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Abstract 

Conjoint analysis studies involving many attributes and attribute levels often 

occur in practice. Because such studies can cause respondent fatigue and lack of 

cooperation, it is important to design data collection tasks that reduce those 

problems. Bridging designs, incorporating two or more task subsets with 

overlapping attributes, can presumably lower task difficulty in such cases. In this 

paper, we present results of a study examining the effects on predictive validity of 

bridging design decisions involving important or unimportant attributes as links 

(bridges) between card-sort tasks and the degree of balance and consistency in 

estimated attribute importance across tasks. We also propose a new symmetric 

procedure, Symbridge, to scale the bridged conjoint solutions. 
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Introduction 

Conjoint analysis has emerged in recent years as being among the most important 

and useful methods in marketing research (Cattin & Wittink 1982; Wittink & 

Cattin 1989; Green & Srinivasan 1990). Its value to marketing decision makers 

stems from its ability to provide realistic customer evaluations of the attributes of 

products, services, and so forth, as well as to allow the simulation of choice shares 

in hypothetical competitive scenarios. Academics have explored the usefulness 

and applicability of conjoint analysis and sought understanding of its limitations. 

For example, Reibstein, Bateson, and Boulding (1988) assessed the reliability of 

conjoint analysis under a variety of conditions, finding, among other things, that 

the type of data collection procedure has an impact on the reliability of the results. 

Among the limitations of the method is the typically difficult task respondents 

face in providing data suitable for conjoint analysis. Frankly speaking, the task is 

usually boring, complex, and frustrating for even the most highly motivated 

respondents. Although different data collection methods used in studies (e.g., 

full-profile, trade-off, and paired-comparisons, with rating or ranking of stimuli) 

have different degrees of task difficulty, it is apparent that the task is never easy. 

Although it is probable that hybrid designs (Green 1984) and adaptive methods 

employing interactive computers (Johnson 1987) help to reduce the task difficulty 

and boredom factors, it is likely that full-profile designs will continue to be used 

for some time in marketing applications of conjoint analysis. Even with fractional 



3 

factorial designs, full profile data collection procedures involve comparing a 

number of stimuli with multiple attributes and levels. The respondent's decision 

problem is exacerbated when the number of attributes and levels becomes large. 

Various studies (e.g., Miller 1956 and Wright 1975) have shown that people have 

difficulty processing more than a relatively few pieces of information at one time. 

Since the conjoint task requests people to keep in mind multiple attributes and 

levels simultaneously, their task becomes much more difficult as the number of 

attributes/levels (and hence tradeoffs) increases. 

Possible strategies to reduce the task difficulty in conjoint studies. 

Looking at the literature about Conjoint Analysis published in the nineties, the 

technique is still very popular, and many topics are still being addressed today. In 

this section we try to give an overview of ways to handle the number of attributes 

problem. Some of them have been specifically been designed for this purpose, 

while others were proposed with another objective in mind, but with the potential 

side benefit of reducing the information overload for the respondent (typically the 

number of stimuli to be evaluated). 

1. Ad hoc reduction of the number of attributes and/or levels. 

The easiest and most subjective approach, and the one probably used most, is to 

prune the set of attributes and levels, until a reasonable number of stimuli (cards) 
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has been obtained. It is still open to debate what this optimal number could be, but 

in our own experience, conjoint designs requiring complete rank ordering of 

stimuli should not contain more than 12 to 16 cards. 

Obviously this approach entails the risk of eliminating relevant attributes, 

although a good pretest can reveal which attributes are used more often or are 

more important to representative users (depending on how one measures 

'importance'). 

At the same time, one can try to reduce the number of levels for some attributes. 

This may not be possible in some cases (think about brand names), and will have 

the undesirable effect of reducing the importance of attributes with a smaller 

number of levels (Wittink et al 1990). 

Another approach would be to reduce the number of parameters to be estimated, 

by imposing certain functional forms (vector, ideal point) on the partial utility 

functions. In this way one would gain degrees-of-freedom, and in principle be able 

to reduce the number of stimuli accordingly. This approach to the problem has not 

been extensively researched, and known references studied the impact on 

predictive validity instead (Pekelman and Sen 1979). Although this is an 

empirical matter, one could argue that imposing specific forms could lead to 

misspecifications, and this would explain why the generalized form is so popular. 

Also, it would only apply to metrically scaled attributes (e.g. price). 

2. Combination of full-profile and self-explicated data. 
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These approaches do not try to reduce the number of attributes, but reduce the 

number of judgements by respondents, compared to full-profile methods. Among 

the more popular methods, one can mention ACA (Johnson 1987) and hybrid 

conjoint models (Green 1984). 

An extension of ACA combines unacceptable levels with the basic ACA approach 

(Mehta et al 1992). A more recent approach and alternative to ACA is CCA 

(Srinivasan and Park 1997). 

Self-explicated methods have proven to be very popular with practitioners, 

probably due to their appealing data collection procedure, ability of handling large 

problems, and relative mathematical simplicity. Whether they perform as well or 

better than traditional full-profile methods, has been the subject of some very 

involved debates, and the issue is not resolved yet (Carroll and Green 1995). 

