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Chapter 1

Introduction

Since Samuelson (1947), microeconomic theory has moved from a rather nor-
mative position to a positive framework. This can be perceived as good, since
nobody argues anymore whether a theorem is nice or not. Instead, the de-
bate takes place on the assumptions that make a theory work. Hence, this
has been considered, by many, as a virtue of economics, i.e., involving math-
ematical rigor and solid proofs of theorems, whereas some considered this
to be a secret sin peculiar to economics (McCloskey, 2002). This disserta-
tion comprises three self-contained chapters which are hopefully profound
examples of these sins.

The three chapters ahead share the same foundation of economic analy-
sis but aim to answer three different questions. In each chapter, individual
preferences establish the main framework of the analysis. We investigate
the interaction between individual preferences in different contexts. In par-
ticular, we focus on three scenarios wherein; i) individuals are matched with
each other to share a room according to their preferences, ii) individuals are
assigned some preferences which represent them collectively, iii) ideological
distances of individuals are measured via the differences in their prefer-
ences.

Chapters 2 and 3 are examples of two fields in modern Samuelsonian
microeconomic theory: matching theory and social choice theory. Chapter
4, however, focuses on the main framework of the foundation of the theory
itself, i.e., individual preferences. In Chapter 4, we introduce a distance
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Chapter 1. Introduction

(dissimilarity) function for these preferences, which can be applied to many
problems in modern microeconomic theory.

In Chapter 2, we use individual preferences in the context of matching
theory. We study the roommate markets introduced in Gale and Shapley
(1962) which are one-to-one matching markets in which agents can either
be matched as pairs to share a room or remain single. In particular we
analyze variable population properties where agents are perceived as con-
sumers and resources at the same time. Klaus (2011) introduced two new
“population sensitivity” properties that capture the effect newcomers have
on incumbent agents: competition sensitivity and resource sensitivity. On
various roommate market domains (marriage markets, no odd rings room-
mate markets, solvable roommate markets), we characterize the core using
either of the population sensitivity properties in addition to weak unanim-
ity and consistency. On the domain of all roommate markets, we obtain two
associated impossibility results.

In Chapter 3, individual preferences over some set of alternatives are
considered as a collective decision making problem. In particular, collective
decisions are modeled by preference correspondences (rules). We focus on a
new condition: “update monotonicity” for preference rules. This condition,
roughly speaking, requires that when individual preferences change in fa-
vor of the outcome of a preference rule, the outcome should be still assigned
by the preference rule to the new preference profile of the individuals. Al-
though many so-called impossibility theorems for the choice rules are based
on -or are related to- monotonicity conditions, this appealing condition is
satisfied by several non-trivial preference rules. In fact, in case of pairwise,
Pareto optimal, neutral, and consistent rules; the Kemeny-Young rule is sin-
gled out by this condition. In case of convex valued, Pareto optimal, neutral
and replication invariant rules; strong update monotonicity implies that the
rule equals the union of preferences which extend all preference pairs unan-
imously agreed upon by k agents, where k is related to the number of alter-
natives and agents. In both cases, it therewith provides a characterization
of these rules.

In Chapter 4, unlike the two previous chapters, we focus only on prefer-
ences. The use of distance functions to measure dissimilarity between indi-
vidual preferences is a common practice in the social choice literature. The

2



well-known Kemeny distance, for instance, counts the pairwise disagree-
ments between two individual preferences. In this context, we propose a
class of weighted distance functions which is based on some distribution of
weights over the positions of the pairs of disagreement. Examples of mem-
bers of this class are the Kemeny distance, the Lehmer distance, the inverse
Lehmer distance, and the path-minimizing distance. We analyze the impli-
cations of changing weights on the structure of these distances. It turns out
that the path-minimizing distance is the weighted generalization of the Ke-
meny distance, in the sense that it is the only one satisfying the triangular
inequality condition for any non-degenerate weight vector. Furthermore, we
show that this distance can easily be calculated when the weights over the
positions of disagreements are monotonically increasing or decreasing.
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Chapter 2

Consistency and Population
Sensitivity Properties in
Marriage and Roommate
Markets

2.1 Introduction

We consider one-to-one matching markets in which agents can either be
matched as pairs or remain single1. These markets are known as room-
mate markets and they include, as special cases, the well-known marriage
markets (Gale and Shapley, 1962; Roth and Sotomayor, 1990). Furthermore,
a roommate market is a simple example of hedonic coalition as well as net-
work formation: in a “roommate coalition” situation, only coalitions of size
one or two can be formed and in a “roommate network” situation, each agent
is allowed or able to form only one link (for surveys and current research of
coalition and network formation see Demange and Wooders, 2004; Jackson,
2008).

As discussed in Klaus (2011), in these markets the commodities to be
traded are the agents themselves and agents are consumers and resources

1This chapter is based on a paper by Can and Klaus (2010).
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Chapter 2. Consistency and Population Sensitivity Properties in Marriage
and Roommate Markets

at the same time. Two new “population sensitivity” properties, introduced in
Klaus (2011), that capture the effect newcomers have on incumbent agents
are competition and resource sensitivity: competition sensitivity requires
that some incumbents will suffer if competition is caused because newcom-
ers initiate new trades and resource sensitivity requires that some incum-
bents will benefit if the extra resources are consumed. The corresponding
weak population sensitivity properties only consider situations when new-
comers join one by one.

Both population sensitivity properties are closely related to population
monotonicity, a solidarity property that requires that additional agents af-
fect the incumbents in a similar way (either all incumbents are weakly bet-
ter off or all incumbents are weakly worse off). Because of the polarization
of interests that occurs in marriage markets, two specific versions of pop-
ulation monotonicity exist: own-side and other-side population monotonic-
ity (Toda, 2006, introduced the first and Klaus, 2011, the second of these
specifications).2 Klaus (2011) shows that in marriage markets, essentially
own-side population monotonicity implies weak competition sensitivity and
other-side population monotonicity implies weak resource sensitivity. Fur-
thermore, Klaus (2011) presents the first characterizations of the core for
solvable roommate markets using weak unanimity3, Maskin monotonicity4,
and either weak competition or weak resource sensitivity for marriage mar-
kets and solvable roommate markets and two associated impossibility re-
sults on the domain of all roommate markets. These characterizations can
be seen as corresponding results for roommate markets to one of Toda’s
(2006, Theorem 3.1) core characterizations for marriage markets by weak
unanimity, Maskin monotonicity, and own-side population monotonicity.

In a second characterization of the core for marriage markets, Toda (2006,

2Own-side population monotonicity: if additional men (women) enter the market, then all
incumbent men (women) are weakly worse off.

Other-side population monotonicity: if additional men (women) enter the market, then
all incumbent women (men) are weakly better off.

3Weak unanimity: if a complete unanimously best matching exists, then it is chosen.
4Maskin monotonicity: if a matching is chosen in one market, then it is also chosen in a

market that results from a Maskin monotonic transformation (which essentially means that
the matching improved in the ranking of all agents).
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2.1. Introduction

Theorem 3.2) uses consistency5 instead of Maskin monotonicity. In this
chapter, we show how Toda’s “consistency results” can be extended to room-
mate markets. As main results, we obtain new characterizations of the core
on the domains of marriage markets, no odd rings roommate markets, and
solvable roommate markets: on any of these domains, a solution ϕ satis-
fies weak unanimity, consistency, and either of the population sensitivity
properties if and only if it equals the core (Theorems 2.4.1 and 2.4.2). Two
associated impossibility results on the domain of all roommate markets are
also established (Lemmas 2.4.1 (d) and 2.4.2 (d)). Our results imply two cor-
responding “population monotonicity” results for marriage markets (Corol-
lary 2.4.1): a solution ϕ satisfies individual rationality, weak unanimity, con-
sistency, and either own-side or other-side population monotonicity if and
only if it equals the core (the characterizations using own-side population
monotonicity is the one obtained by Toda, 2006, Theorem 3.2). Apart from
establishing new core characterizations for marriage and roommate markets
(as well as some impossibilities), we obtain new insights into the working of
one-sided-markets: to extend Toda’s (2006, Theorem 3.2) core characteriza-
tion from marriage to roommate markets, we not only had to use one of the
new population sensitivity properties, we also had to develop a new proof
strategy because the original two-sided market proof could not be adapted
(Example 2.1 proves this). Another aspect of our results is the validation of
population sensitivity properties as fundamental core properties. We discuss
these issues in more detail in our conclusion (Section 2.5).

The chapter is organized as follows. In Section 2.2 we present the room-
mate model and basic properties of solutions. In Section 2.3, we introduce
the variable population properties consistency, (weak) competition sensitiv-
ity, and (weak) resource sensitivity. Section 2.4 contains the main results.
Section 2.5 concludes by discussing the importance of our results for the
study of one-sided markets.

5Consistency: if a set of matched agents leaves, then the solution should still match the
remaining agents as before.
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Chapter 2. Consistency and Population Sensitivity Properties in Marriage
and Roommate Markets

2.2 Roommate Markets

The following Subsections 2.2.1 and 2.2.2 mainly follow Klaus (2011).

2.2.1 The Model

We consider Gale and Shapley’s (1962, Example 3) roommate markets with
variable sets of agents, e.g., because the allocation of dormitory rooms at a
university occurs every year for different sets of students.

Let N be the set of potential agents.6 For a non-empty finite subset N (
N, L(N) denotes the set of all linear orders over N.7 For i ∈ N, we interpret
Ri ∈ L(N) as agent i’s strict preferences over sharing a room with any of the
agents in N \{i} and having a room for himself; e.g., Ri : j,k, i, l means that i
would first like to share a room with j, then with k, and then i would prefer
to stay alone rather than sharing the room with l. If j Pi i, then agent i
finds agent j acceptable and if iPi j, then agent i finds agent j unacceptable.
RN =∏

N L(N) denotes the set of all preference profiles of agents in N (over
agents in N). A roommate market consists of a finite set of agents N (N and
their preferences R ∈RN and is denoted by (N,R). A marriage market (Gale
and Shapley, 1962) is a roommate market (N,R) such that N is the union
of two disjoint sets M and W and each agent in M (respectively W) prefers
being single to being matched with any other agent in M (respectively W).

A matching µ for roommate market (N,R) is a function µ : N → N of
order two, i.e., for all i ∈ N, µ(µ(i)) = i. Thus, at any matching µ, the set
of agents is partitioned into pairs of agents who share a room and single-
tons (agents who do not share a room). Agent µ(i) is agent i’s match and
if µ(i) = i then i is matched to himself or single. For notational conve-
nience, we often denote a matching in terms of the induced partition, e.g., for
N = {1,2,3,4,5} and matching µ such that µ(1) = 2, µ(3) = 3 and µ(4) = 5 we

6Most results remain valid for a finite set of potential agents. We will explain throughout
the article, which results depend on the set of potential agents to be infinite.

7A linear order over N is a binary relation R̄ that satisfies antisymmetry (for all i, j ∈ N,
if i R̄ j and j R̄ i, then i = j), transitivity (for all i, j,k ∈ N, if i R̄ j and j R̄ k, then i R̄ k), and
comparability (for all i, j ∈ N, i R̄ j or j R̄ i). By P̄ we denote the asymmetric part of R̄. Hence,
given i, j ∈ N, i P̄ j means that i is strictly preferred to j; i R̄ j means that i P̄ j or i = j and
that i is weakly preferred to j.

8



2.2. Roommate Markets

write µ= {(1,2),3, (4,5)}. For S ⊆ N, we denote by µ(S) the set of agents that
are matched to agents in S, i.e., µ(S)= {i ∈ N | µ−1(i) ∈ S}. We denote the set
of all matchings for roommate market (N,R) by M (N,R) (even though this
set does not depend on preferences R). If it is clear which roommate market
(N,R) we refer to, matchings are assumed to be elements of M (N,R). Since
agents only care about their own matches, we use the same notation for pref-
erences over agents and matchings: for all agents i ∈ N and matchings µ,µ′,
µRi µ

′ if and only if µ(i) Ri µ
′(i).

Given a roommate market (N,R) and N ′ ⊆ N, we define the reduced
preferences R′ ∈RN ′

of R to N ′ as follows:
(i) for all i ∈ N ′, R′

i ∈ L(N ′) and
(ii) for all j,k, l ∈ N ′, j R′

l k if and only if j Rl k.
We also denote the reduced preferences of R to N ′ by RN ′ .

Given a roommate market (N,R), a matching µ ∈ M (N,R), and N ′ ⊆ N
such that µ(N ′) = N ′, the reduced (roommate) market of (N,R) at µ to N ′

equals (N ′,RN ′).

Given a roommate market (N,R), a matching µ ∈ M (N,R), and N ′ ⊆ N
such that µ(N ′)= N ′, we define the reduced matching µ′ of µ to N ′ as follows:

(i) µ′ : N ′ → N ′ and
(ii) for all i ∈ N ′, µ′(i)=µ(i).

We also denote the reduced matching of µ to N ′ by µN ′ . Note that µN ′ ∈
M (N ′,RN ′).

In the sequel, we consider various domains of roommate problems: the
domain of all roommate markets D, the domain of marriage markets DM ,
and later the domains of solvable and of no odd rings roommate markets. To
avoid notational complexity when introducing solutions and their properties,
we use the domain of all roommate markets D with the understanding that
any other domain could be used as well.

A solution ϕ on D is a correspondence that associates with each room-
mate market (N,R) ∈D a nonempty subset of matchings, i.e., for all (N,R) ∈
D, ϕ(N,R) ⊆ M (N,R) and ϕ(N,R) 6= ;. A subsolution ψ of ϕ on D is a
correspondence that associates with each roommate market (N,R) ∈ D a
nonempty subset of matchings in ϕ(N,R), i.e., for all roommate markets
(N,R) ∈D, ψ(N,R) ⊆ ϕ(N,R) and ψ(N,R) 6= ;. A proper subsolution ψ of ϕ
on D is a subsolution of ϕ on D such that ψ 6=ϕ.

9



Chapter 2. Consistency and Population Sensitivity Properties in Marriage
and Roommate Markets

2.2.2 Basic Properties and the Core

We first introduce a voluntary participation condition based on the idea that
no agent can be forced to share a room.

Individual Rationality: Let (N,R) ∈ D and µ ∈ M (N,R). Then, µ is in-
dividually rational if for all i ∈ N, µ(i) Ri i. IR(N,R) denotes the set of all
these matchings. A solution ϕ on D is individually rational if it only assigns
individually rational matchings, i.e., for all (N,R) ∈D, ϕ(N,R)⊆ IR(N,R).

Remark 2.2.1 (Individual Rationality and (Classical) Marriage Mar-
kets).
An individually rational matching for a marriage market (N,R) ∈ DM re-
spects the partition of agents into two types and never matches two men or
two women. Hence, we embed marriage markets into our roommate mar-
ket framework by an assumption on preferences (same gender agents are un-
acceptable) and individual rationality to ensure that no two agents of the
same gender are matched. We refer to a marriage market for which matching
agents of the same gender is not feasible as a classical marriage market. 4

Next, we introduce the well-known condition of Pareto optimality and
the weaker conditions of unanimity and weak unanimity.

Pareto Optimality: Let (N,R) ∈ D and µ ∈ M (N,R). Then, µ is Pareto
optimal if there is no other matching µ′ ∈ M (N,R) such that for all i ∈ N,
µ′ Ri µ and for some j ∈ N, µ′ P j µ. PO(N,R) denotes the set of all these
matchings. A solution ϕ on D is Pareto optimal if it only assigns Pareto
optimal matchings, i.e., for all (N,R) ∈D, ϕ(N,R)⊆ PO(N,R).

(Weak) Unanimity: Let (N,R) ∈ D and µ ∈ M (N,R) be such that for all
i, j ∈ N, µ(i) Ri j. Then, µ is the unanimously best matching for (N,R). If µ
is complete,8 then, µ is the unanimously best complete matching for (N,R).
A solution ϕ on D is unanimous if it assigns the unanimously best matching
whenever it exists, i.e., for all roommate markets (N,R) ∈D with a unani-
mously best matching µ, ϕ(N,R) = {µ}. A solution ϕ on D is weakly unan-
imous if it assigns the unanimously best complete matching whenever it

8A matching is complete if it partitions the set of agents into pairs, i.e., it contains no
singletons.
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exists, i.e., for all roommate markets (N,R) ∈ D with a unanimously best
complete matching µ, ϕ(N,R)= {µ}.

Pareto optimality implies unanimity and unanimity implies weak una-
nimity.

The next property requires that two agents who are mutually best agents
are always matched with each other.

Mutually Best: Let (N,R) ∈ D and i, j ∈ N [possibly i = j] such that for
all k ∈ N, i R j k and j Ri k. Then, i and j are mutually best agents for
(N,R). A matching is a mutually best matching if all mutually best agents
are matched. MB(N,R) denotes the set of all these matchings9. A solu-
tion ϕ on D is mutually best if it only assigns matchings at which all mu-
tually best agents are matched, i.e., for all roommate markets (N,R) ∈ D,
ϕ(N,R)⊆ MB(N,R).

Our notion of mutually best is slightly stronger than that used in Toda
(2006) (because he considers mutually best man-woman pairs, he does not
allow for a single mutually best agent i = j). Furthermore, mutually best
implies (weak) unanimity, and Pareto optimality and mutually best are log-
ically unrelated.

The above properties can be used to define solutions, the most prominent
one being the Pareto solution PO that assign to each roommate market the
set of Pareto optimal matchings.

Next, we define stability for roommate markets. A matching µ for room-
mate market (N,R) ∈ D is blocked by a pair {i, j} ⊆ N [possibly i = j] if
j Pi µ(i) and i P j µ( j). If {i, j} blocks µ, then {i, j} is called a blocking pair
for µ. A matching µ for roommate market (N,R) ∈D is individually rational
if there is no blocking pair {i, j} with i = j for µ.

Stability, Solvability, and the Domain of Solvable Roommate Mar-
kets: Let (N,R) ∈D and µ ∈M (N,R). Then, µ is stable if there is no block-
ing pair for µ. S(N,R) denotes the set of all these matchings. A roommate
market is solvable if stable matchings exist, i.e., (N,R) is solvable if and only

9If there are no mutually best agents in a roommate market (N,R), then MB(N,R) =
M (N,R).
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if the set of stable matchings S(N,R) 6= ;. The domain of solvable roommate
markets is denoted by DS. Furthermore, on the domain of solvable room-
mate markets DS, a solution ϕ is stable if it only assigns stable matchings,
i.e., for all (N,R) ∈DS, ϕ(N,R)⊆ S(N,R).

Gale and Shapley (1962) showed that all marriage markets are solvable,
i.e., DM ⊆DS, and they gave an example of an unsolvable roommate market
(Gale and Shapley, 1962, Example 3).

For many of our results we need the solvability of roommate markets and
their reduced markets (Remark 2.3.1 in Section 2.3.1 explains the reason for
this assumption); e.g., the domain of marriage markets is such a domain of
roommate markets because it is closed with respect to the reduction opera-
tor, i.e., starting from a marriage market (N,R) ∈DM , any reduced market
(N ′,RN ′) of (N,R) is a marriage market.

Chung (2000) introduced a sufficient condition for solvability that also
applies to the larger domain of weak preferences. We formulate his well-
known no odd rings condition for our strict preference setup and refer to it
as the no odd rings condition. This roughly means that there are no odd
number of agents who prefer one another in a cyclical manner.10

Odd Rings and the Domain of No Odd Rings Roommate Markets: Let
(N,R) ∈D. Then, a ring for roommate market (N,R) is an ordered subset of
agents {i1, i2, . . . , ik} ⊆ N, k ≥ 3, such that for all t ∈ {1,2, ..,k}, i t+1 Pi t i t−1 Pi t

i t (subscript modulo k). If k is odd, then {i1, i2, . . . , ik} is an odd ring for
roommate market (N,R). A roommate market (N,R) ∈D is a no odd rings
roommate market if there exists no odd ring for roommate market (N,R).
The domain of all such roommate markets is called the domain of no odd
rings roommate markets and denoted by DNOR . Note that DM (DNOR (
DS.

Another well-known concept for matching problems is the core.

10Among the no odd rings domains listed by Chung (2000) are the Beckerian domain,
single-peaked domains, single-dipped domains, and preference domains that are based on
agents’ representability in a metric space with the assumption that any agents prefers a
match that is closer to a match that is further away.
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Core: A matching is in the (strict or strong) core if no coalition of agents can
improve their welfare by rematching among themselves. For roommate mar-
ket (N,R) ∈D, core(N,R) = {µ ∈M (N,R) | there exists no S ⊆ N and no µ′ ∈
M (N,R) such that µ′(S) = S, and for all i ∈ S, µ′(i) Ri µ(i), and for some j ∈
S,µ′( j) P j µ( j)}.

Remark 2.2.2 (Stability and the Core).
Similarly as in other matching models (e.g., marriage markets and college
admissions markets), the core equals the set of stable matchings, i.e., for all
(N,R) ∈D, core(N,R)= S(N,R). Hence, the core is a solution on the domain
of solvable roommate markets DS and all its subdomains, but not on the
domain of all roommate markets D. 4

It is well-known that the core satisfies all properties introduced in this
subsection.

Proposition 2.2.1. On the domain of solvable roommate markets (and on
any of its subdomains), the core satisfies individual rationality, Pareto opti-
mality, (weak) unanimity, mutually best, and stability.

2.3 Variable Population Properties

In this section we introduce and analyze properties that concern population
changes.

2.3.1 Consistency

Consistency is one of the key properties in many frameworks with variable
sets of agents. Thomson (2009) provides an extensive survey of consistency
for various economic models, including marriage markets. For roommate
markets, consistency essentially requires that when a set of matched agents
leaves, then the solution should still match the remaining agents as before.

Consistency: A solution ϕ on D is consistent if the following holds. For each
(N,R) ∈D, each N ′ ⊆ N, and each µ ∈ ϕ(N,R), if (N ′,RN ′) ∈D is a reduced
market of (N,R) at µ to N ′ (i.e., µ(N ′)= N ′), then µN ′ ∈ϕ(N ′,RN ′).

13
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For solutions defined on D′ ⊆D, consistency only applies to reduced mar-
kets (N ′,RN ′) ∈ D′. Of the four domains (DM ,DNOR ,DS,D) that we con-
sider, only three are closed with respect to the reduction operator, i.e., for
D′ ∈ {DM ,DNOR ,D}, if (N,R) ∈D′, µ ∈ M (N,R), and (N ′,RN ′) is a reduced
market of (N,R) at µ, then (N ′,RN ′) ∈D′. For the domain of solvable room-
mate markets DS, non-solvable reduced markets exist and therefore con-
sistency “loses some of its bite” (because it makes no predictions whenever
market reduction leads to unsolvable reduced markets).

Remark 2.3.1 (Solvability when Studying the Core and Domain Re-
strictions).
Since stable matchings need not exist for the general domain of all roommate
markets, we have to restrict attention to subdomains of solvable roommate
markets when studying the core. Considering the whole domain of solvable
roommate markets when studying consistency is difficult because a solvable
roommate market might well have unsolvable reduced markets. Requiring
that a solution only selects matchings that guarantee the solvability of all
restricted markets, would already steer results forcefully towards the core.
However, two domains of roommate markets we consider, DM and DNOR ,
satisfy “closedness and solvability under the reduction operation”, i.e., for
any roommate market in D′ ∈ {DM ,DNOR}, all possible reduced markets are
(i) elements of the domain D′ and (ii) solvable. 4

Proposition 2.3.1. On the domain of solvable roommate markets (and on
any of its subdomains), the core satisfies consistency.

Proof. Let D′ be a (sub)domain of solvable roommate markets. Let (N,R) ∈
D′, µ ∈ core(N,R) and assume that (N ′,RN ′) ∈ D′ is a reduced market of
(N,R) at µ to N ′. Thus, core(N ′,R′

N ) 6= ;.
Assume that the core is not consistent and µN ′ ∉ core(N ′,RN ′). Hence,

there exists a blocking pair {i, j} ⊆ N ′ for µN ′ , i.e., j Pi µN ′(i) and i P j µN ′( j).
However, since µN ′(i) = µ(i) and µN ′( j) = µ( j), {i, j} ⊆ N is a also a blocking
pair for µ; contradicting µ ∈ core(N,R).

Lemma 2.3.1.
(a) On the domain of marriage markets (see also Toda, 2006, Lemma 3.6),

(b) On the domain of no odd rings roommate markets,

14
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(c) On the domain of solvable roommate markets,

no proper subsolution of the core satisfies consistency.

(d) On the domain of all roommate markets, no solution is a subsolution of
the core for solvable problems and satisfies consistency (Sanver, 2010,
Proposition 4.3).

We prove Lemma 2.3.1 (a), (b), and (c) in Appendix 2.6.1.

Lemma 2.3.2.
(a) On the domain of marriage markets,
(b) On the domain of no odd rings roommate markets,
(c) On the domain of solvable roommate markets,
(d) On the domain of all roommate markets,

mutually best and consistency imply individual rationality.

Proof. Let ϕ be a solution on any of the domains D′ of Lemma 2.3.2 that
satisfies mutually best and consistency. Assume, by contradiction, that there
exists a roommate market (N,R) ∈D′, a matching µ ∈ϕ(N,R), and an agent
i ∈ N such that i Pi µ(i). Hence, µ(i) 6= i.

Let N ′ = {i,µ(i)} and consider the reduced market (N ′,RN ′) ∈D′ of µ to
N ′. By consistency, µN ′ ∈ϕ(N ′,R′). However, at (N ′,RN ′) agent i is mutually
best with himself and by mutually best, µN ′ 6∈ϕ(N ′,R′); a contradiction.

Note that the proof of Lemma 2.3.2 does not contain any steps that are
sensitive with respect to domain restrictions (except that all two-agent re-
stricted markets used in the proof should be included in the subdomain that
is considered).

2.3.2 Population Sensitivity Properties

The following two population sensitivity properties were introduced and an-
alyzed by Klaus (2011).

Consider the change of a roommate market (N,R) when a finite set of
agents or newcomers N̂ ( N\N shows up. Then, the new set of agents is
N ′ = N ∪ N̂ and (N ′,R′), R′ ∈RN ′

, is an extension of (N,R) if R′
N = R.

Adding a set of newcomers N̂ might be a positive or a negative change for
any of the incumbents in N because it might mean
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a negative change with more competition or
a positive change with more resources.

First, with competition sensitivity we formulate a property that captures
the possible negative effect newcomers might have on some agents. Es-
sentially, competition sensitivity requires that if two incumbents are newly
matched after a set of newcomers arrived, then one of them suffers from the
increased competition by the newcomers and is worse off (for the detailed
derivation of competition sensitivity and its relation to own-side population
monotonicity for marriage markets we refer to Klaus, 2011).

(Weak) Competition Sensitivity (Klaus, 2011): A solution ϕ on D is com-
petition sensitive if the following holds. Let (N,R) ∈D be a roommate market
and assume that (N ′,R′) ∈D, N ′ = N∪N̂, is an extension of (N,R). Then, for
all µ ∈ ϕ(N,R) there exists µ′ ∈ ϕ(N ′,R′) such that for all i, j ∈ N [possibly
i = j] that are newly matched at µ′, at least one is worse off, i.e., if i, j ∈ N,
µ(i) 6= j, and µ′(i)= j, then µ(i) P ′

i µ
′(i) or µ( j) P ′

j µ
′( j).11 A solution ϕ on D is

weakly competition sensitive if we require competition sensitivity only when
adding one newcomer at a time, i.e., N̂ = {n}. Note that the competition sen-
sitivity defined in Klaus (2011, Definition 9) equals the weak competition
sensitivity here.

Klaus (2011, Lemma 3’) shows that on the domains of marriage markets,
solvable roommate markets, and all roommate markets, weak unanimity
and weak competition sensitivity imply mutually best. We list these results
below and add a corresponding result for the subdomain of no odd rings
roommate markets.

Lemma 2.3.3.
(a) On the domain of marriage markets (Klaus, 2011, Lemma 3’ (a)),
(b) On the domain of no odd rings roommate markets,
(c) On the domain of solvable roommate markets (Klaus, 2011, Lemma 3’

(b)),
(d) On the domain of all roommate markets (Klaus, 2011, Lemma 3’ (c)),

11Equivalently, if agents in N̂ are leaving: for all i, j ∈ N [possibly i = j] that are not
matched at µ anymore, at least one is better off, i.e., if i, j ∈ N, µ′(i) = j, and µ(i) 6= j, then
µ(i) Pi µ

′(i) or µ( j) P j µ
′( j).
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weak unanimity and weak competition sensitivity imply mutually best.

The proof of Lemma 2.3.3 (b) is very similar to the proof of Lemma 2.3.3
(a) for marriage markets (Klaus, 2011, Lemma 3’ (a)) because starting from
a no odd rings market [marriage market] one can add the newcomers in
the proof such that the resulting markets are again no odd rings markets
[marriage markets].

On the domain of marriage markets, Toda (2006, Lemma 3.1) proves that
weak unanimity and own-side population monotonicity imply mutually best.
The proof of Lemma 2.3.3 (or, more precisely, Klaus, 2011, Lemma 3’) follows
similar arguments as Toda’s (2006, Lemma 3.1) proof for the corresponding
marriage market result.

Klaus (2011, Example 3) illustrates why Lemma 2.3.3 might not hold if
the set of potential agents is finite (Example 2.6.1 in Appendix 2.6.2 also
illustrates this).

Second, with resource sensitivity we formulate a property that captures
the possible positive effect newcomers might have on some agents. Essen-
tially, resource sensitivity requires that if two incumbents are unmatched
after a set of newcomers arrived, then one of them benefits from the increase
of resources by the newcomers and is better off (for the detailed derivation
of resource sensitivity and its relation to other-side population monotonicity
we refer to Klaus, 2011).

(Weak) Resource Sensitivity (Klaus, 2011): A solution ϕ on D is resource
sensitive if the following holds. Let (N,R) ∈D be a roommate market and
assume that (N ′,R′) ∈ D, N ′ = N ∪ N̂, is an extension of (N,R). Then, for
all µ′ ∈ ϕ(N ′,R′) there exists µ ∈ ϕ(N,R) such that for all i, j ∈ N [possibly
i = j] that are not matched at µ′ anymore, at least one is better off, i.e., if
i, j ∈ N, µ(i) = j, and µ′(i) 6= j, then µ′(i) P ′

i µ(i) or µ′( j) P ′
j µ( j).12 A solution

ϕ on D is weakly resource sensitive if we require resource sensitivity only
when adding one newcomer at a time, i.e., N̂ = {n}. Note that the resource
sensitivity defined in Klaus (2011, Definition 11) equals the weak resource
sensitivity here.

12Equivalently, if agents in N̂ are leaving: for all i, j ∈ N [possibly i = j] that are newly
matched at µ at least one is worse off, i.e., if i, j ∈ N, µ′(i) 6= j, and µ(i) = j, then µ′(i) Pi µ(i)
or µ′( j) P j µ( j).
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Klaus (2011, Lemma 4’ (a) and (c)) shows that on the domains of mar-
riage markets and all roommate markets, weak unanimity and weak re-
source sensitivity imply mutually best. We list these results below and add
a corresponding result for the subdomain of no odd rings roommate mar-
kets. Furthermore, Klaus (2011, Lemma 4 (b)) shows that on the domain
of solvable roommate markets, weak unanimity and resource sensitivity im-
ply mutually best. Here, we establish the new result that on the domain of
solvable roommate markets, weak unanimity, weak resource sensitivity, and
consistency, imply mutually best.

