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On Leonid Gurvits’s Proof for Permanents
Monique Laurent and Alexander Schrijver

Abstract. We give a concise exposition of the elegant proof given recently by Leonid Gurvits
for several lower bounds on permanents.

1. PERMANENTS. The permanent of a square matrix A = (ai, j )
n
i, j=1 is defined by

perA =
∑

π∈Sn

n∏

i=1

ai,π(i), (1)

where Sn denotes the set of all permutations of {1, . . . , n}. (The name “permanent”
has its root in Cauchy’s fonctions symétriques permanentes [2], as a counterpart to
fonctions symétriques alternées—the determinants.)

Despite its appearance as the simpler twin-brother of the determinant, the per-
manent has turned out to be much less tractable. Whereas the determinant can be
calculated quickly (in polynomial time, with Gaussian elimination), determining the
permanent is difficult (“number-P-complete”). As yet, the algebraic behaviour of the
permanent function has appeared to a large extent unmanageable, and its algebraic
relevance moderate. Most fruitful research on permanents concerns lower and upper
bounds for the permanent (see the book of Minc [12]). In this paper we will consider
only lower bounds.

Indeed, most interest in the permanent function came from the famous van der
Waerden conjecture [16] (in fact formulated as a question), stating that the permanent
of any n × n doubly stochastic matrix is at least n!/nn, the minimum being attained
only by the matrix with all entries equal to 1/n. (A matrix is doubly stochastic if it is
nonnegative and each row and column sum is equal to 1.)

This conjecture was unsolved for over fifty years, which, when contrasted with its
simple form, also contributed to the reputation of intractability of permanents. Finally,
Falikman [6] and Egorychev [4] were able to prove this conjecture, using a classical
inequality of Alexandroff and Fenchel. The proof with eigenvalue techniques also re-
vealed some unexpected nice algebraic behaviour of the permanent function (see, also
for background, Knuth [9] and van Lint [10, 11]).

Before the proof of the van der Waerden conjecture was found, a weaker conjecture
was formulated by Erdős and Rényi [5]. It claims the existence of a real number α3 > 1
such that, for each nonnegative integer-valued n × n matrix A with all row and column
sums equal to 3, the permanent of A is at least αn

3 . This would follow from the van der
Waerden conjecture, since 1

3 A is doubly stochastic, and hence

perA = 3nper
(

1
3

A
)

≥ 3n n!
nn

≥
(

3
e

)n

. (2)

Erdős and Rényi also asked for the largest value of α3 one can take in this bound.
More generally, for any natural number k, they asked for the largest real number
αk such that each nonnegative integer-valued n × n matrix A = (ai, j ) with all row
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and column sums equal to k has permanent at least αn
k . Note that this permanent is

equal to the number of perfect matchings in the k-regular bipartite graph with vertices
u1, . . . , un, v1, . . . , vn, where ui and v j are connected by ai, j edges.

In 1979, before the van der Waerden conjecture was settled, the first conjecture of
Erdős and Rényi was proved, by Bang [1], Friedland [7], and Voorhoeve [15]. Bang
and Friedland in fact showed that the permanent of any n × n doubly stochastic matrix
is at least e−n. Note that limn→∞(n!/nn)1/n = e−1, so this may be seen as an asymptotic
proof of the van der Waerden conjecture. It also implies that the number αk of Erdős
and Rényi is at least k/e; in particular, α3 ≥ 3/e > 1.

The proof of Voorhoeve gives a better bound: α3 ≥ 4/3. In fact, this bound is best
possible. Indeed, it follows from a theorem of Wilf [18] that α3 ≤ 4/3, and more gen-
erally

αk ≤ (k − 1)k−1

kk−2
, (3)

and Schrijver and Valiant [14] conjectured that equality holds for each k. For k = 1, 2,
this is trivial, and for k = 3 this follows from Voorhoeve’s theorem.