The hierarchical integration method (Oppewal et al 1994) also belongs to this 

class, and tries to define superattributes, which in turn can be conjoint modelled as 

a function of attributes only relevant for a particular superattribute. The overall 

preference function would then only contain the superattributes, which are smaller 

in number than all the attributes that compose them. 

3. Adaptation of the design matrix. 

These strategies aim to keep the number of attributes, and reduce the number of 

judgments by respondent, by trying to adapt the full fledged orthogonal design, 

typically by incorporating available information (Huber and Zwerina 1996). 
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4. Optimal segmentation methods. 

This family of techniques is the object of much research lately. From our point of 

view, these methods solve the problem by abandoning the idea of estimating 

individual utility functions (and reducing the workload of the respondent), but 

retaining information about the individual respondents as sources of 

heterogeneity. 

Methods include latent class models (Kamakura et al 1994), optimal scaling 

(Hagerty 1985; Green et al 1993; Desarbo et al 1992), Hierarchical Bayes methods 

(Allenby et al 1995; Lenk et al 1996). 

Some of these methods have however not been positioned to reduce the 

respondents' workload, but more as alternative segmentation models (compared 

to clustering of individual part-worths). 

This reduction in the number of stimuli comes however at the price of having to 

interview more respondents. 

5. Bridging. 

This variant of conjoint, which is the subject of our research, tries to cope with the 

overload problem, by splitting the set of attributes in two, and building a scaling 

'bridge' between the two sets of derived utilities. 
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6. Constrained estimation procedures. 

This extension of conjoint has also received some attention lately (Allenby and 

Ginter 1995; Green and Krieger 1995). These researchers do not mention 

reduction of number of stimuli as an objective but rather the efficiency of the 

estimates or quality of prediction. However, imposing constraints might lead to 

savings in degrees of freedom. 

Bridging Designs 

A way to reduce respondent difficulty handling full-profile designs having large 

numbers of attributes/levels is to decompose the data collection into simpler 

subtasks that are later linked analytically. Hybrid designs are one type of such 

design, where self-explicated attribute weights are combined analytically with 

data coming from card-sort (or other tradeoff) tasks. Another approach is to 

divide the card-sort (or other stimulus comparison) task into multiple designs 

containing two or more subsets of attributes with one or more attributes common 

to both subdesigns. In such case, the linking or "bridging" attributes are used to 

scale the partworths from the two subdesigns into one overall set of partworths. It 

is presumed that people will have an easier time working with these subdesign 

tasks and therefore be more co-operative and provide more thoughtful responses. 

The general class of these latter designs are called bridging designs. Although the 

total number of stimuli needed to be compared in bridging designs may not be 
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reduced, the task is made simpler for respondents by asking them to evaluate 

stimuli on fewer attributes within each subdesign. (An extreme form of bridging 

design is the pairwise tradeoff grid approach, where only two attributes are 

compared at a time.) 

Suppose one wished to develop a bridging design. What decisions should be 

made? What issues should be considered? The research problem in the current 

study was to investigate the conditions involved in bridging designs that might 

lead to better or worse estimates of attribute level partworths. Although there is a 

commercially available software package for scaling bridging designs (Bretton

Clark's Bridger 1988), we were unable to uncover any published studies that 

examined these conditions or offered advice about how the designs should be 

developed. 

The issues that emerge immediately are: 

(1) How many bridging attributes should be used? 

(2) Which attributes should be used as bridges? 

a. How "important" should they be relative to other attributes? 

b. How balanced should the designs be in terms of attribute 

importance? 

(3) What scaling procedure should be used to combine solutions from the 

subdesigns into overall partworth estimates? 
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In the present study we decided to investigate issues (2) and (3). Logically, the 

more attributes employed as bridges, the better will be the results ("better" will be 

described and operationally defined later). For the present study, we decided to 

focus on two bridging attributes, because it creates more stimulating issues than 

with one bridging attribute and not much more understanding is gained from using 

more attributes as bridges. The more interesting practical problem is deciding 

which attributes should be employed as bridges and what are the consequences of 

the choice of bridging attributes. Our research hypotheses investigate this issue. 

A secondary issue to be addressed in this study is how the subdesign solutions 

should be analytically combined. 

Research Hypotheses 

In the following, we state our hypotheses in the way we anticipate them to be 

verified. Obviously, the null hypotheses to be tested in each case will be that of 

no effect. 

Although it will not be possible, in advance of a conjoint study, to know with 

assurance the level of importance of all attributes for ail respondents, there is 

often some a priori information that could be used to develop the designs. 

Because the bridging attributes are key to the linkage of subdesign partworth 

estimation into a single overall solution, it is reasonable to expect that their 
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relative importance will have an impact on the quality of the estimates. This 

comes about in a couple of ways. First, the more important the attributes (i.e., the 

larger the range of its partworths), the more leverage is given to the estimation. 

