
A note on peer-to-peer satellite refueling strategies

 Sofie Coene, Atri Dutta, Frits Spieksma and Panagiotis Tsiotras

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Business and Economics

KBI 1003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6346988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A note on peer-to-peer satellite refueling

strategies∗

Sofie Coene† Atri Dutta‡

Frits C.R. Spieksma† Panagiotis Tsiotras‡

Abstract

We revisit the peer-to-peer refueling problem, in which the maneuver-
ing satellites are allowed to interchange their orbital positions [2]. We
show that the problem is computationally hard, by reducing it to a spe-
cial case of the three-index assignment problem. On the positive side, we
show that the size of instances from practice is such that a state-of-the-
art integer programming solver is able to find optimal solutions in little
computing time.

Keywords: three-index assignment problem; complexity; integer pro-
gramming.

1 Introduction

The following problem was described in Dutta and Tsiotras [2]. Given are n
satellites distributed over n slots in a circular orbit. For the sake of simplicity,
we consider that satellite si occupies the slot φi, for all i ∈ {1, 2, . . . , n}. Each
satellite is denoted as either fuel-deficient, or fuel-sufficient; this depends on
whether the satellite has at least a minimum required amount of fuel. The idea
put forward in [2] is that the satellites can redistribute the fuel among themselves
by engaging in fuel exchange in pairs; for each pair, a satellite moves (performs
an orbital transfer) to rendezvous with another satellite, exchanges fuel, and
returns back to any available slot. This redistribution of available fuel among
the satellites is an integral part of a mixed refueling strategy, which is much
more fuel-efficient than supplying fuel via a single service-vehicle, particularly
with an increasing number of satellites in the constellation [2].

We say that a pair of satellites is a feasible pair when (i) the pair consists
of a fuel-sufficient satellite and a fuel-deficient satellite, and (ii) the amount of

∗This research was supported by OT Grant OT/07/015.
†Operations Research Group, Katholieke Universiteit Leuven, Naamsestraat 69, B-3000

Leuven, Belgium. Email: {sofie.coene;frits.spieksma}@econ.kuleuven.be.
‡Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta,

USA. Email: { a3d@;tsiotras@ }gatech.edu.

1

fuel carried by the two satellites of the pair can be redistributed among them
in a way that each satellite of the pair has at least the required amount of fuel
at the end of the refueling process.

The task of redistributing fuel is now accomplished by considering move-
ments of the satellites that we represent by an ordered triple (i, j, k): this means
that satellite si at position φi moves to rendezvous with satellite sj at position
φj , and after undergoing a fuel exchange, satellite si moves to position φk (while
satellite sj stays at position φj). Clearly, we only take into account those triples
that contain a feasible pair of satellites. Observe that the moving satellite can
be fuel-sufficient (in which case this satellite will donate fuel to its companion)
or fuel-deficient (in which case the satellite will receive fuel from its compan-
ion). There is a given cost-coefficient c(i, j, k) associated with each triple. These
cost-coefficients correspond to the amount of fuel expended during the orbital
transfers; notice that this depends on a number of aspects, such as the angle of
separation of the satellites, the mass and engine of the maneuvering satellite,
etc. Notice that it might happen that the amount of fuel of the two satellites
making up the feasible pair is not sufficient for the moving satellite to reach
some position φk. In that case, the coefficient c(i, j, k) simply receives a large
value; we come back to this issue of fuel cost extensively in Section 2. The goal
is to find triples (i, j, k) such that

(i) each satellite is in at most one triple,

(ii) each satellite that is fuel-deficient is in at least one triple with a fuel-
sufficient satellite,

(iii) at the end of refueling process, each position is occupied by at most one
satellite, and

(iv) total fuel costs are minimal.

We will refer to this problem as the peer-to-peer refueling problem, and a set
of triples that satisfies (i), (ii), and (iii) is said to be a feasible solution to the
problem. Clearly, for a solution to exist, the number of fuel-deficient satellites
should not exceed the number of fuel-sufficient satellites.