The proof of Voorhoeve that α3 ≥ 4/3 is very short and elegant, and it seduces
one to search for similar arguments for general k. However, it was only at the cost of
frightening technicalities that Schrijver [13] found a proof that equality indeed holds
in (3) for each k. This amounts to a lower bound for permanents of doubly stochastic
matrices in which all entries are integer multiples of 1/k. Under this restriction, this
bound is larger than the van der Waerden bound.

In fact, both the bound of Falikman-Egorychev and that of Schrijver are best pos-
sible, in different asymptotic directions. Let µ(k, n) denotes the minimum permanent
of n × n doubly stochastic matrices with all entries being integer multiples of 1/k.
Then the two bounds state

µ(k, n) ≥ n!
nn

and µ(k, n) ≥
(

k − 1
k

)(k−1)n

. (4)

They are best possible in the following sense:

inf
k

µ(k, n)1/n = n!1/n

n
and inf

n
µ(k, n)1/n =

(
k − 1

k

)k−1

. (5)

The proof of Falikman and Egorychev requires some nontrivial theorems, and the
proof of Schrijver is combinatorially complex. It was a big surprise when Leonid
Gurvits [8] gave an amazingly short proof of the two bounds. En route, he extended
Schrijver’s theorem to: each doubly stochastic n × n matrix with at most k nonzeros
in each column has permanent at least ((k − 1)/k)(k−1)n. In fact, Gurvits proved that
each doubly stochastic n × n matrix A satisfies

perA ≥
n∏

i=1

g(min{i, λA(i)}) (Gurvits’s inequality), (6)

where λA(i) is the number of nonzeros in the i th column of A, and where

g(0) := 1 and g(k) :=
(

k − 1
k

)k−1

for k = 1, 2, . . . (7)

904 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 117



Integre Technical Publishing Co., Inc. American Mathematical Monthly 117:10 July 23, 2010 10:00 a.m. schrijver.tex page 905

(setting 00 = 1). Gurvits’s bound implies both the bound of Falikman and Egorychev
and the bound of Schrijver—see Section 4.

We give here a proof based on Gurvits’s proof. The building blocks of the proof are
from Gurvits [8], but we take a few shortcuts.

2. DESCRIPTION OF GURVITS’S APPROACH. As usual, let R+ := {x ∈ R |
x ≥ 0}. Recall the geometric-arithmetic mean inequality, saying that if λ1, . . . , λn,
x1, . . . , xn ∈ R+ with

∑n
i=1 λi = 1, then

n∑

i=1

λi xi ≥
n∏

i=1

xλi
i . (8)

It amounts to the concavity of the log function.
For any n × n matrix A, define the following multivariate polynomial pA in the

variables x1, . . . , xn:

pA(x1, . . . , xn) :=
n∏

i=1

ai x =
n∏

i=1

n∑

j=1

ai, j x j , (9)

where ai denotes the i th row of A (in ai x we take ai as a row vector and x =
(x1, . . . , xn)

T as a column vector). So pA is homogeneous of degree n.
Then the coefficient of the monomial x1 · · · xn in pA is equal to perA. This can also

be stated in terms of partial derivatives as

perA = ∂n pA

∂x1 · · · ∂xn
. (10)

Note that the latter expression is a constant function.
The crux of the method is to consider more generally the following derivatives of

pA, for any i = 0, . . . , n:

qi (x1, . . . , xi ) := ∂n−i pA

∂xi+1 · · · ∂xn

∣∣∣∣
xi+1=···=xn=0

. (11)

So qi ∈ R[x1, . . . , xi ]. Then qn = pA and q0 = perA.
The polynomials qi will be related through the following concept of “capacity” of

a polynomial. The capacity cap(p) of a polynomial p ∈ R[x1, . . . , xn] is defined as

cap(p) := inf p(x), (12)

where the infimum ranges over all x ∈ Rn
+ with

∏n
j=1 x j = 1. So cap(q0) = perA.

Moreover, we have:

Proposition 1. If A is doubly stochastic, then cap(pA) = 1.