This is analogous to regression, where the wider the range of the independent 

variable, the more stable is the assessment of slope and intercept (and the lower is 

the standard error of estimation). Hence, our first hypothesis is: 

HI: The higher the relative importance of the bridging attributes, the better is the 

overall partworth solution. 

Secondly, since the nonbridging attributes can be distributed in different ways 

across the subdesigns, one would expect solutions to be better to the extent that 

the subdesigns are "balanced" in terms of their attributes' relative importances. If 

one subdesign were to contain most of the important attributes, one would expect 

that design to have partworth estimates of higher quality than the other subdesign. 

This should lead to lower overall estimate quality than if the designs are well

balanced in terms of attribute importance. Thus the second hypothesis is: 

H2: The more balanced the designs are with respect to attribute importance, the 

better is the overall partworth solution. 

We will define two kinds of attribute imbalance to test this hypothesis. 
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Thirdly, with respect to the resulting estimates of bridging attribute importances, 

since they are separately estimated in each design, it is possible to question the 

effect on overall solution quality of the degree of inconsistency in their measured 

relative importance. If an attribute is estimated to have low importance in one 

sUbdesign and high importance in the other design relative to the other bridging 

attribute, this should affect the ability of any linking procedure to provide good 

estimates of overall partworth across both designs. If bridging attributes are 

measured to be consistent in importance, therefore, we hypothesize that the 

solution will be better. Thus, 

H3: The more consistent the bridging attribute relative importance between 

subdesigns, the better is the overall partworth solution. 

Finally, it seems useful to investigate whether overall attribute importance spread 

over the two subdesigns has an impact on the quality of the partworth solution. 

That is, since total attribute importance indicates the extent to which a respondent 

holds strong opinions regarding the extent to which different levels of the various 

attributes have different utility, we hypothesize that respondents with stronger

held opinions will provide higher quality data yielding better solutions. This last 

hypothesis does not directly depend on which particular attributes are used as 

bridges (i.e., it is more a hypothesis regarding respondent quality than design 

quality). 
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H4: The higher the total attribute importance over subdesigns, the better is the 

overall partworth solution. 

Although these hypotheses could conceivably be addressed with mathematical 

analysis or simulation, practical application of bridging designs involves dealing 

with people, so we decided to examine them with real subjects and realistic 

situations. We developed the following study design to test the hypotheses 

empirically. 

Study Design 

The study employed a household durable product with a fairly high number of 

important attributes: vacuum cleaners. A pretest was conducted wherein 240 

housewife subjects were interviewed on three separate occasions using different 

procedures to elicit conjoint-analysis based importance scores for a subset of the 

attributes used in the current study. For the present study, some additional 

attributes were employed, for which we subjectively assessed relative importance. 

The attributes and ranges are shown in Table 1. 

[Table 1] 

In order to test the hypotheses, we needed to assure ourselves that sufficient 

ranges of bridging attribute importance would exist in our sample. In this case, 
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therefore, we had a priori indications of the relative importance of the attributes (a 

combination of pretest results and researcher subjective judgements) that could be 

used in generating bridging designs having (on average) different levels of 

importance in the bridging attributes. The attributes either had three or two levels. 

Three conditions were specified: (1) bridging attributes both important, (2) one 

important and one unimportant bridging attribute, and (3) both unimportant 

bridging attributes. We carefully selected the remaining attributes in each design 

to try to achieve balance in overall importance across the two subdesigns. 

Moreover, we set up the sUbdesigns so that each half contained the same number 

of attributes with two and three attributes. This also meant we could use the same 

fractional-factorial design in preparing the stimuli for each half and each 

subdesign would contain the same number of stimuli. The resulting designs 

contained attributes as indicated in Table 2. Although we fully realized that 

individual respondents might assign quite different relative importances to the 

various attributes in each design, it was felt useful to employ the a priori 

information in creating the study to assure a wide range of conditions across 

respondents. The testing of our hypotheses, however, does not depend on the a 

priori conditions being confirmed on average. 

[Table 2] 

Main-effects only stimulus configuration designs were obtained for the 

sUbdesigns, each containing five attributes (using Bretton-Clark's Conjoint 
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Designer 1987). The fractional-factorial designs each resulted in a set of 16 

stimuli. Attributes and levels were assigned to the subdesigns in such a way that 

no stimulus was completely dominated by (or completely dominated) the others; 

i.e., no stimulus had the "best" or "worst" values on all attributes. 

A sample of 120 housewives in Belgium was selected and randomly assigned to 

the three attribute bridge conditions. Student interviewers were employed and the 

data collected as part of their thesis projects. Before doing the bridging task, the 

respondents were asked to rank order a set of six holdout stimuli containing 

realistic combinations of attribute levels across all eight attributes (these were 

selected to be sufficiently different to provide an adequate range of responses). 