In this note

• we establish the computational complexity of the peer-to-peer refueling
problem, and

• we show that the size of the instances that occur in practice allow using
a state-of-the-art integer programming solver to solve these instances to
optimality.

2 Problem Statement

As described in Section 1, our problem is to decide which satellites pair up
for fuel exchanges, and to which positions the active satellites return, in order

2

to minimize fuel costs. In this problem description, we allow explicitly for a
satellite to end its movement in a position that is different from its starting
position. Clearly, one could restrict the solutions to be such that starting and
ending slots need to be identical, that is, φi = φk. Although this would make
the problem easy (see Section 3), it has been illustrated that this might lead to
suboptimal solutions, i.e., solutions with a larger than necessary fuel cost [2].

Let us consider a triple (i, j, k) and the associated cost c(i, j, k). The move-
ment of the active satellite si consists of two trips: the first trip, when it moves
from its position φi to another position φj harboring satellite sj , and the second
trip, where satellite si travels from position φj to position φk. Let pi

ij denote
the fuel expended by the satellite si when it transfers from slot φi to slot φj .
The fuel consumed by satellite i in the first part can then be expressed as (see
[2]):

pi
ij = (msi + f−i)(1− e−∆Vij/g0Ispi), (1)

where

• msi refers to the mass of the permanent structure of satellite si (fuel not
included), 1 ≤ i ≤ n,

• f−i refers to the initial amount of fuel present in satellite i, 1 ≤ i ≤ n,

• Ispi refers to the specific impulse of engine of satellite si, 1 ≤ i ≤ n,

• ∆Vij is the velocity change required to transfer from slot φi to slot φj , for
each ordered pair of positions φi and φj , 1 ≤ i, j ≤ n, and

• g0 is a constant denoting the acceleration due to gravity at the Earth’s
surface.

In order to express the fuel consumption of an active satellite si in the second
part of its maneuver, we need to know how much fuel is present in satellite si

after the exchange. This quantity, however, is chosen such that the amount of
fuel present in the active satellite directly after the exchange is the minimum
amount needed so that satellite si can return from position φj to position φk.
(This follows from the fact that there is no point in moving fuel (mass) which is
not needed). Now, by letting pi

jk stand for the fuel consumption of satellite si

when traveling from position φj to position φk, we can write down the following
equation:

pi
jk = (msi + f

i
+ pi

jk)(1− e−∆Vjk/g0Ispi),

where f
i
refers to the amount of fuel required for satellite si after it has reached

its position following the exchange.
Solving this equation for pi

jk gives:

pi
jk = (msi + f

i
)(e∆Vjk/g0Ispi − 1). (2)

3

Summing equations (1) and (2), we derive an explicit expression for our
cost-coefficients c(i, j, k):

c(i, j, k) = pi
ij + pi

jk =
msi(e∆Vjk/g0Ispi − e−∆Vij/g0Ispi) + f−i (1− e−∆Vij/g0Ispi) + f

i
(e∆Vjk/g0Ispi − 1).

(3)
The problem of peer-to-peer refueling seeks to find the set of feasible triples

with minimum total fuel costs. In order to analyze the computational complex-
ity of the problem, we next describe precisely what constitutes the input to the
peer-to-peer refueling decision problem. For each satellite i ∈ {1, 2, . . . , n}, we
have:

• msi: the mass of satellite i,

• f−i : the amount of fuel present in satellite i,

• Ispi: the thrust of satellite i,

• f
i
: the amount of fuel needed for satellite i to reach its estimated lifespan

(not including fuel needed for movements),

and for each pair of positions i, j ∈ {1, 2, . . . , n}, we have:

• ∆Vij : the velocity change required to go from position i to position j,

and finally, we have:

• L: an integer, denoting an upper bound on the total fuel cost of a solution.