Lemma 2.3.4.
(a) On the domain of marriage markets (Klaus, 2011, Lemma 4’ (a)),

(b) On the domain of no odd rings roommate markets,

(c) On the domain of solvable roommate markets, consistency,

(d) On the domain of all roommate markets (Klaus, 2011, Lemma 4’ (c)),

weak unanimity and weak resource sensitivity imply mutually best.

Proof. The proof of (b) is very similar to the proof of Lemma 2.3.4 (a) for
marriage markets (Klaus, 2011, Lemma 4’ (a)) because starting from a no
odd rings market [marriage market] one can add the newcomers in the proof
such that the resulting markets are again no odd rings markets [marriage
markets].

Proof of (c): Let ϕ be a solution on the domain of solvable roommate markets
that satisfies consistency, weak unanimity, and weak resource sensitivity,
but not mutually best. Thus, there exists a solvable roommate market (N,R)
and a matching µ ∈ ϕ(N,R) such that agents i and j [possibly i = j] are
mutually best and µ(i) 6= j. Let Ñ = {i, j,µ(i),µ( j)} and consider the reduced
market (Ñ,RÑ ). By consistency, µÑ ∈ ϕ(Ñ,RÑ ), i and j are mutually best
agents, and µÑ (i) 6= j.

Let N̄ = {i, j} and consider the reduced preferences R̄ = RN̄ . If i 6= j, then
there exists a unanimously best complete matching ν̄ for solvable roommate
market (N̄, R̄): ν̄ matches agent i with agent j. Hence, by weak unanimity,
ϕ(N̄, R̄) = {ν̄} and ν̄(i) = j. If i = j, then ϕ(N̄, R̄) = {ν̄} and ν̄(i) = j because
ν̄ is the only possible matching. In the sequel we will not use the single-
valuedness of ϕ(N̄, R̄) but that for all µ′ ∈ϕ(N̄, R̄), µ′(i)= j.
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If µ(i) 6= i, then consider the extension (N1,R1) of (N̄, R̄) that is obtained
by adding newcomer µ(i) such that N1 = N̄∪{µ(i)} and R1 = RN1 .13 By weak
resource sensitivity, for all µ1 ∈ϕ(N1,R1), there exists µ′ ∈ϕ(N̄, R̄) such that
if agents i and j (possibly i = j) are not matched at µ1 anymore, then at least
one is better off. Then, since for all µ′ ∈ ϕ(N̄, R̄) agents i and j are already
mutually best matched, for all µ1 ∈ϕ(N1,R1), µ1(i)= j.

If µ( j) 6= j, then we add newcomer µ( j) in a similar fashion. So we end
up with the reduced market (Ñ,RÑ ). By weak resource-sensitivity, for all
µ2 ∈ϕ(Ñ,RÑ ), µ2(i)= j, contradicting µÑ (i) 6= j.

Lemma 2.3.4 (c) cannot be established without the addition of consis-
tency: Klaus (2011, Example 4) provides a solution on the domain of solv-
able roommate markets that satisfies weak unanimity and weak resource
sensitivity, but neither mutually best nor consistency.

The following result slightly generalizes Klaus (2011, Proposition 2) (the
proof is insensitive with respect to the specific domain of solvable roommate
markets used).

Proposition 2.3.2. On the domain of solvable roommate markets (and on
any of its subdomains), any stable solution satisfies competition and resource
sensitivity. In particular, the core satisfies competition and resource sensitiv-
ity.

2.3.3 Previous Results for Marriage Markets

We are aware of two papers that analyze consistency for the domain of clas-
sical marriage markets for which matching agents of the same gender is not
feasible. First, Sasaki and Toda (1992) use the property together with Pareto
optimality, anonymity,14 and converse consistency15 to characterize the core.
Sanver (2010, Proposition 4.2) shows that on the domain of all roommate
markets, no solution satisfies Pareto optimality, anonymity, and converse

13Note that (N1,R1) has a unique core allocation that matches agent i with agent j, and
agent µ(i) is single.

14Anonymity: matchings assigned by the solution do not depend on agents’ names.
15Converse consistency: matchings assigned by the solution are (conversely) related to the

matchings the solution assigns to certain restricted roommate markets (with at most four
agents).
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consistency. Second, Toda (2006) shows that the core is characterized by
weak unanimity, own-side population monotonicity,16 and consistency.

Theorem 2.3.1 (Toda, 2006, Theorem 3.2). On the domain of classical mar-
riage markets, a solution satisfies weak unanimity, own-side population mono-
tonicity, and consistency if and only if it equals the core.

Here we focus on Toda’s characterization and analyze if and how the re-
sult extends from (classical) marriage markets to roommate markets. Before
doing so, we obtain a new result by replacing own-side population mono-
tonicity with other-side population monotonicity17 in Theorem 2.3.1.

Theorem 2.3.2. On the domain of classical marriage markets, a solution sat-
isfies weak unanimity, other-side population monotonicity, and consistency if
and only if it equals the core.

We prove Theorem 2.3.2 in Appendix 2.7.

The proofs of Theorems 2.3.1 and 2.3.2 both rely on the following lemma.

Lemma 2.3.5 (Toda, 2006, Lemma 3.4). On the domain of classical marriage
markets, if a solution satisfies mutually best and consistency, then it is a
subsolution of the core.

We show, in Section 2.4, that Lemma 2.3.5 cannot be extended to the
domain of solvable roommate markets; Example 2.4.1 in Section 2.4 shows
that there exists a solution satisfying mutually best and consistency, but
which assigns unstable matchings to some solvable roommate markets.

2.4 Main Results

In this section we first explore some logical relations between the properties
and the core. This analysis yields “subsolution of the core” results on the

16Own-side population monotonicity: if additional men (women) enter the market, then
all incumbent men (women) are weakly worse off (for a formal definition see Appendix 2.7).
In Klaus (2011) we argue that the proper extension of Toda’s (2006) own-side population
monotonicity to roommate markets is competition sensitivity.

17Other-side population monotonicity: if additional men (women) enter the market, then
all incumbent women (men) are weakly better off (for a formal definition see Appendix 2.7).
In Klaus (2011) we argue that the proper extension of other-side population monotonicity to
roommate markets is resource sensitivity.
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domains of marriage markets, no odd rings roommate markets, and solvable
roommate markets (parts (a), (b), and (c) in Lemmas 2.4.1 and 2.4.2) and we
establish two impossibility results on the domain of all roommate markets
(parts (d) in Lemmas 2.4.1 and 2.4.2). Second, we establish various char-
acterizations of the core (Theorems 2.4.1 and 2.4.2). Third, we derive two
marriage market results using population monotonicity (Corollary 2.4.1).

2.4.1 “Subsolution of the Core” and Impossibility Results

Lemma 2.4.1.
(a) On the domain of marriage markets,
(b) On the domain of no odd rings roommate markets,
(c) On the domain of solvable roommate markets,

if a solution satisfies weak unanimity, competition sensitivity, and con-
sistency, then it is a subsolution of the core.

(d) On the domain of all roommate markets,

no solution satisfies weak unanimity, competition sensitivity, and con-
sistency.

Proof. Let ϕ be a solution on any of the domains of Lemma 2.4.1 that satis-
fies weak unanimity, competition sensitivity, and consistency. By Lemma 2.3.3,
ϕ is mutually best and by Lemma 2.3.2, ϕ is individually rational.

To prove (a), (b), and (c) let (N,R) be a solvable roommate market [mar-
riage / no odd rings roommate market] such that ϕ(N,R) * core(N,R). To
prove (d), let (N,R) be an unsolvable roommate market. In all cases there
exists a matching µ ∈ϕ(N,R) with a blocking pair {i, j} [possibly i = j] for µ.
By individual rationality, i 6= j.

Without loss of generality assume that N \ {i, j} = {1,2, . . . , l}. Let N̂ =
{k1,k2, . . . ,kl} ( N\N be a set of newcomers and assume that (N ′,R′), N ′ =
N ∪ N̂, is an extension of (N,R) such that for all agents m ∈ N \ {i, j}, m
and km are mutually best pairs and agent m is the only one that finds km

acceptable and km finds only m acceptable [if (N,R) is a marriage / no odd
rings roommate market, then the newcomers and preferences can be chosen
such that (N ′,R′) is also a marriage / no odd rings roommate market]. By
mutually best, for all µ′ ∈ ϕ(N ′,R′) and for all m ∈ N \ {i, j}, µ′(m) = km. By
competition sensitivity, for µ ∈ ϕ(N,R) there exists µ̂′ ∈ ϕ(N ′,R′) such that
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agents i and j are not matched, i.e., µ̂′(i) 6= j (if not, then agents i and j are
newly matched at µ̂′, but both are better off). Hence, µ̂′ ∈ ϕ(N ′,R′) is the
matching that mutually best matches all agents in N ′ \ {i, j} and agents i
and j are single.

Thus, ({i, j},R{i, j}) is a reduced market of (N ′,R′) at µ̂′ to {i, j}. Note that
i and j are mutually best agents at ({i, j},R{i, j}) and both single at µ̂′{i, j}. By
consistency, µ̂′{i, j} ∈ϕ({i, j},R{i, j}), which contradicts mutually best.

In Appendix 2.6.2 we establish a stronger version of Lemma 2.4.1 (a) and
(b) – Lemma 2.4.1’ – using weak competition sensitivity. Whether we can
strengthen Lemma 2.4.1 (c) by using weak competition sensitivity instead of
competition sensitivity is an open problem.

With Example 2.6.1 in Appendix 2.6.2 we illustrate why Lemmas 2.4.1
and 2.4.1’ might not hold if the set of potential agents is finite.

Lemma 2.4.2.
(a) On the domain of marriage markets,
(b) On the domain of no odd rings roommate markets,
(c) On the domain of solvable roommate markets,

if a solution satisfies weak unanimity, resource sensitivity, and consis-
tency, then it is a subsolution of the core.

(d) On the domain of all roommate markets,

no solution satisfies weak unanimity, resource sensitivity, and consis-
tency.

Proof. Let ϕ be a solution on any of the domains of Lemma 2.4.2 that satis-
fies weak unanimity, resource sensitivity, and consistency. By Lemma 2.3.4,
ϕ is mutually best and by Lemma 2.3.2, ϕ is individually rational.

To prove (a), (b), and (c) let (N,R) be a solvable roommate market [mar-
riage / no odd rings roommate market] such that ϕ(N,R) * core(N,R). To
prove (d), let (N,R) be an unsolvable roommate market. In both cases there
exists a matching µ ∈ϕ(N,R) with a blocking pair {i, j} [possibly i = j] for µ.
By individual rationality, i 6= j.

Without loss of generality assume that N \{i, j}= {1,2, . . . , l} and consider
the roommate market ({i, j},R{i, j}). There exists a unanimously best com-
plete matching µ̄ for (marriage, no odd rings, solvable) roommate market
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({i, j},R{i, j}): µ̄ matches agent i with agent j. Hence, by weak unanimity,
ϕ({i, j},R{i, j})= {µ̄} and µ̄(i)= j. Consider the extension (N,R) of ({i, j},R{i, j})
that is obtained by adding newcomers N̂ = {1, . . . , l}. Because µ(i) 6= j and
µ̄(i)= j, by resource sensitivity, µ(i)Pi µ̄(i)= j or µ( j)P j µ̄( j)= i. This contra-
dicts that {i, j} is a blocking pair for µ.

In Appendix 2.6.2 we establish a stronger version of Lemma 2.4.2 (a) and
(b) – Lemma 2.4.2’ – using weak resource sensitivity.

The following solution demonstrates that corresponding results to Lem-
mas 2.3.5 and 2.4.2’ do not exist for solvable roommate markets.

Example 2.4.1. We define solution ϕ̂ on D′ ⊆DS using the following room-
mate market and matchings. Let (N̂, R̂) be such that N̂ = {1,2,3,4} and pref-
erences R̂ are given in Table 2.1.

R̂1 2,3,4,1 µ̂= (3,4,1,2)
R̂2 3,4,1,2 µ̂′ = (2,1,4,3)
R̂3 4,1,2,3 µ̂′′ = (4,3,2,1)
R̂4 1,2,3,4 core(N̂, R̂)= {µ̂}

Table 2.1: The roommate market (N̂, R̂).

The unique stable matching µ̂ for (N̂, R̂) matches agents 1 and 3 and agents
2 and 4. Removing any of the agents creates a “roommate cycle” for the re-
maining agents and the restricted roommate market is not solvable. Thus,
the solvable roommate market (N̂, R̂) cannot be reached from another solv-
able roommate market by adding one newcomer.

R1 2,3,4,1, . . .
R2 3,4,1,2, . . .
R3 4,1,2,3, . . .
R4 1,2,3,4, . . .

Table 2.2: A separable submarket of (N,R).

If (N,R) is a roommate market such that N̂ ⊆ N and preferences R are given
in Table 2.2, then we say that (N,R) is a roommate market with the separa-
ble submarket (N̂, R̂) (note that agents in N̂ find only agents in N̂ acceptable
and any individually rational matching will match agents in N̂ among each
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others).
We now define ϕ̂ as follows. Let (N,R) be a solvable roommate market.

Whenever, (N̂, R̂) is a separable submarket of (N,R), ϕ̂ first assigns all sta-
ble matchings. Furthermore, for each stable matching µ (which matches all
agents in N̂ according to the restricted matching µN̂ = µ̂), ϕ̂ also assigns the
two matchings µ′ and µ′′ that correspond to µ̂′ and µ̂′′, i.e., µ′ [µ′′] matches all
agents in N̂ according to µ̂′ [µ̂′′] and all agents in N \ N̂ according to µ. For
all other solvable roommate markets, ϕ̂ assigns the set of stable matchings.
Thus, core Ú ϕ̂. ¦

Proposition 2.4.1. On the domain of solvable roommate markets (and on
any of its subdomains), solution ϕ̂ (defined in Example 2.4.1) satisfies indi-
vidual rationality, Pareto optimality, (weak) unanimity, mutually best, con-
sistency, and weak resource sensitivity.

We prove Proposition 2.4.1 in Appendix 2.6.3.

2.4.2 Core Characterizations

Next, we strengthen the marriage market characterizations of the core pre-
sented in Theorem 2.3.1 (Toda, 2006, Theorem 3.2) and Theorem 2.3.2 in
two ways. First, for marriage markets we replace the respective population
monotonicity property with its corresponding population sensitivity prop-
erty and second, we extend this characterization to the domains of no odd
rings and of solvable roommate markets.

Theorem 2.4.1 (Three Core Characterizations: Competition Sensitiv-
ity).

(a) On the domain of marriage markets,

(b) On the domain of no odd rings roommate markets,

a solution satisfies weak unanimity, weak competition sensitivity, and
consistency if and only if it equals the core.

(c) On the domain of solvable roommate markets,

a solution satisfies weak unanimity, competition sensitivity, and con-
sistency if and only if it equals the core.
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Proof. Let ϕ be a solution on any of the domains of Theorem 2.4.1. By Propo-
sitions 2.2.1, 2.3.1, and 2.3.2, the core satisfies weak unanimity, (weak) com-
petition sensitivity, and consistency. Let ϕ be weakly unanimous, compe-
tition sensitive, and consistent. Then, by Lemma 2.4.1, ϕ is a subsolution
of the core and by Lemma 2.3.1, ϕ equals the core. We establish (a) and
(b) with weak competition sensitivity instead of competition sensitivity by
using Lemma 2.4.1’ instead of Lemma 2.4.1.

Lemma 2.4.1 (d) establishes a corresponding impossibility result to Theo-
rem 2.4.1 on the domain of all roommate markets. Whether we can strengthen
Theorem 2.4.1 (c) by using weak competition sensitivity instead of weak
competition sensitivity is an open problem.

With Example 2.6.1 in Appendix 2.6.2 we illustrate why Theorem 2.4.1
might not hold if the set of potential agents is finite.

Theorem 2.4.2 (Three Core Characterizations: Resource Sensitivity).

(a) On the domain of marriage markets,
(b) On the domain of no odd rings roommate markets,

a solution satisfies weak unanimity, weak resource sensitivity, and con-
sistency if and only if it equals the core.

(c) On the domain of solvable roommate markets,

a solution satisfies weak unanimity, resource sensitivity, and consis-
tency if and only if it equals the core.

Proof. Let ϕ be a solution on any of the domains of Theorem 2.4.2. By Propo-
sitions 2.2.1, 2.3.1, and 2.3.2, the core satisfies weak unanimity, (weak) re-
source sensitivity, and consistency. Let ϕ be weakly unanimous, resource
sensitive, and consistent. Then, by Lemma 2.4.2, ϕ is a subsolution of
the core and by Lemma 2.3.1, ϕ equals the core. We establish (a) and
(b) with weak resource sensitivity instead of resource sensitivity by using
Lemma 2.4.2’ instead of Lemma 2.4.2.

Lemma 2.4.2 (d) establishes a corresponding impossibility result to The-
orem 2.4.2 on the domain of all roommate markets. Solution ϕ̂ (defined in
Example 2.4.1) demonstrates that Theorem 2.4.2 (c) for solvable roommate
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markets cannot be strengthened by using weak resource sensitivity instead
of resource sensitivity.

Theorems 2.3.1 and 2.3.2 show that on the domain of classical marriage
markets, the core is the unique solution satisfying weak unanimity, consis-
tency, and own-side or other-side population monotonicity. Both results fol-
low from our “population sensitivity characterizations of the core” for mar-
riage markets (Theorems 2.4.1 (a) and 2.4.2 (a)).

Corollary 2.4.1 (Two Core Characterizations for Marriage Markets).
On the domain of marriage markets, a solution satisfies weak unanimity,
consistency, and

(1) own-side population monotonicity,

(2) other-side population monotonicity,

if and only if it equals the core.

We prove Corollary 2.4.1 in Appendix 2.7. An example constructed along
the lines of Example 2.6.1 in Appendix 2.6.2 illustrates why Corollary 2.4.1
(1) might not hold if the set of potential agents is finite.

We next show the independence of properties in Theorems 2.4.1 and 2.4.2
(these examples can also be used to show the independence of properties in
Corollary 2.4.1).

The solution ϕs on the domains in Theorems 2.4.1 and 2.4.2 that always
assigns the matching at which all agents are single satisfies (weak) compe-
tition and (weak) resource sensitivity, consistency, but not weak unanimity.

On the domains in Theorems 2.4.1 and 2.4.2 any proper subsolution of
the core satisfies (weak) unanimity, (weak) competition and (weak) resource
sensitivity (Proposition 2.3.2), but not consistency (Lemma 2.3.1).

The Pareto solution PO on the domains in Theorems 2.4.1 and 2.4.2 sat-
isfies (weak) unanimity and consistency, but neither weak competition nor
weak resource sensitivity (see Klaus, 2011, Example 2).

Remark 2.4.1 (Pareto Optimality).
Since Pareto optimality implies weak unanimity, we can use this stronger
efficiency property in all of our results (the same solutions that establish the
independence of properties in Theorems 2.4.1 and 2.4.2 can be used again).4
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2.5 Conclusion

In this chapter, we make some positive contribution to the study of one-sided
markets: a marriage market characterization (Toda, 2006, Theorem 3.2) is
extended to various (solvable) roommate market domains (Theorem 2.4.1
with (weak) competition sensitivity) and some new complementary charac-
terizations are established (Theorem 2.4.2 with (weak) resource sensitiv-
ity). Furthermore, corresponding impossibility results (Lemmas 2.4.1 (d)
and 2.4.2 (d)) and corresponding marriage market results (Corollary 2.4.1)
are obtained. At first sight, this chapter thus parallels Klaus (2011) with the
difference that it extends Toda’s “consistency core characterization” (Toda,
2006, Theorem 3.2) instead of his “Maskin monotonicity core characteriza-
tion” (Toda, 2006, Theorem 3.1). Of course, we find it important to validate
the new population sensitivity properties introduced by Klaus (2011) by es-
tablishing the results mentioned above, but there are some interesting and
important differences between this chapter and Klaus (2011) that go beyond
the use of consistency instead of Maskin monotonicity. In the following, we
discuss the need and the use of a new proof strategy to obtain marriage mar-
ket results for roommate markets, but another new feature in our article is
the addition of the no odd rings domain (in particular, single-peaked, single-
dipped, and distance-based preference domains constitute relevant no odd
rings roommate market domains).

All results in Klaus (2011) could essentially be established by following
Toda’s (2006, Theorem 3.1) proof steps (although adjusting those steps to
work with the new population sensitivity properties did require a lot of work
and technical skills). However, this is not true anymore when extending
Toda’s (2006, Theorem 3.2) second result: it is impossible to extend Toda’s
crucial Lemma 3.4, i.e., one cannot show that a rule that satisfies individual
rationality, mutually best, and consistency must be a subset of the core –
see counter-Example 2.4.1. Hence, we have developed a new proof strategy
for the original result (Toda, 2006, Theorem 3.2) that also works for the
extension to roommate markets.18 An example of a result (or results) where

18Two-sided markets show a lot of regularity that is missing from roommate markets: one
main feature often used in “marriage market proofs” is the polarization that occurs within
the core; in particular, the existence of side-optimal stable matchings and the possibility to
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a similar asymmetry of proof techniques can be observed between two-sided
and one-sided markets are the random paths to stability result(s) by Roth
and Vate (1990) and by Diamantoudi, Miyagawa, and Xue (2004). We believe
that the study of “one-sided (roommate) market techniques” also provides
valuable insights for more general models such as coalition formation or
network formation.

2.6 Appendix A: Proofs of Lemmas 2.3.1, 2.4.1’, 2.4.2’,
and Proposition 2.4.1

2.6.1 Proof of Lemma 2.3.1

Before proving Lemma 2.3.1, we state and prove a so-called Bracing Lemma
(which is a typical consistency result for many economic models, see Thom-
son, 2009). This result is a key element in the proof of Lemma 2.3.1.

Lemma 2.6.1 (Bracing Lemma).
(a) Let (N,R) be a marriage market. For each µ ∈ core(N,R), there exists

a marriage market (N ′,R′) (see also Toda, 2006, Lemma 5.8),
(b) Let (N,R) be a no odd rings roommate market. For each µ ∈ core(N,R),

there exists a no odd rings roommate market (N ′,R′),
(c) Let (N,R) be a solvable roommate market. For each µ ∈ core(N,R),

there exists a solvable roommate market (N ′,R′),

such that N ⊆ N ′, R′
N = R, core(N ′,R′)= {µ′}, and µ′N =µ.

Proof. For the proof of (a), let (N,R) ∈DM , for the proof of (b), let (N,R) ∈
DNOR , and for the proof of (c), let (N,R) ∈DS. If |core(N,R)| = 1, then there
is nothing to prove. Let core(N,R) = {µ,µ1, . . . ,µk} for some k ≥ 1. Since the
core is Pareto optimal, there exists i∗ ∈ N such that µ(i∗) Pi∗ µ1(i∗).

First, consider the extension (N∗,R∗) of (N,R) that is obtained by adding
a newcomer n∗ ∈N\N such that N∗ = N ∪ {n∗} and R∗ ∈ RN∗

is such that:

use side-monotonic (or side-greedy) arguments is key in many proofs for two-sided matching
markets. This polarization essentially creates the marriage market core regularity used by
Toda (2006) when adding or removing agents. For roommate markets (i.e., in this chapter),
the absence of polarization and regularity (not so surprisingly) causes “trouble” in that the
core basically can suddenly collapse or expand (in contrast, in marriage markets, the core
lattice is only truncated or expanded on one of its “sides”).
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(i) R∗
N = R,

(ii) for all i ∈ N \{i∗} and all j ∈ N (possibly i = j), j P∗
i n∗,

i.e., for every agent in N – except agent i∗ – agent n∗ is the least
preferred agent,

(iii) µ(i∗) P∗
i∗ n∗ P∗

i∗ µ1(i∗),
i.e., agent i∗ ranks the newcomer n∗ between agents µ(i∗) and µ1(i∗),
and

(iv) for all j ∈ N \{i∗}, i∗ P∗
n∗ n∗ P∗

n∗ j, i.e., the newcomer finds only agent i∗

acceptable.

For the proof of (a), (N∗,R∗) is a marriage market by choosing agent n∗’s
gender to be opposite of agent i∗’s gender.

For the proof of (b), we show that (N∗,R∗) is also a no odd rings room-
mate market. Suppose not, then there exists an odd ring K = {i1, i2, . . . , ik}⊆
N∗ for (N∗,R∗) with k ≥ 3. If n∗ 6∈ K then K ⊆ N, which contradicts that
(N,R) is a no odd rings roommate market. Hence, n∗ = i t for some t ∈
{1,2, . . . ,k}. Then, by the definition of an odd ring, i t+1 Pn∗ i t−1 and n∗ Pi t−1

i t−2. By (ii) in the construction of preference profile R∗, i t−1 = i∗ (for all
other agents in N, n∗ is the least preferred agent). Thus, i t+1 Pn∗ i∗. How-
ever, by (iv) in the construction of preference profile R∗, agent n∗ does not
strictly prefer any agent in N \{i∗} to agent i∗; a contradiction.

For the proof of (c), we show that (N∗,R∗) is also a solvable roommate
market. Note that by construction µ∪ {n∗} ∈ core(N∗,R∗). Thus (N∗,R∗) is
solvable.

Second, we prove that (N∗,R∗) has fewer stable matchings than (N,R).
By construction, µ∪ {n∗} ∈ core(N∗,R∗). Note that by the so-called Lone
Wolf Theorem (e.g., Klaus and Klijn, 2010, Theorem 1), any agent who is
single in one stable matching is single in all other stable matchings. Thus,
only matchings of the form µ∗∪ {n∗}, µ∗ ∈ M (N,R), can be stable for room-
mate market (N∗,R∗). Furthermore, since the core is consistent (Proposi-
tion 2.3.1), if for any µ̃ ∈M (N,R), µ̃∪{n∗} ∈ core(N∗,R∗), then µ̃ ∈ core(N,R).
Hence, |core(N∗,R∗)| ≤ |core(N,R)|. Finally, since (i∗,n∗) blocks µ1 ∪ {n∗},
µ1 ∪ {n∗} 6∈ core(N∗,R∗). We conclude that |core(N∗,R∗)| < |core(N,R)| and
µ∪ {n∗} ∈ core(N∗,R∗).

Repeating this process of adding a newcomer to reduce the number of
stable matchings at most k times results in:
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(a) a marriage market (N ′,R′),
(b) a no odd rings roommate market (N ′,R′),
(c) a solvable roommate market (N ′,R′),

such that N ⊆ N ′, R′
N = R, core(N ′,R′)= {µ′}, and µ′N =µ.

Lemma 2.3.1.

(a) On the domain of marriage markets (see also Toda, 2006, Lemma 3.6),

(b) On the domain of no odd rings roommate markets,

(c) On the domain of solvable roommate markets,

no proper subsolution of the core satisfies consistency.

Proof. Let ϕ be a solution on any of the domains D′ of Lemma 2.3.1 that
is a consistent subsolution of the core. Let (N,R) ∈D′ and µ ∈ core(N,R).
Then, by the Bracing Lemma (Lemma 2.6.1), there exists a roommate mar-
ket (N∗,R∗) ∈ D′ with core(N∗,R∗) = {µ∗} such that (N,R) is a reduced
market of (N∗,R∗) at µ∗ and µ∗N = µ. Since ϕ is a subsolution of the core,
ϕ(N∗,R∗) = {µ∗}. As ϕ is consistent, µ ∈ ϕ(N,R). So, core(N,R) ⊆ ϕ(N,R).
Since ϕ is a subsolution of the core, ϕ(N,R) ⊆ core(N,R). Hence, ϕ(N,R) =
core(N,R).

2.6.2 Lemmas 2.4.1’ and 2.4.2’ and their Proofs

Lemma 2.4.1’.

(a) On the domain of marriage markets,

(b) On the domain of no odd rings roommate markets,

if a solution satisfies weak unanimity, weak competition sensitivity, and
consistency, then it is a subsolution of the core.

Lemma 2.4.2’.

(a) On the domain of marriage markets,

(b) On the domain of no odd rings roommate markets,

if a solution satisfies weak unanimity, weak resource sensitivity, and
consistency then it is a subsolution of the core.
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Because the first parts of the proofs of the above lemmas are identical, we
prove both lemmas together and indicate the steps when either weak com-
petition sensitivity or weak resource sensitivity are used. Throughout the
proof we will list partial information on agents’ preferences. For instance,
j Ri k Ri l will be represented as Ri| j k l in a partial preference table.

Proof. Let D′ ∈ {DM ,DNOR}. Assume that ϕ satisfies weak unanimity, weak
competition sensitivity [weak resource sensitivity], and consistency, but that
it is not a subsolution of the core. Thus, there exists (N,R) ∈D′ and a match-
ing µ ∈ϕ(N,R) such that µ 6∈ core(N,R). By Lemma 2.3.3 [Lemma 2.3.4] (a)
and (b), ϕ satisfies mutually best. By Lemma 2.3.2 (a) and (b), ϕ satisfies
individual rationality. Hence, there exists a blocking pair {i, j}, i 6= j, for µ
such that j Pi µ(i) Ri i and i P j µ( j) R j j. Let N ′ = {i, j,µ(i),µ( j)} and consider
the reduced market (N ′,RN ′) ∈D′ of (N,R) at µ. By consistency,

µN ′ ∈ϕ(N ′,RN ′). (2.1)

We consider three cases depending on the cardinality of N ′.

Case 1 (|N’|=2): Consider the reduced market (N ′,RN ′) with the set of
agents N ′ = {i, j} (note that (N ′,RN ′) ∈ DM). Agents i and j are mutually
best agents for (N ′,RN ′). However, at the reduced matching µN ′ they are not
matched. Hence, (2.1) contradicts mutually best.

Case 2 (|N’|=3): Consider the reduced market (N ′,RN ′) with the set of
agents N ′ = {i, j,µ(i)}. It is without loss of generality that we assume that
agent j is single. By individual rationality and {i, j} being a blocking pair for
µ, agents’ preferences are as follows:

Ri j µ(i) i
Rµ(i) i µ(i)
R j i j

Weak Competition Sensitivity Step (Lemma 2.4.1’). Assume that (N̂ ′, R̂′),
N̂ ′ = N ′ ∪ {n}, is an extension of (N ′,RN ′) such that agents µ(i) and n are
mutually best agents for (N̂ ′, R̂′) and agent µ(i) is the only one that finds n
acceptable and n finds only µ(i) acceptable [the newcomer and preferences
can be chosen such that (N̂ ′,RN̂ ′) is also a marriage / no odd rings roommate
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market]. By mutually best, for all µ′ ∈ ϕ(N̂ ′, R̂′), µ′(n) = µ(i). By weak com-
petition sensitivity, for µN ′ ∈ ϕ(N ′,RN ′) there exists µ̂′ ∈ ϕ(N̂ ′, R̂′) such that
agents i and j are not matched, i.e., µ̂′(i) 6= j (if not, then agents i and j are
newly matched at µ̂′, but both are better off). Hence, µ̂′ ∈ ϕ(N̂ ′, R̂′) is the
matching that mutually best matches agents µ(i) and n and agents i and j
are single.