Before or after the bridging task (randomly assigned to half the respondents), 

respondents were asked to complete a complete full-profile task with all eight 

attributes. This latter task required sorting 27 cards, a minimum main-effects 

design. It is important to note that the overall task for the two halves of the 

bridging design involved more stimuli than the full design. It is apparent on its 

face, though, that the latter task requires more effort and should be more difficult 

for the respondent than the former. Each subdesign task had 16 cards with 5 

attributes (requiring subjects to process simultaneously 80 bits of information), 

whereas the full design had 27 cards with 8 attributes each (requiring 

simultaneous processing of 216 bits of information). As a final task, respondents 

were asked to indicate the importance of the attributes in a self-explicated fashion 

(6-point scale). 
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Measures 

Assume that we have five attributes in each of two subdesigns with two 

overlapping attributes (bridging attributes). For each subdesign we may estimate 

partworths and hence the range of partworths for each attribute. These latter 

ranges we define to be the importances Iij for design i (i=1,2) and attribute j. 

Next, we define the relative importances RIij corresponding to the Iij divided by 

the sum of the Iij within each subdesign. 

For the example of the current study, we have: 

Design 1 Design 2 Overall 

RI15 RI5 

RI14 R4 

RI13 RI3 

RI12 RI22 RI2 Bridging 

RIl1 RI21 RII attributes 

RI26 RI6 

RI27 RI7 

RI2S RIS 

where RIj is the relative importance of attribute j in the final solution (to be 

discussed later). 
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Measures of Solution Quality 

Two measures of the general quality of the bridged solutions are used in this 

study, solution inconsistency (a measure of the squared differences between 

original relative importances and the rescaled relative importances) and 

correlation (between original scaled relative importances and rescaled relative 

importances). Thus: 

Solution inconsistency: This measure is not used to test any hypotheses. It 

is a measure of solution internal inconsistency, i.e., a measure of inconsistency 

between the original bridging estimates and the "bridged" solution. 

Solution inconsistency = sum(diff}) 

where diffj is (RIlj - RIj) or (RI2j - RIj). 

The measure is summed over 10 differences in the above example. 

(1) 

Correlation: This is the simple Pearson product-moment correlation 

between the original estimates of relative importance and the rescaled relative 

importances. 

Correlation = Corr(RIij,RIj) (2) 



17 

where the replicates are the 10 relative importances derived in each experimental 

condition. 

Both measures are helpful for determining how well the particular bridging 

algorithm works in comparison with other bridging algorithms. Obviously, the 

lower the measured value for solution inconsistency and the higher the value for 

correlation, the higher is the solution quality. 

Independent variables 

A total of five independent variables were developed to test the research 

hypotheses. 

Importance: The first independent variable, used to test HI, is the 

importance of the bridging variables. This is simply measured as the sum of the 

relative importances of the bridging variables across both subdesigns. Thus, 

Importance RIll + RI12 + RI21 + RI22 (3) 

Imbalance: Two imbalance measures are developed in this study. The first 

is a measure of imbalance across designs where total bridge-attribute importance 

in one design is compared with the similar value in the other design. Thus, 
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Imbalancq = abs((RIll +RI12)-(RI21 +RI22)) (4) 

This is really a measure of the extent to which the non-bridging attributes are 

balanced in total attribute importance across subdesigns. That is, if the left 

subdesign has higher attribute relative importance estimated for bridging 

attributes than the right, it would imply that the left design had lower importance 

for the non-bridging attributes than the right subdesign. 

The second measure is imbalance between attributes over the two designs. Thus, 

Imbalance2 = abs((Rlll + Rl21)-(RI12 + Rl22)) (5) 

Imbalance measure 2 focuses on the relationship between the two bridging 

attributes, as opposed to the non-bridging attributes. A solution can be balanced 

by measure 1 but imbalanced by measure 2. An example would be where, in each 

sUbdesign, the first bridging attribute was twice as important as the second 

attribute. We do not expect this to have as large an effect on predictive validity as 

measure 1, since so long as the sum of bridging attribute importances in a given 

subdesign is sizeable, the scaling of the overall solution should be stable. 

Inconsistency: A measure is defined to indicate the degree to which there is 

inconsistency in the magnitude of the relative importances estimated for each 
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bridging attribute across designs. The larger this measure, the more disparity 

exists in the relative size of the importances for any bridging attribute. Thus, 

(6) 

The measure is used to test H3. 

Total Importance: In order to assess the strength of opinion of the 

respondent over all attributes and levels, we create a measure that is simply the 

sum of the ranges of all attributes in both subdesigns. For the above example, this 

sum is over 10 values. This measure is used to test H4, and we expect it to have a 

positive influence on predictive validity. 

Dependent variables 

The quality of the partworth solutions was investigated using standard measures 

of predictive validity, comparing predicted utility of hold-out stimuli with the 

reported ranking of those stimuli. 

Correlation. The average Spearman rank correlation between predicted and 

actual ranks of hold-out cards. 
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Percentage of first-choice hits. Two cases: (1) "hit" only if prediction of 

card was first choice, and (2) "hit" if prediction for card was first or second 

choice. 

The above dependent variables are progressively less stringent measures of 

solution quality. 