Given this input, the decision version of the peer-to-peer refueling problem seeks
to find the answer to the following question: does there exist a feasible set of
triples such that total fuel costs (as expressed by (3)) do not exceed L?

3 The complexity of peer-to-peer refueling

Computational complexity is a field that attempts to establish the hardness
of optimization problems, we refer to Garey and Johnson [3] for a classical
introduction.

In this section we prove that peer-to-peer refueling is NP-hard, by exhibit-
ing a reduction from a special 3-dimensional assignment problem, which was
introduced in, and proven to be NP-hard by Burkard et al. [1]. The implication
of this result is that it is unlikely (meaning that it would imply P=NP) that
there exists an efficient algorithm solving each instance of peer-to-peer refueling
exactly.

Problem: 3-dimensional assignment with decomposable coefficients
(3AP-DC)

Input: 3q nonnegative numbers ai, bi and ci, for i = 1, 2, . . . , q and

4

an integer K.

Question: do there exist two permutations π : {1, 2, . . . , n} 7→ {1, 2, . . . , n}
and σ : {1, 2, . . . , n} 7→ {1, 2, . . . , n} such that

∑q
i=1 aibπ(i)cσ(i) ≤

K?

We now show that peer-to-peer refueling is at least as hard as 3AP-DC.
We build an instance of our peer-to-peer refueling problem that consists of q
fuel-sufficient satellites (indexed by i = 1, 2, . . . , q), as well as q fuel-deficient
satellites (indexed by i = q + 1, q + 2, . . . , 2q). Hence n := 2q. We now specify
all input parameters (see Section 2), using the symbol M for some large value.
For each satellite i = 1, . . . , n, we set:

f−i := M, Ispi := 1.

For each fuel-sufficient satellite i = 1, 2, . . . , q, we set:

f
i
:= 0,msi := ai.

For each fuel-deficient satellite i = q + 1, q + 2, . . . , 2q, we set:

f
i
:= M + 1,msi := M.

For each pair of positions (i, j) where position i harbors a fuel-sufficient
satellite (1 ≤ i ≤ q), and position j harbors a fuel-deficient satellite (q + 1 ≤
j ≤ 2q), we set

∆Vij := 0, and ∆Vji := g0 · ln(bjci + 1).

Finally, we set L := K.
This completes the description of the instance of the peer-to-peer refueling

problem. Notice that we have allowed for non-symmetric ∆Vij values.
Let us now argue that there exists a 1-to-1 correspondence between yes-

instances of 3AP-DC and the peer-to-peer refueling problem. Suppose that the
instance of 3AP-DC admits a yes-answer, i.e., there exist permutations π and
σ such that

∑q
i=1 aibπ(i)cσ(i) ≤ K. Then we simply copy that solution to the

peer-to-peer refueling problem: fuel-sufficient satellite i (1 ≤ i ≤ q) moves to
fuel-deficient satellite q + π(i), and next returns to position σ(i). The costs of
these movements follow from substituting the values given above in (3), leading
to

c(i, j, k) =
= msi(e∆Vjk/g0Ispi − e−∆Vij/g0Ispi) + f−i (1− e−∆Vij/g0Ispi) + f

i
(e∆Vjk/g0Ispi − 1)

= ai(eln(bπ(i)+qcσ(i)+1) − 1) = aibπ(i)cσ(i).

Hence, if there exist permutations π and σ such that
∑q

i=1 aibπ(i)cσ(i) ≤ K,
then there is a solution with cost bounded by L for the peer-to-peer refueling
problem.

5

Suppose now that the instance of peer-to-peer refueling has a solution with
a cost no more than L. Notice that the fuel-deficient satellites cannot move due
to their large mass msi = M ; moving any fuel deficient satellite would lead to
costs exceeding L. Thus, we can define the permutation π, by inspecting which
fuel sufficient satellite i visits which fuel deficient satellite π(i) := j − q, and we
can find permutation σ by verifying to which position σ(i) := k each satellite i
returns. The resulting solution to 3AP-DC will have cost no more than K. All
this leads to:

Theorem 1 The peer-to-peer refueling problem is NP-hard.