Thus, ({i, j},R{i, j}) is a reduced market of (N̂ ′, R̂′) at µ̂′ to {i, j}. Note that
i and j are mutually best agents at ({i, j},R{i, j}) and both single at µ̂′{i, j}. By
consistency, µ̂′{i, j} ∈ϕ({i, j},R{i, j}), which contradicts mutually best.

Weak Resource Sensitivity Step (Lemma 2.4.2’). Consider the roommate mar-
ket ({i, j},R{i, j}). There exists a unanimously best complete matching µ̄ for
(marriage, no odd rings) roommate market ({i, j},R{i, j}): µ̄ matches agent i
with agent j. Hence, by weak unanimity, ϕ({i, j},R{i, j})= {µ̄} and µ̄(i)= j.

Consider the extension (N ′,RN ′) of ({i, j},R{i, j}) that is obtained by adding
newcomer µ(i). Because µ(i) 6= j and µ̄(i) = j, by weak resource sensitivity,
µ(i) Pi µ̄(i)= j or µ( j) P j µ̄( j)= i. This contradicts that {i, j} is a blocking pair
for µ.

Case 3 (|N’|=4): Consider the reduced market (N ′,RN ′) with the set of
agents N ′ = {i, j,µ(i),µ( j)}. By individual rationality and {i, j} being a block-
ing pair for µ, agents’ preferences are as follows:

Ri j µ(i) i
R j i µ( j) j
Rµ(i) i µ(i)
Rµ( j) j µ( j)

If agents i and j are mutually best agents for (N ′,RN ′), then (2.1) contradicts
mutually best. If (N ′,RN ′) is a marriage market, then agents j and µ(i) and
agents i and µ( j) have the same gender. But then, agents i and j are mu-
tually best agents for (N ′,RN ′) that are not matched at µN ′ ; a contradiction.
Hence, D′ = DNOR and agents i and j not being mutually best agents for
(N ′,RN ′) implies µ( j) Pi j Pi µ(i) Pi i or µ(i) P j i P j µ( j) P j j. Without loss of
generality we assume that µ(i)P j i P jµ( j)P j j. Thus, agents’ preferences can
be further restricted to:
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Ri j µ(i) i
R j µ(i) i µ( j) j
Rµ(i) i µ(i)
Rµ( j) j µ( j)

Weak Competition Sensitivity Step (Lemma 2.4.1’). Assume that (N̂ ′, R̂′),
N̂ ′ = N ′ ∪ {n}, is an extension of (N ′,RN ′) such that agents µ( j) and n are
mutually best agents for (N̂ ′, R̂′) and agent µ( j) is the only one that finds n
acceptable and n finds only µ( j) acceptable [the newcomer and preferences
can be chosen such that (N ′,RN ′) is a no odd rings roommate market]. By
mutually best, for all µ′ ∈ϕ(N̂ ′, R̂′), µ′(n) = µ( j). By weak competition sensi-
tivity, for µN ′ ∈ϕ(N ′,RN ′) there exists µ̂′ ∈ϕ(N̂ ′, R̂′) such that agents i and j
are not matched, i.e., µ̂′(i) 6= j (if not, then agents i and j are newly matched
at µ̂′, but both are better off).

(*) If j Pµ(i) i Pµ(i) µ(i) and µ̂′( j) = µ(i), then agents j and µ(i) are newly
matched and both better off; contradicting the choice of µ̂′ to satisfy weak
competition sensitivity.

Consider the reduced market ({i, j,µ(i)},R{i, j,µ(i)}) ∈ DNOR of (N̂ ′, R̂′) at
µ̂′.

Ri j µ(i) i
R j µ(i) i j
Rµ(i) i µ(i)

By weak competition sensitivity and consistency, we have that µ̄′ ≡ µ̂′{i, j,µ(i)} ∈
ϕ({i, j,µ(i)},R{i, j,µ(i)}) such that µ̄′(i) 6= j.

We continue with the joint proof of Lemmas 2.4.1’ and 2.4.2’ after estab-
lishing a corresponding proof step for weak resource sensitivity.

Weak Resource Sensitivity Step (Lemma 2.4.2’). Consider the reduced mar-
ket ({i, j,µ(i)},R{i, j,µ(i)}) ∈DNOR obtained from agent µ( j) leaving (N ′,RN ′).

Ri j µ(i) i
R j µ(i) i j
Rµ(i) i µ(i)

By weak resource sensitivity, for the matching µN ′ ∈ ϕ(N ′,RN ′) there ex-
ists µ̄′ ∈ϕ({i, j,µ(i)},R{i, j,µ(i)}) such that agents i and j are not matched, i.e.,
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µ̄′(i) 6= j (if not, then agents i and j are not matched at µN ′ anymore, but
both are worse off).

(*) If jPµ(i) iPµ(i)µ(i) and µ̂′( j)=µ(i), then agents j and µ(i) are not matched
at µN ′ anymore and both are worse off; contradicting the choice of µ̂′ to sat-
isfy weak resource sensitivity.

We now finish the proof of Lemmas 2.4.1’ and 2.4.2’ with a joint step. In the
previous steps we have established the existence of

µ̄′ ∈ϕ({i, j,µ(i)},R{i, j,µ(i)}) such that µ̄′(i) 6= j.

If µ̄′(i) = µ(i), then {i, j} is a blocking pair for µ̄′. If µ̄′(i) = i and µ̄′( j) = j,
then {i, j} is a blocking pair for µ̄′. The remaining case to discuss is µ̄′(i) = i
and µ̄′( j) = µ(i). If i Pµ(i) j Pµ(i) µ(i), then {i, j,µ(i)} constitutes an odd ring;
contradicting ({i, j,µ(i)},R{i, j,µ(i)}) ∈DNOR . By (*), j Pµ(i) i Pµ(i)µ(i) is not pos-
sible. Hence, i Pµ(i) µ(i) Pµ(i) j and µ̄′( j) = µ(i). However, µ̄′( j) = µ(i) violates
individual rationality, a contradiction.

To summarize, we either obtain a contradiction, or blocking pair {i, j}
for µ̄′ ∈ ϕ({i, j,µ(i)},R{i, j,µ(i)}). Since |{i, j, µ̄′(i), µ̄′( j)}| ≤ 3, Cases 1 and 2 now
imply a contradiction.

The following three-agent example demonstrates why Lemmas 2.4.1 and
2.4.1’ might not hold if the set of potential agents is finite. Example 2.6.1
also illustrates why Lemma 2.3.3 and Theorem 2.4.1 might not hold if the
set of potential agents is finite. Note that the simple idea of Example 2.6.1
(namely to add a non-core matching to all roommate markets containing
the finite set of potential agents) can be extended to any finite set of poten-
tial agents (if the set of potential agents is even, then one should only add
the additional matching for roommate markets without a unanimously best
complete matching).

Example 2.6.1. Assume that the set of potential agents is {1,2,3} and de-
note by µ12 the matching where agents 1 and 2 are matched. Then, for all
roommate markets (N,R) ∈D′ ⊆DS,

ϕ̃(N,R)=
{

core(N,R)∪ {µ12} if |N| = 3 and µ12 ∈ IR(N,R),
core(N,R) otherwise.
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It is easy to check that ϕ̃ satisfies weak unanimity, (weak) competition sensi-
tivity, and consistency, but it is not a subsolution of the core. ¦

2.6.3 Proof of Proposition 2.4.1

Proposition 2.4.1. On the domain of solvable roommate markets (and on
any of its subdomains), solution ϕ̂ (defined in Example 2.4.1) satisfies indi-
vidual rationality, Pareto optimality, (weak) unanimity, mutually best, con-
sistency, and weak resource sensitivity.

Proof. We prove Proposition 2.4.1 for D′ =DS. It is easy to see that solution
ϕ̂ (defined in Example 2.4.1) satisfies individual rationality, Pareto optimal-
ity, (weak) unanimity, and mutually best.

We partition the domain of solvable roommate markets DS into the sub-
domain DSS of solvable roommate markets with the separable submarket
(N̂, R̂) and its complement solvable domain DCS =DS \DSS (without sepa-
rable submarket (N̂, R̂)).

Note that for roommate markets with a separable submarket (DSS), the
set of agents N̂ constitutes an even ring of size 4. Hence removing an agent
from this submarket dissolves the solvability of the market due to an odd
ring at the top of preferences of 3 agents in N̂. Therefore, it is not possible to
obtain an extension (N ′,R′) ∈DSS of (N,R) ∈DCS by adding a newcomer n ∈
N\N. Furthermore, since each agent in N̂ finds only agents in N̂ acceptable,
for all extensions (N ′,R′) ∈DS of (N,R) ∈DSS that are obtained by adding a
newcomer n ∈N\N, and for all µ′ ∈ ϕ̂(N ′,R′), µ′(N̂)= N̂.

Weak Resource Sensitivity. In order to show that ϕ̂ is weakly resource sen-
sitive, let (N,R) ∈DS and consider the extension (N ′,R′) ∈DS of (N,R) ob-
tained by adding a newcomer n ∈N\N.

Case 1. Let (N,R) ∈DCS. It follows that (N ′,R′) ∈DCS. By construction of ϕ̂,
ϕ̂(N,R) = core(N,R) and ϕ̂(N ′,R′) = core(N ′,R′). By Proposition 2.3.2, the
core is weakly resource sensitive. Hence, for all µ′ ∈ core(N ′,R′) = ϕ̂(N ′,R′)
there exists µ ∈ core(N,R) = ϕ̂(N,R) such that for all i, j ∈ N [possibly i = j]
that are not matched at µ′ anymore, at least one is better off.

Case 2. Let (N,R) ∈DSS and assume (N ′,R′) ∈DCS. By construction of ϕ̂,
ϕ̂(N,R) ) core(N,R) and ϕ̂(N ′,R′) = core(N ′,R′). By Proposition 2.3.2, the
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core is weakly resource sensitive. Hence, for all µ′ ∈ core(N ′,R′) = ϕ̂(N ′,R′)
there exists µ ∈ core(N,R)( ϕ̂(N,R) such that for all i, j ∈ N [possibly i = j]
that are not matched at µ′ anymore, at least one is better off.

Case 3. Let (N,R) ∈DSS and assume (N ′,R′) ∈DSS. Since each agent in N̂
finds only agents in N̂ acceptable, for all µ ∈ ϕ̂(N,R), µ(N̂) = N̂, and for all
µ′ ∈ ϕ̂(N ′,R′), µ′(N̂) = N̂. Therefore, we treat the set of agents N̂ separately
from the set of agents N \ N̂.

For agents in N̂: Note that in both roommate markets (N,R) and (N ′,R′), ϕ̂
matches agents in N̂ according to µ̂, µ̂′, or µ̂′′. Therefore, for all µ′ ∈ ϕ̂(N ′,R′)
there exists µ ∈ ϕ̂(N,R) such that µ′

N̂
= µN̂ ∈ {µ̂, µ̂′, µ̂′′}. In particular, µ ∈

ϕ̂(N,R) is such that for all i, j ∈ N̂ [possibly i = j] that are not matched at µ′

anymore, at least one is better off.

For agents in N\N̂: Note that in both roommate markets (N,R) and (N ′,R′),
ϕ̂matches agents in N\N̂ (respectively N ′\N̂) according to ϕ̂(N\N̂,RN\N̂ )=
core(N \ N̂,RN\N̂ ) (respectively ϕ̂(N ′ \ N̂,RN ′\N̂ )= core(N ′ \ N̂,RN ′\N̂ )). By
Proposition 2.3.2, the core is weakly resource sensitive. Hence, for all µ′ ∈
ϕ̂(N ′,R′), µ′

N ′\N̂
∈ core(N ′ \ N̂,RN ′\N̂ ) and there exists a matching µN\N̂ ∈

core(N \ N̂,RN\N̂ ) such that for all i, j ∈ N \ N̂ [possibly i = j] that are not
matched at µ′

N ′\N̂
anymore, at least one is better off. In particular, we can

choose µ ∈ ϕ̂(N,R) such that µ′
N̂
=µN̂ .

Cases 1 - 3 imply that for all (N,R), (N ′,R′) ∈ DS such that (N ′,R′) is an
extension of (N,R) obtained by adding a newcomer n ∈N\N and for all µ′ ∈
ϕ̂(N ′,R′) there exists µ ∈ ϕ̂(N,R) such that for all i, j ∈ N [possibly i = j] that
are not matched at µ′ anymore, at least one is better off.

Consistency. In order to show that ϕ̂ is consistent, let (N,R) ∈ DS, µ ∈
ϕ̂(N,R), and assume that (N ′,RN ′) ∈ DS is a reduced market of (N,R) at
µ to N ′.19

Case 1. Let (N,R) ∈ DCS. By construction of ϕ̂, ϕ̂(N,R) = core(N,R) and
core(N ′,R′) ⊆ ϕ̂(N ′,R′). By Proposition 2.3.1, the core is consistent. Hence,
for all µ ∈ core(N,R)= ϕ̂(N,R), µN ′ ∈ core(N ′,R′)⊆ ϕ̂(N,R).

19Note that solvability is closed under reduction for ϕ̂, i.e., for all (N,R) ∈DS and for all
matchings µ ∈ ϕ̂(N,R), the reduced market (N′,R′) of (N,R) at µ is also solvable.
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Case 2. Let (N,R) ∈ DSS. By construction of ϕ̂, µ = (µ∗, µ̃) for some µ∗ =
µN\N̂ ∈ core(N \ N̂,RN\N̂ ) and for some µ̃=µN̂ ∈ {µ̂, µ̂′, µ̂′′}.

Case 2.1. Let (N ′,R′) ∈DSS. Thus, N̂ ⊆ N ′ and µN ′ = (µ∗
N ′\N̂

, µ̃). By Proposi-
tion 2.3.1, the core is consistent. Hence, µ∗

N ′\N̂
∈ core(N ′ \ N̂,RN ′\N̂ ). Thus,

by construction of ϕ̂, µN ′ = (µ∗
N ′\N̂

, µ̃) ∈ ϕ̂(N ′,R′).

Case 2.2. Let (N ′,R′) ∈DCS. By construction of ϕ̂, ϕ̂(N ′,R′) = core(N ′,R′).
By Proposition 2.3.1, the core is consistent. Hence, since µ∗ ∈ core(N \
N̂,RN\N̂ ), µ∗

N ′\N̂
∈ core(N ′\ N̂,RN ′\N̂ ). Since (N ′,R′) ∈DCS, either N̂∩N ′ =

; or |N̂ ∩ N ′| = 2. If N̂ ∩ N ′ = ;, then N ′ \ N̂ = N ′, which implies µN ′ =
µ∗

N ′\N̂
∈ core(N ′,R′)= ϕ̂(N ′,R′). Assume that |N̂∩N ′| = 2 and N̂∩N ′ = {i, j}.

Since the reduced market (N ′,R′) is obtained from (N,R) ∈ DSS, µ̃(i) = j.
Furthermore, agents i and j are mutually best agents for (N ′,R′). Hence,
for all µ′ ∈ ϕ̂(N ′,R′) = core(N ′,R′), µ′(i) = j. Thus, by construction of ϕ̂,
µN ′ = (µ∗

N ′\N̂
, µ̃{i, j}) ∈ core(N ′,R′)= ϕ̂(N ′,R′).

2.7 Appendix B: Consistency and Population Mono-
tonicity for (Classical) Marriage Markets

A classical marriage market (Gale and Shapley, 1962) (N,R) is such that
N is the union of two disjoint sets M and W and each agent in M (respec-
tively W) has restricted preferences over being matched to agents in the set
W (respectively M) and being single (instead of having preferences over N).
Furthermore, matching agents of the same gender is not feasible (instead of
matching agents of the same gender being individually irrational). Defini-
tions and results labeled “on the domain of (classical) marriage markets” in
this appendix apply to the classical marriage market domain as well as to
our “marriage-roommate market” domain. We first introduce two population
monotonicity properties.

Own-side population monotonicity (simply called population monotonic-
ity by Toda, 2006) states that if additional men (women) enter the market,
then all incumbent men (women) are weakly worse off. We formalize a some-
what weaker version of own-side population monotonicity by restricting pop-
ulation changes to one newcomer at a time (this “weak own-side popula-
tion monotonicity” implies the original own-side population monotonicity by
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adding men (women) one by one).

Own-Side Population Monotonicity for Marriage Markets: A solu-
tion ϕ on the domain of (classical) marriage markets is own-side population
monotonic if the following holds. Let (N,R) be a marriage market and as-
sume that (N ′,R′), N ′ = N ∪ {n}, is an extension of (N,R) and the newcomer
n is a man [woman]. Then, for all µ ∈ϕ(N,R) there exists µ′ ∈ϕ(N ′,R′) such
that for all men m ∈ N, µ(m) Rm µ′(m) [for all women w ∈ N, µ(w) Rw µ

′(w)].

Other-side population monotonicity states that if additional men (women)
enter the market, then all incumbent women (men) are weakly better off. We
formalize a somewhat weaker version of other-side population monotonicity
by restricting population changes to one newcomer at a time (this “weak
other-side population monotonicity” implies the original other-side popula-
tion monotonicity by adding men (women) one by one).

Other-Side Population Monotonicity for Marriage Markets: A solu-
tion ϕ on the domain of (classical) marriage markets is other-side population
monotonic if the following holds. Let (N,R) be a marriage market and as-
sume that (N ′,R′), N ′ = N ∪ {n}, is an extension of (N,R) and the newcomer
n is a man [woman]. Then, for all µ′ ∈ϕ(N ′,R′) there exists µ ∈ϕ(N,R) such
that for all women w ∈ N, µ′(w) Rw µ(w) [for all men m ∈ N, µ′(m) Rm µ(m)].

Proposition 2.7.1. On the domain of (classical) marriage markets, the core
satisfies own-side and other-side population monotonicity.

Proof. By Toda (2006, Proposition 2.1) the core satisfies own-side population
monotonicity for the domain of classical marriage markets. However, we
show both properties in a symmetric way using results by Crawford (1991).
Note that the classical marriage market results used in this proof also hold
for “marriage-roommate” markets (see Remark 2.2.1).

Let (N,R), (N ′,R′) be such that (N ′,R′) is an extension of (N,R) with
N ′ = N ∪ {n}, without loss of generality newcomer n being a man. We denote
the men-optimal stable matchings and the women-optimal stable matchings
(Gale and Shapley, 1962) by µM ,µW for roommate market (N,R) and µ′M ,µ′W
for roommate market (N ′,R′).

By Roth and Sotomayor (1990, Corollary 2.14), for all µ ∈ core(N,R) and
all men m ∈ N, µRm µW . By Crawford (1991, Theorem 1), for all men m ∈
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N, µW Rm µ′W . Hence for all µ ∈ core(N,R), there exists µ′ ∈ core(N ′,R′),
namely µ′ ≡µ′W , such that for all men m ∈ N, µRmµ′. This implies own-side
population monotonicity.

By Roth and Sotomayor (1990, Corollary 2.14), for all µ′ ∈ core(N ′,R′)
and all women w ∈ N, µ′ Rw µ

′
M . By Crawford (1991, Theorem 2), for all

women w ∈ N, µ′M Rw µM . Hence for all µ′ ∈ core(N ′,R′), there exists µ ∈
core(N,R), namely µ ≡ µM , such that for all women w ∈ N, µ′ Rw µ. This
implies other-side population monotonicity.

We next establish some relations between properties for marriage mar-
kets.

Lemma 2.7.1. On the domain of (classical) marriage markets, weak una-
nimity, other-side population monotonicity, and consistency imply individual
rationality.

Proof. Assume that ϕ satisfies weak unanimity and consistency, but not in-
dividual rationality. Then, there exists a marriage market (N,R), a match-
ing µ ∈ ϕ(N,R), and without loss of generality a man m ∈ N, such that
m Pm µ(m) (alternatively we could assume that there exists a woman w ∈ N
such that w Pw µ(w)).

Let N ′ = {m,µ(m)}. Then, marriage market (N ′,RN ′) is a reduced market
of (N,R) at µ and by consistency, µN ′ ∈ϕ(N ′,RN ′) and µN ′(m)=µ(m).

Let N̄ = {m}. Marriage market (N̄,RN̄ ) is a one agent market with only
one possible matching. Hence, ϕ(N̄,RN̄ ) = {µ̄} with µ̄(m) = m. Furthermore,
(N ′,R′) is an extension of (N̄,RN̄ ) and the newcomer µ(m) is a woman. Thus,
by other-side population monotonicity, for all µ′ ∈ϕ(N ′,R′), µ′(m) Rm µ̄(m) =
m. This contradicts µN ′ ∈ϕ(N ′,RN ′) and m Pm µN ′(m).

Klaus (2011) shows that on the domain of marriage markets, weak re-
source sensitivity is essentially a weaker property than other-side popu-
lation monotonicity (individual rationality is added to ensure that no two
agents of the same gender are matched, see Remark 2.2.1).

Lemma 2.7.2 (Klaus, 2011, Lemma 2). On the domain of (classical) mar-
riage markets, individual rationality and other-side population monotonicity
imply weak resource sensitivity.
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Strictly speaking Klaus (2011) does not give the proof for classical mar-
riage markets, but the proof of Lemma 2.7.2 is essentially the same as Klaus
(2011, Lemma 2).

The following two lemmas by Toda (2006) are used in the proof of Theo-
rem 2.3.2.

Lemma 2.3.5 (Toda, 2006, Lemma 3.4). On the domain of classical marriage
markets, if a solution ϕ satisfies individual rationality, mutually best, and
consistency, then it is a subsolution of the core.

Lemma 2.7.3 (Toda, 2006, Lemma 3.6). On the domain of classical marriage
markets, no proper subsolution of the core satisfies consistency.

Next, we restate and prove Theorem 2.3.2.

Theorem 2.3.2. On the domain of classical marriage markets, a solution sat-
isfies weak unanimity, other-side population monotonicity, and consistency if
and only if it equals the core.

Proof. The core satisfies weak unanimity and consistency (Toda, 2006). By
Proposition 2.7.1, the core is other-side population monotonic.

Let ϕ satisfy weak unanimity, other-side population monotonicity, and
consistency. Then, by Lemma 2.7.1, ϕ is individually rational. Thus, by
Lemma 2.7.2, ϕ satisfies weak resource sensitivity. Hence, by Lemma 2.3.4
(a) (the proof essentially remains the same on the domain of classical mar-
riage markets), ϕ satisfies mutually best. Thus, by Lemma 2.3.5, ϕ is a sub-
solution of the core. Then, Lemma 2.7.3 implies that ϕ equals the core.

We conclude this appendix by restating and proving Corollary 2.4.1. For
completeness, we first state the following lemma.

Lemma 2.7.4 (Klaus, 2011, Lemma 1). On the domain of marriage markets,
individual rationality and own-side population monotonicity imply weak com-
petition sensitivity.

Corollary 2.4.1 (Two Characterizations of the Core for Marriage Mar-
kets).
On the domain of marriage markets, a solution satisfies weak unanimity,
consistency, and
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(1) own-side population monotonicity;

(2) other-side population monotonicity;

if and only if it equals the core.

Proof. Let ϕ be a solution on the domain of marriage markets. Let ϕ be
weakly unanimous, consistent, and (1) own-side population monotonic or (2)
other-side population monotonic. By Lemma 2.7.1, ϕ is individually ratio-
nal. Thus, (1) by Lemma 2.7.4, ϕ is weakly competition sensitive and (2) by
Lemma 2.7.2, ϕ is weakly resource sensitive. Hence, (1) by Theorem 2.4.1
(a), ϕ equals the core and (2) by Theorem 2.4.2 (a), ϕ equals the core.
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Chapter 3

Update Monotone Preference
Rules

3.1 Introduction

Consider a collective decision making problem where, by means of a prefer-
ence correspondence1, individual strict preferences, i.e. complete, transitive,
and antisymmetric binary relations over a set of alternatives, are aggregated
into a set of strict preferences2. For instance, to appoint a new dean, a com-
mittee of department representatives collectively ranks three candidates:
A(lice), B(ill) and C(aroline). Let the outcome be such that A is ranked the
best, B is second best and C is ranked the lowest. Suppose now that one of
the representatives, preferring C above B and both these above A, is sub-
stituted by another member of that department with preference A above C
above B. Clearly, the latter preference agrees on more ordered pairs of the
outcome than the former does and it only differs with the outcome on pairs
where the former differs with the outcome. So to speak, the latter preference
is an “update” of the former towards the outcome. The question raised here
is whether in the new hypothetical situation the outcome would still be A
above B above C.

1Set valuedness of an aggregation rule may reflect the possible outcomes of neutral tie-
breaking.

2This chapter is based on a paper by Can and Storcken (2011b).
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Take a (preference) profile, i.e. a combination of individual preferences,
and a possible outcome of a preference correspondence. By updating, we
refer to transformations of the profile such that the individual preferences
change only in parts where they differ from the given outcome. Therewith,
these transformations yield profiles which are more similar to the outcome
and which are, in a sense, updates towards it. A preference correspondence
is said to be update monotone if the outcome is still chosen at such a transfor-
mation. Strong update monotonicity, moreover, requires that the outcomes
at the updated profile form a subset of the previous set of outcomes.

For collective choice functions and choice correspondences (for simplic-
ity referred to as choice rules) various monotonicity conditions have been
studied intensively. Well-known impossibility theorems, such as in Muller
and Satterthwaite (1977), express that only trivial choice rules such as dic-
tatorial rules or constant rules are monotone. Therefore, imposing this type
of condition to choice rules can seem too restrictive. Furthermore, when
defining a monotonicity condition for a choice rule, the description of an in-
crease in the support of a winning alternative is not free of contamination.
For instance, extending the lower contour set of a winning alternative, as in
Maskin monotonicity, assumes that these choice rules should not depend on
how these lower contour sets are ordered individually. In the case of pref-
erence rules and update monotonicity, however, demanding that individual
preferences can only change as far as they differ from the outcome is at least
intuitively more sound. Furthermore monotonicity conditions have not yet
been analyzed for preference rules.

In comparison to these monotonicity conditions for choice rules, we draw
the conclusion that the ones presented here for preference rules seem less
restrictive. Indeed, imposing update monotonicity on preference rules along
with other conditions, which are satisfied by many well-known preference
rules, yields characterizations of “Kemeny-Young” and “super majority” pref-
erence rules. The main reason for this is that compared to choice rules, the
framework of preference rules allows for more detail in expressing mono-
tonicity.

In the choice function framework it is also well-known that the afore-
mentioned impossibility theorems based on monotonicity conditions corre-
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spond to some impossibility theorems based on strategy-proofness condi-
tions. In the preference rule framework, Bossert and Storcken (1992) showed
that there exists no coalitional strategy-proof welfare function, i.e., single
valued preference correspondence, which is in addition nonimposed and weak
extrema independent. However, for welfare functions update monotonicity
is compatible with these two latter conditions as is discussed in Section 3.5.

Update monotonicity is discussed for two disjoint cases; the first in which
we assume that preference rules are convex valued and the second where
this is not required. In the first case we determine the class of Pareto op-
timal, neutral, replication invariant, convex valued and strongly update
monotone preference rules. It consists of super majority rules. At these
rules, depending on the number of alternatives and the number of indi-
viduals, a number k close to the number of agents n is fixed. Now these
correspondences assign all preferences which extend all ordered pairs unan-
imously agreed upon by any set of at least k individuals. This result char-
acterizes super majority rules as the only preference rules that satisfy the
five conditions mentioned above. Pareto optimality, neutrality and replica-
tion invariance are conditions met by many well-known preference corre-
spondences. Whenever set valued outcomes stem from tie breaking indiffer-
ences, the convexity requirement on these outcome sets means that indiffer-
ences are broken in every possible way. Many well-known preference corre-
spondences are convex valued. The characterization of super majority rules
therefore implies that many well-known rules, such as the Borda (1784) and
the Copeland (1951) rule, are not strongly update monotone. Moreover, in
deducing this characterization of super majority rules we have the following
result based on Pareto optimality, anonymity, neutrality, convex valuedness
and update monotonicity only. Consider profiles where the set of agents is
partitioned into two groups such that all members in each group report the
same preference and the two reported preferences differ on precisely one
consecutively ordered pair of alternatives only. At these profiles, which in
fact resemble a decision situation on two alternatives, the outcome is both
of these preferences if no group has more than m−1

m n agents, where m is the
number of alternatives and n the number of agents. So, in case of 3 alterna-
tives a 2

3 majority is not decisive in such a situation. This result shows that
many well-known rules do not satisfy update monotonicity. In the setting of
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convex valued preference rules, the strong version of update monotonicity is
necessary for the characterization of super majority rules. The logical inde-
pendence of these characterizing conditions is discussed by examples; and
furthermore, the necessity of the stronger version of update monotonicity is
shown.

Next, consider the situation of possibly non-convex valued outcomes.
The Kemeny-Young preference correspondence (simply the Kemeny rule),
assigning those strict preferences to a given profile which minimize the sum
of Kemeny distance to all of the individual preferences in the profile, is up-
date monotone. It is, however, not convex valued. For instance in case of
three alternatives at a Condorcet profile, unlike many preference correspon-
dences having all six strict preferences in the outcome, it only assigns the
three preferences reported in the profile. The Kemeny rule is the only rule
which is Pareto optimal, consistent, pairwise, neutral and update monotone.
The former four conditions are well-known and satisfied by various prefer-
ence rules. Comparing the two characterizations, we see a substitution of
convexity by pairwiseness and a trade off between a strengthening of repli-
cation invariance to consistency and a weakening of update monotonicity.

Young and Levenglick (1978) characterized the Kemeny rule by neutral-
ity, consistency and the Condorcet condition. A major step in their proof is
that given a profile, outcomes assigned by rules satisfying these three con-
ditions are determined by a pairwise difference matrix which records the
numerical differences of pairwise comparisons in its cell. That is, if two pro-
files yield the same pairwise difference matrix, then the outcomes at these
two profiles are equal. Herewith such rules are pairwise. A similar result
can be found in Lemma 3.4.5. From that point on, because of the differ-
ences in the characterizing conditions, the line of arguments and, hence, the
proofs differ completely. In addition to the logical independence of the five
conditions we employ, we also show their logical equivalence to those used
by Young and Levenglick

The chapter proceeds as follows: in Section 3.2, we provide some nota-
tion for our model and briefly discuss certain properties including update
monotonicity, and provide examples of some rules to which we refer in the
later sections. Section 3.3 is devoted to the class of convex valued rules. An
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intuition is provided on why many convex valued rules are not update mono-
tone. Thereafter, we provide a characterization of the family of super ma-
jority correspondences as indicated above. Section 3.4 discusses preference
correspondences where convex valuedness is dropped and here we provide a
new characterization of the Kemeny rule based on update monotonicity. In
Section 3.5, we discuss the findings, such as the logical independence of the
characterizing conditions and their logical equivalence to the conditions of
Young and Levenglick. Furthermore, some weakening and strengthening of
update monotonicity are formulated and discussed briefly. Finally, we show
that in the social welfare setting of Bossert and Storcken (1992), update
monotonicity is less demanding than strategy-proofness.