Analysis and Results 

The partworth solutions for each sUbdesign and the full design were 

obtained for each respondent subject. These were unconstrained OLS solutions 

using dummy-variable regression (i.e., using Bretton-Clark's Conjoint Analyzer, 

1987). In order to combine the solutions for each of the subdesigns into a single 

vector of partworths for all attributes, a number of options were available. Since 

each subdesign task was performed independently, each provides estimates of the 

bridging attribute importances (ranges of partworth levels). Logically, the 

solution algorithm should depend on the ratio of attribute importances for the 

bridging attributes across subdesigns. However, the solution will differ depending 

on which ratio (lst over 2nd or 2nd over 1st) is used to rescale which subdesign's 

partworths (a problem of nonsymmetry) and how the importances for the two 

bridging attributes are combined. 
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To solve the second problem, we experimented with two types of ratio for the 

bridge algorithm. The first was a sum of ratios of bridging attribute ranges, i.e., 

(R 111R 21 + R 121R 22), where Rij is the range of partworths of bridging attribute j 

in sub design i. However, this tended to be unstable, because some of the ranges 

were near zero. A more stable alternative was the following: 

(7) 

To solve the nonsymmetry problem, we applied B (a scalar value) to rescale the 

2nd subdesign partworths and B-1 to rescale the 1st subdesign partworths, then 

added the resulting partworths. Thus, for our study, the algorithm was as follows, 

where Uij represents a vector of partworths of all levels of attribute j in design i: 

Stage 1 Stage 2 Final Partworths 

u15 B-1*U15 U15+B-1*U15 

u14 B-1*U14 U14+B-1*U14 

ul3 B-1*ul3 ul3+B-1*U13 

B*u22 B-1*U12 B*U22+B-1*U12 

B*u21 B-1*Ull B*U21+B-1*U11 

B*u26 u26 B*u26+u26 

B*u27 u27 B*u27+u27 

B*u28 u28 B*u28+u27 
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We call our method Symbridge, to denote symmetrical bridging. Table 3 shows 

the measures of solution quality (defined above) for Symbridge in contrast with 

the solutions provided by Bridger. Symbridge provided an average solution 

inconsistency measure of 0.120 and correlation of 0.90 for the subjects. By 

contrast, the commercial package Bridger yielded an average solution 

inconsistency measure of 0.077 and correlation of 0.877 for the same input data. 

Thus the two measures show mixed performance for the two bridging methods. 

Given the asymmetric nature of Bridger solutions, we would have expected it to 

perform worse relative to Symbridge. Our understanding, from informal 

conversations with other conjoint-experienced researchers, is that Bridger uses a 

least-squares procedure for scaling the two solutions, which would tend to 

minimize the criterion we call "solution inconsistency". Symbridge provides 

somewhat more stable results (i.e., the distributions of solution quality measures 

over subjects are less skewed; e.g., skewness coefficient for solution inconsistency 

was 2.2 for Bridger, but only 0.6 for Symbridge). 

[Table 3] 

Table 3 also shows the average results for predictive validity for Symbridge and 

Bridger versus the full design on the various criteria. It is not surprising that the 

full design outperforms the other methods, on average, since the holdout sample 

used stimuli that included all attributes. Symbridge and Bridger performed 
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approximately equally on all predictive validity criteria (certainly the differences 

are not statistically significant). 

Table 4 shows the average values of attribute importances estimated from the 

sample by the different methods, augmented by the self-explicated importances 

and our a priori assessments of the attribute importances. Notice that our a priori 

indications for attribute importance were not confirmed by the analysis of this 

sample of respondents. Symbridge and Bridger yielded a high degree of 

correlation in their results, although one can observe some differences. Bridger 

average importances have a higher correlation with full-design average 

importances than does Symbridge. Symbridge average importances have a higher 

correlation with self-explicated average importances than do either Bridger or full 

design average importances. 

[Table 4] 

Table 5 shows the basic descriptive statistics and intercorrelations for the 

independent variables to be used to test hypotheses HI-H4. Although there is an 

indication of skewness for all of the independent variables except for "total 

importance", there is sufficient variability in all variables to provide some 

explanatory power. There is fairly high correlation between Importance and 

Imbalance2, which is understandable given the variable definitions being based on 

the same subcomponents. Also, there is a moderate correlation between 



24 

Importance and Inconsistency. Otherwise, the variables do not exhibit very high 

intercorrelation. 

[Table 5] 

Table 6 examines hypotheses HI-H4 using Spearman correlation of predicted 

versus actual holdout stimuli ranks as the predictive validity criterion. It is 

disappointing to observe that, except for H4, none of the hypotheses was 

supported (i.e., the null hypotheses could not be rejected) in all cases. This turns 

out the same when using "hit ratio" as the "goodness" criterion. H4 was not 

dependent on the type of design and could be tested as well for the full design. 

Interestingly, we found support for H4 in the bridged designs, but not the full 

design. It appears that using a bridge design causes total attribute importance to 

become more critical to predictive validity than when using a full design. 