Clearly, the difficulty of peer-to-peer refueling changes when we restrict the
solutions such that each satellite i must return to its original position i, 1 ≤ i ≤
n. The costs then simplify to:

c(i, j, i) = pi
ij + qi

jk =
= msi(e∆Vji/g0Ispi − e−∆Vij/g0Ispi) + f−i (1− e−∆Vij/g0Ispi) + f

i
(e∆Vji/g0Ispi − 1),

and no longer depend on k. Hence, by modeling the resulting problem as an
assignment problem with costs d(i, j) = min(c(i, j, i), c(j, i, j)) between the fuel
sufficient satellites i and the fuel deficient satellites j, it is clear that efficient
algorithms exist for this special case of the problem (see e.g. Schrijver [4]).

4 Computational results using an Integer Pro-
gramming formulation

Let us now write down an integer programming model for the peer-to-peer
refueling problem. To simplify notation, we use FD (FS) to denote the set of
fuel-deficient (fuel-sufficient) satellites; we let S ≡ FD ∪ FS stand for the set
of all satellites. We use a decision variable

xijk =
{

1 if satellite i moves to satellite j and ends up in position k;
0 otherwise.

Recall that we only define variables for those triples that contain a feasible
pair, and whose corresponding maneuver is called feasible in [2]; for instance,
variables of the form xijj do not exist.

min
∑

i,j∈S

∑n
k=1 c(i, j, k)xijk (4)

s.t.
∑

j∈FS

∑
k xjik +

∑
j∈FS

∑
k xijk = 1 for all i ∈ FD (5)∑

j∈FD

∑
k xijk +

∑
j∈FD

∑
k xjik ≤ 1 for all i ∈ FS (6)∑

i∈S

∑
j∈S xijk −

∑
j∈S

∑
` xkj` ≤ 0 for all k (7)

xijk ∈ {0, 1} for all i, j, k. (8)

Notice that:

6

• the cost-coefficients in the objective function (4) are defined by (3),

• constraints (5) express that each fuel-deficient satellite is in one triple with
a fuel-sufficient satellite,

• constraints (6) express that each fuel-sufficient satellite is in at most one
triple,

• constraints (7) express that each position can harbor at most one satellite;
indeed, if some satellite ends up in position k, then the satellite starting
at that position must have moved,

• notice that in case the number of fuel-deficient satellites equals the number
of fuel-sufficient satellites, the resulting constraints become exactly those
from an axial three-index assignment problem (with the cost-coefficients
displaying a specific structure, see Spieksma [5] for an overview of other
possible structures).

Label Description
C1 Altitude = 35, 786 Km, n = 10, T = 12, f̄i = 30, f

i
= 12, msi = 70

f−i : 30, 30, 6, 6, 6, 6, 6, 30, 30, 30
C2 Altitude = 1, 200 Km, n = 16, T = 30, f̄i = 30, f

i
= 15, msi = 70

f−i : 30, 30, 30, 30, 30, 30, 10, 10, 10, 10, 10, 10, 10, 10, 30, 30
C3 Altitude = 2, 000 Km, n = 12, T = 30, f̄i = 30, f

i
= 15, msi = 70

f−i : 30, 30, 30, 10, 10, 10, 10, 10, 10, 30, 30, 30
C4 Altitude = 6, 000 Km, n = 18, T = 25, f̄i = 25, f

i
= 12, msi = 75

f−i : 25, 25, 25, 25, 25, 25, 25, 25, 25, 6, 6, 6, 6, 6, 6, 6, 6, 6
C5 Altitude = 12, 000 Km, n = 12, T = 20, f̄i = 25, f