3.2 The Model

3.2.1 Basic Notation

Let A be a finite set of alternatives with cardinality #A = m > 1. Preferences
are taken to be linear orders over the set of alternatives A. Let L denote the
set of all preferences over A. Let N be a countable infinite set of potential
agents. For non-empty and finite subsets N of N with cardinality n, LN

denotes the set of all preference profiles p, i.e., an n-dimensional vector of
preferences where its ith component p (i) refers to individual i’s preference.
The restriction of profile p to a subset of agents, say S, is denoted by p|S.
For situations where two disjoint sets of agents N, N ′ ∈ N , with preference
profiles p ∈ LN , and q ∈ LN ′

over the same set of alternatives are united,
we interpret (p, q) as the union3 of these two profiles, i.e., (p, q) ∈ LN∪N ′

with (p, q)(i) = p(i) if i ∈ N and (p, q)(i) = q(i) if i ∈ N ′. Furthermore, for a
coalition S, a nonempty subset of N, and a linear order R, let RS denote the
profile p where p(i)= R for all i in S. So, RN denotes the the unanimous pro-
file in which all agents in N have preference R. A preference correspondence
or simply a rule ϕ, is a function such that for every finite and non-empty set
N ⊂N , ϕ assigns a nonempty subset ϕ(p) of L, to each preference profile p
in LN .

3We abuse notation by dropping parentheses whenever it is clear that we refer to the
union of these two set of agents.
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Let R be a linear order on A. Consider three different alternatives
a,b, c ∈ A. Note that because of anti-symmetry of R, (a,b) ∈ R means that
a is strictly preferred to b, which hereafter will be denoted by “.a.b. = R”.
The case where a and b are consecutive at R, i.e., there is no alternative
c that is ordered in between a and b, is denoted by .ab. = R. Notations
like .a.b.c.= R and .ab.c.= R have the obvious interpretation. Furthermore
a... = R means that alternative a is ordered best at R and likewise ...b = R
means that alternative b is ordered worst at R. Let P be a partial order,
i.e. an anti-symmetric, reflexive, and transitive binary relation on A. Then,
LP = {R ∈ L : P ⊆ R} denotes the set of linear extensions of P. To save paren-
thesis, we write Lab instead of L{(a,b)}. Let a1a2...al−1alal+1...am = R and
a1a2...al−1al+1al ...am = R. Then we say R (respectively R) is an elemen-
tary change of R (R) in pair alal+1 (al+1al) or R and R form an elementary
change (in al and al+1). Furthermore this elementary change is in position
l, i.e., the l th and (l+1)th alternatives are swapped.

Given a nonempty subset of alternatives B ⊆ A, let R|B denote the re-
striction of an order R to B, i.e., R|B = {(x, y) ∈ R : x, y ∈ B}. In a similar way
let p|B be the restriction of a profile p to B, i.e., (p|B)(i) = p(i)|B for every
agent i in N.

For preferences R1, R2, and R3, we say R3 is between4 R1 and R2 if
and only if R1 ∩ R2 ⊆ R3. The Kemeny distance (Kemeny, 1959; Kemeny
and Snell, 1962) for two linear orders R1 and R2 is defined by δ(R1,R2) =
1
2#((R1−R2)∪ (R2−R1))= #(R1−R2), i.e., half of the cardinality of the sym-
metric difference of R1 and R2. Note that δ is a distance function and hence
satisfies the triangular inequality. Furthermore, for any three linear orders;
R1, R2 and R3, we have:

δ(R1,R3)+δ(R3,R2)= δ(R1,R2) if and only if R3 is between R1 and R2.

Finally let S be a nonempty subset of L. S is convex if for all R1 and R2 in
S, and for all R3 in L, R3 is also in S if R3 is between R1 and R2. In Bogart
(1973) there is a discussion of betweenness and the concept of convexity. In
Storcken (2008), the following characterization can be found:

4For general relations also the condition R3 ⊆ R1 ∪R2 is needed. In case of linear orders,
this, however, is equivalent to R1 ∩R2 ⊆ R3.
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Proposition 3.2.1. Let S be a subset of L. Then the following two are equiv-
alent:

(i) S is convex,
(ii) There is a partial order P such that LP =S.

3.2.2 Properties of Rules

Next we discuss some properties for preference correspondences that we will
use in the following sections.
Single valuedness: A rule is single valued if the outcome at every profile is
a singleton, i.e. is a set of precisely one linear order. Clearly, this condition
means that the rule is a function. In the literature these functions are also
known as welfare functions.
Pareto Optimality: The Pareto condition requires that all preferences as-
signed to a profile are Pareto optimal. Formally: ϕ(p) ⊆ L∩{p(i):i∈N} for all
profiles p in LN .
Anonymity: Anonymity requires that all individuals are treated equally;
hence, renaming them should not change the outcome, i.e. ϕ (p) = ϕ (p ◦π)
for all profiles p in LN and all permutations π of N, where p◦π is the profile
such that p ◦π (i)= p (π (i)) for all i ∈ N.
Neutrality: A rule is said to be neutral whenever it treats alternatives in a
neutral way: τ(ϕ(p))=ϕ(τp) for all profiles p in LN and all permutation τ of
A, where τ extends to any relation R on A by τ(R) = {(τ(a),τ(b)) : (a,b) ∈ R},
τ(S)= {τ(R) : R ∈S} denotes the complete image of a set S under τ and τp is
defined for an individual i by (τp)(i)= τ(p(i)).
Replication Invariance: Replication invariance means that the outcome
of a rule is the same before and after the replication of a profile: ϕ(p) =
ϕ(p1, p2, ..., pk) for all profiles p, p1, p2, ... and pk in respectively LN ,LN1 ,LN2 ...
and LNk such that N, N1, N2...Nk are all pairwise disjoint and there are bi-
jections σt from N to Nt for all t ∈ {1,2, ...k} such that p(i)= pt(σt(i)) for all i
in N and (p1, p2, ..., pk) is the profile say q on N1∪N2∪...Nk, with q(i)= pt(i)
for all i ∈ Nt.
Consistency: Consistency requires that the outcome assigned to a profile,
which is composed of two disjoint sets of individuals that are merged, equals
the intersection of the outcomes assigned to the profiles of these sets of in-
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dividuals separately, whenever this intersection is non-empty. Formally:
ϕ(p)∩ϕ(q)= ϕ(p, q) for all profiles p and q in respectively LN and LM where
N and M are disjoint and ϕ(p)∩ϕ(q) 6= ;.
Pairwiseness: A rule is pairwise if the outcomes at two profiles are equal
whenever every pairwise comparison in a profile is numerically equal to that
in the other profile. Formally: ϕ(p)=ϕ(q) for all profiles p and q in LN such
that M(p)= M(q), where M(p) is a m by m matrix such that for alternatives
a and b, cell (a,b) is defined by the number of agents preferring a to b:

M(p)(a,b) = #{i ∈ N : (a,b) ∈ p(i)} if a 6= b

= 0 if a = b.

Convex valuedness: A rule satisfies convex valuedness if it assigns to each
profile a convex set of linear orders: ϕ(p) is convex for all profiles p in LN .

Remark 3.2.1. Note that replication invariance implies anonymity, and con-
sistency implies replication invariance. 4

Below we provide some examples of convex valued rules:

Example 3.2.1. (Score rules) Let −→s = (s1, ...sm) be the score vector over the
set of alternatives such that s1 ≥ ... ≥ sm and s1 > sm. Let rank (a, p (i)) =
# {b ∈ A : .b.a.= p (i) or a = b} , i.e. the rank of alternative a in ith preference
p(i) equals the the number of alternatives preferred or indifferent to a. For
each alternative a ∈ A, let score

(−→s ,a, p
) = ∑

i∈N srank(a,p(i)) be the sum of
scores of alternative a in each individual preference p (i) in the profile p.
Consider the partial order P−→s (p) = (a,b) : score

(−→s ,a, p
) > score

(−→s ,b, p
)

or
a = b}. The score rule ϕ−→s induced by the score vector −→s is defined for profile
p by

ϕ−→s (p)= LP−→s (p),

where LP−→s (p) =
{
R ∈ L : P−→s (p)⊆ R

}
. ¦

Example 3.2.2. (Copeland rule) Let sC (a, p) denote the Copeland score of
alternative a in preference profile p which is the number of alternatives a
beats in pairwise comparisons, i.e., # {b ∈ A\{a} : # {i ∈ N : .a.b.= p(i)}> n/2}.
Consider the partial order Pc(p) = {(a,b) : sC (a, p)> sC (b, p) or a = b}. The
Copeland rule ϕC is defined for profile p by

ϕC(p)= LPc(p),
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where LPc(p) = {R ∈ L : Pc(p)⊆ R}. ¦

Note that by Proposition 3.2.1, score rules and the Copeland rule, as
defined in the examples above, satisfy convex valuedness.

Example 3.2.3. (Pareto rule) For each profile p, the Pareto rule ϕPar is
defined ϕPar(p)= L∩{p(i):i∈N}. ¦

Example 3.2.4. (k-majority rule) Let A consist of m alternatives and N
be a set of n agents. Let k be a positive integer such that m−1

m n < k ≤ n.
For any profile p define k-majority-relation(p) = {(x, y) ∈ A × A : there are
at least k agents i such that .x.y. = p(i)} and define the k-majority rule
for a profile p by ϕk(p) = Lk−ma jority−relation(p). Since k is strictly larger
than m−1

m n, the k-majority-relation(p) is acyclic. Indeed a cycle say (a1,a2),
(a2,a3),...,(al−1,al),(al ,a1) in the k-majority-relation(p) would imply the ex-
istence of subsets S1,S2,...,Sl−1,Sl of N such that #S j ≥ k and S j = {i ∈ N :
.a j.a j+1. = p(i)} for j ∈ {1, ..., l} and where further al+1 is set equal to a1. As
preferences p(i) are transitive and therefore in particular acyclic it follows
that ∩{S j : j ∈ {1, ..., l}} = ;. But as #S j ≥ k > m−1

m n ≥ l−1
l n, because l ≤ m,

this result would contradict Proposition 3.6.1 (see the Appendix). Therefore
Lk−ma jority−relation(p) is non-empty and ϕk is well-defined. Rule ϕk is con-

vex valued by definition and it is obvious that it is neutral, Pareto optimal
and anonymous. Note that in case k = n rule ϕk equals the Pareto rule, ϕPar.
Further note that Lk−ma jority−relation(p) = {R ∈ L : ∩{p(i) : i ∈ S} ⊆ R for all
#S ≥ k}. ¦

3.2.3 Update Monotonicity

Consider a profile p and a linear order R. We call profile q an update of
p towards R if p(i)∩R ⊆ q(i) for all agents i ∈ N. So, for all agents i this
means that R and q(i) have at least in common what p(i) and R have. Or
to put it differently, for all agents i, preference q(i) only differs from R on
pairs where p(i) differs from R. Loosely speaking, this boils down to q(i)
and R having more pairs in common than p(i) and R have. Note that in that
case q(i) is between p(i) and R for all agents i. Based on this update, the
following notions of monotonicity are defined.
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(Update) Monotonicity: A rule ϕ is update monotone if for all p in LN , for
all R ∈ϕ (p), and for all updates q of p towards R,

R ∈ϕ(q).

Furthermore, ϕ is strongly update monotone if it is update monotone and
ϕ(q)⊆ϕ(p) for all such outcomes R in ϕ (p) and profiles q.

From this point, on we use the word monotonicity instead of update
monotonicity whenever it is clear that we mean the latter. Note that be-
tweenness implies that the Kemeny distance between the collective pref-
erence R and each individual preference is not increased from profile p to
profile q. Indeed monotonicity can be defined in a stronger way by only de-
manding that these distances do not increase and therewith dropping the
betweenness condition. In Section 3.5 this is discussed in more detail.

Because the set of profiles is connected by elementary changes we have
the following immediate result.

Proposition 3.2.2. A rule ϕ is monotone if Lab∩ϕ (p)⊆ϕ(q) for all profiles
p, q ∈ LN , such that Lab∩ϕ(p) 6= ; and there are agents j ∈ N and alternatives
a,b ∈ N with p|N−{ j} = q|N−{ j}, .ab. = q( j), .ba. = p( j) and q( j) is an elemen-
tary change of p( j) in pair ab. Furthermore, ϕ is strongly monotone if and
only if it is monotone and ϕ(q)⊆ϕ(p) for such p, q and alternatives a and b.

Remark 3.2.2. As the empty set is contained in any set, it follows imme-
diately that ϕ is monotone if and only if Lab ∩ϕ (p) ⊆ ϕ(q) for all profiles
p, q ∈ LN , such that there are agents j ∈ N and alternatives a,b ∈ N with
p|N−{ j} = q|N−{ j}, .ab. = q( j), .ba. = p( j) and q( j) is an elementary change
of p( j) in pair ab. The requirement Lab ∩ϕ(p) being non-empty is impor-
tant, though more for strong monotonicity. Actually, monotonicity implies
both Lab ∩ϕ (p)⊆ϕ(q) and Lba ∩ϕ (q)⊆ϕ(p). If Lab ∩ϕ(p) is non-empty, then
ϕ (q) ⊆ ϕ(p). If in addition Lba ∩ϕ (q) = ;, a situation which holds for the
Kemeny rule, we have Lab ∩ϕ (p) ⊆ ϕ(q), ϕ (q) ⊆ ϕ(p) and ϕ (q) ⊆ Lab. Hence,
then Lab ∩ϕ (p)=ϕ(q). Note also that a rule ϕ is strongly monotone if for all
alternative a and b and all profiles like p and q we have Lab ∩ϕ (p) = ϕ(q)
whenever Lab ∩ϕ(p) is non-empty. 4
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3.3 Convex Valued Rules

As pointed out in the introduction and in the examples of the previous sec-
tion, many preferences rules, such as score rules, the Kramer rule and the
Copeland rule, are convex valued. In this section, we discuss the conse-
quences of strong monotonicity under the assumption of convex valued out-
comes. To structure this discussion further, we only consider rules satisfying
the following basic conditions: Pareto optimality, neutrality and replication
invariance. The latter condition is a strengthening of anonymity and links
different sets of agents. These five conditions together characterize the class
of super majority rules. To each profile, these rules assign all linear orders
that extend the ordered pairs for which there are at least k agents who unan-
imously agree upon them. The number k is chosen in such a way that the
pairs for the possibly different sets of k agents cannot form a cyclical deci-
sion. Therefore k depends on the number of alternatives and the number of
agents.

To illustrate how convex valuedness and monotonicity under the other
three conditions bring about this characterization, consider the outcome of
an arbitrary rule ϕ satisfying these conditions at a standard Condorcet pro-
file p for three agents 1,2, and 3 and three alternatives a,b, and c defined
by:

p(1) = abc

p(2) = bca

p(3) = cab.

Here preferences are denoted by their representation. So, abc denotes
the linear order at which a is the most preferred, b the second most and c
is considered the worst. Assume abc ∈ ϕ (p). Then by neutrality bca, cab ∈
ϕ (p). Now abc,bca, cab ∈ ϕ (p) and convex valuedness imply ϕ (p) = L. As-
sume acb ∈ ϕ (p). Then by neutrality bac, cba ∈ ϕ (p). Now acb,bac, cba ∈
ϕ (p) and convex valuedness again imply ϕ (p) = L. This means that such
rules will assign the set of all possible preferences to the Condorcet profile
p. In particular bac ∈ ϕ(p). Next, consider the preference profile q defined
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by

q(1) = abc = p(1)

q(2) = bac

q(3) = abc = p(1).

Note that q is an update of p towards both bac and abc. Because of
monotonicity, ϕ therefore assigns abc and bac to profile q, which by Pareto
optimality then implies that ϕ(q) = {abc,bac}. Note that bac is among the
outcome at profile p where only one-third of the population preferences is in
line with this ranking and two-third is opposing it. Many commonly used
rules, however, take only the two third majority point of view abc at this
profile q. This means that these rules do not satisfy all five conditions. In
fact they defect on monotonicity.

The question now is “how large a coalition, say S, should be” in order
to ensure that ϕ only assigns the opinion of this coalition S and therewith
ignores that of the minority N −S. The example above clarifies that in case
of three alternatives S should consist of strictly more than two third of the
agents present. Indeed, this makes sense for k-majority rules, because in
the three alternatives three agents case letting k = 2 would yield a cycle
since two agent coalition {1,2} is unanimous on bc, coalition {2,3} on ca and
coalition {1,3} on ab. But this cycle cannot be extended to a linear order.

Unless stated otherwise, for the remainder of this section, we switch to
the stronger version of monotonicity. This is because we were not able to
determine the class of Pareto optimal, neutral, replication invariant, convex
valued and monotone rules. It is clear that this class is larger than that of
super majority rules. For instance, biased super majority rules, introduced
in the discussion section, are not strongly monotone but they are monotone.

The class of Pareto optimal, neutral, convex valued, replication invariant
and strongly monotone rules is described by some threshold function g which
assigns to every number of agents n a minimal number of agents g(n) needed
to form a decisive coalition. Formally, the super majority rule ϕg is defined
for every profile p in LN by:

ϕg = Lg(#N)−ma jority−relation(p).
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Here g is a so-called threshold function from N− {0} to N− {0} defined by
the following two conditions:

a) m−1
m < g(n)

n ≤ 1 for all n in N,
b) g(n)−1

n < g(kn)
kn ≤ g(n)

n for all k and n in N.

Clearly ϕg is well-defined as by condition a), g(#N) ≤ #N and further m−1
m ·

#N < g(#N) implies that Lg(#N)−ma jority−relation(p) is non-empty. See also Ex-
ample 3.2.4 and Proposition 3.6.1. By condition b), minimality of the thresh-
old is carried to different numbers of agents. So, ϕg assigns to a profile p in
LN , the linear extensions of all pairs of alternatives on which at least g(#N)
agents in N unanimously agree. The fraction g(n)

n can be seen as a minimal
fraction for a coalition to be decisive. That is g(k)−1

k < g(l)
l for all numbers k

and l in N. Indeed by condition b) on g it follows that g(k)−1
k < g(kl)

kl ≤ g(k)
k and

g(l)−1
l < g(kl)

kl ≤ g(l)
l for all such numbers k and l. Hence, g(k)−1

k < g(kl)
kl ≤ g(l)

l
and therewith g(k)−1

k < g(l)
l for all numbers k and l. It is therefore tempting

to define ϕg on the basis of β = inf{ g(n)
n : n ∈N}, and assigning to a profile p

in LN the convex set Lk−ma jority−relation(p) for k such that k
#N ≥ β. But also

assigning Ll−ma jority−relation(p) for l such that l
#N >β would yield a rule sat-

isfying the five conditions mentioned above. In case β is rational these two
definitions yield (slightly) different rules. Therefore to capture them both in
one formulation we chose for the description based on a function like g.

Clearly, by definition, ϕg is Pareto optimal and neutral. As L∩{p(i):i∈S} is
convex by Lemma 3.2.1 and the fact that intersection of convex sets is con-
vex, it follows that ϕg is convex valued. Next, we argue that ϕg is replication
invariant.

Lemma 3.3.1. ϕg is replication invariant.

Proof. Consider profile p in LN and its l th replication q = (p1, p2, ..., pl) in
LN1∪N2∪...∪Nl for some integer l ≥ 2. It is sufficient to prove that ϕg(p) =
ϕg(q). That is g(#N)-majority-relation(p) = g(l · #N)-majority-relation(q).
Since g(l·#N)

l·#N ≤ g(#N)
#N , it follows that g(#N)-majority-relation(p) ⊆ g(l · #N)-

majority-relation(q). Indeed if S = {i ∈ N : .a.b. = p(i)} for different alterna-
tives a and b such that #S ≥ g(#N) and therewith (a,b) ∈ g(#N)-majority-
relation(p), then we may identify S1 up to Sl in respectively N1 up to Nl

such that #S = #S j and .a.b.= q(i) for all j ∈ {1, ..., l} and all i ∈ S j. Therefore
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#{i ∈ N1 ∪ N2 ∪ ...∪ Nl : .a.b. = q(i)} ≥ l ·#S = l · g(#N) and (a,b) ∈ g(l ·#N)-
majority-relation(q). Further, because of g(#N)−1

#N < g(l·#N)
l·#N , g(l ·#N)-majority-

relation(q) ⊆ g(#N)-majority-relation(p). To see this let S̃ = {i ∈ N1 ∪ N2 ∪
...∪ Nl : .a.b. = q(i)} and #S̃ ≥ l · g(#N). Because q is the l th replica of p,
#S j = 1

l ·#S̃, for S j = S̃∩N j and j ∈ {1,2, ..., l}. So, #S j
#N ≥ g(l·#N)

l·#N > g(#N)−1
#N and

therewith #S j > g(#N)−1. Hence, #S j ≥ g(#N) which implies (a,b) ∈ g(#N)-
majority-relation(p).

Lemma 3.3.2. ϕg is strongly monotone.

Proof. Consider profile p in LN and any R in ϕg(p). Consider any update q
of p towards R such that for some agent j in N we have p(i) = q(i) for all i
in N− { j} and, q( j) is an elementary change of p( j) in pair ab with .a.b.= R,
.ab. = q( j) and .ba. = p( j). In view of Proposition 3.2.2 it is sufficient to
prove that R ∈ ϕg(q) and ϕg(q) ⊆ ϕg(p). Now let S ⊆ N with #S ≥ g(#N).
Because of R ∈ ϕg(p) it follows that ∩{p(i) : i ∈ S} ⊆ R and as .a.b. = R we
have (b,a) ∉∩{p(i) : i ∈ S}. So, by the choice of q

∩{p(i) : i ∈ S}⊆∩{q(i) : i ∈ S} and

∩{q(i) : i ∈ S}⊆ (∩{p(i) : i ∈ S}∪ {(a,b)}).

As .a.b.= R it follows that ∩{q(i) : i ∈ S}⊆ R. Because this holds for arbitrary
S, such that #S ≥ g(#N), we have that R ∈ϕg(q). To prove ϕg(q) ⊆ϕg(p) let
R ∈ ϕg(q). It is sufficient to prove R ∈ ϕg(p). As ∩{p(i) : i ∈ S} ⊆ ∩{q(i) :
i ∈ S} for all S ⊆ N, with #S ≥ g(#N), we have by definition of ϕg that R ∈
ϕg(p).

All of the above makes it clear that the rule ϕg is Pareto optimal, neutral,
convex valued, replication invariant and strongly monotone. Next, we prove
that only super majority rules satisfy these five conditions simultaneously.
In the following two lemmas we provide some insight about coalitional power
at profiles composed of two preferences which form an elementary change.
Actually these profiles resemble collective decision situations between two
alternatives, the ones on which the elementary change is based. In the fol-
lowing Lemmas we shall prove that on these profiles Pareto optimal, neu-
tral, replication invariant, convex valued and strongly monotone rules ϕ are
equal to a super majority rule ϕg for some function g. Thereafter, we show

56



3.3. Convex Valued Rules

in Theorem 3.3.1 that this result expands to all profiles hence that ϕ = ϕg.
Lemma 3.3.3 and 3.3.5 are based on the weak version of monotonicity and
are also used in the following Section 3.4. Therefore, for now let rule ϕ be
Pareto optimal, neutral, replication invariant, convex valued and monotone.

Lemma 3.3.3. Let R be an elementary change of R in pair ab. Let S ⊆ N1

and T ⊆ N2 be coalitions such that 1
2 ≤ #S

#N1
≤ #T

#N2
. Then:

(a) R ∈ϕ(RS,R
N1−S

) ( S is decisive; fraction #S
#N1

is decisive);

(b) ϕ(RS,R
N1−S

)= {R} implies ϕ(RT ,R
N2−T

)= {R} (if fraction #S
#N1

is strictly
decisive, then any greater fraction #T

#N2
is also strictly decisive)

(c) ϕ(RT ,R
N2−T

) = {R,R} implies ϕ(RS,R
N1−S

) = {R,R} (if fraction #T
#N2

is
not strictly decisive, then any smaller fraction #S

#N1
larger than or equal

to a half is not strictly decisive).

Proof. (a) Let 2 · #S ≥ #N1. Let U be a coalition in N1 such that N1 −S ⊆
U and #S = #U . Pareto optimality implies ϕ(RS,R

N1−S
) ∈ {{R}, {R}, {R,R}}.

Suppose R ∈ ϕ(RS,R
N1−S

). It is sufficient to prove that R ∈ ϕ(RS,R
N1−S

).
Considering the permutation τ on A such that τ(x) = x for all x ∈ A− {a,b},
τ(a) = b and τ(b) = a it follows that τR = R and τR = R. Now neutrality
and R ∈ ϕ(RS,R

N1−S
) implies R = τR ∈ ϕ(τRS,τR

N1−S
) = ϕ(R

S
,RN1−S). So,

monotonicity implies R ∈ϕ(R
N1−U

,RU ). Now, anonymity which is implied by
replication invariance, see Remark 3.2.1, yields R ∈ϕ(RS,R

N1−S
).

(b) Let ϕ(RS,R
N1−S

) = {R}. Consider N3 and V and W two subsets of
N3 such that #N3 = #N1 ·#N2, #V = #N2 ·#S and #W = #N1 ·#T. Replication
invariance now implies ϕ(RV ,R

N3−V
)= {R} and as #N2 ·#S ≤ #N1 ·#T mono-

tonicity requires R ∈ ϕ(RW ,R
N3−W

) and as R ∉ ϕ(RV ,R
N3−V

) monotonicity
and anonymity imply R ∉ϕ(RW ,R

N3−W
). So, ϕ(RW ,R

N3−W
) = {R} and repli-

cation invariance implies ϕ(RT ,R
N2−T

)= {R}.

(c) Let ϕ(RT ,R
N2−T

) = {R,R}. Then part (b) implies ϕ(RS,R
N1−S

) 6= {R}.
Hence Pareto optimality yields ϕ(RS,R

N1−S
)= {R} or ϕ(RS,R

N1−S
)= {R,R}.

Because of part (a) the latter part of this disjunction holds.
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Remark 3.3.1. Note that in the previous Lemma 3.3.3 (part(a)) only anonymity,
neutrality and monotonicity are needed. This means that under these condi-
tions ϕ(RS,R

N1−S
)= {R} implies #S > n

2 . 4

The following Lemma generalizes the decision power of minority coali-
tions as discussed at the beginning of this section.

Lemma 3.3.4. Let R be an elementary change of R in pair ab. Let S ⊆ N be
a coalition such that 1

2 ≤ #S
#N ≤ m−1

m . Then ϕ(RS,R
N−S

)=
{
R,R

}
.

Proof. First consider the special case where #N = m and #S = m− 1. So,
#S
#N = m−1

m . Consider a numbering of the alternatives such that:

a1a2a3a4...atat+1...am = R̃1 = R

a2a3a4...atat+1...ama1 = R̃2

a3a4...atat+1...ama1a2 = R̃3

...

ama1a2...atat+1...am−1 = R̃m.

Without loss of generality we may assume that a = at, b = at+1 and then
a1a2...at−1at+1at...am = R. Let p be the Condorcet profile defined for all
agents i in N by p(i)= R̃ i. Next we prove ϕ(p)= L.

Let τ be a permutation on A such that τ(at) = at+1modm for all t in
{1, ...,m}. Then τR̃ i = R̃ i+1modm. Neutrality and replication invariance now
imply that if R̂ ∈ϕ(p), then τtR̂ ∈ϕ(p) for all t ∈ {1, ...,m}. For a given s there
is a integer u such that as.... = τuR̂. So, ∩{τtR̂ : t ∈ {1, ...,m}} = ;. Convex
valuedness of ϕ and Proposition 3.2.1 now imply that ϕ(p)= L.

Now R = R̃1 ⊇ R̃ t ∩R for all t 6= i + 1 and R ⊇ R̃ i+1 ∩ R̃1. As ϕ(p) = L,
monotonicity implies ϕ((RS,R

N−S
) ⊇

{
R,R

}
. Pareto optimality now yields

that ϕ((RS,R
N−S

)=
{
R,R

}
. Finally, for any S, N such that 1

2 ≤ #S
#N ≤ m−1

m , by

Lemma 3.3.3, we have ϕ(RS,R
N−S

)= {R,R}.

Remark 3.3.2. Note that in the previous two Lemmas 3.3.3 and 3.3.4 only
monotonicity, neutrality and anonymity is needed and not the strong ver-
sion of monotonicity. This implies that ϕ(RS,R

N−S
) =

{
R,R

}
for all pref-

erences R and R which form an elementary change and all S such that
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1
m ·#N ≤ #S ≤ m−1

m ·#N and for all rules ϕ that are Pareto optimal, neutral,
anonymous, convex valued rules and monotone. As it is easy to check that
many well-known rules satisfy the former four and do not satisfy this result
on elementary changes, we may conclude that many well-known rules are not
monotone. For instance, any score rule is not monotone. Indeed, an elemen-
tary change involving different scores implies that the absolute majorities,
instead of m−1

m majorities, are decisive at such profiles. 4

Assume now, in addition, that ϕ is strongly monotone. In the sequel, we
prove that ϕ is in fact a super majority rule. For such a rule ϕ, we define
two logically different sets Ball and Bsome. In the latter we find those pairs
of numbers (k,n) such that for some set of agents N, with #N = n and some
coalition S ⊆ N, with #S = k, and some pair of linear orders R and R forming
a elementary change, such that both coalitions S and N −S are decisive at
profile (RS,R

N−S
), that is ϕ(RS,R

N−S
)= {R,R}. Hence the outcome at those

profiles equals the Pareto set of the profile. In Ball we find all pairs of
numbers (k,n) for which this holds for all appropriate S, N, R and R.

Ball =


(k,n) : where n−k ≤ k ≤ n−1 and ϕ(RS,R

N−S
)= {R,R}

for all R,R forming an elementary change
and all S ⊆ N such that #S = k and #N = n }


Bsome =


(k,n) : where n−k ≤ k ≤ n−1 and ϕ(RS,R

N−S
)= {R,R}

for some R,R forming an elementary change
and some S ⊆ N such that #S = k and #N = n }


The two foregoing Lemmas imply that {(k,n) : 1

2 ≤ k
n ≤ m−1

m } ⊆ Ball and logi-
cally we have Ball ⊆Bsome. We shall prove that the latter subset relation is
in fact an equation. Thereafter we refer to these sets by B.

The following Lemma shows that for all pairs of sets of agents (S, N)
such that S ⊂ N and (#S,#N) ∈ Ball and all linear orders R and R, not
necessarily forming an elementary change, rule ϕ assigns the Pareto set to
profile (RS,R

N−S
).

Lemma 3.3.5. Let S ⊆ N be such that (#S,#N) ∈ Ball . Let R and R be two
linear orders. Then ϕ(RS,R

N−S
)= LR∩R .
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Proof. By induction on δ(R,R).
Basis If δ(R,R)= 0, then it follows by Pareto optimality. Let δ(R,R)= 1.

