers, for example, guarantee 50% of the revenue of the electricity sector where only

13% of the water sector. Besides, the water sector depends mainly on domestic consumers

(75%), compared with the 30% for the electricity sector. Among others, these facts show

that a liberalization of the water sector would unlikely result in the same bene�ts as in other

network industries. However, as a natural monopoly creates X-ine¢ ciencies, quiet life and

excess pro�ts, governments should establish regulatory bodies to promote e¢ ciency (doing

the things right) and e¤ectiveness (doing the right things) in the drinking water sector. This

section attempts to perform a benchmark study by comparing 5 countries by the metafrontier

approach.

We consider in our research the water utilities from England and Wales, Australia, the
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Netherlands, Belgium and Portugal. In 1989 England and Wales water utilities were priva-

tised, which was the major landmark that has occurred in water sector worldwide until now.

This bold reform makes the State watchdog role more important and visible and, maybe for

this reason, the best value of the water sector has been its regulation which, by means of a

price cap regulatory method and by the use and abuse of benchmarking, has formed a virtual

market in the water sector in these countries. Water services are vertically integrated and

some of them provide wastewater along with water. In the Netherlands the water services

are provided by public limited companies separately from other activities and are vertically

integrated. The main features of the sector are, besides its corporatization, the merging that

took place in the last decades reducing the two hundred operators that existed in the 1960s

to the current ten and the self-regulation of the sector by the Association of Dutch Water

Utilities (Vewin). This particular kind of �regulator�has improved the performance of the

sector, avoiding its privatisation by the application of a voluntary balanced scorecard bench-

marking scheme among its members. Water utilities in Australia are similar to the Dutch in

their governance. They are almost always public and are also corporatized, working under

commercial principles. However, in Australia there is strict regulation. The competency of

the water services belong to the States /Territories and a Federal Law obliges all monop-

olies, irrespective of the ownership, to be regulated by independent regulatory authorities.

Water utilities often provide other services like wastewater, gas or waste. In Belgium the

water sector institutional framework changes with the region. Unlike the Walloon region,

where regulation recently exists, the water services provided by the municipalities or their

associations are absent of regulation. There are a large number of players, although some of

them with large size. Most of the water utilities work under a non-commercial principle. The

rule is the separation of the activities (water and wastewater) and sometimes the production

from the distribution. There are no incentive schemes in the Belgian water sector and only

recently has the benchmarking tool started to be applied in the Walloon region. In Portugal

the responsibility for the water services belongs to the municipalities. There are about 300

players where approximately 10 % are private concessions. The private water utilities are cur-

rently regulated by the Institute for the Regulation of Water and Waste (IRAR) with quality

service supervision functions very relevant. The remaining utilities work in a deregulated

environment and the majority in a non-commercial way. Water services are usually provided

together with other activities like wastewater and they went through the unbundling process

some years ago with separated entities for the production and the distribution.

The data set is obtained from the sector organizations O¢ ce of Water Services (OFWAT,

England and Wales), Association of Dutch Water Utilities (VEWIN, Netherlands), Water

Services Association of Australia (WSAA, Australia), Belgaqua (Belgium) and Portuguese

Water Association (APDA, Portugal). All data originate from 2005, except for Belgium

(2004). The model speci�cation is the most important step in any e¢ ciency analysis as it

heavily in�uences the results. We opted, following the literature, for a simple model inspired
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Table 2: Homogeneity assumption of countries
leakage (%) industrial water (%) groundwater (%) consumption/capita regional product

Intercept 0.309 (***) 0.214 (***) 30.370 (***) 134.229 15687.440 (***)

Netherlands -0.269 (***) 0.161 (***) 63.880 (***) 16.668 8784.003 (***)

England and Wales -0.126 (***) 0.049 (*) 18.915 (*) 1308.377 (**) 5948.606 (***)

Australia -0.190 (***) 0.073 (**) 35.339 (***) 229.670 10037.420 (***)

Belgium -0.051 (**) -0.046 (**) 33.492 (***) 13.221 5216.158 (***)

R2 0.596 0.237 0.232 0.059 0.623

F-statistic 37.576 (***) 7.937 (***) 7.690 (***) 1.602 42.144 (***)

Note: n=107; *** denotes signi�cance at 1% level, ** at 5% and * at 10%

on a production function. Drinking water utilities need capital, proxied by the length of

mains, and labor, estimated by the number of personnel in full time equivalents, to produce

the outputs which are the delivery of drinking water to a number of connections.