i
= 12, msi = 75

f−i : 25, 25, 25, 25, 25, 25, 8, 8, 8, 8, 8, 8
C6 Altitude = 1, 400 Km, n = 14, T = 35, f̄i = 25, f

i
= 12, msi = 75

f−i : 25, 25, 25, 25, 25, 25, 25, 8, 8, 8, 8, 8, 8, 8
C7 Altitude = 30, 000 Km, n = 16, T = 15, f̄i = 30, f

i
= 15, msi = 70

f−i : 10, 10, 10, 10, 10, 10, 10, 10, 28, 28, 28, 28, 28, 28, 28, 28
C8 Altitude = 1, 200 Km, n = 16, T = 30, f̄i = 30, f

i
= 15, msi = 70

f−i : 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10
C9 Altitude = 2, 000 Km, n = 36, T = 30, f̄i = 30, f

i
= 15, msi = 70

f−i : 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30,
8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30

C10 Altitude = 2, 000 Km, n = 40, T = 30, f̄i = 25, f
i
= 12, msi = 75

f−i : 25,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

Table 1: Sample Constellations

The model (4)-(8) was implemented in ILOG OPL Development Studio 5.2,
and run on a personal computer with a 2.20 GHz Intel Core 2 Duo processor

7

and 2.00 GB of RAM. We experimented with 10 instances whose characteristics
can be found in Table 1; notice that in each of these instances, the number of
fuel-sufficient satellites equals the number of fuel-deficient satellites.

Constellation n Opt Running time E-P2P restricted
C1 10 18.515 (i) 0.078 19.11 (3.2%) 26.072 (41%)
C2 16 24.356 (i) 0.172 24.82 (1.9%) 37.478 (54%)
C3 12 18.452 (i) 0.156 18.87 (2.3%) 26.428 (43%)
C4 18 25.787 (i) 0.266 26.26 (1.8%) 40.728 (58%)
C5 12 18.792 (i) 0.125 18.86 (0.36%) 28.385 (51%)
C6 14 19.025 (i) 0.156 19.26 (1.2%) 28.774 (51%)
C7 16 22.539 (i) 0.234 22.75 (0.94%) 34.976 (55%)
C8 16 9.0826 (i) 0.203 10.18 (12%) 9.3751 (3,2%)
C9 36 8.3445 (i) 1.344 na 8.3837 (0,47%)
C10 40 52.0535 2.891 na 90.696 (74%)

Table 2: Costs and running times

In Table 2 the results are shown; Table 3 contains the corresponding satellite
assignment. The first column in Table 2 contains the name of the instance, and
the second column gives the number of satellites (n). The third column gives
the value of an optimal solution, and indicates (by “(i)”) whether the linear
programming (LP) relaxation of model (4)-(8) for the corresponding instance is
integral. The fourth column gives the running time (in seconds) needed to solve
the integer program (4)-(8). Columns 5 and 6 each give the value of a feasible
solution: Column 5 reports the outcome of a local search procedure (called E-
P2P) described in Dutta and Tsiotras [2], and Column 6 (called “restricted”)
gives the best possible solution when moving satellites need to return to their
original position.

Table 2 shows that the software finds an optimal solution within 1 second for
the instances with size 18 or smaller, and in a few seconds for instances with size
40 or less. The LP relaxation yields an optimal solution for all but one instance
tested. The optimal solutions reported here show that the solutions found by
local search are quite good: with one exception (instance C8), the optimal
solution is only 1-3 % better than the solution found by local search. When
we compare the optimal solutions to the solutions with the added restriction
that satellites need to return to their original position (which can be found in
polynomial time), it turns out the improvement is often significant.

5 Conclusion

In this note we show that solving the peer-to-peer refueling problem to optimal-
ity is a computationally hard problem. However, since instances from practice
contain 50 satellites or less, finding the solution with minimum fuel costs can
be done using state-of-the-art integer programming software.