[Table 6] 

At this point we began investigating the data for subjects with particularly weak 

predictive validity that might be skewing the results. However, even comparing 

highest and lowest quartile respondents on independent variables involved in Hl

H3 turned up no significant differences for predictive validity, except for the 

peculiar result for both Symbridge and Bridger that high quartile respondents on 
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the measure Imbalancq yielded significantly higher predictive validity than low 

quartile respondents (two-tailed p-values were .06 and .004, respectively). 

Discussion 

We began this investigation favorably disposed to bridging as a means of reducing 

respondent task difficulty, hopefully yielding higher quality results. Our 

conclusion is much less optimistic for bridging. Nevertheless, this is the way 

science progresses. 

Despite the disappointing results, we feel we have addressed some worthwhile 

issues and have described ways of examining them. The method we developed 

for scaling bridging design solutions, Symbridge, while seemingly better on 

logical grounds, appears not to outperform the one existing commercial method, 

Bridger (although one should be careful in generalizing from a single study with 

only one product). Symbridge has face validity, since it does not depend on the 

order in which the bridging designs are entered into the algorithm. Although 

somewhat mixed as we saw in Table 3, the Symbridge did tend to provide more 

stable (less skewed) distributions of solution quality than did Bridger in this 

instance. 

Our various hypotheses are reasonable on their face, as well. A finding consistent 

with the null hypothesis is not the same as proving it. Although the number of 
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subjects in the study would seem to have provided statistical power sufficient to 

detect even small effects, the particular study conditions may have worked against 

rejecting the null hypotheses. For example, having two bridging attributes 

reduces the probability that two unimportant attributes will be used as bridges 

(and presence of one important attribute may be sufficient for reasonable solution 

quality and predictive validity). We continue to be convinced that choice of 

bridging attributes is a relevant issue for researchers planning to use bridging 

designs. To the extent it is possible, researchers using bridge designs should 

probably try to make the bridging attributes the most important ones for the 

majority of their respondents. Also, they should try to balance the subdesigns in 

terms of their overall attribute importance. On the other hand, we have evidence 

in this study of the inability of researchers to really judge the importance of 

attributes on an a priori basis. This would argue for creating designs "on the fly", 

so to speak, that would be potentially different for each respondent. That would 

be almost like using the adaptive methods (e.g., ACA, Johnson 1987). 

Although our study does not provide evidence for the proposition, it may be that 

any bridging design will be troublesome if any of the subdesigns omits an 

attribute that is extremely important to the choice decision. An example is the 

price attribute, which tends to be important in many conjoint analysis studies. 

There is thus an argument for using price as a bridging attribute in any bridging 

study. 
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One could use our results to support the idea that full designs should be used 

instead of bridging designs (i.e., that bridging should never be used). The full 

design outperformed bridging in every instance. More stimuli had to be compared 

in total in the bridging tasks, and actually took about the same time overall (the 

full-design task averaged 11.1 minutes, while the bridging task averaged 11.7 

minutes in total). This is despite the "easier" tasks of sorting the stimuli in the 

subdesign conditions. (We note parenthetically that there was no significant 

correlation between predictive validity and time for the task for any of the solution 

methods, suggesting that more time taken has little to do with quality of "effort".) 

It is possible that subjects are able to simplify the full-design tasks by simply 

ignoring the levels of the unimportant attributes. And the full design stimuli have 

greater realism (the more complete description could provide better context for 

respondent decisions, even if the unimportant attributes are ignored). 

Suggestions for Future Research 

Given the inability to reject the null hypotheses corresponding to HI-H3, we need 

to replicate this study with different products, different situations, and possibly 

more motivated subjects, either paying them or developing some other procedures 

for getting them to take the task seriously. We should also examine the impact of 

using designs with larger numbers of attributes and attribute levels. Additionally, 

one could consider expanding the number of bridging attributes and/or the 

numbers of bridging subdesigns. 



28 

A different approach would be to attempt a solution to the problem with 

mathematical analysis. The number of variables and the complexity of the 

situation suggest that this approach would be very difficult. 

Finally, the hypotheses might be investigated with Monte Carlo simulation. Of 

course, in such a case, the researcher must be careful to ground the various 

assumptions in reality to avoid merely playing games. 

Additionally, new hypotheses might be investigated. For example, does bridging 

increase the importance of an attribute (i.e., are the relative importances of 

bridging attributes higher than they would be under full designs)? What happens 

if there are shape reversals for utility functions of attributes estimated from 

bridging subdesigns? The latter would be particularly upsetting if it occurred for 

important attributes. 

A much more fundamental question, which has not been asked often, and 

certainly not answered, is whether we need to estimate individual utility functions 

at all. It is this desire that leads to all those problems of information overload. 

Supposing we could reduce this overload by submitting to every respondent a set 

of stimuli too small to estimate his own individual utility function, and estimate 

utilities at the group level, what are the positive and negative consequences? 
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On the positive side, respondents would be less taxed, and perhaps provide data of 

better quality, and if the response rate is a function of the number of stimuli, the 

cost of research could decrease. 