As (#S,#N) ∈Ball it follows by definition that ϕ(RS,R
N−S

)= {R,R}= LR∩R .
Induction Step Let δ(R,R) = t ≥ 2. Pareto optimality implies that

ϕ(RS,R
N−S

) ⊆ LR∩R . Let R̃ ∈ LR∩R − {R,R}. It follows that δ(R, R̃) < t and

δ(R, R̃) < t. So, by induction LR∩R̃ = ϕ(RS, R̃N−S) and LR∩R̃ = ϕ(R̃S,R
N−S

).

If R ∈ ϕ(RS,R
N−S

), then by strong monotonicity R̃ ∈ LR∩R̃ = ϕ(RS, R̃N−S) ⊆
ϕ(RS,R

N−S
). If R ∈ ϕ(RS,R

N−S
), then by strong monotonicity R̃ ∈ LR∩R̃ =

ϕ(R̃S,R
N−S

) ⊆ϕ(RS,R
N−S

). If R̃ ∈ ϕ(RS,R
N−S

), then by strong monotonic-
ity R ∈ LR∩R̃ = ϕ(RS, R̃N−S) ⊆ ϕ(RS,R

N−S
) and R ∈ LR∩R̃ = ϕ(R̃S,R

N−S
) ⊆

ϕ(RS,R
N−S

).This then yields by convexity that LR∩R ⊆ϕ(RS,R
N−S

). Hence

if R̃ ∈ ϕ(RS,R
N−S

), then LR∩R = ϕ(RS,R
N−S

). Since R ∈ ϕ(RS,R
N−S

), R̃ ∈
ϕ(RS,R

N−S
), or R̃ ∈ ϕ(RS,R

N−S
) for some R̃ ∈ LR∩R−{R,R}, the above yields

that ϕ(RS,R
N−S

)= LR∩R .

Next lemma is about profiles polarized in elementary changes. We show
that whenever some coalition of size k is not powerful enough to impose its
preference uniquely at some profile of elementary changes, then any coali-
tion of the same size is also not powerful enough to impose its preference
uniquely at any profile of elementary changes. Since Ball ⊆ Bsome, this
boils down to say that Ball =Bsome.

Lemma 3.3.6. Let S be a subset of N such that (#S,#N) ∈ Bsome. Then
(#S,#N) ∈Ball .

Proof. Let (#S,#N) ∈Bsome such that #N−#S ≤ #S ≤ #N−1. Let R be an ele-
mentary change of R in pair ab at position l, such that ϕ(RS,R

N−S
)= {R,R}.

It is sufficient to prove that (#S,#N) ∈Ball . If #S
#N ≤ m−1

m , then this holds by
Lemma 3.3.4. Therefore we may assume that #S

#N > m−1
m . So, there are T ⊆ S

be such that #N −#T ≤ #T ≤ m−1
m ·#N and by Lemma 3.3.4 (#T,#N) ∈ Ball .

Note that, by neutrality, ϕ(RS
l ,R

N−S
l ) = {Rl ,R l} for all elementary changes

in position l. First we will show that this also extends to all elementary
changes in position l+1.

Let .abc. = R and .bac. = R. Consider .abc. = R = R1, .acb. = R2, .cab. =
R3, .cba. = R4, .bca. = R5 and .bac. = R6 = R. It is sufficient to prove that
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ϕ(RS
1 ,RN−S

2 )= {R1,R2} since R1 and R2 form an elementary change in posi-
tion l+1.

Since (#T,#N) ∈ Ball , by Lemma 3.3.5, ϕ(RN−T
5 ,RT

2 ) = {R1,R2, ...,R6}.
From this, monotonicity implies that {R1,R2} ⊆ ϕ(RN−S

6 ,RS−T
1 ,RT

2 ). Since
R1 ∈ϕ(RN−S

6 ,RS−T
1 ,RT

2 ), by strong monotonicity we have that ϕ(RN−S
6 ,RS

1 )⊆
ϕ(RN−S

6 ,RS−T
1 ,RT

2 ). By assumption ϕ(RN−S
6 ,RS

1 ) = {R6,R1}, and therewith
{R1,R2,R6} ⊆ ϕ(RN−S

6 ,RS−T
1 ,RT

2 ). So, by Pareto optimality {R1,R2,R6} =
ϕ(RN−S

6 ,RS−T
1 ,RT

2 ). Since (#T,#N) ∈ Ball , by Lemma 3.3.5 we have that
ϕ(RN−T

6 ,RT
3 )= {R1,R2, ...,R6}. So, by monotonicity we have that {R1,R2,R3}⊆

ϕ(RN−S
6 ,RS−T

1 ,RT
3 ). As R2 ∈ ϕ(RN−S

6 ,RS−T
1 ,RT

3 ), strong monotonicity im-
plies ϕ(RN−S

6 ,RS−T
1 ,RT

3 )⊇ϕ(RN−S
6 ,RS−T

1 ,RT
2 )= {R1,R2,R6}. Hence, we have

that {R1,R2,R3,R6} ⊆ ϕ(RN−S
6 ,RS−T

1 ,RT
3 ) and convex valuedness now im-

plies ϕ(RN−S
6 ,RS−T

1 ,RT
3 ) = {R1,R2, ...,R6}. By employing the permutation

τ on A such that τ(x) = x for all x ∈ A − {a,b, c}, τ(a) = b, τ(b) = c and
τ(c) = a neutrality yields ϕ(RN−S

4 ,RS−T
5 ,RT

1 ) = {R1,R2, ...,R6}. Monotonic-
ity and Pareto optimality finally yields that ϕ(RS

1 ,RN−S
2 ) = {R1,R2}. Then,

by neutrality, for all elementary changes (RS
l+1,R

N−S
l+1 ) in position l +1, we

have that ϕ(RS
l+1,R

N−S
l+1 )= {Rl+1,R l+1}.

By a similar approach it can be shown that for elementary changes R′

and R
′

in position l −1 we have ϕ(R′S,R
′N−S

) = {R′,R
′
}. Therefore we may

conclude that (#S,#N) ∈Ball .

Remark 3.3.3. Now let B = Ball = Bsome. Consider the function f from
N− {0} to N− {0} for an arbitrary number n by f (n) = min{#S : S ⊆ N, with
#N = n, and (#S,#N) ∉B}. By definition and as {(k,n) : 1

2 ≤ k
n ≤ m−1

m }⊆Ball =
B, it follows that m−1

m < f (n)
n ≤ 1 for all n in N (first condition of the threshold

function). By definition of f and since ϕ is replication invariant it follows
that k·( f (n)−1)< f (kn)≤ k· f (n). Therefore it follows that f (n)−1

n < f (kn)
kn ≤ f (n)

n
(second condition of the threshold function). Hence f is indeed a threshold
function. 4

The following Theorem shows that ϕ equals super majority rule ϕg.

Theorem 3.3.1. A rule ϕ is Pareto optimal, neutral, replication invariant,
convex valued and strongly monotone if and only if ϕ=ϕg for some threshold
function g.
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Proof. (If part) Follows from the definition of ϕg and Lemmas 3.3.1 and 3.3.2.
(Only if-part) Let ϕ be Pareto optimal, neutral, replication invariant,

convex valued and strongly monotone. By Lemmas above and Remark 3.3.3,
we may find such a threshold function g such that for all elementary changes
R and R and all coalitions T ⊆ N we have that ϕg(RT ,R

N−T
)=ϕ(RT ,R

N−T
).

Let p be any profile in LN , it remains to prove that ϕ(p)=ϕg(p).
To show ϕ(p) ⊆ ϕg(p), let S ⊆ N be any coalition such that #S ≥ g(#N)

and .a.b. = p(i) for some alternatives a and b and for all i in S. It is suffi-
cient to prove that ϕ(p) ⊆ Lab. To the contrary let R̂ ∈ ϕ(p)−Lab ⊆ Lba. We
distinguish two cases.

Case (a and b are consecutive in R̂): Let .ba. = R̂. Then order R′ in
Lab being the elementary change of R̂ in ba, is between R̂ and p(i) for
all i ∈ S. Hence, monotonicity would yield that R̂ ∈ ϕ((R′)S, R̂N−S). So,
ϕ((R′)S, R̂N−S) 6= ϕg((R′)S, R̂N−S) = {R′} which cannot be as R′ and R̂ form
an elementary change in ba.

Case (a and b are not consecutive in R̂): Let c1, c2...cl be alternatives
different from a and b such that .bc1c2...cla.= R̂. We may take R̂ such that
l is minimal. For t ∈ {1,2, ..., l} let R̂ t be the linear order defined by R̂ t|A−{ct} =
R̂|A−{ct} and .ctb.a.= R̂ t. Furthermore, let R̂0 be the linear order defined by
R̂0|A−{cl } = R̂|A−{cl } and .bc1c2...cl−1acl . = R̂0.Take any i ∈ S and hence p(i)
in Lab. We prove that for each p (i), there is a t ∈ {0,1,2, ..., l} such that R̂ t

is between p(i) and R̂. Take s such that (cs, cu) ∈ p(i) for all u ∈ {1,2, ..., l}.
Note that we either have .cs.a. = p(i) or .a.cs. = p(i). Assume .cs.a. = p(i).
Hence, .cs.a.b. = p(i). To prove that R̂s is between p(i) and R̂ let (x, y) ∈
R̂s− R̂. It is sufficient to show that (x, y) ∈ p(i). By construction of R̂s and R̂,
we have that x = cs and either y = b or y = cu for some 0 < u < s. Because
of .cs.a.b. = p(i) and (cs, cu) ∈ p(i) for all u ∈ {1,2, ..., l}, and by the choice of
s,we have that (x, y) ∈ p(i). Hence for the case .cs.a. = p(i), we have that R̂ t

is between p(i) and R̂ for t = s. Now assume .a.cs.= p(i). So, by construction
.a.ct.= p(i) for all t ∈ {1,2, ..., l}. Then R̂0 ⊆ R̂∪ {(a, cl)}⊆ R̂∪ p(i). Therefore,
R̂0 is between R̂ and p(i). Hence for the case .a.cs. = p(i), R̂ t is between
p(i) and R̂ for t = 0. Therefore we may take si ∈ {0,1, ..., l} such that R̂si is
between p(i) and R̂ for all i ∈ S.

Next take St = {i ∈ S : t = si}, i.e., the set of individuals i ∈ S which share
R̂ t as the preference between R̂ and their preference p (i). Let Sv be such
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that #Sv ≥ #St for all t ∈ {0,1, ..., l}. By the assumption on the minimal-
ity of l, we have that R̂v ∉ ϕ(p) and as R̂v is between R̂ and p(i) for all
i ∈ Sv it follows by strong monotonicity that R̂v ∉ ϕ(( R̂v)Sv , R̂N−Sv ). But by
construction of Sv we have that #Sv ≥ 1

l+1 · m−1
m ·#N ≥ 1

m−1 · m−1
m ·#N ≥ #N

m .
Therefore, #(N − Sv) ≤ m−1

m · #N. So, as {(k,n) : 1
2 ≤ k

n ≤ m−1
m } ⊆ B it fol-

lows that #(N −Sv) < g(#N) and therewith that the contradiction R̂v ∈ ϕ((
R̂v)Sv , R̂N−Sv ).

To show ϕ(p) ⊇ ϕg(p), let R ∈ ϕg(p) and suppose to the contrary that
R ∉ ϕ(p). As by the previous part ϕ(p) ⊆ ϕg(p) and convex valuedness we
may assume that there exist R ∈ ϕ(p) ⊆ ϕg(p) such that R and R form an
elementary change in ab. Furthermore, without loss of generality, let .ab.=
R and .ba. = R and let S = {i ∈ N : p(i) ∈ Lab}. Strong monotonicity now
implies that R,R ∈ ϕg(RS,R

N−S
) ⊆ ϕg(p) and R ∈ ϕ(RS,R

N−S
) ⊆ ϕ(p) and

R ∉ ϕ(RS,R
N−S

). This however contradicts ϕg(RT ,R
N−T

) = ϕ(RT ,R
N−T

)
for all coalitions T ⊆ N. This contradiction completes the proof.

3.4 Dropping Convex Valuedness

Although super majority rules satisfy several nice conditions, they are not
extremely resolute in the sense that they often assign a lot of outcomes to
profiles due to lack of coalitional power. This is essentially caused by the
lower bound n · m−1

m for k, a lower bound which is needed in order to avoid
cyclical decisions. The discussion at the beginning of the previous section
involving the Condorcet profile on three alternatives makes clear that an in-
crease on the resolution of rules can most likely be achieved by dropping the
convex valuedness condition. In general, we did not succeed in describing
the class of all Pareto optimal, neutral, replication invariant and monotone
rules. Therefore we fixed our attention to the well-known Kemeny rule be-
longing to this class. It can be seen as a natural application of the Kemeny
distance, introduced by Kemeny and Snell (1962), to social choice theory.
This rule assigns those ranking(s) to a profile which minimizes the sum of
distances to each of the individual preference in that profile.

Definition 3.4.1. Given a profile p ∈ LN , a preference relation R is a Kemeny
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ranking for p, if for all R′ ∈ L, we have:∑
i∈N

δ(R, p(i))≤ ∑
i∈N

δ(R′, p(i)).

A rule which assigns all Kemeny rankings to each profile is called the
Kemeny rule.

Definition 3.4.2. Kemeny rule, denoted by ϕK emeny, assigns to a profile p ∈
LN :

ϕK emeny (p)= {R ∈ L : R is a Kemeny ranking for p} .

We characterize the Kemeny rule by Pareto optimality, neutrality, pair-
wiseness, consistency and monotonicity. For that we first prove that the
Kemeny rule satisfies these conditions.

Lemma 3.4.1. ϕK emeny is Pareto optimal, neutral, pairwise, and consistent.

To show Pareto optimality, take any profile p ∈ LN such that for some
a,b ∈ A and for all i ∈ N, p (i) = .a.b.. Consider the permutation σab on A
such that σab (a) = b, σab (b) = a, and σab (c) = c for all c ∈ A − {a,b}. Then
by Proposition 3.6.2 in the appendix, for any i ∈ N and for any linear order
Rab ∈ Lab and Rba =σabRab, we have that:

δ(p (i) ,Rab)< δ(p (i) ,Rba).

Hence, ∑
i∈N

δ(p (i) ,Rab)< ∑
i∈N

δ(p (i) ,Rba).

Therefore, ϕK emeny (p)∩Lba =; which implies ϕK emeny (p) ⊆ Lab and there-
with it is Pareto optimal. It satisfies neutrality by definition and pairwise-
ness because M(p)= M(q) implies∑

i∈N
δ(R, p(i)) = ∑

(a,b)∈A×A

∑
i∈N

(a,b) ∈ p(i)−R

= ∑
(a,b)∈A×A−R

∑
i∈N

(a,b) ∈ p(i)

= ∑
(a,b)∈A×A−R

M(p)(a,b)

= ∑
(a,b)∈A×A−R

M(q)(a,b)

= ∑
i∈N

δ(R, q(i)).
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Hence, in that case
∑

i∈N δ(R, p(i)) = ∑
i∈N δ(R, q(i)) for all profiles p and q

and for all linear orders R ∈ L. Consistency follows because for R ∈ L and
profiles p ∈ LN1 and q ∈ LN2 , where N1 and N2 are two disjoint finite and
non-empty sets of agents,

δ(R, (p, q))= δ(R, p)+δ(R, q).

The following lemma shows that the Kemeny rule is (strongly) monotone.

Lemma 3.4.2. ϕK emeny is strongly monotone.

Proof. Consider profile p in LN , and any R ∈ ϕK emeny(p). In the view of
Proposition 3.2.2 we can consider any update q of p towards R such that
p(i)= q(i) for all i in N−{ j} and for some agent j in N, q( j) is an elementary
change of p( j) in pair ab with .a.b. = R, .ab. = q( j) and .ba. = p( j). It is
sufficient to prove that R ∈ ϕK emeny(q) and ϕK emeny (q) ⊆ ϕK emeny (p). First
we prove R ∈ ϕK emeny(q). To the contrary suppose there exist R′ ∈ L such
that

∑
i∈N

δ(R, q(i))> ∑
i∈N

δ(R′, q(i)).

Hence,

∑
i∈N

δ(R, q(i))≥ ∑
i∈N

δ(R′, q(i))+1.

Since R is a Kemeny ranking for p, we have R ∈ϕK emeny(p) therefore,

∑
i∈N

δ(R, p(i))≤ ∑
i∈N

δ(R′, p(i)).
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But then we have

δ(R′, p( j))+ ∑
i∈N−{ j}

δ(R′, p(i)) = ∑
i∈N

δ(R′, p(i))

≥ ∑
i∈N

δ(R, p(i))

= δ(R, p( j))+ ∑
i∈N−{ j}

δ(R, p(i))

= δ(R, q( j))+1+ ∑
i∈N−{ j}

δ(R, q(i))

= ∑
i∈N

δ(R, q(i))+1

≥ ∑
i∈N

δ(R′, q(i))+2

= δ(R′, q( j))+ ∑
i∈N−{ j}

δ(R′, q(i))+2

= δ(R′, q( j))+ ∑
i∈N−{ j}

δ(R′, p(i))+2.

Hence,

δ(R′, p( j)) ≥ δ(R′, q( j))+2

= δ(R′, q( j))+δ(q( j), p( j))+1,

which, by the triangle inequality yields the contradiction

δ(R′, p( j))≥ δ(R′, p( j))+1.

This completes the proof of R ∈ ϕK emeny(q). Next we show ϕK emeny (q) ⊆
ϕK emeny (p). To the contrary, suppose there exist R′ ∈ϕK emeny(q)−ϕK emeny(p).
Since R ∈ϕK emeny(p) and R′ ∉ϕK emeny(p) we have∑

i∈N
δ(R, p(i))+1≤ ∑

i∈N
δ(R′, p(i)). (1)

Now R ∈ϕK emeny(q) and R′ ∈ϕK emeny(q) imply∑
i∈N

δ(R, q(i))= ∑
i∈N

δ(R′, q(i)).

Hence,
δ(R, q( j))+ ∑

i∈N
i 6= j

δ(R, p(i))= δ(R′, q( j))+ ∑
i∈N
i 6= j

δ(R′, p(i)).
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So,

δ(R, p( j))−1+ ∑
i∈N
i 6= j

δ(R, p(i))= δ(R′, q( j))+ ∑
i∈N
i 6= j

δ(R′, p(i)).

That is ∑
i∈N

δ(R, p(i))−1= ∑
i∈N
i 6= j

δ(R′, p(i))+δ(R′, q( j)).

Using inequality (1) this yields

∑
i∈N

δ(R′, p(i))−2≥ ∑
i∈N
i 6= j

δ(R′, p(i))+δ(R′, q( j)).

Hence,

δ(R′, p( j))−2≥ δ(R′, q( j)).

So,

δ(R′, p( j)) > δ(R′, q( j))+1

= δ(R′, q( j))+δ(p( j), q( j))

≥ δ(R′, p( j)).

This contradiction ends the proof

In order to prove that Kemeny rule is the only rule satisfying these five
conditions simultaneously, let ϕ be a rule that is Pareto optimal, neutral,
pairwise, consistent, and monotone. The following five Lemmas prepare the
proof of this characterization.

First, we prove that equality holds between ϕ and ϕkemeny for maximal
conflicts. These are profiles p at which two equal groups of agents have
totally opposing preferences over all pairs of alternatives. So, there are 2k
agents and a preference R in L such that k agents have preference p(i) = R
and the remaining k agents have preference p(i) = −R, where −R = {(b,a) :
(a,b) ∈ R}.

Lemma 3.4.3. Let p be a maximal conflict. Then ϕ(p)= L= ϕK emeny(p).
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Proof. It is straightforward to show that ϕK emeny = L. For alternatives a
and b consider the permutation σab on A such that σab(a) = b, σab(b) =
a and σab(c) = c for all c ∈ A − {a,b}. Neutrality and pairwiseness imply
that σab ◦ ϕ(p) = ϕ(σab p) = ϕ(p). This means that ϕ(p) is closed under any
permutation of A which implies that ϕ(p)= L.

Next, we prove that the equality of ϕ and ϕK emeny extends to almost
maximal conflicts. These are profiles p at which equal groups of agents
have totally opposing preferences over all but one pair of alternatives. So,
there are 2k agents, two alternatives a and b and a preference R in L such
that ab... = R, meaning that a is best and b is second best at R, k agents
have preference p(i)= R and the remaining k agents have preference p(i)=
σab(−R). Let us denote these profiles by π(k,ab).

Lemma 3.4.4. Let p be an almost maximal conflict, say p = π(k,ab). Then
ϕ(p)= Lab =ϕK emeny(p).

Proof. It is straightforward to show that Lab = ϕK emeny(p). Pareto optimal-
ity implies that ϕ(p) ⊆ Lab. In order to prove the reverse inclusion consider
R in Lab. Let q be the maximal conflict on the same set of 2k agents such
that the agents at p, which have preference R, have preference R at q and
those having preference σab(−R) at p have preference −R at q. Monotonic-
ity and Lemma 3.4.3 imply that R is in ϕ(p). As R is arbitrarily chosen in
Lab, it follows that Lab ⊆ϕ(p). So, Lab =ϕ(p).

In the following lemma we show that ϕ and ϕK emeny are strongly pair-
wise, i.e., the outcome only depends on the net pairwise comparisons of al-
ternatives. For an arbitrary profile p let D(p) denote the m×m difference
matrix defined for every cell (a,b) by

D(p)ab =max{0, M(p)ab −M(p)ba}.

It is easy to see that for any profile p we have ϕK emeny(p)= {R :λ(p,R)≤
λ(p,R′) for all R′ ∈ L} where λ(p,R)=∑

ab∉R D(p)ab. Indeed for all linear or-
ders R ∈ L, δ(p,R) = ∑

ab∉R M(p)ab = ∑
ab∉R D(p)ab +min{M(p)ab, M(p)ba} =∑

ab∉R D(p)ab +
∑

ab∉R min{M(p)ab, M(p)ba}, where the former term equals
λ(p,R) and the latter term is constant.
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Consider two profiles p in LN and p′ in LN ′
such that #N = #N ′, N and N ′

are disjoint and for all i ∈ N there is a unique i′ ∈ N ′ such that p(i) = p′(i′).
Since M(p) = M(p′) it follows that ϕ(p) =ϕ(p′). So, consistency implies that
ϕ(p)=ϕ(p′)=ϕ(p, p′). Therefore with a little abuse of notation we will write
profile (p, p) instead of (p, p′).

Lemma 3.4.5. Let p and q be profiles such that D(p)= kD(q) for some inte-
ger k ≥ 1. Then ϕ(p)=ϕ(q) and ϕK emeny(p)=ϕK emeny(q).

Proof. We only prove ϕ(p) = ϕ(q). The proof of the second equation fol-
lows similarly from the properties: Pareto optimality, neutrality, consistency,
monotonicity, and pairwiseness. Joining almost maximal conflict profiles
for each pair (a,b) with D (p)ab > 0 and possibly adding maximal conflicts
yields a profile r such that M(r) = 2M(p)+ 2sÊ = 2kM(q)+ 2tÊ for some
positive integers s and t, where Ê is the m×m matrix with all cells equal
to one except Êaa = 0 for all a5. Replicating p once and q for 2k times
yields profiles p′ = (p, p) and q′ = (q, q, ..., q) such that M(r) = M(p′)+2sÊ
and M(r) = M(q′)+2tÊ. Note that maximal conflicts have the pairwise ma-
trix equal to an even multiple of Ê. Therefore pairwiseness, consistency and
Lemma 3.4.3 imply that ϕ(p′) = ϕ(r) and ϕ(q′) = ϕ(r). Furthermore consis-
tency implies ϕ(p′)=ϕ(p) and ϕ(q′)=ϕ(q). So, the desired result ϕ(p)=ϕ(q)
follows.

Remark 3.4.1. Note that Lemmas 3.4.3 and 3.4.4 follow immediately from
the Condorcet condition as stated in Young and Levenglick (1978). This con-
dition in our notation means that for all profiles p and for all alternatives a
such that D(p)ax ≥ 0 for all alternatives x different from a (hence alternative
a is a weak Condorcet-winner at p):

1. If D(p)ay = 0 for some alternative y different from a, then R ∈ ϕ(p) ⇔
R′ ∈ϕ(p) for all R and R′ in L forming an elementary change in ay.

2. If D(p)ay > 0 for some alternative y different from a, then R ∉ ϕ(p) for
R ∈ L with .ya.= R.

5Note that Ê can be considered as the pairwise matrix of any maximal conflict. Further-
more, for each unit of D (p)ab, one almost maximal conflict, π (1,ab) is added to build r. As
M (π (1,ab))ab = 2 we have M(r)= 2M(p)+2sÊ.
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Although under different assumptions, Lemma 3.4.5 is also deduced as
an intermediate result in Young and Levenglick (1978, Lemma 1). 4

The following step is to prove that ϕ and ϕK emeny coincide on profiles
where the pairwise majority relation is non cyclic. Roughly speaking, this
boils down to proving that ϕ is Condorcet like.

Lemma 3.4.6. Let p be a profile in LN and a1, a2,..., am a numbering of the
alternatives such that for all 1≤ i < j ≤ m

M(p)aia j ≥ M(p)a jai .

Then ϕK emeny(p) = ∩{Laia j : 1 ≤ i < j ≤ m such that M(p)aia j > M(p)a jai } =
ϕ(p).

Proof. Note that the intersection at the right hand side is not empty so the
right equality follows because of Lemma 3.4.4, Lemma 3.4.5 and consistency.
Now ϕK emeny is consistent. This and Lemma 3.4.4 and Lemma 3.4.5 yields
the left equality.

Lemma 3.4.7. ϕ is strongly monotone. Moreover, for all non-empty finite
subsets N of N , all agents i in N, all alternatives a and b in A and all
profiles p and q in LN , such that Lab∩ ϕ(p) 6= ;, (b,a) ∈ p(i), (a,b) ∈ q(i),
δ(p(i), q(i))= 1 and p|N−{i} = q|N−{i},

ϕ(q)= Lab ∩ϕ(p).

Proof. Let N, i, a, b, p and q as in the formulation of the Lemma. Without
loss of generalization suppose that {1,2}∩N =;. Consider r ∈ L{1,2} such that
r =π(1,ab). Lemma 3.4.4 yields that ϕ(r)= Lab. Also we have D(q)= D(p, r).
So, as Lab∩ ϕ(p) 6= ; Lemma 3.4.5 and consistency imply ϕ(q) = ϕ(p, r) =
ϕ(r)∩ϕ(p)= Lab ∩ϕ(p).

Now we are able to prove the characterization of Kemeny rule.

Theorem 3.4.1. The Kemeny rule is the only correspondence which is simul-
taneously Pareto optimal, neutral, pairwise, consistent and monotone.
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Proof. (If part) Lemma 3.4.1 and 3.4.2 show that the Kemeny rule satisfies
these five conditions.

(Only if part) Let ϕ be a Pareto optimal, neutral, pairwise, consistent and
monotone rule. Let p be a profile. For λ(p,R) = ∑

ab∉R D(p)ab, let λ(p,L) =
min{λ(p,R) : R ∈ L}. In the sequel we will prove by induction on λ(p,L) that
ϕ(p) = ϕK emeny(p). In view of Lemma 3.4.5 we may assume that p consists
of almost maximal conflicts only.

(Induction basis) Let λ(p,L) = 0. In that case there exist linear orders R
such that D(p)ab = 0 for all ab ∉ R. So there are no pairwise majority cycles
at p. Hence, by Lemma 3.4.6 ϕ(p)=ϕK emeny(p).

(Induction step) Let λ(p,L) = k+1. Define the set of unanimous pairs at
p by U(p)= {(x, y) ∈ A× A : .x.y.= p(i) for all agents i ∈ N}.

Claim Let (a,b) ∉U(p) and Lab∩ϕ(p) 6= ; and Lab∩ϕK emeny(p) 6= ;. Then
Lab ∩ϕ(p)= Lab ∩ϕK emeny(p).

Proof of the claim Let RK ∈ Lab ∩ϕK emeny(p) and R ∈ Lab ∩ϕ(p). Then
it follows by the definition of ϕK emeny that λ(p,RK ) = k+1. As p consists of
almost maximal conflicts we may assume that there exists an update say q
of p towards R and RK such that:

q(i) = (p(i)− {(b,a)})∪ {(a,b)} for some i ∈ N

q( j) = p( j) for all j ∈ N − {i}.

Lemma 3.4.7 implies that Lab ∩ϕK emeny(p) = ϕK emeny(q) and Lab ∩ϕ(p) =
ϕ(q). As λ(q,RK ) = k, the induction hypothesis implies ϕK emeny(q) = ϕ(q).
Hence, Lab ∩ϕ(p)= Lab ∩ϕK emeny(p).

End of proof of claim
Next we distinguish two cases:
Case: #ϕ(p) ≥ 2 and #ϕK emeny(p) ≥ 2. Since #ϕ(p) ≥ 2 there are alter-

natives a and b such that (a,b) ∉ U(p) and Lab ∩ϕ(p) 6= ;, Lba ∩ϕ(p) 6= ;
and Lab ∩ϕK emeny(p) 6= ;. Hence, by the previous claim Lab ∩ϕ(p) = Lab ∩
ϕK emeny(p). In case Lba ∩ϕK emeny(p) 6= ; the previous claim implies that
also Lba ∩ϕ(p) = Lba ∩ϕK emeny(p). So, then ϕ(p) = ϕK emeny(p). If Lba ∩
ϕK emeny(p)=;, then ϕK emeny(p)⊆ϕ(p). So, #ϕ(p)≥ 2 implies ϕK emeny(p)⊆
ϕ(p). Similarly #ϕK emeny(p) ≥ 2 implies ϕK emeny(p) ⊇ ϕ(p). Hence, in this
case ϕK emeny(p)=ϕ(p).
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Case: There is a renaming ϕ1 and ϕ2 of ϕ and ϕK emeny and there are
linear orders R1and R2 such that ϕ1(p)= {R1} and R2 ∈ϕ2(p). Note that we
are done if ϕ2(p)= {R1}. So, therefore to the contrary suppose that R2 6= R1.
We end the proof by showing that this assumption leads to a contradiction.

Pareto optimality implies that U(p) ⊆ R1 ∩R2. Next we prove that R1 ∩
R2 ⊆U(p). Suppose to the contrary that (R1∩R2)−U(p) 6= ; that is for some
pair of alternatives (a,b) ∈ (R1 ∩ R2)−U(p). Then, by the previous claim,
it follows that Lab ∩ϕ1(p) = Lab ∩ϕ2(p). Since (a,b) ∈ R2 and (a,b) ∈ R1,
we have that R2 ∈ Lab ∩ϕ2(p) = Lab ∩ϕ1(p) = {R1}. This would yield the
contradiction R2 = R1. Therefore, we may assume that (R1 ∩R2)−U(p) =;
and as R1 ∩R2 ⊆U(p) we have (R1 ∩R2)=U(p).