8

References

[1] Burkard, R.E., R. Rudolf, and G.J. Woeginger (1996), Three-dimensional axial
assignment problems with decomposable costs, Discrete Applied Mathematics 65,
123-139.

[2] Dutta, A. and P. Tsiotras (2008), Egalitarian Peer-to-Peer Satellite Refueling
Strategy, Journal of Spacecraft and Rockets 45, 608-618.

[3] Garey, M.R. and D.S. Johnson (1979), Computers and intractability: A guide to
the theory of NP-completeness, W.H. Freeman and Co., New York.

[4] Schrijver, A. (2003), Combinatorial Optimization: Polyhedra and Efficiency,
Springer, Berlin.

[5] Spieksma, F.C.R. (2000), Multi Index Assignment Problems: Complexity, Approx-
imation, Applications, in: Nonlinear Assignment Problems, edited by P. Pardalos
and L. Pitsoulis, Kluwer, Dordrecht.

Constellation Assignment
C1 s1 → s4 → s5, s3 → s2 → s3, s5 → s9 → s8, s6 → s10 → s1, s8 → s7 → s6

C2 s1 → s12 → s11, s4 → s9 → s10, s6 → s7 → s8, s8 → s5 → s6, s10 → s3 → s4,
s11 → s16 → s15, s13 → s2 → s1, s15 → s14 → s13

C3 s2 → s5 → s6, s4 → s3 → s4, s6 → s1 → s2, s7 → s10 → s9, s9 → s12 → s11,
s11 → s8 → s7

C4 s2 → s17 → s16, s4 → s15 → s14, s7 → s10 → s11, s9 → s12 → s13, s11 → s8 → s9,
s13 → s6 → s7, s14 → s5 → s4, s16 → s1 → s18, s18 → s3 → s2

C5 s1 → s12 → s11, s4 → s7 → s8, s6 → s9 → s10, s8 → s5 → s6, s10 → s2 → s1, s11 → s3 → s4

C6 s2 → s13 → s12, s4 → s11 → s10, s7 → s8 → s9, s9 → s6 → s7, s10 → s5 → s4,
s12 → s1 → s14, s14 → s3 → s2

C7 s1 → s16 → s1, s3 → s14 → s15, s4 → s13 → s12, s6 → s9 → s8, s8 → s11 → s10,
s10 → s7 → s6, s12 → s5 → s4, s15 → s2 → s3

C8 s1 → s2 → s3, s3 → s4 → s5, s5 → s6 → s7, s7 → s8 → s9, s9 → s10 → s11,
s11 → s12 → s13, s13 → s14 → s15, s15 → s16 → s1

C9 s1 → s2 → s3, s3 → s4 → s5, s5 → s6 → s7, s7 → s8 → s9, s9 → s10 → s11,
s11 → s12 → s13, s13 → s14 → s15, s15 → s16 → s17, s17 → s18 → s19,
s19 → s20 → s21, s21 → s22 → s23, s23 → s24 → s25, s25 → s26 → s27,
s27 → s28 → s29, s29 → s30 → s31, s31 → s32 → s33, s33 → s34 → s35,

s35 → s36 → s1

C10 s1 → s40 → s39, s3 → s38 → s37, s5 → s36 → s35, s7 → s34 → s33, s9 → s32 → s31,
s12 → s21 → s22, s14 → s23 → s24, s16 → s25 → s26, s18 → s27 → s28,
s20 → s29 → s30, s22 → s19 → s20, s24 → s17 → s18, s26 → s15 → s16,

s28 → s13 → s14, s30 → s11 → s12, s31 → s2 → s1, s33 → s4 → s3,
s35 → s6 → s5, s37 → s8 → s7, s39 → s10 → s9

Table 3: Satellite assignment

9

	FEB_KBI-voorblad onderzoeksrapport-sharepoint.pdf
	satellitesV2_3b