Proof. For any x ∈ Rn
+ with

∏n
j=1 x j = 1 we have, using the geometric-arithmetic

mean inequality (8):

pA(x) =
∏

i

ai x ≥
∏

i

∏

j

x
ai, j
j =

∏

j

∏

i

x
ai, j
j =

∏

j

x
∑

i ai, j
j =

∏

j

x j = 1. (13)

Hence cap(pA) ≥ 1. As pA(1, . . . , 1) = 1, this gives cap(pA) = 1.

December 2010] ON LEONID GURVITS’S PROOF FOR PERMANENTS 905



Integre Technical Publishing Co., Inc. American Mathematical Monthly 117:10 July 23, 2010 10:00 a.m. schrijver.tex page 906

Then Gurvits’s inequality (6) follows inductively from the inequality

cap(qi−1) ≥ cap(qi )g(min{i, λA(i)}) (14)

for i = 1, . . . , n, assuming A to be nonnegative. This is the basic inequality in
Gurvits’s proof, which is established using the concept of “H-stable polynomial,” as
follows.

Define C+ := {z ∈ C | Re z ≥ 0} and C++ := {z ∈ C | Re z > 0}. A polynomial
p ∈ C[x1, . . . , xn] is called H-stable if p has no zeros in Cn

++. (Here “H” stands for
“half-plane.”) Note that for any doubly stoachastic matrix A, the polynomial pA indeed
is H-stable.

For any polynomial p ∈ R[x1, . . . , xn], let the polynomial p′ ∈ R[x1, . . . , xn−1] be
defined by

p′(x1, . . . , xn−1) := ∂p
∂xn

∣∣∣∣
xn=0

. (15)

Then the polynomials introduced in (11) satisfy qi−1 = (qi )
′ for i = 1, . . . , n. As

noted above, we need to show inequality (14). This is what the following key result of
Gurvits does, relating cap(p) and cap(p′).

Theorem 1. Let p ∈ R+[x1, . . . , xn] be H-stable and homogeneous of degree n. Then
p′ ≡ 0 or p′ is H-stable. Moreover,

cap(p′) ≥ cap(p)g(k), (16)

where k = degxn
(p) denotes the degree of xn in p.

Note that the degree of the variable xi in qi is at most min{i, λA(i)}. Hence, as g is
monotone nonincreasing, (14) indeed follows.

3. PROOF OF THEOREM 1. We first prove a lemma. For any x ∈ Cn , let Re x :=
(Re x1, . . . , Re xn).

Lemma 1. Let p ∈ C[x1, . . . , xn] be H-stable and homogeneous. Then for each x ∈
Cn

+:

|p(x)| ≥ |p(Re x)|. (17)

Proof. By continuity, we can assume x ∈ Cn
++. Then, as p is H-stable, p(Re x) += 0.

Fixing x , consider p(x + s Re x) as a function of s ∈ C. As p is homogeneous, we can
write

p(x + s Re x) = p(Re x)
m∏

i=1

(s − bi ) (18)

for b1, . . . , bm ∈ C, where m is the total degree of p. For each i , as p(x + bi Re x) = 0
and as p is H-stable, we know x + bi Re x +∈ Cn

++, and so Re(1 + bi ) ≤ 0, that is,
Re bi ≤ −1, which implies |bi | ≥ 1. Therefore,

|p(x)| = |p(x + 0 Re x)| = |p(Re x)|
m∏

i=1

|bi | ≥ |p(Re x)|. (19)
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Now we can prove Theorem 1. It suffices to prove that for each y ∈ Cn−1
++ with∏n−1

i=1 Re yi = 1:

(i) if p′(y) = 0 then p′ ≡ 0, and (20)
(ii) if y is real, then p′(y) ≥ cap(p)g(k).

Before proving (20), note that for any real t > 0,

cap(p) ≤ p(Re y, t)
t

. (21)

Indeed, let λ := t−1/n and x := λ · (Re y, t). We chose λ so that

i∏

i=1

xi = λn

(
n−1∏

i=1

Re yi

)

t = 1.