For numbers i and j such that {i, j} = {1,2} and different alternatives x
and y we call the ordered pair (x, y) “free” at R i if .xy. = R i and .y.x. = R j.
So, x and y are consecutively ordered x above y at R i and reversely ordered
y above x at R j. Therefore the pair (x, y) is in U(p). Furthermore, let Nxy =
{i ∈ N : .x.y. = p(i)} and let nxy = #Nxy. Because of R1 6= R2 we may choose
alternatives a and b such that (a,b) is free at R1 and for all (x, y) free at R1,
we either have x = a or .a.x. = R1. That is (a,b) is the highest ordered free
pair in R1. As (a,b) is free at R1, we have .b.a. = R2. Since .b.a. = R2 and
.a.b. = R1, we may take (y, x) free in R2, such that b = y or .b.y. = R2, x = a
or .x.a. = R2 and for all free (c,d) in R2 if d 6= x, then either .d.x. = R2 or
.a.d. = R2. So, (y, x) is the lowest free pair in R2 just above a in R2. Where
we may find this pair ordered between b and a in R2.

Now if y = a or .y.a.b. = R1, then there is a free pair between x and y in
R1 and as .x.y. = R1 this violates the assumption that (a,b) is the highest
ordered free pair at R1. So, b = y or .b.y. = R1, that is b is weakly preferred
to y at R1. If x = b or .ab.x. = R1, then there is a free pair between x and a
at R2 contradicting that (y, x) is the lowest free pair in R j just before a in
R j. Therefore x = a or .x.ab. = R1, which means that x is weakly preferred
to a at R1. Therefore at R1, we have: x is weakly preferred to a, and a
strictly to b, and b weakly to y, whereas, by the choice of (y, x), at R2, we
have: b is weakly preferred to y, and y strictly to x, and x weakly to a. Now
since U(p) = (R1 ∩R2), we have either b = y or Nby = N and either x = a
or Nxa = N. Therefore Nab ⊆ Nay ⊆ Nxy and Nyx ⊆ Nbx ⊆ Nba. Consider
R1

ba = (R1 − {(a,b)})∪ {(b,a)} and profile q such that q(i) = R1 if i ∈ Nab and
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q(i) = R1
ba if i ∈ Nba. Now strong monotonicity which follows from Lemma

3.4.7, the fact that q(i) is between p(i) and R1 for all i ∈ N and ϕ1(p)= {R1}
yield that ϕ1(q) = {R1}. Hence, by Remark 3.3.1, it follows that nab > nba.
Similarly by considering a preference R2

xy = (R2 − {(y, x)})∪ {(x, y)} it follows
that nyx ≥ nxy. But then Nab ⊆ Nay ⊆ Nxy, nyx ≥ nxy and Nyx ⊆ Nbx ⊆ Nba

imply nab ≤ nay ≤ nxy ≤ nyx ≤ nbx ≤ nba. Hence, we have the contradiction
nab ≤ nba, which ends the proof.

3.5 Discussion and Further Research

Update monotonicity, as also discussed in the introduction, is essentially
a monotonicity condition for rules. We investigated preference correspon-
dences and their reaction to an increase in support for a collective prefer-
ence. Roughly speaking, we have analyzed monotone rules both in case the
rules are convex valued and in case they are not. In the former, our finding
is a class of rules that do not involve well-known convex valued rules such
as scoring rules. In the latter, we end up with a new characterization of the
Kemeny rule based on this monotonicity condition.

In following subsection we show, respectively, the independence of our
conditions, some logical relations with the conditions in Young & Levenglick
characterization, some possible variations of update monotonicity and fi-
nally, we consider this condition in relation with single valuedness.

3.5.1 Independence of Characterizing Conditions

Below we provide some rules showing the independence of the characteriz-
ing conditions of Theorems 3.3.1 and 3.4.1.

Super majority rule (ϕg): Defined in Section 3.3.

As shown in Theorem 3.3.1, ϕg is Pareto optimal, neutral, convex valued,
replication invariant, and strongly monotone. Rule ϕg is pairwise because
the k-majority-relation, on which it is solely based, is pairwise. To see that
ϕg is not consistent consider A = {a,b, c}, p(1) = p(2) = p(3) = q(5) = abc and
p(4) = p(6) = cba. Then ϕg(p) = {abc} and ϕg(q) = L in case g(4) = 3. But
ϕg(p, q)= L 6=ϕg(p)∩ϕg(q).
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Biased super majority rule (ϕ̂g) Define the rule ϕ̂g for an arbitrary pro-

file p as follows: ϕ̂g(p)= {R,R} whenever p = (RS,R
N−S

) for some non-empty
and finite subsets S, N of N such that S Ú N and R and R are in L forming
an elementary change. In all other cases ϕ̂g(p)=ϕg(p).

Clearly, ϕ̂g is Pareto optimal, neutral, convex valued, replication invari-
ant and monotone. It is not consistent because ϕg is not consistent. Con-
sider profiles q = (RT

1 ,RN−T
2 ) for arbitrary preferences R1 and R2, such that

#T ≥ g(#N). It follows that ϕ̂g is not strongly monotone, because for an el-

ementary change R1 between R1 and R2, we have ϕ̂g(RT
1 ,R

N−T
1 ) = {R1,R1}

" ϕ̂g(RT
1 ,RN−T

2 )= {R1}. This rule shows that the stronger monotonicity con-
dition in Theorem 3.3.1 is logically essential.

Kemeny rule (ϕK emeny): Defined in Section 3.4.

As discussed in Section 3.4, ϕK emeny is Pareto optimal, neutral, pair-
wise, consistent and strongly monotone. By Remark 3.2.1, it is also replica-
tion invariant. The Kemeny rule, however, is not convex valued, e.g., for a
Condorcet profile, it assigns the profile itself as Kemeny rankings.

Selective Kemeny rule (ψK emeny): A rule ϕ is called a selective Kemeny
rule whenever for some enumeration of all linear orders, for instance L=
{R1,R2, . . . ,Rm!}, ψK emeny (p)= {

Ri : i is minimal for all Ri in ϕK emeny (p)
}
,

i.e., ψK emeny assigns to each profile the Kemeny ranking with the minimal
predefined index.

Note that, since for any profile p, ψK emeny (p) ⊆ ϕK emeny (p), selective
Kemeny rule also satisfies Pareto optimality. It is also pairwise since for
two profiles, say p and q, with identical pairwise matrices, ϕK emeny (p) =
ϕK emeny (q) therefore Ri ∈ ϕK emeny (p) with minimal i is the same as Ri ∈
ϕK emeny (q) with minimal i. To show that the rule is consistent let p, q be
two profiles such that ψK emeny (p)∩ψK emeny (q)= {

R j
}
. Then j is the small-

est number among Ri in both ϕK emeny (p) and ϕK emeny (q) . Hence, by con-
sistency, R j is in ϕK emeny(p, q) and R j has the smallest index among those
Ri which are in ϕK emeny(p)∩ϕK emeny(q)= ϕK emeny(p, q). So, ψK emeny(p, q)=
{R j}. Monotonicity is straightforward by strong monotonicity of Kemeny rule.
It is also trivially convex valued as it always assigns a single outcome to each
profile, yet it is not neutral by construction.

Trivial rule (ϕT): A rule ϕ is called the trivial rule if for all profiles p in
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LN , ϕ (p)= L.

By construction, the trivial rule always assign the same set of linear
orders, L, therefore it is neutral, pairwise, convex valued, consistent, repli-
cation invariant, and monotone. Obviously it is not Pareto optimal.

Dictatorial rule (ϕdictatorial): A rule ϕ is called a dictatorial rule if there
exists an individual d ∈ N such that for all profiles p, ϕ (p)= {p (d)}.

Dictatorial rule ϕdictatorial is known to be Pareto optimal. To show con-
sistency, for any predefined order over individuals in N , to choose the dic-
tator for each subset of individuals N ⊆ N , consider two profiles and two
dictators in each society. If two profiles agree on an outcome, when the two
profiles merge, one dictator will remain as the dictator, according to the pre-
defined order, of the merged profile hence the outcome will be the same. It
is also trivially convex valued as it always assigns a single outcome to each
profile. It is neutral and monotone by construction. It is not anonymous;
hence, it also fails to be pairwise and replication invariant.

Borda rule (ϕBorda): Defined in Example 3.2.1 of Section 3.2, where the
score vector −→s = (m,m−1,m−2, ...,1).

Borda is known to be Pareto optimal, neutral, pairwise and consistent
and therewith replication invariant. By construction it is convex valued
like all score rules. It fails to be monotone; hence, it is also not strongly
monotone.

The table below summarizes the findings discussed above. It shows the
logical independence of the characterizing conditions in both Theorem 3.3.1
and Theorem 3.4.1. We denote ϕK emeny and ψK emeny, by ϕK and ψK respec-
tively.
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ϕg ϕK ψK ϕT ϕdictatorial ϕBorda ϕ̂g

Pareto optimal Y Y Y N Y Y Y
Neutral Y Y N Y Y Y Y
Consistent N Y Y Y Y Y N
Convex valued Y N Y Y Y Y Y
Replication invariant Y Y Y Y N Y Y
Pairwise Y Y Y Y N Y Y
Monotone Y Y Y Y Y N Y
Strongly monotone Y Y Y Y Y N N

3.5.2 Logical Relations Regarding Young & Levenglick Char-
acterization of the Kemeny Rule

In this subsection we show that the two sets of characterizing conditions of
the Kemeny can be deduced from one another directly. First, in Lemma 3.5.1
and 3.5.2, it is proved that the conditions of Young and Levenglick imply the
characterizing conditions of Theorem 3.4.1.

Lemma 3.5.1. Strong monotonicity is implied by neutrality, consistency and
the Condorcet condition.

Proof. Let ϕ be such a rule. Let p and q be profiles and i an agent such that
p|N−{i} = q|N−{i} and q(i) is an elementary change of p(i) in ab. It is sufficient
to prove that ϕ(q) = Lab ∩ϕ(p) in case Lab ∩ϕ(p) 6= ;. Let r = (p, p,π(1,ab)),
then D(r) = 2D(q). Also the Condorcet condition implies that ϕ(π(1,ab)) =
Lab. Consistency implies ϕ(r) = ϕ(p)∩Lab as Lab ∩ϕ(p) 6= ;. In view of Re-
mark 3.4.1 , ϕ(q)=ϕ(r)=ϕ(p)∩Lab.

Lemma 3.5.2. Pareto optimality is implied by neutrality, consistency and
the Condorcet condition.

Proof. Let ϕ be a neutral and consistent rule which satisfies the Condorcet
condition. Let p be a profile in LN and let a and b be two different alter-
natives such that .a.b. = p(i) for all agents i in N. And, to the contrary,
let R ∈ ϕ(p) with .b.a. = R. First, we prove that in this case we may take
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p such that .ab. = p(i) for all agents i in N. Let .ax1x2...xtb. = p( j) for
some agent j. Let s be the smallest number such that .xs.a. = R assum-
ing that there are xu such that .xu.a. = R. Consider profile q such that
.xsax1x2...xs−1xs+1...xtb. = q( j) and q(i) = p(i) for i ∈ N − { j}. Clearly q( j) ⊆
p( j)∪R, hence by monotonicity, which holds by Lemma 3.5.1, we have that
R ∈ ϕ(q) where .a.b. = q(i) for all agents i in N. In case for all xu we have
that .a.xu. = R. we may take q( j) = .ax1x2...xt−1bxt. and have the same re-
sult. Therefore, by the finiteness of the set of alternatives, we may assume
that .ab. = p(i) for all agents i in N. Next, consider the permutation σ on
A such that σ(a) = b, σ(b) = a and σ(x) = x for all alternatives x ∈ A− {a,b}.
Note that σp(i)⊆ p(i)∪R for all agents i in N. Hence, similar as in Lemma
3.5.1 we find that ϕ(σp)= ϕ(p)∩Lba. Hence, ϕ(σp)⊆ Lba. But neutrality im-
plies that ϕ(σp) =σ(ϕ(p)) and as R ∈ϕ(p) this yields the contradiction that
σR ∈ϕ(σp) that is ϕ(σp)∩Lab 6= ;.

Note that Lemma 1 in Young and Levenglick (1978) shows that neu-
trality, consistency and the Condorcet condition implies pairwiseness. So,
all together, the conditions of Young and Levenglick -neutrality, consistency
and the Condorcet condition- imply the set of conditions: Pareto optimality,
neutrality, pairwiseness, consistency and monotonicity. The latter set is the
set of characterizing conditions used in Theorem 3.4.1.

Next, we show that this latter set of conditions implies the former, which
actually boils down to the following Lemma.

Lemma 3.5.3. Pareto optimality, neutrality, pairwiseness, consistency and
monotonicity imply the Condorcet condition.

Proof. Let ϕ be a Pareto optimal, neutral, consistent, pairwise and monotone
rule. Let p be a profile in LN . Let c and d be two different alternatives and
R in L such that .cd.= R and R ∈ϕ(p).

Claim: There is a profile q, an update of p towards R, such that R ∈ϕ(q),
M(p)cd = M(q)cd and .cd.= q(i) or .dc.= q(i) for all agents i in N.

Proof of Claim Take agent j arbitrarily. We distinguish two cases.
Case .cx1x2...xtd. = p( j). Define profile r by r(i) = p(i) for i ∈ N − { j}.

In case there is a smallest number s such that .xs.cd. = R defined r( j) =
.xscx1x2...xs−1xs+1...xtd.. If R is such that .cd.xs. = R for all s take r( j) =
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.cx1x2...xt−1dxt..Then r is an update of p towards R such that M(p)cd =
M(r)cd, M(p)cd = M(r)cd and by monotonicity we have R ∈ϕ(r).

Case .dx1x2...xtc. = p( j). Define profile r by r(i) = p(i) for i ∈ N − { j}.
In case there is a smallest number s such that .xs.cd. = R defined r( j) =
.xsdx1x2...xs−1xs+1...xtc.. If R is such that .cd.xs. = R for all s take r( j) =
.dx1x2...xt−1cxt.. Then r is an update of p towards R such that M(p)cd =
M(r)cd, M(p)cd = M(r)cd and by monotonicity we have R ∈ϕ(r).

Repeating these cases a finite number of times yields the desired result.
End of proof of Claim:
Let a be an alternative such that D(p)ax ≥ 0 for all alternatives x in A−

{a}. In order to prove the second part of the Condorcet condition let D(p)ay =
0 for some alternative y in A − {a}. Let {c,d} = {a, y} and .cd. = R for some
linear order in ϕ(p).We have to prove that R′ = .dc. which forms with R an
elementary change in c and d is in ϕ(p).Consider the permutation σ on A
such that σ(a)= y, σ(y)= a and σ(z)= z for all z ∈ A− {a, y}. Take q as in the
foregoing claim. Then D(q)ay = D(q)ya = 0 and strong monotonicity (which
follows from Lemma 3.4.7) implies R ∈ ϕ(q) ⊆ ϕ(p). Neutrality now implies
R′ ∈ϕ(σq). But as for all agents i either .ay.= q(i) or .ya.= q(i) and D(q)ay =
D(q)ya = 0 it follows that M(q) = M(σq). Hence, pairwiseness implies R′ ∈
ϕ(q)⊆ϕ(p), which proves the second part of the Condorcet condition.

In order to prove the first part of the Condorcet condition let D(p)ay > 0
and let to the contrary .ya. = R′′ be in ϕ(p). Consider a profile r which con-
sists of two times p and almost maximal conflict profile π(D(p)ay, ya).So,
r = (p, p,π(D(p)ay, ya)). Then consistency and Lemma 3.4.4 imply ϕ(r) =
ϕ(p)∩ Lya. Hence, R′′ ∈ ϕ(r) ⊆ Lya. But D(r)ax = 2D(p)ax ≥ 0 for all x ∈
A− {a, y} and D(r)ay = D(r)ya = 0. Hence, as R′′ ∈ϕ(r) the second part of the
Condorcet condition implies ϕ(r)∩Lay 6= ; which contradicts ϕ(r)⊆ Lya.

3.5.3 Possible Variations in the Concept of Update and Mono-
tonicity

By different variations in the concept of an update, one may acquire vari-
ous conditions in a similar manner. We define Kemeny-update monotonicity
as the ability of a rule to preserve the collective preferences whenever the
preference profile is updated towards the collective preference in terms of
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a decrease in Kemeny6 distance of each individual preference to the collec-
tive preference. Similarly, extreme-update monotonicity requires that a rule
preserves the collective preference whenever some (possibly all) individu-
als identically imitate the same collective preference while others remain
unchanged. Note that Kemeny-update monotonicity is the strongest of all
variations mentioned whereas extreme-update monotonicity is the weakest.

Kemeny-update monotonicity: A rule is (strongly) Kemeny-update mono-
tone if for all profiles p ∈ LN , and for all R ∈ϕ (p), and for all q ∈ LN such that
δ (q(i),R)≤ δ (p(i),R) for all i ∈ N,

R ∈ ϕ (q)

(and in addition ϕ(q) ⊆ ϕ(p)).

Note that in the regular update monotonicity condition, the betweenness
requirement, already implied a decrease in the distance between the indi-
vidual preference and the outcome. Dropping this leads to a strenghtening
of the monotonicity condition to the extent that even the Kemeny rule is not
Kemeny-update monotone. In Can and Storcken (2011a), it is shown that
strong Kemeny-update monotonicity leads to so called impossibility theo-
rems.

One can also only consider transformations of profiles in which some
agents identically copy the outcome and the rest remain the same. In such
extreme updates of collective preference, we have a much more weaker up-
date monotonicity condition:

Extreme-update monotonicity: A rule is extreme-update monotone if for
all profiles p ∈ LN , and for all R ∈ ϕ (p), and for all q ∈ LN such that q (i) ∈
{R, p (i)} for all i ∈ N,

R ∈ϕ (q) .

Extreme-update monotonicity is the least demanding of all since it re-
quires that a rule preserves the outcome only when some agents copy the
outcome while the rest remains as they are. In that context, it resem-
bles the simple monotonicity condition in collective choice rules. However

6Kemeny distance counts the number of ordered pairs on which two binary relations i.e.,
strict preferences, are different. Note that one may formulate distance based conformity with
respect to other metrics, however for our model we restrict our attention to Kemeny metric.
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weak extreme-update monotonicity may be; most rules, including Borda
and other score rules, still fail to satisfy it. For instance, let A = {a,b, c},
and n = 4 and consider a profile p, such that individuals respectively have
the following preferences: abc, bac, acb, cab. Consider the Borda rule,
ϕBorda (p) = {abc,acb}. Consider, now, the extreme update q of p towards
acb, where individuals respectively have, abc, bac, acb, acb, i.e. 4th individ-
ual imitated one of the outcomes. It is easy to see, however, that ϕ (q)= {abc}
is the unique collective preference at the updated profile.

3.5.4 Update Monotone Welfare Functions

In this subsection we consider single valued rules, which are also known as
welfare functions. Because a singleton set is convex, such rules are convex
valued. Furthermore, it is easy to see that monotone single valued rules are
strongly monotone. The selective Kemeny rule is an example of a non trivial
monotone welfare function. Similarly, selective super majority rules ψg can
be defined by assigning to a profile p that order in ϕg (p) having the small-
est index. It is straightforward to prove that selective super majority rules
are Pareto optimal, replication invariant, pairwise and (strongly) monotone.
They violate, however, the conditions of neutrality and consistency. The con-
dition of neutrality is also violated by selective Kemeny rules. In view of
Lemma 3.3.4, it is straightforward that rules satisfying the conditions in
Theorem 3.3.1 cannot be single valued. Similarly, welfare functions that
are Pareto optimal, neutral and monotone cannot be replication invariant.
We leave the study of welfare functions satisfying those conditions, except
replication invariance, for future research.

As hinted in the discussion, there is a strong logical relationship between
strategy-proofness and monotonicity conditions in the choice rules frame-
work. Bossert and Storcken (1992) analyze strategy-proofness for single
valued preference correspondences with the following result. Let A con-
tain at least 4 alternatives and fix N, such that #N is even: then, there does
not exist a welfare function which is simutaneously, nonimposed, coalitional
strategy-proof and weakly extrema independent. Nonimposition, which is in
fact implied by Pareto optimality, means that the function is surjective, i.e.
the range of the welfare function is the complete set of linear order. Weak
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extrema independence is formally introduced below:

Definition 3.5.1. A welfare function ψ is weakly extrema independent if for
any two profiles p and q orders R1, R2, R̂1and R̂2 and disjoint coalitions S
and T such that:

#S = #T

p(i) = R1, q(i)= R̂1 for i ∈ S

p(i) = R2, q(i)= R̂2 for i ∈ T

p(i) = q(i) ∉ {R1,R2, R̂1, R̂2} for i ∈ N − (S∪T),

p(N), q(N) ⊆ LR1∩R2 = LR̂1∩R̂2
.

we have ψ (p)=ψ (q).

Proposition 3.5.1. Selective Kemeny rules are weakly extrema independent.

Proof. It is sufficient to prove that for two profiles as defined in Definition
3.5.1, ϕK emeny(p)= ϕK emeny(q). Since Kemeny rule is pairwise it is sufficient
to show that M(p) = M(q). Note that LR1∩R2 = LR̂1∩R̂2

is equivalent to R1 ∩
R2 = R̂1 ∩ R̂2. Furthermore, as p|(S∪T) = (RS

1 ,RT
2 ) and q|(S∪T) = (R̂S

1 , R̂T
2 ),

R1 ∩R2 = R̂1 ∩ R̂2 and #S = #T it follows, although a bit cumbersome, that
M(p|(S∪T))= M(q|(S∪T)). Of course M(p|N−(S∪T))= M(q|N−(S∪T)). So, M(p)=
M(p|(S∪T))+M(p|N−(S∪T))= M(q|(S∪T))+M(q|N−(S∪T))= M(q).

Remark 3.5.1. Note that the condition #S = #T is essential in proving that
selective Kemeny rules are pairwise. Indeed the more demanding condi-
tion of extrema independence, at which this equality is not required, is not
implied by pairwiseness. Selective Kemeny rules are not extrema indepen-
dent which can be deduced by considering for instance maximal conflicts p =
(RS

1 ,− RN−S
1 ) and q = (R̂S

1 ,− R̂N−S
1 ) where #S > #N −S. Then ψK emeny(p) =

ϕK emeny(p)= {R1} and ψK emeny(q)= ϕK emeny(q)= {R̂1}. 4

As selective Kemeny rules are Pareto, hence nonimposed, and weakly
extreme independent, it follows that they are not coalitional strategy-proof.
Indeed consider N = {1,2}, A = {a,b, c} and profiles p, q such that p(1)= R6 =
bac, p(2) = q(2) = R4 = cba, q(1) = R1 = abc (although redundant for this
example may take further R2 = acb, R3 = cab and R4 = cba). Then based on
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the indexation of the linear orders ψK emeny(p)= {R4} and ψK emeny(q)= {R1}.
As R1 is strictly closer to p(1) than R4 it follows thatψK emeny is not strategy-
proof and therewith not coalitional strategy-proof. Similarly, selective super
majority rules ψg are weakly extrema independent, non strategy-proof and
not extrema independent.

Most probably, under some kind of non-bossiness condition, strategy-
proofness implies update monotonicity. We stop here, however, as we hope
that the above has convinced the reader that this subject is at least for the
time being interesting enough to investigate further.

3.6 Appendix

The following Proposition shows that intersections of subsets, being suffi-
ciently large, are not empty.

Proposition 3.6.1. Let T1 up to T l be a collection of l subsets of finite and
non-empty set N such that #T j > (l−1) ·#N/l. Then ∩{T j : j ∈ {1, ..., l}} 6= ;.

Proof. To prove the contra position suppose ∩{T j : j ∈ {1, ..., l}} = ;. Now we
may take T j such that for all i in N there are precisely l−1 sets say T i1 up
to T i l−1 such that i is in each of these. So, as

l∑
j=1

#T j = ∑
i∈N

#{T j : i ∈ T j}

it follows that
l∑

j=1
#T j = #N · (l −1). Let #T1 ≤ #T j for all j ∈ {1,2, ..., l}. Then

#T1 · l ≤
l∑

j=1
#T j = #N · (l −1). But then #T1 ≤ (l −1) ·#N/l, which proves the

contra position.

Next we discuss a result on linear orders concerning the Kemeny dis-
tance.

Proposition 3.6.2. Let R and Rab be two linear orders in Lab. Let Rba =
σabRab, where σab is the permutation on A such that σab(a) = b, σab(b) = a
and σab(c)= c for all c ∈ A− {a,b}. Then δ(R,Rab)< δ(R,Rba).
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Proof. Let R
ba

,R
ab ∈ L be two linear orders that are between Rba and R such

that R
ba

and R
ab

form an elementary change in ba. Then it is straightfor-
ward to see that δ(R

ba
,Rba) = δ(R

ab
,Rab). Furthermore by betweenness,

δ(R,Rba) = δ(R,R
ab

)+δ(R
ab

,R
ba

)+δ(R
ba

,Rba). By triangular inequality,
δ(R,Rab)≤ δ(R,R

ab
)+δ(R

ab
,Rab)= δ(R,R

ab
)+δ(R

ba
,Rba). Hence δ(R,Rab)<

δ(R,Rba).
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Chapter 4

Weighted Distances Between
Preferences

4.1 Introduction

It is plausible to measure the degree of disagreement by the number of or-
dered pairs that are ranked oppositely. The well-known Kemeny distance
(Kemeny, 1959) is commonly used to that end. Given a strict preference
R1 = abc, which is interpreted as: a is preferred to b, b to c, and by transi-
tivity a to c, the Kemeny distance between R1 and another strict preference
R2 = bac is 1, because the two preferences only disagree on how to order
a and b. For R3 = acb, the distance between R1 and R3 would be again 1
(the disagreement is on how to order b and c). Consider a situation where
R1 is perceived to be closer to R3 than it is to R2 because the disagreement
between R1 and R3 only concerns the bottom two alternatives in these pref-
erences, i.e., b and c, whereas the disagreement between R1 and R2 concerns
the top two alternatives in these preferences, i.e., a and b.

Assigning weights to the position of differences in preferences might be
useful in many applications. For instance, consider three search engines,
(G)oogle, (Y )ahoo and (B)ing. Given a word search, assume these engines
give a strict ranking of the same millions of alternatives, i.e., links to web-
sites that are relevant to the search term. All three engines rank ten links
per page. Suppose that G and Y provide identical results in the first three
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pages and differ in the remaining millions of websites. Suppose also that G
differs from B in the first three pages but is identical to B for the remaining
hundreds of thousands of pages. Nevertheless, it is natural to argue that
G is closer to Y than it is to B, even if G and Y disagree on how to rank
the remaining millions of links after the third page. This is because what
matters most, for internet users, is the first two-three pages (BBC1, 2006),
i.e., the first 20−30 links that are ranked.

Note that the distribution of weights may not always follow a monotoni-
cally decreasing pattern. In fact, in cases where certain positions in prefer-
ences are critical, the distance caused by a change in those positions might
be more important than changes in other positions. An example would be
the ranking of football teams in a league, where the first f teams of the last
week’s ranking are to be promoted, e.g., to join the European Champions’
League. In such cases, a swap in positions f and f +1 might be much more
critical, hence influential in the distance, than a swap between the top two
football teams. Therefore, it makes sense to assign more weight to a change
at those critical positions.

In this chapter, we propose distance functions in a similar spirit as that
of the Kemeny distance, i.e., respectful to the number of disagreements, but
we also allow variation in the treatment of different pairs of disagreements.
We provide two conditions that essentially characterize a class of distance
functions, which we call the “weighted distance functions”. The first one,
“positional neutrality” is a neutrality condition towards the position of dis-
agreement between two adjacent preferences, i.e., preferences which have
only one disagreement. The second one, “decomposability” is a condition
which requires that the distance between any two preferences is equal to
the sum of distances of pairs of adjacent preferences which establish a path
between the two.

In Section 4.2, we introduce the notation and basic conditions for dis-
tance functions over strict preferences together with the two new conditions
we introduce. In Section 4.3 we introduce the class of weighted distance
functions and discuss some members of this class: the Kemeny distance, the

1http://news.bbc.co.uk/2/hi/technology/4900742.stm.
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Lehmer distance, the inverse Lehmer distance, and the path-minimizing dis-
tance. Section 4.4 shows the logical relations between these distances and
the effect of the weight distribution on the triangular inequality condition. It
is shown that only for one weighted distance function, the path-minimizing
distance, the variation in the weights does not affect the triangular inequal-
ity condition. Section 4.5 concludes the chapter and points to possibilities
for further research.

4.2 The Model

4.2.1 Notation

Let A be the set of alternatives with cardinality m ≥ 3. Strict preferences are
modeled by linear orders2 over A, and the set of all linear orders is denoted
by L . Given R ∈ L , a R b is interpreted as a is strictly preferred to b, i.e.,
the ordered pair (a,b) ∈ R . We sometimes write R = . . .a . . .b . . . if a R b, and
R = . . .ab . . . if aR b and there exists no c ∈ A\{a,b} such that aR c and cR b,
i.e., a and b are adjacent in R. Given any a ∈ A, UC(a,R) = {b ∈ A | b R a} is
the “upper contour set” of a in R, i.e., the set of alternatives that are ranked
above a in the linear order R. Correspondingly, LC(a,R) = {b ∈ A | a R b} is
the “lower contour set” of a in R.

For l = 1,2, . . . ,m, R(l) denotes the alternative in the l th position in R,
and we use rank(a,R) to denote the position of alternative a in R. Given
a linear order R ∈ L and some subset of alternatives B ⊆ A, R|B denotes
the preference reduced to B, i.e., R|B = R ∩ (B×B). Given any two linear
orders R,R′ ∈ L , the set difference R \ R′ denotes the set of ordered pairs
that exist in R and not in R′, i.e., {(x, y) ∈ A × A | x R y and y R′ x}. Two
linear orders (R,R′) ∈ L 2 form an elementary change3 in position k when-
ever R(k) = R′(k+1), R′(k) = R(k+1) and for all t 6∈ {k,k+1}, R(t) = R′(t),
i.e. |R \ R′| = 1. Given any two distinct linear orders R,R′ ∈ L , a vec-
tor of linear orders ρ = (R0,R1, . . . ,Rk) is called a path between R and R′

if k = |R \ R′|, R0 = R, Rk = R′ and for all i = 1,2, . . .k, (Ri−1,Ri) forms an

2Complete, transitive and antisymmetric binary relations.
3We omit the paranthesis whenever it is clear and write R,R′ instead.
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elementary change. For the special case where R = R′, we denote the unique
path as ρ = (R,R).

A bijection π : {1,2, . . . ,m} → {1,2, . . . ,m} is called a permutation and the
set of all permutations is denoted by Π. We use π(R) (or π · R) to denote
the permutation of the linear order R by π, i.e., π(R) = R′ if and only if
R(i) = R′(π(i)) for all i = 1,2, . . . ,m. Given R,R′ ∈ L , a permutation π ∈Π is
called the corresponding permutation4 for R,R′, if π(R) = R′. We denote the
conjugate of a permutation π by π̃ ∈Π, i.e., π̃(R′)= R if and only if π(R)= R′.
A permutation that swaps the kth alternative of a linear order with the (k+
1)th is called an elementary permutation and is denoted by σk. Hence, σk is
the corresponding permutation for any R,R′ ∈L which form an elementary
change in position k. The set of all elementary permutations is denoted by
S = {σ1,σ2, . . . ,σm−1}⊆Π. The identity permutation is denoted by σ0.