Among the di¤erent countries, environmental factors such as the geographic features,

relative wealth of the consumers, quality of the ground and surface water or age of the

infrastructure have a signi�cant in�uence on the relative e¢ ciency of the drinking water

utilities. By the use of OLS, we test whether utilities located in the same country face

more or less the same environmental factors. This corresponds to the �rst assumption of

the previous section in which we argue that utilities of the same group face homogenous

environmental factors. The results relative to the Portuguese utilities are presented in Table

2. It reveals that environmental variables are mainly country speci�c as for each of the

environmental variables (except for consumption per capita) we can attribute a signi�cant

part of the variation in the variable to country dummies. Remark further that we are able

to explain to a large extent (up to 62%) the variation in the environmental variables by

only including country dummies. This strengthens our assumptions that utilities measured

relatively to the group frontier are working in more or less the same environment. This makes

sense as the di¤erences in social, physical and institutional environment are minor within one

country or region.

4.2 Group and metafrontiers

As argued before, the order-m approach is especially useful in the comparison of average

e¢ ciency scores of groups with di¤erent sample sizes. In the spirit of Zhang and Bartels (1998)

we set the trimming value m equal to 12, the smallest group size (i.e. for the Netherlands).

While assuming similar environmental factors for utilities working in the same country, we

present the average e¢ ciencies and the standard deviation of the estimates in Table 3. As

the maximum e¢ ciency score reveals, some countries have super-e¢ cient observations. For

example, consider the Dutch utility with an e¢ ciency score of 1.251 indicating that with

a proportionate reduction of the inputs, this DMU uses 25% less inputs than the expected
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minimum input level of 12 other Dutch �rms drawn from the population and producing more

than this DMU�s output.

By merging the 5 group samples, we measure the meta-e¢ ciency of the utilities. Again

we employ the input-oriented order-m approach as it constructs the partial frontier only with

observations with an equal or larger output vector. Sample size issues are avoided by keeping

the trimming value m equal to 12, such that the metafrontier will be similar to the group

frontier (however, remark that other observations will constitute the partial frontier and

that in the strict sense the dissimilarity in sample size is not an issue in the measurement of

e¢ ciency relatively to the metafrontier). We equilibrate the increased number of observations

in the data set (i.e. 104 instead of e.g. 22) by increasing �vefold the number of Monte-Carlo

replications used in computing the order-m estimates (i.e. B = 500). As expected, the results

in Table 3 show a lower average e¢ ciency in all countries, which can intuitively be explained

by the increased possibility of facing a more e¢ cient observation in an enlarged data set. It

should be noticed that the order-m e¢ ciency scores of the metafrontier are not necessarily

smaller than order-m e¢ ciency scores of the group frontier due to the constraint Y � yo.
The comparison of the e¢ ciency measures relatively to the group and metafrontier shows

up in the TGR which is computed for every DMU. The country averages, shown in Table 4,

reveal that on average the DMUs are working on 82% of the best-practice technology available

in one of the 5 countries. Especially the English and Welsh utilities are working closely to the

metafrontier, while the di¤erence between the group technology and the metatechnology is

with 25.5% the largest for Portugal. It is interesting to note that in all countries, except for

Portugal, the group frontiers are tangent to the metafrontier (as the TGR is equal or larger

to one in each of these four regions) and thus some observations of these countries constitute

the metafrontier.