Hence, as p is homogeneous of degree n,

cap(p) ≤ p(x) = λn p(Re y, t) = p(Re y, t)
t

, (22)

and we have (21).
We now prove (20). First assume that p(y, 0) = 0. Then by (17) we have

p(Re y, 0) = 0 (since 0 = |p(y, 0)| ≥ |p(Re y, 0)| ≥ 0). Moreover,

p′(y) = lim
t↓0

p(y, t) − p(y, 0)

t
= lim

t↓0

p(y, t)
t

, (23)

and a similar expression holds for p′(Re y). By (17), as all coefficients of p are non-
negative, p(Re y, t) ≤ |p(y, t)| for all t ≥ 0. So, using (21),

cap(p) ≤ lim
t↓0

p(Re y, t)
t

= p′(Re y) ≤ lim
t↓0

|p(y, t)|
t

= |p′(y)|. (24)

This implies (20): we have (i) since if p′(y) = 0 then p′(Re y) = 0, so p′ ≡ 0 (as all
coefficients of p′ are nonnegative); (ii) follows as g(k) ≤ 1 for each k.

Second assume that p(y, t) has degree at most 1, as a polynomial in t . Then also
p(Re y, t) has degree at most 1, since p(Re y, t) ≤ |p(y, t)|. Moreover,

p′(y) = lim
t→∞

p(y, t)
t

, (25)

and a similar expression holds for p′(Re y). Now again using (21),

cap(p) ≤ lim
t→∞

p(Re y, t)
t

= p′(Re y) ≤ lim
t→∞

|p(y, t)|
t

= |p′(y)|, (26)

again implying (20).
So we can assume that p(y, 0) += 0 and that p(y, t) has degree at least 2, as a

polynomial in t . This implies k ≥ 2. Since p(y, 0) += 0, we can write

p(y, t) = p(y, 0)
k∏

i=1

(1 + ai t) (27)
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for some a1, . . . , ak ∈ C. Hence p′(y) = p(y, 0)
∑k

i=1 ai . As p(y, t) has degree at
least 2, not all ai are 0. Moreover, for i = 1, . . . , k:

if ai += 0, then a−1
i is a nonnegative real linear combination of y1, . . . , yn−1. (28)

Otherwise there is a line in the complex plane C through 0 that separates a−1
i from

y1, . . . , yn−1. So there exists a λ ∈ C such that Re(λa−1
i ) < 0 and Re(λy j ) > 0 for

j = 1, . . . , n − 1. Hence (λy, −λa−1
i ) belongs to Cn

++.
However, p(λy, −λa−1

i ) = λn p(y, −a−1
i ) = 0 (this follows by substituting t =

−a−1
i in (27)). This contradicts the H-stability of p, and thus proves (28).
As the yi belong to C++, (28) in particular implies that Re ai > 0 if ai += 0. Hence,

as not all ai are 0,
∑k

i=1 ai += 0. Therefore p′(y) = p(y, 0)
∑k

i=1 ai += 0. This gives
(20)(i).

To prove (20)(ii) we now assume that y is real. Then by (28), all ai are real nonneg-
ative. By scaling p we can assume that p(y, 0) = 1. Set

t := k
(k − 1)p′(y)

. (29)

Then, using the geometric-arithmetic mean inequality (8) and the fact that p′(y) =∑k
i=1 ai ,

p(y, t) =
k∏

i=1

(1 + ai t) ≤
(

1
k

k∑

i=1

(1 + ai t)

)k

=
(

1
k
(k + p′(y)t)

)k

=
(

1 + 1
k − 1

)k

(30)

=
(

k
k − 1

)k

.

Therefore, by (21),

cap(p) ≤ p(y, t)
t

≤ 1
t

(
k

k − 1

)k

= p′(y)

(
k

k − 1

)k−1

. (31)

The value (29) for t was determined by Gurvits to yield the best inequality relating
cap(p′) and cap(p).

4. APPLICATIONS TO PERMANENTS.

Corollary 1a. For any nonegative n × n matrix A:

perA ≥ cap(pA)
n∏

i=1

g(min{i, λA(i)}). (32)

Proof. We may assume that A has no zero row. Then, as pA(x) = 0 implies that ai x =
0 for some i , pA is H-stable. Define qi ∈ R+[x1, . . . , xi ] as in (11). Then by Theorem
1, for i = 1, . . . , n,

cap(qi−1) ≥ cap(qi )g(degxi
(qi )) ≥ cap(qi )g(min{i, λA(i)}), (33)
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since degxi
(qi ) ≤ min{i, λA(i)} and g is monotone nonincreasing. As cap(q0) = perA,

(32) follows by induction.