Note that the set of all permutations Π over the set of alternatives A
forms a symmetric group (also known as a permutation group) with the
group operator “·” which implies any permutation π ∈ Π can be obtained
by composition of some other permutations with the group operator, e.g.,
π′′ ·π′ · R = π · R refers to the situation where R is first permuted via π′

and then π′′, and π′′ ·π′ = π. Note, however, that unless m ≤ 2, the group
fails commutativeness, e.g., for R = abc; note that σ1 ·σ2 ·R = cab whereas
σ2 ·σ1 ·R = bca.

In this chapter, we will especially make use of compositions of permuta-
tions via elementary permutations in S. Since Π is a permutation group it
has S, as the generator set, which means every permutation π ∈Π, includ-
ing the identity permutation σ0, can be expressed by some composition of
elements of S. Let I(π) denote the size of π, which is the minimal number
of elementary permutations required to obtain π via the group operator. For
instance, let π be a permutation over {1,2,3} such that π(1)= 3, π(2)= 1 and
π(3) = 2. Obviously π = σ2 ·σ1, i.e., applying σ1, and σ2 respectively yields
the same result as applying π. Therefore I(π) = 2. Note that for the iden-
tity permutation, therefore, we have I(σ0) = 0. Note also that for two linear
orders R,R′ ∈ L with the corresponding permutation π ∈ Π, we have that

4We omit this expression whenever it is clear which permutation we employ.
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I(π) = |R \ R′|. Next we define factorizations, i.e., compositions of permuta-
tions via elementary/identity permutations.

Definition 4.2.1. Given π ∈ Π and some positive integer r ≥ I(π), a vector
of elementary/identity permutations f = ( f (1), f (2), . . . , f (r)) ∈ (S ∪ {σ0})r is
called a factorization of π whenever for all i = 1,2, . . . r−1:

a) f (r) · f (r−1) · . . . · f (1)=π,

b) f (i) 6= f (i+1).

Next we define the minimal factorizations, i.e., the compositions that
require the fewest possible elementary permutations. These factorizations
are also known as reduced factorizations.

Definition 4.2.2. Given π ∈Π, a factorization d of π is called a decomposi-
tion of π whenever:

a) d =σ0 if I(π)= 0,

b) d = (d(1),d(2), . . . ,d(I(π))) if I(π)> 0.

For any factorization f = ( f (1), f (2), . . . , f (r)) of π, if r > I(π), i.e., the num-
ber of inversions is not minimal in the factorization f , then f is called a
non-reduced factorization of π.

We denote the set of all decompositions of a permutation π by Dπ. In case
there are many permutations under consideration, we distinguish decompo-
sitions by using the permutations as superscript, e.g., dπ for π and dπ̂ for π̂.
Note that factorizations, as well as decompositions, of a permutation are not
necessarily unique, e.g., for R = abc and R′ = cba, the corresponding permu-
tation π can be decomposed by d = (σ1,σ2,σ1) as well as by d′ = (σ2,σ1,σ2).
However, once a decomposition is given, then there is an induced path, i.e.,
a sequence of linear orders, starting from R and ending at R′ via elementary
changes.

Definition 4.2.3. Given R,R′ and π ∈Π, let d = (d(1),d(2), . . . ,d(k)) ∈ Dπ be
a decomposition of π. A vector of linear orders ρd = (ρd(1),ρd(2), . . . ,ρd(k+1))
is called the path induced by d between R,R′ whenever:

a) ρd(1)= R and ρd(k+1)= R′, i.e., the sequence starts with R and ends with
R′,
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b) ρd(i+1) = d(i) ·ρd(i) for all i = 1,2, . . . ,k, i.e., all consecutive linear orders
in the path form elementary changes in the positions induced by the decom-
position (or ρd = (R,R) in case π=σ0).

Remark 4.2.1. Given R,R′ ∈ L , let π be the corresponding permutation,
then ρ is a path between R and R′ if and only if there exists a decomposition
d ∈ Dπ such that ρ = ρd, i.e., ρ is a path induced by some decomposition d
of the corresponding permutation. See Appendix 4.6.4 for a visualization of
this correspondence between decompositions and paths. 4

For simplicity, we also refer to a path between R,R′ induced by d ∈ Dπ as
ρd = (R0,R1, . . . ,RI(π)) whenever R0 = R, RI(π) = R′ and for all i = 1,2, . . . I(π),
Ri = ρd(i) = d(i) · d(i − 1) · · ·d(1) · R. Note that the path induced by a de-
composition is unique as long as the initial start point (or the end point) is
defined. Similarly every path also induces a unique decomposition which is a
sequence of elementary permutations that correspond to the positions of the
elementary changes on the path. For the special case R = R′, i.e., dπ = σ0,
we write the induced path as ρd = (R,R) to avoid unnecessary complication.

Example 4.2.1. Consider the linear orders R = abc and R′ = cba, and the
corresponding permutation π. Let d be a decomposition of π such that d =
(σ1,σ2,σ1). Let R0 = R and R3 = R′ and consider the vertical rearrangement
of these linear orders below. Then the path induced by d, denoted by ρd, is as
follows:

R0 R1 R2 R3

a b b c
b a c b
c c a a

Note that the decomposition d is not unique, in fact it is easy to see that
d′ = (σ2,σ1,σ2) is also a decomposition of π leading to a different path. ¦

R0 R1 R2 R3 R4 R5

a a a (d) d d
b b (d) a a (c)
c (d) b b (c) a

(d) c c (c) b b
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4.2.2 Distance Functions and Properties

In the social choice literature, distance (also known as dissimilarity) func-
tions and metric functions are often interchangeably used. We, however,
follow the convention developed in Deza and Deza (2006), which is also em-
ployed in a similar study by García-Lapresta and Pérez-Román (2008). The
main distinction is that a distance does not need to satisfy the triangular
inequality whereas a metric is a distance function which also satisfies the
triangular inequality. We follow this convention to later allow more variety
in the set of weighted distance functions in the next section. Below are the
conditions for distance functions:

Definition 4.2.4. A function δ : L ×L → R is a distance function on the set
of linear orders if it satisfies the following conditions:

a) Non-negativity: δ(R,R′)≥ 0 for all R,R′ ∈L ,

b) Identity of indiscernibles: δ(R,R′) = 0 if and only if R = R′ for all R,R′ ∈
L ,

c) Symmetry: δ(R,R′)= δ(R,R′) for all R,R′ ∈L .

A distance function δ is a metric if, in addition to the aforementioned
conditions, it satisfies the triangular inequality condition, i.e., δ(R,R′′) ≤
δ(R,R′)+δ(R′,R′′) for all R,R′,R′′ ∈L . We discuss the triangular inequality
condition further in Section 4.4.3.

Next, we introduce two new conditions for distance functions. The first
condition, positional neutrality, ensures that the elementary changes in the
same positions are treated impartially. Hence, a distance function should
assign the same distance to any two pairs of linear orders that form ele-
mentary changes in the same position. Therefore, the distance is neutral,
in the sense that, as long as the swaps in alternatives happens at the same
position, it remains unchanged.

Definition 4.2.5. Positional Neutrality: A distance function δ satisfies
positional neutrality if for all k < m and for all elementary changes (R,R′)
and (R̄, R̄′) in position k:

δ(R,R′)= δ(R̄, R̄′).
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Note that this definition is equivalent to the following: “A distance func-
tion δ satisfies positional neutrality if for all k < m and for all R, R̄ ∈ L ,
δ(R,σk(R)) = δ(R̄,σk(R̄))”. This equivalence is due to the fact that every
elementary change is associated with a unique elementary permutation.

The second condition is presented in twofold. Decomposability, requires
that the distance between two linear orders is equal to the sum of distances
assigned to each elementary change on some path between these linear or-
ders. Strong decomposability, however, requires that this statement holds
for all paths between these linear orders. We present both conditions below
where quantifiers in parentheses are for the strong version.

Definition 4.2.6. (Strong) Decomposability: A distance function δ sat-
isfies (strong) decomposability if for all R,R′ and for (all) some path(s) ρ =
(R0,R1, . . . ,Rk) between R and R′:

δ(R,R′)=∑k
i=1δ(Ri−1,Ri).

Remark 4.2.2. As hinted in Remark 4.2.1, the elementary changes on a path
are defined on the basis of a decomposition of the corresponding permutation.
Therefore an equivalent definition would be as follows: A distance function
δ satisfies (strong) decomposability if for all R,R′ and π, and for (all) some
d = (d(1),d(2), . . . ,d(k)) ∈ Dπ,

δ(R,R′)=
k∑

i=1
δ(ρd(i),ρd(i+1).

4

The strong decomposability essentially implies that all paths between
two linear orders lead to same distance. We show in Section 4.3 that strong
decomposability is too demanding and it does not leave a lot of room to define
distance functions.

Remark 4.2.3. Note that decomposability imposes a choice of decomposition
for any given permutation π. This means that any two pairs of linear orders,
which share π as their corresponding permutation, will have the same de-
composition. Then, the sequence of “positions of elementary changes” along
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their paths will also be the same. Together with positional neutrality this
implies that the distances among linear orders in each pair will be identical.
Formally; for any π ∈Π and for any four linear orders R,R′, R̄, R̄′ ∈ L such
that π(R) = R′ and π(R̄) = R̄′, we have that δ(R,R′) = δ(R̄, R̄′), i.e., the dis-
tance between linear orders is the same for all pairs of linear orders that are
permuted in the same way. 4

4.3 Weighted Distance Functions

We define the class of weighted distance functions on the basis of the two
conditions; positional neutrality and decomposability. The former ensures
that the distance functions are sensitive and neutral to the positions of el-
ementary changes. The latter requires that when two linear orders (not
necessarily elementary changes) are considered, the distance between them
should be decomposable into that of elementary changes between them so
that the essence of positional neutrality can be extended to any two linear
orders. We first introduce some functional forms to define weighted distance
functions, then dwell on their properties.

Given an (m−1)−dimensional non-degenerate5 weight vector such as ω=
(ω1,ω2, . . . ,ωm−1) ∈ Rm−1++ , let gω : S ∪ {σ0} → Rm−1+ be the associated weight
function on the set of generators S of Π and the identity permutation such
that:

gω(σx)=
{

ωx if x > 0
0 if x = 0.

(4.1)

For any permutation π ∈Π and a factorization (possibly a decomposition)
f π = ( f (1), f (2), . . . , f (t)) of π, we make use of the weight function for the
factorizations as well by setting g( f π) = ∑t

i=1 g( f π(i)). Next we define the
class of weighted distance functions:

Definition 4.3.1. A distance function δ : L ×L → R is called a weighted
distance function if there exists a weight vector ω such that for all R,R′ with
corresponding permutation π, and for some decomposition d ∈ Dπ:

δ(R,R′)= gω(dπ).
5All elements in the weight vector are positive.
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Given a weight vector ω= (ω1,ω2, . . . ,ωm−1) ∈Rm−1++ , we denote an associ-
ated weighted distance function by δω, and the class of all weighted distance
functions associated with ω by ∆ω.

Note that it is almost straightforward to see that the class of weighted
distance functions is defined by two conditions; positional neutrality and
decomposability. In fact, the class of all distance functions that satisfy these
two conditions correspond to the class of weighted distance functions.

Proposition 4.3.1. Let δ be a distance function. δ satisfies positional neu-
trality and decomposability if and only if δ = δω for some ω ∈Ω, i.e., δ is a
weighted distance function.

Proof. If part follows immediately from the functional form gω. To show
the only if part let δ satisfy the two conditions. By definition of distance
functions and positional neutrality, for each i = 1,2, . . . ,m−1 and for all el-
ementary changes (Ri,Ri+1) in position i, there exists ci = δ(Ri,Ri+1) > 0.
Now let R,R′ ∈ L and π ∈ Π. By decomposability, there exists a path ρ =
(R0,R1, . . . ,Rk) between R and R′ such that δ(R,R′) = ∑k

i=1δ(Ri−1,Ri). By
Remark 4.2.1, there exists d ∈ Dπ which induces ρ, i.e., ρ = ρd. Then for
all elementary changes (ρd(i),ρd(i +1)) on the path ρd, the distance is cx

if and only d(i) = σx. Then letting ω = c = (c1, c2, . . . , cm−1), we have that
gω(d)=∑k

i=1δ(Ri−1,Ri).

Next, we focus on variation in weight vectors. We distinguish between
classes of weight vectors such as Ω̄( Rm−1+ denoting the class of monotoni-
cally decreasing weight vectors, i.e., for all ω ∈ Ω̄, ωi ≥ω j if and only if i ≤ j.
Similarly we denote the class of monotonically increasing weight vectors by
Ω. The set of all possible weight vectors is denoted by Ω, i.e., all possible
(m−1)-dimensional vectors of nonnegative real numbers.

Note that, given a weight vector ω and the associated weight function
gω, positional sensitivity is not sufficient to express the distance between
any two linear orders. This leaves a lot of variation in the class of weighted
distance functions ∆ω. In fact, from the weight function gω, the only infor-
mation one can infer is that elementary changes in the kth position are as-
signed a distance of ωk. Decomposability furthermore makes sure that every
linear order can be dissolved into elementary changes in some way so that
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positional neutrality is still reflected in those linear orders. Hence, distance
functions are defined by the choice of the decomposition of the corresponding
permutation of the linear orders.

In the proposition below we show that the strong version of decompos-
ability leaves no room for variation in the class of weighted distance func-
tions. In fact, the class of weighted distance functions ∆ω can be nonempty
if and only if the weight vector is constant. Formally:

Proposition 4.3.2. Let δω be a weighted distance function. δω satisfies
strong decomposability if and only if ω is a constant weight vector, i.e., ω =
(c, c, . . . , c) for some positive real number c ∈R++.

Proof. The if part is straightforward. To show the only if part, let δω satisfy
strong decomposability and suppose ωi 6= ωi+1 for some i ∈ {1,2, . . . ,m−1}.
Then consider some R,R′ with corresponding permutation π such that d =
(σi,σi+1,σi) ∈ Dπ is a decomposition of π. It is easy to see that there exists
another decomposition6 d′ ∈ Dπ such that d′ = (σi+1,σi,σi+1) (see Exam-
ple 4.2.1). Then by strong decomposability, δ(R,R′) = gω(d) = gω(d′) which
contradicts ωi 6=ωi+1.

In the following subsections we focus on four examples within the class
of weighted distance functions. The first one is the well-known Kemeny dis-
tance (Kemeny, 1959), which is defined only for the constant weight vector
ω = (1,1, . . . ,1). Then, we introduce the Lehmer distance, and the inverse
Lehmer distance which -regardless of the weight vector- are based on well-
defined ex ante choices of decompositions for each permutation. Finally, we
introduce the path-minimizing distance which chooses, ex post, a decompo-
sition depending on the distribution in the weight vector.

4.3.1 Kemeny Distance

Kemeny (1959) introduced a distance function which can be used to model
the concept of ideological distances between strict preferences, i.e., linear

6This is due to the fact that Π is a permutation group. In group theory, certain groups
have the property that σi ·σi+1 ·σi = σi+1 ·σi ·σi+1 where σx is a generator and “·” is the
group operator.

95



Chapter 4. Weighted Distances Between Preferences

orders. Interestingly, the very same idea has numerous applications in
other disciplines such as computer sciences, information theory, group the-
ory etc. Other names for the same concept include: the Kendall tau distance
(Kendall, 1938), bubble sort distance, swap distance, inversion metric, word
metric, permutation swap, the Damerau-Levenshtein distance (Damerau,
1964; Levenshtein, 1966), the Hamming distance (Hamming, 1950), and so
on and so forth. In fact, prior to Kemeny (1959), the use of this distance can
even be traced back to Cramer (1750). Formally:

Definition 4.3.2. (Kemeny distance) Given R,R′ ∈L and a corresponding
permutation π, the Kemeny distance δK between R,R′ is:

δK (R,R′)= I(π)= |R \ R′|.
It is easy to see that the Kemeny distance is a weighted distance. It

assigns a weight of 1 to each elementary change. It satisfies strong decom-
posability since the sum of 1’s assigned to each elementary change on a path
induced by any decomposition equals the size of the permutation I(π). To-
gether with Proposition 4.3.2, this implies that any weighted distance func-
tion δω which satisfies strong decomposability is a multiple of the Kemeny
distance, i.e., c×δK , where c =ωi for all i = 1,2, . . . ,m−1.

Remark 4.3.1. Note that, as shown in Proposition 4.3.2, imposing strong de-
composability restricts the class of weighted distance functions to only those
with a constant weight vector. As we have explained in the introduction, our
main motivation, however, is to find distance functions that possibly assign
different weights to elementary changes in different positions. Hence we use
the regular decomposability condition instead of the strong version. 4

4.3.2 Lehmer Distance

The inverse of a permutation, according to Knuth (1998) was first defined
by Rothe (for a historical account, see Muir, 1906). By using the diagram
Rothe introduced, a list of numbers (also known, now, as the Lehmer code
developed by Lehmer, 1960) can be obtained for each permutation (See Ex-
ample 4.6.1 in the appendix). The Lehmer code essentially was used to gen-
erate all possible permutations of any number of objects. In this work, it
corresponds to a particular way of decomposing permutations.
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Given any R,R′ and a corresponding permutation π, a decomposition
dL ∈ Dπ is the winners’ decomposition if it permutes R such that R′(1) is car-
ried to the 1st position, then R′(2) is carried to the 2nd position and so forth.
Iteratively R′ will be achieved. We call the path induced by this decom-
position the winners’ path and denote it by ρL. We illustrate the winners’
decomposition and the induced path below with an example. For the formal
description of the winners’ decomposition, see Appendix 4.6.2.

Example 4.3.1. Let R = abcd and R′ = dcab. Then the winners’ decompo-
sition first permutes the alternative d to the top, thereafter c and so on. The
induced path will look like:

R0 R1 R2 R3 R4 R5

a a a (d) d d
b b (d) a a (c)
c (d) b b (c) a

(d) c c (c) b b

The winners’ decomposition, therefore, is dπL = (σ3,σ2,σ1,σ2,σ1). This de-
composition is well-defined for any two linear orders and so is the path ρL =
(R0,R1, . . . ,R5). ¦
Definition 4.3.3. Given any R,R′ with π and any weight vectorω, the Lehmer
distance is:

δL
ω(R,R′)= gω(dπL). (4.2)

Note that by construction, the Lehmer distance satisfies the identity of
indiscernibles and nonnegativity conditions. We show symmetry in Propo-
sition 4.6.1 in Appendix 4.6.2. Therefore, it is a distance function and by
Equation 4.2, it is a weighted distance. Finally, by Proposition 4.3.1 it sat-
isfies positional neutrality and decomposability. The triangular inequality
is satisfied if ω ∈ Ω̄, i.e., ω is a decreasing weight vector. We discuss this
condition further in Section 4.4.3.

4.3.3 Inverse Lehmer Distance

An immediate dual of the winners’ decomposition is the losers’ decomposi-
tion. Given R,R′ and a corresponding permutation π, a decomposition dIL
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is the losers’ decomposition if it permutes R such that R′(m) is carried to
the mth position, then R′(m−1) is carried to the (m−1)th position and so
forth. Iteratively R′ will be achieved. We illustrate this decomposition and
the induced losers’ path below, denoted as ρIL, via the same linear orders
as in Example 4.3.1. For the formal description of the losers’ decomposition,
see Appendix 4.6.3.

Example 4.3.2. Let R = abcd and R′ = dcab. Then the losers’ decomposition
first permutes the alternative b to the bottom, thereafter a and so on. The
induced path will look like:

R0 R1 R2 R3 R4 R5

a a (a) c (c) d
(b) c c (a) d (c)
c (b) d d (a) a
d d (b) b b b

The losers’ decomposition, therefore, is dπIL = (σ2,σ3,σ1,σ2,σ1). This decom-
position is also well-defined for any two linear orders and so is the path
ρIL = (R0,R1, . . . ,R5). ¦

Definition 4.3.4. Given any R,R′ with π, and any weight vector ω, the in-
verse Lehmer distance is:

δIL
ω (R,R′)= gω(dπIL). (4.3)

Note that by construction, the inverse Lehmer distance satisfies the
identity of indiscernibles and nonnegativity conditions. We show symme-
try in Proposition 4.6.2 in Appendix 4.6.3. Therefore it is a distance function
and by Equation 4.3, it is a weighted distance. Finally by Proposition 4.3.1 it
satisfies positional neutrality and decomposability. The triangular inequal-
ity is satisfied if ω ∈Ω, i.e., ω is a increasing weight vector. We discuss this
condition further in Section 4.4.3.

Most of the aforementioned conditions, which the inverse Lehmer dis-
tance satisfies, are shown by a duality argument between the Lehmer dis-
tance and the inverse Lehmer distance. We discuss this argument, in detail,
in Section 4.4.1.
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4.3.4 Path-Minimizing Distance

As explained in the beginning of the section, the path minimizing distance
does not choose a decomposition for each permutation ex ante. Instead, de-
pending on the distribution of the weights in ω, it chooses a decomposition
that induces a path with elementary changes that has the minimal sum of
distances. Formally:

Definition 4.3.5. Given any R,R′ with π, and any weight vector ω, the path-
minimizing distance is:

δPM
ω (R,R′)= min

d∈Dπ

{gω(d)}. (4.4)

Note that for each weight vector ω, the path-minimizing distance chooses
a decomposition that minimizes the weight function gω(d). We call such de-
compositions, minimal decompositions with respect to ω. By Remark 4.2.1,
there exists a uniquely induced path for each of these decompositions. We
denote such paths by ρPM and call them minimal paths between R and R′

with respect to ω. Below we remark that the minimality of these paths are,
in fact, preserved between any two point within the same path.

Remark 4.3.2. Given a weight vector ω, consider R,R′ ∈ L with π and a
minimal path ρPM = (R0,R1,R2, . . . ,Rk−1,Rk) with respect to ω between R =
R0 and R′ = Rk. Then any portion of this minimal path is also a minimal
path between its beginning and its end with respect to the same ω, i.e., the
“subpath” ρ = (Ri,Ri+1, . . . ,R j−1,R j), for i, j ∈ N such that 0 ≤ i < j < k, is
a minimal path between Ri and R j. Otherwise ρPM is not a minimal path
between R and R′, since it could have followed a different subpath between
Ri to R j. 4

4.4 Results

We now present our results about the class of weighted distances. We first
provide some observations regarding the Lehmer distance and the inverse
Lehmer distance. These two distances are shown to be, in a sense, the dual
of one another. Thereafter we study the logical relations between each of the
distances mention in the previous section. We finally study the triangular
inequality under varying distributions of the weights in ω.
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4.4.1 Duality Argument

Let us now dwell upon the duality between the Lehmer distance and the
inverse Lehmer distance. The relationship between the two distances is not
only the naming but further. In fact the winners’ decomposition of some per-
mutations looks quite similar to anothers’ losers’ decomposition. Given any
linear order R ∈L , let R̂ denote the inverse linear order, e.g., for R = abcd,
R̂ = dcba. Consider the linear orders R = abcd and R′ = dcab in Exam-
ple 4.3.2 and the inverse linear orders R̂, R̂′. Let us call the corresponding
permutation of these inverse linear orders as: the dual of π and denote by π̂
(not to be confused by π̃, i.e., the conjugate of π). Below is the losers’ path of
π and the winners’ path of π̂.

R0 R1 R2 R3 R4 R5

a a (a) c (c) d
(b) c c (a) d (c)
c (b) d d (a) a
d d (b) b b b︸ ︷︷ ︸

Losers’ path ρπIL for π

R̂0 R̂1 R̂2 R̂3 R̂4 R̂5

d d (b) b b b
c (b) d d (a) a

(b) c c (a) d (c)
a a (a) c (c) d︸ ︷︷ ︸

Winners’ path ρπ̂L for π̂

As observed in the figure above, for each linear order Ri in the losers’
path for π its inverse linear order R̂i occurs at the exact same point in the
winners’ path for π̂. This duality is observed in all decompositions of π and
π̂. We state this formally in a remark.

Remark 4.4.1. Given any d ∈ Dπ there exists a dual decomposition d̂ ∈ Dπ̂

of d such that for all x = 1,2, . . . ,m−1 and for all i = 1,2, . . . , I(π), σx = d(i) if
and only if σm−x = d̂(i). 4

Next we formalize the observation that the dual of a losers’ decomposi-
tion for π is the winners’ decomposition in π̂. As the dual permutation of
π̂ will be ˆ̂π = π, i.e., inverting linear orders twice will result in the original
linear order, we can also conclude that the dual of a winners’ decomposition
for π, is the losers’ decomposition for π̂.

Proposition 4.4.1. Given R,R′ ∈L , and the corresponding permutation π ∈
Π, let R̂, R̂′ denote the inverse linear orders for R,R′ and let π̂ ∈Π be the corre-
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sponding permutation of these inverse linear orders. If dπIL = (σa1 ,σa2 , . . . ,σak )
denote the losers’ decomposition of π ∈Π, then:

dπ̂L = (σm−a1 ,σm−a2 , . . . ,σm−ak ).

Proof. Note that for each Ri on the losers’ path of π, there exists R̂i in the
winners’ path of π̂. Therefore for any i, if Ri,Ri+1 is an elementary change
in position k, then R̂i, R̂i+1 is an elementary change in position m− k, since
the latter two is the inverse linear orders of the former two. Then, the rele-
vant elementary permutation in dπIL(i+1) = σk for the former, whereas the
relevant elementary permutation in dπ̂L(i+1)=σm−k for the latter.

Now, given a weight vector ω ∈ Ω, let ω̂ ∈ Ω be such that for all i =
1,2, . . . ,m−1, ωi = ω̂m−i, i.e., the vector ω̂ is the “inverse weight vector” of
ω. Next, we remark about the connection between the duality in decomposi-
tions and the weight vectors.

Remark 4.4.2. Given a weight vector ω, an associated weight function gω,
the total sum of weights for a decomposition d ∈ Dπ is equivalent to that of
the dual decomposition d̂ ∈ Dπ̂ under the inverse weight vector ω̂. Formally,
given any weight vector ω ∈ Ω, and its inverse ω̂, consider a decomposition
d ∈ Dπ and the dual decomposition d̂ ∈ Dπ̂. We have the following relation:

gω(d)= gω̂(d̂).

4

Considering the remark above, an immediate corollary to Proposition 4.4.1
is about the duality between the Lehmer and the inverse Lehmer distances:

Corollary 4.4.1. gω(dπIL)= gω̂(dπ̂L), and gω̂(dπ̂IL)= gω(dπL).

The significance of Proposition 4.4.1 and Corollary 4.4.1 is that we can
carry most of the results for the Lehmer distance to the inverse Lehmer
distance by means of the corollary above. Furthermore, since the Lehmer
code is more often used in the computer sciences literature, it also enables
one to easily calculate the inverse of it by using the Lehmer code for another
permutation.
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4.4.2 Logical Relations Between δL
ω, δIL

ω and δPM
ω

Now we focus on the effects of variation in the weight distribution. It turns
out that for particular classes of weight distributions, some weighted dis-
tances are equivalent. There is a varying degree of computational complex-
ity in calculating the weighted distances. For instance given a weight dis-
tribution finding the path that minimizes the sum of weights on all possible
paths between two linear orders is equivalent to a short-path problem in
graph theory. However finding the winners’/losers’ decompositions is much
less complex. Therefore showing equivalence between these distances for
certain weight distributions can actually be useful in terms of computational
complexity. We mention this briefly in the conclusion.

First, we show that if the weight vector is monotonically decreasing then
the Lehmer distance and the path-minimizing distance are equal.

Proposition 4.4.2. δL
ω(R,R′) = δPM

ω (R,R′) for all R,R′ ∈ L if and only if
ω ∈ Ω̄, i.e., the Lehmer distance equals the path-minimizing distance if and
only the weight vector is decreasing.

Proof. (If part) Let ω be a decreasing weight vector. We will show by in-
duction on the size of difference between R,R′ ∈L , i.e., k = |R \ R′|, that for
all decreasing weight vectors ω ∈ Ω̄ and for all R,R′ ∈L with corresponding
permutation π, δL

ω(R,R′)= δPM
ω (R,R′).

(Induction basis:) Take any R,R′ ∈L with π such that |R \R′| = 1. Then
there exists a unique decomposition {d} = Dπ of π such that d ∈ S. Then, by
positional neutrality, δL

ω(R,R′)= δPM
ω (R,R′)= gω(d).

(Induction hypothesis:) Take any R,R′ ∈L with π such that |R \ R′| = k.
Assume δL

ω(R,R′)= δPM
ω (R,R′).

(Induction step:) Take any R,R′ ∈ L with π such that |R \ R′| = k+1.
Let R and R′ be denoted by R0 and Rk+1. Let ρPM = (R0,R1, . . . ,Rk,Rk+1) be
a minimal path induced by a minimal decomposition dPM ∈ Dπ of the path-
minimizing distance δPM

ω (R0,Rk+1). Suppose the elementary permutation
in the last switch of the decomposition dPM is in the ith position of Rk, i.e.,
dPM(k+1)=σi and σi(Rk)= Rk+1. Note that by the induction hypothesis, we
have that δPM

ω (R0,Rk) = δL
ω(R0,Rk). By Remark 4.3.2 and decomposability

of δPM
ω , we have δPM

ω (R0,Rk+1)= δPM
ω (R0,Rk)+ωi = δL

ω(R0,Rk)+ωi.
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Let Rk = a1a2 . . .aiai+1 . . .am. Then, by construction we have that Rk+1 =
a1a2 . . .ai+1ai . . .am. Then, let π̄ be such that π̄(R0) = Rk. By construction,
the Lehmer codes (See Definition 4.6.1 in the appendix) for each of the per-
mutations, π and π̄ are equal except for the ith and (i + 1)th components.
Namely, for all t ∈ {1,2, . . . ,m} \ {i, i + 1}, |L(π̄)t| = |L(π)t| and therefore, for
the same values of t, we also have dπ̄L t

= dπL t
= (σt+|L(π)t|−1,σt+|L(π)t|−2, . . . ,σt).

This implies g(dπ̄L t
) = g(dπL t

). Note that L(π)i = {(x, y) ∈ R \ R′ | y = R′(i)} =
R \ R′∩ [UC(R′(i),R)×R′(i)]. Therefore, |L(π̄)i| = |L(π)i+1| and |L(π̄)i+1| =
|L(π)i| − 1. Consider the Lehmer distances between R0,Rk and R0,Rk+1

which are as follows:

δL
ω(R0,Rk+1)= gω(dπL)= gω(dπL1

)+ gω(dπL2
)+ . . .+ gω(dπLm

),

δL
ω(R0,Rk)= gω(dπ̄L)= gω(dπ̄L1

)+ gω(dπ̄L2
)+ . . .+ gω(dπ̄Lm

).