In the complementary GTE� exercise, we �rstly assume that utilities relatively to the

group frontier face similar environmental factors, and secondly, that relatively to the metafron-

tier, while using a di¤erent technology, the utilities work as e¢ cient as they are doing rela-

tively to the group frontiers. These two assumptions result in the GTE�-ratio and allow us

to rank the utilities while fully taking into account the environmental variables. Frequency

distributions for the TGR and the GTE� are presented in Figure 3. As shown in Table 4 the

English and Welsh drinking water companies are performing most e¢ ciently, followed by the

Dutch and Australian utilities. In contrast to Portugal and Belgium these three countries

apply regulatory schemes to stimulate the drinking water sector to produce more e¢ ciently,

so it could be expected that regulatory incentives e¤ectively increase the e¢ ciency of the sec-

tor. However, it is worthwhile to further investigate this issue. In addition, it is important to

highlight that the inferior performances showed by the Portuguese and Belgian utilities are

not controlled, or at least only partially controlled, by the utilities themselves and therefore

their managers are not responsible for the scores presented. On the other hand, the results

depict the usefulness of the metafrontier concept, since it constitutes a good base to take
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Figure 3: Frequency distributions of TGR and GTE

Table 3: E¢ ciency relatively to the group and metafrontier
Relatively to the group frontier to the metafrontier

Average Standard Maximum Minimum Average Standard

e¢ ciency deviation e¢ ciency deviation

Netherlands 0.980 0.098 1.251 0.864 0.811 0.144

England and Wales 0.943 0.151 1.234 0.657 0.908 0.200

Australia 0.948 0.078 1.090 0.772 0.806 0.135

Belgium 0.931 0.071 1.000 0.797 0.736 0.281

Portugal 0.922 0.172 1.400 0.526 0.686 0.152

Portugal - public 0.990 0.166 1.400 0.713 0.714 0.167

Portugal - private 0.934 0.064 0.973 0.526 0.630 0.098

decisions by the autorities. For example, in this case, the Portuguese and Belgian politicians

can look closely at England and Wales, the Netherlands and Australia and mimic or �nd

help in their regulatory framework to take their own decisions.

5 Conclusion

This paper reinterpreted and extended the metafrontier-concept to a framework to account

for exogenous environmental characteristics. By comparing the group frontier and the overall

Table 4: TGR and GTE
Technology Gap Ratio Group Speci�c Technical E¢ ciency

Average Standard Maximum Minimum Average Standard Maximum Minimum

e¢ ciency deviation e¢ ciency deviation

Netherlands 0.827 0.114 1.011 0.623 0.804 0.220 1.393 0.492

England and Wales 0.957 0.111 1.275 0.716 0.882 0.319 1.619 0.332

Australia 0.847 0.103 1.015 0.693 0.772 0.176 0.983 0.478

Belgium 0.778 0.251 1.339 0.481 0.700 0.308 1.339 0.305

Portugal 0.745 0.088 0.956 0.461 0.653 0.258 1.370 0.211

Portugal - public 0.736 0.104 0.956 0.461 0.714 0.282 1.370 0.365

Portugal - private 0.763 0.042 0.856 0.698 0.531 0.147 0.682 0.211

15



metafrontier formed by the best practices of the several groups, the environement corrected

e¢ ciency of entities can be computed and explained easily. In addition, the approach is ap-

plicable to several models, including the robust order-m approach for which, by a simulated

example, we show that it disregards the sample size bias. To judge on the relative e¢ ciency

of the DMUs while fully considering the environmental factors, the �Group Speci�c Techni-

cal E¢ ciency�measure is proposed and applied to drinking water utilities from 5 di¤erent

countries. This research indicated that some of the delay detected in Portugal and Belgium

is derived from a technological gap relatively to other countries, mainly England and Wales.

On the one hand, these results justify the poor performance in this sector in these countries

that is not only responsibility of the managers and, on the other hand, they clearly indicate

the way they have to follow with regard to the water sector governance. It allows for the

conclusion that the use of incentive schemes like regulation and benchmarking is convenient.
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