On the negative side, one would be faced with the potential problem of having 

only at best group or segment utility functions, which would be aggregates of 

individual preferences. In theory one can expect that the use of segment utility 

functions should lead to a decrease in the quality of conjoint results. The size of 

this decrease could be reduced by using optimal segmentation methods discussed 

earlier or any good clustering algorithm on whatever individual information we 

have. 

Whether these effects will cancel out, is probably again an empirical matter, 

which should be tested with some urgency, because if aggregation is not a major 

problem, it opens up new perspectives about the use of conjoint analysis. 

Another fundamental question which has not been answered thoroughly is about 

the size of the information overload problem in conjoint studies. Does a larger 

number of attributes and levels lead to less reliable data and thus to predictions of 

lower quality ? We can distinguish between two sources of overload : 

simultaneous processing of large amounts of information (as in a ranking task of 

16 or more cards containing 5 or more attributes) with the result that some 

information will not be used (properly), or consecutive processing (comparing a 

large number of choice sets containing e.g. 2 stimuli) leading to respondent 

fatigue and a decrease in response quality. 
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How much do we gain by reducing the information overload in terms of predictive 

validity and perhaps also respondent cooperation? 

As Carroll and Green (1995) have already pointed out, conjoint researchers and 

users are in need of studies comparing the different approaches to the different 

problems plaguing conjoint instead of continuing to propose new variants on an 

old theme. 



31 

References 

Allenby, G. M., Arora N. & Ginter, J. L. (1995). "Incorporating Prior Knowledge 

into the Analysis of Conjoint Studies." Journal of Marketing Research 32 (May), 

152-16. 

Allenby, G. M. & Ginter, 1. L.(1995). "Using Extremes to Design Products and 

Segments Markets." Journal of Marketing Research, vol 32 (november), 392-403. 

Bridger (1988), New York: Bretton-Clark. 

Carroll, J. D. & Green, P. E. (1995). "Psychometric Methods in Marketing 

Research: Part I, Conjoint Analysis." Journal of Marketing Research, Vol. 32 

(November), 385-391. 

Cattin, P.& Wittink, D.R. (1982). "Commercial Use of Conjoint Analysis: A 

Survey." Journal of Marketing, 46 (Summer), 44-53. 

Conjoint Analyzer (1987), New York: Bretton-Clark. 

Desarbo, W. S., Carroll, J.D., Lehmann, D.R. & O'Shaughnessy, J. (1982), 

"Three-way Multivariate Conjoint Analysis." Marketing Science, 1 (Fall), 323-50. 



Green, P. E. (1984). "Hybrid Models for Conjoint Analysis: An Expository 

Review." Journal of Marketing Research 21 (May), 155-159. 

32 

Green, P. E. & Krieger, A.M. (1995). "Attribute hnportance Weights 

Modification in Assessing a Brand's Competitive Potential." Marketing Science, 

vol 14,253-270. 

Green, P. E., Krieger, A.M. & Schaffer, C.M. (1993). "A Hybrid Conjoint Model 

with Individual Level Interaction." Advances in Consumer Research, 20, 1-6. 

Green, P. E. & Srinivasan, V. (1990). "Conjoint Analysis in Marketing: New 

Developments with hnplications for Research and Practice." Journal of Marketing 

54 (October), 3-19. 

Hagerty, M. R. (1985). "hnproving the predictive power of conjoint analysis: the 

use of factor analysis and cluster analysis." Journal of Marketing Research, 22 

(May), 168-84. 

Huber, J.& Zwerina, K. (1996). "The hnportance of Utility Balance in Efficient 

Choice Designs." Journal of Marketing Research 33 (August), 307-317. 



Johnson, R. M. (1987). Adaptive Conjoint Analysis. Sawtooth Conference on 

Perceptual Mapping, Conjoint Analysis, and Computer Interviewing, Ketchum, 

ID: Sawtooth Software, 253-266. 

Kamakura, W., Wedel, M.& Agrawal, J. (1994). "Concomitant Variable Latent 

Class Models for Conjoint Analysis." International Journal of Research in 

Marketing, 11,451-64. 

Lenk, P. J., Desarbo, W.S., Green, P.E. & Young, M.R. (1996). "Hierarchical 

Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced 

Experimental Designs." Marketing Science, vo115, N° 2,173-191. 

Mehta, R., Moore, W.L. & Pavia, T.M. (1992). "An Examination of the Use of 

Unacceptable Levels in Conjoint Analysis." Journal of Consumer Research, 19 

(december), 470-476. 

33 

Miller, G. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits 

on Our Capacity for Processing Information. Psychological Review, 63,81-97. 

Oppewal, H., Louviere, J.J. & Timmermans, R.J.P. (1994). "Modeling 

Hierarchical Conjoint Processes with Integrated Choice Experiments." Journal of 

Marketing Research 31 (February), 92-105. 



34 

Pekelman, D. & Sen, S.L. (1979). "Improving Predictions in Conjoint Analysis." 

Journal of the American Statistical Association, 75 (december), 801-16. 

Reibstein, D., Bateson, J.E.G. & Boulding, W. (1988). "Conjoint Analysis 

Reliability: Empirical Findings." Marketing Science 7 (Summer), 271-286. 