If A is doubly stochastic, cap(pA) = 1 (Proposition 1), and hence Corollary 1a gives
Gurvits’s inequality (6). This implies the theorem of Falikman [6] and Egorychev [4]
(van der Waerden’s conjecture [16]):

Corollary 1b. If A is a doubly stochastic n × n matrix, then

perA ≥ n!
nn

. (34)

Proof. By (32),

perA ≥
n∏

i=1

(
i − 1

i

)i−1

=
n∏

i=1

i
(i − 1)i−1

i i
= n!

nn
. (35)

Another consequence of Corollary 1a is the bound of Voorhoeve [15] (for k = 3)
and Schrijver [13]:

Corollary 1c. If A is a nonnegative integer n × n matrix with all row and column
sums equal to k, then

perA ≥
(

(k − 1)k−1

kk−2

)n

. (36)

Proof. Let B := 1
k A. Then B is doubly stochastic and each column has at most k

nonzeros. Hence by Corollary 1a,

perA = knperB ≥ kn

(
k − 1

k

)(k−1)n

=
(

(k − 1)k−1

kk−2

)n

. (37)

For each fixed k, the base (k − 1)k−1/kk−2 in (36) is best possible (Wilf [18]). It is
even best possible when A is restricted to 0, 1 matrices (Wanless [17]).

As was observed by Henryk Minc, Corollary 1c for k = 6 implies the (currently
best known) lower bound of 0.44007584 for the 3-dimensional dimer constant (see
Ciucu [3]).

One can also derive uniqueness of the doubly stochastic matrix having minimum
permanent (a result of Egorychev [4]).

Corollary 1d. Let A = (ai, j ) be a doubly stochastic n × n matrix with perA = n!/nn.
Then ai, j = 1/n for all i, j .

Proof. By symmetry it suffices to show that all entries in the last column of A are
equal. Let the polynomials qi be as in (11). Then, since equality holds in (33),

inf
y

qn−1(y) = cap(qn−1) =
(

n − 1
n

)n−1

cap(qn) =
(

n − 1
n

)n−1

, (38)
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where y ranges over y ∈ Rn−1
+ with

∏n−1
j=1 y j = 1. Now for any such y we have the

following, where i and k range over 1, . . . , n and j ranges over 1, . . . , n − 1, and
where a′

i denotes the i th row of A with the last entry chopped off:

qn−1(y) =
∑

k

ak,n

∏

i +=k

a′
i y ≥

∏

k

∏

i +=k

(a′
i y)ak,n =

∏

i

∏

k +=i

(a′
i y)ak,n

=
∏

i

(a′
i y)1−ai,n =

∏

i

(
∑

j

ai, j y j

)1−ai,n

=
∏

i

(

(1 − ai,n)
∑

j

ai, j

1 − ai,n
y j

)1−ai,n

≥
∏

i

(

(1 − ai,n)
1−ai,n

∏

j

y
ai, j
j

)

(39)

=
(

∏

i

(1 − ai,n)
1−ai,n

) (
∏

j

∏

i

y
ai, j
j

)

=
(

∏

i

(1 − ai,n)
1−ai,n

) (
∏

j

y j

)

=
∏

i

(1 − ai,n)
1−ai,n ≥

(
n − 1

n

)n−1

.

Here we used, in the first two inequalities, the geometric-arithmetic mean inequality
(8) and, in the last inequality, the log-convexity of the function xx (note that (n − 1)/n
is the average of the 1 − ai,n).

By (38) we must have equality in the last inequality of (39). Hence 1 − ai,n is the
same for all i , and so the last column of A is constant.
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contraires par suite des transpositions opérées entre les variables qu’elles renferment, Journal de l’École
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