Srinivasan, V. & Park, C.S. (1997). "Surprising Robustness of the Self-Explicated 

Approach to Customer Preference Structure Measurement." Journal of Marketing 

Research, vol 34 (May), 286-291. 

Wittink, D. R., Krishnamurthi, L. & Reibstein, DJ. (1990). "The Effects of 

Differences in the Number of Attribute Levels on Conjoint Results." Marketing 

Letters. 

Wittink, D. R. & Cattin, P. (1989). "Commercial Use of Conjoint Analysis: An 

Update." Journal of Marketing, 53, 91-96. 

Wright, P. (1975). "Consumer Choice Strategies: Simplifying vs Optimizing." 

Journal of Marketing Research, 12 (February), 151-175. 



35 

Table 1 

Attributes and Levels for Vacuum Cleaners 

Attributes Levels 

Power (watt) 700 1000 1300 

Price (Belgian francs) 3999 6999 9999 

Warranty (years) 1 2 3 

Power control (positions) none 2 4 

Type of cleaner drum box 

Accessories yes no 

Indicator Light yes no 

Cord yes no 



36 

Table 2 

Bridging Design for Vacuum Cleaners 

Attribute 2 important 1 important, 2 unimportant 

importance attributes 1 unimportant attributes 

set 1 set 2 set 1 set 2 set 1 set 2 

Bridging price price price price Wart. warr. 

attributes power power warr. warr. contr. contr. 

Other warr. contr. contr. power price power 

attributes type indie. type indic. type indic. 

access. cord access. cord access. cord 

Number of 

stimuli 16 16 16 16 16 16 

Sample size 40 40 40 



Table 3 

Measures of Solution Quality and Predictive Validity 

of the Bridging Methods and Full Design 

Symbridge Bridger Full Design 

Solution Quality (means, n=120) 

Inconsistency {sum(diffp)} .120 .077 

Correlation .860 .840 

Predictive Validity 

Spearman correlation .51 .49 .61 

1 st place hits 38.3% 37.5% 40.0% 

1 st or 2nd place hits 55.0% 53.3% 60.0% 

37 

Note: Chance criterion for 1st place hits is 16.7% and for 1st or 2nd place hits is 

33.3%; all results are significantly above chance (p < .001). 
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Table 4 

Attribute Relative Importances Estimated by Different Methods 

Attribute Self- Symbridge Bridger Full A Priori 
Explicated Design 

Means (SDs) 

Power 81 (23) 72 (36) 59 (38) 48 (34) 100 
Price 58 (32) 38 (32) 26 (28) 27 (29) 50 
Warranty 57 (33) 31 (30) 27 (29) 22 (23) 20 
Power control 55 (34) 32 (28) 26 (27) 28 (28) 30 
Type 69 (35) 49 (38) 49 (42) 65 (44) 50 
Accessories 24 (28) 18 (22) 19 (26) 9 (15) 40 
Indicator Light 30 (28) 19 (23) 15 (19) 13 (20) 40 
Cord 54 (30) 21 (27) 16 (23) 13 (19) 30 

Correlations 

Self-Explicated 1.00 

Symbridge .88 1.00 

Bridger .83 .97 1.00 

Full Design .79 .83 .90 1.00 

A priori .55 .84 .78 .55 1.00 

Note: The scales of the relative attnbute lmportances were made eqUivalent to 

each other as nearly as possible. The correlations in the lower half of the table are 

based on the averages in the top half of the table. 
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Table 5 

Descriptive Statistics and Intercorrelations for Independent Variables 

Descriptive Statistics 
Mean Std. Dev. Median Min. Max . 

Importance .93 .39 .88 . 19 1.88 
(bridging attrib.) 
Imbalance 1 .16 .13 .14 .00 .59 

Imbalance 2 .45 .36 .41 .00 1.24 

Inconsistency .03 .04 .02 .00 .21 

Total Importance 62.79 19.00 62.98 30.25 122.44 
(all attrib.) 

Correlations (n= 120) 

Import. Imbal.l Irnba1.2 Incons. Tot.Imp. 

Importance 1.00 

Imbalance 1 .13 1.00 

Imbalance 2 .82 .16 1.00 

Inconsistency .47 .05 .28 1.00 

Total Importance -.24 .32 -.17 -.18 1.00 
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Table 6 

Effect of Independent Variables on Predictive Validity 

Independent Variable Symbridge Bridger 

Correlations (p-values) 

Importance -.05 (.598) -.03 (.718) 

Imbalance 1 .14 (.140) .13 (.158) 

Imbalance 2 .03 (.709) .07 (.471) 

Inconsistency -.06 (.510) -.09 (.350) 

Total Importance .32 (.000) .28 (.002) 

Note: The measure of predictive validity used here is the Spearman correlation 

between predicted and actual holdout stimuli rankings. Thus, the tabled values 

are Pearson correlations between the importance measure and the Spearman 

correlations, where the replicates are the 120 respondents. All p-values are for 

two-tailed tests. 
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