Expanding these two expressions and subtracting the latter from the former
by inserting |L(π)i+1| instead of |L(π̄)i|, and |L(π)i| −1 instead of |L(π̄)i+1|,
we end up with:

δL
ω(R0,Rk+1)−δL

ω(R0,Rk)= gω(σ|L(π)i+1|+i).

This implies that δL
ω(R0,Rk+1) = δL

ω(R0,Rk)+ω|L(π)i+1|+i. Remember that
δPM
ω (R0,Rk+1)= δL

ω(R0,Rk)+ωi. Furthermore, since ω is decreasing, we have
that ω|L(π)i+1|+i ≤ωi. Therefore δL

ω(R0,Rk+1) ≤ δPM
ω (R0,Rk+1). Hence, by the

definition of the path-minimizing distance, δL
ω(R0,Rk+1)= δPM

ω (R0,Rk+1).

(Only if part) Let δL
ω(R,R′) = δPM

ω (R,R′) for all R,R′ ∈ L . Suppose for
a contradiction ω is not decreasing, i.e., for some i = 1,2, . . . ,m−1, ωi <ωi+1.
Let ωi = x and ωi+1 = x+ ε for some x,ε> 0. Consider R1,R2,R3,R4,R5,R6 ∈
L such that R1 = a1a2 . . .aiai+1ai+2 . . .am and all six linear orders are iden-
tically ranked except for ai,ai+1 and ai+2:

R1 = . . .aiai+1ai+2 . . .,
R2 = . . .aiai+2ai+1 . . .=σi+1 ·R1,
R3 = . . .ai+2aiai+1 . . .=σi ·R2,
R4 = . . .ai+2ai+1ai . . .=σi+1 ·R3,
R5 = . . .ai+1ai+2ai . . .=σi ·R4,
R6 = . . .ai+1aiai+2 . . .=σi+1 ·R5.

103



Chapter 4. Weighted Distances Between Preferences

Note that |A| = m ≥ 3, therefore |L | ≥ 6 and the aforementioned linear or-
ders always exist in L . Then, consider the winners’ path ρL for the Lehmer
distance δL

ω(R1,R4):
ρL = (R1,R2,R3,R4)

Then the Lehmer distance is: δL
ω(R1,R4) = ωi+1 +ωi +ωi+1. Note, however,

that there exists another path between R1 and R4 (in fact, the losers’ path,
ρIL = (R1,R6,R5,R4) which results in a distance of ωi +ωi+1 +ωi (in fact,
the inverse Lehmer distance). Obviously the latter path induces a smaller
distance 3x+ ε whereas the Lehmer distance is 3x+2ε. Hence δL

ω(R1,R4) >
δPM
ω (R1,R4), which is a contradiction.

Considering the duality between the inverse Lehmer and the Lehmer
distance, it is very intuitive, after Proposition 4.4.2, that the inverse Lehmer
distance should also be related to the path-minimizing distance in case the
weight vector is inverted. We show in the following proposition that if the
weight vector is monotonically increasing then the inverse Lehmer distance
and the path-minimizing distance are equivalent.

Proposition 4.4.3. δIL
ω (R,R′) = δPM

ω (R,R′) for all R,R′ ∈ L if and only if
ω ∈Ω, i.e., the inverse Lehmer distance is the minimal weighted distance if
and only the weight vector is increasing.

Proof. (If part) Let ω be a increasing weight vector. Let R,R′ ∈ L with
π. Suppose for a contradiction, gω(dπIL) > gω(dπPM). Consider the inverse
weight vector ω̂, and the dual permutation π̂ of π, and the dual decomposi-
tions dπ̂L and dπ̂PM of (respectively) dπIL and dπPM . By the duality argument
in Section 4.4.1, and Corollary 4.4.1, we have that gω̂(dπ̂L) > gω̂(dπ̂PM). Note
that ω̂ ∈ Ω̄, i.e., ω̂ is a decreasing weight vector which is a contradiction to
Proposition 4.4.2.

(Only if part) Similar duality argument as in Proposition 4.4.2 follows.

4.4.3 Triangular Inequality

Next we introduce a lemma which is crucial for showing the triangular in-
equality of the path-minimizing distance. The lemma argues that, given
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a permutation, if in a sequence of elementary changes (induced by a non-
reduced factorization), two adjacent alternatives are swapped twice then
there can be a shorter factorization for the same permutation.

Lemma 4.4.1. Let R = . . . xy . . . with rank(x,R) = i and R′ = . . . xy . . . with
rank(x,R′) = j such that i 6= j and let π be the corresponding permutation.
Let f = ( f (1), f (2), . . . , f (t)) be a factorization of π such that f (1) = σi and
f (t)=σ j. Then f̃ = ( f (2), f (3), . . . , f (t−1)) is also a factorization of π.

Proof. As f (1) = σi and f (t) = σ j, the induced path starting from R ending
at R′, i.e., ρ f = (R0,R1, . . . ,Rk, . . . ,Rt−1,Rt), with R0 = R and Rt = R′, looks
like:

R0 = . . . . . . xy . . . . . .
R1 = = . . . . . . yx . . . . . .
...
Rk = . . . y . . . x . . . . . .
...
Rt−1 = . . . yx . . . . . . . . .
Rt = . . . xy . . . . . . . . .

Then, for R1 and Rt−1 with corresponding permutation π̄, we have f̄ =
( f (2), f (3), . . . , f (t−1)) as a factorization of π̄. Now, for each linear order Rl

for l = 1,2, . . . , t−1 in the subpath ρπ̄, consider a renaming of alternatives
and write x instead of y and y instead of x. Let these new linear orders be
denoted as Rxy

l for l = 1,2, . . . , t−1. Note that this changes neither the cor-
responding permutation π̄ nor the factorization f̄ . Hence also for Rxy

1 and
Rxy

t−1, π̄ is the corresponding permutation and f̄ is a factorization of π̄. As
Rxy

1 = R0 and Rxy
t−1 = Rt, and the corresponding permutations are unique, we

conclude π̄≡π. Therefore f̄ is a factorization of π.

Now we prove that the only weighted distance that always satisfies the
triangular inequality condition, regardless of the distribution of weights, is
the path-minimizing distance. This also implies that the only weighted gen-
eralization of the Kemeny distance within the class of weighted distances is
the path-minimizing distance.
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Theorem 4.4.1. Given any weight vector ω ∈ Ω, a weighted distance func-
tion δω satisfies the triangular inequality condition if and only if δω = δPM

ω ,
i.e., δPM

ω is the only weighted distance function that satisfies the triangular
inequality for any ω ∈Ω.

Proof. (If part) Take any ω ∈Ω. Let δω = δPM
ω . Take any R,R′,R′′ and let

π,π′,π′′ be such that π(R)= R′, π′(R)= R′′, and π′′(R′)= R′′.
Let d1 ∈ Dπ, d2 ∈ Dπ′′ , and d3 ∈ Dπ′ be the path minimizing decompo-

sitions for respective permutations. Let k1,k2,k3 ∈ N be the size of the
these decompositions. We want to show that δPM

ω (R,R′′) ≤ δPM
ω (R,R′) +

δPM
ω (R′,R′′), i.e., gω(d3)≤ gω(d1)+gω(d2). Now let f = (d1,d2) be a sequence

of elementary permutations joining d1 and d2, consecutively. Note that f is
a factorization of π′, i.e., f (k1+k2)· f (k1+k2−1)·. . .· f (1)·R = R′′. Furthermore
gω( f )= gω(d1)+ gω(d2).

Case 1: If k1+k2 = k3 then f is in fact a decomposition of π′ and R′ is on
the path ρ f = (R = R0,R1, . . . ,Rk1+k2 = R′′) induced by this decomposition, in
particular R′ = Rk1 = ρ f (k1+1). Then, by definition of δPM

ω , gω(d3)≤ gω( f )=
gω(d1)+ gω(d2).

Case 2: If k1 + k2 > k3 then f is a non-reduced factorization of π′ and
there exists some pair of alternatives xy ∈ R ∩R′′ which is (unnecessarily)
inverted on the path ρ f at least twice. Then there exists i, j with 0 ≤ i <
i+1< j < j+1≤ k1 +k2 such that:

Ri = . . . . . . xy . . . . . .
Ri+1 = = . . . . . . yx . . . . . .
...
R j = . . . yx . . . . . . . . .
R j+1 = . . . xy . . . . . . . . .

Lemma 4.4.1 applies and there exists a reduction of f to f xy and obvi-
ously gω( f xy) < gω( f ). Applying Lemma 4.4.1 repeatedly for all such pairs
eventually leads to a reduced factorization f ∗ = f x1 y1,...xl yl which is a de-
composition of π′. Note that gω( f ∗) < gω( f ). Then, by definition of δPM

ω ,
gω(d3)≤ gω( f ∗)< gω( f )= gω(d1)+ gω(d2).

(Only if part)
Let R,R′, and π. We will show by induction on the size of π, i.e., I(π).

106



4.5. Conclusion

(Induction basis) For I(π)= 1, by positional neutrality δω = δPM
ω .

(Induction hypothesis) For I(π)= k, assume δω = δPM
ω .

(Induction step) Let I(π) = k+1. Let d ∈ Dπ be a path minimizing de-
composition (a minimal decomposition) of π under δPM

ω . Let R = R0 and R′ =
Rk+1 and let ρd = (R0,R1, . . . ,Rk,Rk+1) be the induced path. Consider R0,Rk

and the corresponding permutation π̄. Let d̄ ∈ Dπ̄ be the decomposition
such that ρd̄ = (R0,R1, . . . ,Rk). By the induction hypothesis, δPM

ω (R0,Rk) =
δω(R0,Rk), by positional neutrality δPM

ω (Rk,Rk+1) = δω(Rk,Rk+1). By the
triangular inequality, δω(R0,Rk)+δω(Rk,Rk+1) ≥ δω(R0,Rk+1). Then by Re-
mark 4.3.2 this implies δω(R0,Rk)+δω(Rk,Rk+1) = δPM

ω (R,R′) ≥ δω(R,R′) =
δω(R0,Rk+1). By definition of δPM

ω , we conclude δPM
ω (R,R′)= δω(R,R′).

By Proposition 4.4.2 and Theorem 4.4.1 we have the following triangular
inequality result for the Lehmer distance:

Corollary 4.4.2. The Lehmer distance satisfies the triangular inequality if
and only if ω ∈ Ω̄, i.e., ω is a decreasing weight vector.

By Proposition 4.4.3 and Theorem 4.4.1 we have the following triangular
inequality result for the inverse Lehmer distance:

Corollary 4.4.3. The inverse Lehmer distance satisfies the triangular in-
equality if and only if ω ∈Ω, i.e., ω is an increasing weight vector.

4.5 Conclusion

We have described a class of distance functions over linear orders that are
sensitive to the positions of elementary changes and decomposable into sums
of distances between elementary changes. Note that both of these properties
are essential elements of the Kemeny distance. We have shown that only the
path-minimizing distance satisfies the triangular inequality condition for all
possible weight vectors.

We have shown that if weights are monotonically decreasing (or increas-
ing) from the upper parts of a ranking to the lower parts monotonically, then
the Lehmer distance (the inverse Lehmer distance) satisfies the triangular
inequality condition and is equivalent to the path-minimizing distance.
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Note that finding the path-minimizing distance is not trivial. This is
equivalent to the shortest-path problem which requires implementation of
nonlinear algorithms such as the algorithm of Dijkstra (1959), or finding out
all possible paths between two linear orders and calculating the sums for
each elementary change on these paths to obtain the minimal one. However,
our results show that if the weights have a monotonic pattern (increasing
or decreasing), there is an easy way out. By calculating the Lehmer code
(or a dual code for the inverse Lehmer distance), we can immediately con-
clude that the distance of the winners’ (or losers’) path is the minimal one.
Note that finding the Lehmer code of a permutation requires an easier al-
gorithm7 than the path-minimizing distance. Since most scenarios impose
a monotonic pattern on the weights and by the equivalence results, we can
conclude that the path-minimizing distance can also be found easily in such
scenarios.

The class of weighted distance functions may also be implementable as
collective preference rules, in the same fashion as the Kemeny-Young rule
which assigns outcomes (strict preferences) that minimizes the Kemeny dis-
tance to a group of individual preferences. Since we have shown that the
Kemeny distance is a particular example of the path-minimizing distance, it
would be interesting to see the properties of a preference rule that uses the
latter distance for the minimization.

Another possible line of research is to study what other conditions the
class of weighted distances satisfies. Bogart (1973) introduced several condi-
tions for distance functions, among them, an additivity condition. This con-
dition requires that for any three preferences R1, R2, and R3 if R2 is on some
path between R1 and R3 then δ(R1,R2)+δ(R2,R3)= δ(R1,R3). It is straight-
forward to see that this condition can be satisfied by all weighted distances
only if weights are constant. However, one may restrict the betweenness re-
quirement such that R2 is required to be on a path that gives the distance
between R1 and R3, e.g., the minimal path for the path-minimizing distance
or the winners’ path for the Lehmer distance.

Finally, we would like to point out some work on distances over choice

7In terms of computational complexity finding the winners’/losers’ decompositions is sim-
ilar to finding the smallest number in an unsorted array.
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functions. Klamler (2008) discusses distances in the framework of individ-
ual choice functions, i.e., functions that choose from each possible subsets
of alternatives. These choice functions and distances defined on them turn
out to be related to the Kemeny distance for preferences. It would be inter-
esting to extend the results therein to see a correspondence between some
class of distances on choice functions and the class of weighted distances on
preferences.

4.6 Appendix

4.6.1 Appendix A: Notation for Permutation and Group The-
ory

Given any R,R′ ∈L with π, consider Mπ, the m×m matrix form of π where
Mπ

i j = 1 if and only if π( j) = i and Mπ
i j = 0 otherwise. The matrix Mπ has

entries of 1 in the intersection of the ith row and the jth column since the
jth alternative in R is equal to the ith alternative in R′. Note that this
particular notation has its own advantages, e.g., when the linear orders R,R′

are written as a m×1 column vectors, we have R′ = Mπ ·R.

Given a permutation matrix Mπ, let us define a m×m diagram by replac-
ing all Mπ

kl with crosses for all (k, l) with k < π(l) and l < j for j such that
π( j)= k. Note that such (k, l)’s are the indices with zeros that come before an
entry of 1 in a row and also before an entry of 1 in a column. Furthermore
replace all entries with 1 by some dots. The established diagram is called
the Rothe diagram8 and denoted by Γ(π) where each crossed index refers to
an inversion that is necessary to permute R to R′.

Example 4.6.1. Consider the same linear orders in Example 4.3.1, R = abcd
and R′ = dcab and π such that π(1)= 3, π(2)= 4, π(3)= 2, π(4)= 1:

Mπ =
0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

Γ(π)=

x x x · 3
x x · 0 2
· 0 0 0 0
0 · 0 0 0
2 2 1 0

8For the application of this diagram see Muir (1906), and Knuth (1998)

109



Chapter 4. Weighted Distances Between Preferences

¦

Definition 4.6.1. Lehmer Partition and Inverse Partition: For any k, j =
1,2, . . .m, let L(π)k denote the set of crossed indices (k, j) in the kth row of the
Rothe diagram Γ(π). Then we call L(π) = (L(π)k)m

k=1 the Lehmer partition.
Similary let IL(π) j denote the set of crossed indices (k, j) in the jth column of
the Rothe diagram Γ(π). Then we call IL(π) = (IL(π)k)m

k=1 the inversion par-
tition. The vector composed of cardinalities of each component of the Lehmer
partition, i.e., (|L(π)1|, |L(π)2|, . . . , |L(π)m|), is known as the Lehmer code. The
vector composed of the cardinalities of each component of the inversion parti-
tion, i.e., (|IL(π)1|, |IL(π)2|, . . . , |IL(π)m|), is known as the inversion list.

The Lehmer code for π in Example 4.6.1 is the column on the right hand
side of the Rothe diagram, i.e., (3,2,0,0) whereas the inversion list is the
row just below the Rothe Diagram, i.e., (2,2,1,0). The interpretation of the
Lehmer code is that the alternative R′(1) has to be raised 3 times, and R′(2)
has to be raised 2 times to achieve R′ from R by elementary changes. The
interpretation of the inversion list is that the alternative R(1) has to be
lowered 2 times, and R(2) has to be lowered 2 times, and R(3) has to be
lowered 1 times to achieve R′ from R.

Note that (k, j) ∈ L(π)k if and only if (k, j) ∈ IL(π) j. Furthermore, each
crossed index in (k, j) ∈ Γ(π) corresponds to a pair in R \ R′ that is to be
inverted. In particular, the crossed index (k, j) ∈ Γ(π) corresponds to the
pair (R( j),R′(k)) ∈ R \ R′. Therefore L(π)k = R \ R′∩ {UC(R′(k),R)×R′(k)} =
{(x, y) ∈ R\R′ | y= R′(k)}, i.e., the kth component of the Lehmer partition con-
tains the pairs (a,b) ∈ R \ R′ where b is the alternative in kth position of R′

and R = .a.b., but R′ = .b.a.. Similarly, IL(π) j = R \ R′∩ {R( j)×LC(R( j),R)},
i.e., the jth component of the inversion partition contains the pairs (a,b) ∈
R \ R′ where a is the alternative in the jth position of R and R = .a.b., but
R′ = .b.a..

Remark 4.6.1. Note that Mπ = (Mπ̃)T , i.e., the permutation matrices of π
and its conjugate (the inverse matrix) π̃ are the transpose of each other, hence
for the Rothe diagrams, Γ(π) = (Γ(π̃)T . This implies the following relation
between the Lehmer partition and the inverse partition: (k, j) ∈ L(π)k if and
only if ( j,k) ∈ IL(π̃) j. 4
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4.6.2 Appendix B: Lehmer Distance and the Winners’ Decom-
position

The winners’ decomposition introduced in Section 4.3.2 is also known as
“canonical factorization” in Garsia (2002). It is visualized with the help of a
diagram in Kassel et al. (2000), a similar diagram to that of Rothe according
to Muir (1906). Remember that the winners’ decomposition first raises the
alternative in R that should be at the top of R′. This means the inversions
in L(π)1 = {(x, y) ∈ R \R′ | y= R′(1)} are made beforehand. Let πL1 denote the
permutation that raise R′(1) from its position in R, i.e., rank(R′(1),R), to
the top of R. Obviously the unique decomposition, call it {dL1}= DπL1

, makes
only the inversions in L(π)1 and looks like dL1 = (σ|L(π)1|,σ|L(π)1|−1, . . . ,σ2,σ1).
Formally, for each component of the Lehmer partition L(π)k, let πLk denote
the permutation that makes the inversions in L(π)k. Then consider the
decomposition dLk ∈ DπLk

such that dLk = (σk+|L(π)k|−1,σk+|L(π)k|−2, . . . ,σk)
if |L(π)k| > 0 and dLk = (σ0) otherwise. As π = πLm ·πLm−1 · . . . ·πL1 , then
dL = (dL1 ,dL2 , . . . ,dLm ) ∈ Dπ is a well-defined decomposition of the permu-
tation π.

Note that each inversion (k, l) in the Lehmer partition L(π)k is assigned
an elementary change in some position via the kth component of the win-
ners’ decomposition dLk depending on the number k and the amount of
crosses that occur in Γ(π) on the same row before (k, l). In particular, given
dLk = (σk+|L(π)k|−1,σk+|L(π)k|−2, . . . ,σk+1,σk), the first cross on the kth row is
assigned σk, the second cross on the kth row is assigned σk+1 and so on.
Note, however, that this does not necessarily imply (k, l) is assigned σk+l .
In general a crossed entry (k, l) ∈ Γ(π), is inverted by an elementary permu-
tation of σk+m, whenever there are m crosses in the kth row of Γ(π) before
(k, l).

Definition 4.6.2. A decomposition dπL ∈ Dπ is called the “winners’ decom-
position” if it has the form: dπL = (dL1 ,dL2 , . . . ,dLm ) for all permutations π ∈
Π\{σ0} and dπL =σ0 for π=σ0.

By using the values in Example 4.6.1, the elementary permutations that
occur in the winners’ decomposition can be visualized by the Rothe diagram
as follows:
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x x x · 3
x x · 0 2
· 0 0 0 0
0 · 0 0 0
2 2 1 0

−→

σ1 σ2 σ3 · 3
σ2 σ3 · 0 2
· 0 0 0 0
0 · 0 0 0
2 2 1 0

Proposition 4.6.1. δL
ω is symmetric.

Proof. Take any R,R′ ∈ L . Let π be the corresponding permutation and π̃

be the conjugate of π, i.e., π(R) = R′ and π̃(R′) = R. We want to show that
δL
ω(R,R′)= δL

ω(R′,R), i.e.,
gω(dπL)= gω(dπ̃L).

As Mπ = (Mπ̃)T , the Rothe diagrams of each permutation are also the trans-
pose of each other. Then for any crossed index in (k, l) ∈ Γ(π), there exists a
crossed index (l,k) ∈Γ(π̃). As these crosses refer to an inversion in respective
winners’ decompositions, dπL and dπ̃L, it is sufficient to show that each of such
crossed indices correspond to an elementary change in the same position.
Consider now the kth component of the winners’ decomposition dπLk

, and the
l th component of the winners’ decomposition dπ̃L l

which invert respectively
(k, l) ∈ Γ(π) and (l,k) ∈ Γ. Let Kπ = {(x, y) | Mπ

xy = 1 and x < k and y < l}
and K π̃ = {(x, y) | Mπ̃

xy = 1 and x < l and y < k}. As Mπ = (Mπ̃)T , we have
|Kπ| = |K π̃|. Note also that for each (x, y) ∈ Kπ there will be one less cross
in the kth row before (k, l) ∈ Γ(π) and one less cross in the l th row before
(l,k) ∈ Γ(π̃). Therefore (k, l) ∈ Γ(π) will have an elementary permutation of
σk+(l−1)−|Kπ|. Similarly (l,k) ∈ Γ(π̃) will have an elementary permutation of
σl+(k−1)−|K π̃|. As k+ (l −1)−|Kπ| = l + (k−1)−|K π̃| and the choice of (k, l) is
arbitrary, this completes the proof.

4.6.3 Appendix C: Inverse Lehmer Distance and the Losers’
Decomposition

Let r( j) = rank(R′( j),R) denote the position, of the jth alternative of R′, in
R. Remember that the losers’ decomposition first lowers the alternative in
R that should be at the bottom of R′. This means the inversions in IL(π)r(m)
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are made beforehand. Let πILr(m) denote the permutation that lowers R′(m)
from its position in R, i.e. r(m) = rank(R′(m),R), to the bottom of R. Obvi-
ously the unique decomposition, call it {dILr(m)}, makes only the inversions
in IL(π)r(m) and looks like dILr(m) = (σr(m),σr(m)+1, . . . ,σm−2,σm−1). Formally
for each component of the inversion partition IL(π)r(k), let πILr(k) denote the
permutation that makes inversions in IL(π)r(k). Then consider the decompo-
sition dILr(k) ∈ DπILr(k)

such that dILr(k) = (σk−|IL(π)r(k)|,σk−|IL(π)r(k)|+1, . . . ,σk−1)
if |IL(π)r(k)| > 0 and dILr(k) = (σ0) otherwise. As π=πILr(1) ·πILr(2) ·. . .·πILr(m−1) ·
πILr(m) , then dIL = (dILr(m) ,dILr(m−1) , . . . ,dILr(1)) ∈ Dπ is a well-defined composi-
tion of the permutation π.

Definition 4.6.3. A decomposition dπIL ∈ Dπ is called the “losers’ decomposi-
tion” if it has the form: dπIL = (dILr(m) ,dILr(m−1) , . . . ,dILr(1)) for all permutations
π ∈Π\{σ0} and dπIL =σ0 for π=σ0.

Proposition 4.6.2. δIL
ω is symmetric.

Proof. Suppose for a contradiction δIL
ω is not symmetric, i.e., for some R,R′ ∈

L , we have δIL
ω (R,R′) 6= δIL

ω (R′,R). Then by duality argument in Section 4.4.1
and Corollary 4.4.1, we have that δL

ω̂
(R̂, R̂′) 6= δL

ω̂
(R̂′, R̂) which contradicts the

symmetry of the Lehmer distance in Proposition 4.6.1.
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4.6.4 Appendix D: A Visualization for Paths and Decomposi-
tions

Since Π is a permutation group on the set of alternatives A, it is well-known
that when the number of alternatives is m = |A|, a visualization of all linear
orders L over A is possible with an geometric object known as permutahe-
dron (Santmyer, 2007) in an (m−1)−dimensional space. For instance, the
set of all linear orders over A = {a,b, c} can be visualized in R2+ as a hexagon:

Example 4.6.2. Consider the graph in Figure 4.1 where each vertex corre-
sponds to some Ri and two vertices are connected by an edge if and only if
they form an elementary change. ¦

R1 = abc
R2 = acb
R3 = cab
R4 = bac
R5 = bca
R6 = cba

Figure 4.1: A graph for linear orders when m = 3.

Note that for two linear orders R1 and R3, the sequence between them
(R1,R2,R3) is a path and induced by the decomposition d = (σ2,σ1) whereas
the sequence (R1,R4,R5,R6,R3) is not a path because it is induced by a non-
reduced factorization f = (σ1,σ2,σ1,σ2).

Example 4.6.3. For A = {a,b, c,d}, a visualization of the set of all possi-
ble linear orders L can be achieved by a three dimensional permutohedron,
known as truncated octahedron. In Figure 4.2 we provide a two dimensional
reduction of the truncated octahedron as a graph. ¦
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R1 = abcd R5 = adbc R9 = acdb R13 = bcda R17 = dbac R21 = dcab
R2 = abdc R6 = badc R10 = adcb R14 = cbad R18 = bdca R22 = dbca
R3 = bacd R7 = bcad R11 = dabc R15 = cadb R19 = cbda R23 = cdba
R4 = acbd R8 = cabd R12 = bdac R16 = dacb R20 = cdab R24 = dcba

Figure 4.2: A graph for linear orders when m = 4. The lines which connect two
linear orders by passing through fewest possible edges are called paths.
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Nederlandse samenvatting
(Dutch summary)

Sinds Samuelson (1947) is de micro-economische theorie van een normatief
naar een positief kader verschoven. Aangezien niemand meer betwist of
een stelling handig is, kan dit gezien worden als een positieve ontwikke-
ling. De discussie vindt nu juist plaats over de aannames die de theorie
zijn bestaansrecht geven. Het introduceren van wiskundige kracht en sterk
bewijs voor stellingen wordt door velen gezien als een goede zaak binnen
de economie, terwijl anderen dit als een geheime zonde, specifiek aan de
economische wetenschap zien (McCloskey, 2002). Dit proefschrift bestaat
uit drie op zichzelf staande hoofdstukken die als duidelijke voorbeelden van
deze zonden fungeren.

Aan deze drie hoofdstukken, waarin drie verschillende vragen worden
beantwoord, ligt hetzelfde beginsel van economische analyse ter grondslag.
In ieder hoofdstuk, fungeren individuele voorkeuren als uitgangspunt van
het analytisch kader. We onderzoeken de wisselwerking tussen individuele
voorkeuren binnen de volgende drie scenario’s; i) individuen worden, reken-
ing houdend met hun voorkeuren, gekoppeld om een kamer te delen, ii) indi-
viduen krijgen bepaalde voorkeuren toegewezen die hen collectief represen-
teren, iii) ideologische afstanden tussen individuen worden gemeten door de
verschillen in hun voorkeuren.

Hoofdstuk twee en drie zijn voorbeelden van twee onderzoeksgebieden
binnen de moderne Samuelsonse micro-economische theorie: matching the-
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orie en sociale keuze theorie. Hoofdstuk vier, echter, onderzoekt het uit-
gangspunt dat ten grondslag ligt aan het theoretisch kader, namelijk de in-
dividuele voorkeuren. In dit hoofdstuk, introduceren we een ongelijkheids-
functie met betrekking tot deze voorkeuren.

In hoofdstuk twee maken we gebruik van individuele voorkeuren in het
kader van matching theorie. We bestuderen de zogenaamde “kamergenoot-
markt” geïntroduceerd door Gale en Shapley (1962). Deze markt wordt
gekenmerkt door een-op- een matching waarbij mensen of in paren gekop-
peld worden om een kamer te delen of alleen blijven. In het bijzonder analy-
seren we het effect van variabele populatiegroottes, waarbij personen zowel
als consumenten als als productiemiddel worden gezien. Klaus (2011) intro-
duceerde twee nieuwe “bevolkingsgevoeligheid” eigenschappen die het ef-
fect van nieuwkomers op de bestaande populatie beschrijven: “concurrentie
gevoeligheid” en “productiemiddel gevoeligheid”. We karakteriseren de core
met behulp van de eigenschappen gerelateerd aan bevolkingsgevoeligheid
en zwakke unanimiteit en consistentie. We krijgen twee bijbehorende on-
mogelijkheden als resultaat.

In hoofdstuk drie worden de individuele voorkeuren over een bepaalde
set van alternatieven beschouwd als een collectief besluitvormingsprobleem.
Door middel van voorkeursregels worden de collectieve besluiten gemod-
elleerd. We richten ons op een nieuwe voorwaarde: “update-monotonie” voor
voorkeursregels. Deze voorwaarde vereist, over het algemeen, dat wanneer
individuele voorkeuren ten gunste van de uitkomst van een voorkeursregel
veranderen, deze uitkomst ongeacht het nieuwe voorkeursprofiel van de in-
dividuen, nog steeds zou moeten worden uitgekozen door de voorkeursregel.
Hoewel veel onmogelijkheidsstellingen voor keuzeregels gebaseerd zijn op,
of gerelateerd zijn aan voorwaarden van monotonie, voldoen verschillende
belangrijke voorkeursregels aan deze voorwaarde. In geval van paarsgewi-
jze, Pareto optimale, neutrale, en consistente regels, is de Kemeny-Young
regel de enige regel die hier aan voldoet. In geval van convex gewaardeerde,
Pareto optimale, neutrale en replicatie invariante regels, houdt sterke update-
monotonie in, dat de regel gelijk staat aan de vereniging van alle voorkeuren
waarbij de voorkeursparen bij k personen unaniem overeenkomen, waarbij
k gerelateerd is aan het aantal alternatieven en personen. In beide gevallen
vinden we een karakterisering van deze regels.
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In hoofdstuk vier, ligt de nadruk op de voorkeuren alleen. De bekende
Kemeny afstand, bijvoorbeeld, berekent de paarsgewijze verschillen tussen
twee individuele voorkeuren. In deze context, dragen we een klasse van
gewogen afstandsfuncties aan, die gebaseerd is op een bepaalde verdeling
van gewichten over de posities van paren waarover onenigheid bestaat. Bin-
nen deze klasse vallen bijvoorbeeld de Kemeny afstand, de Lehmer afstand,
de inverse Lehmer afstand, en de “route-minimalisatie” afstand. We anal-
yseren implicaties van het veranderen van deze gewichten op de structuur
van deze afstandsfuncties. Het blijkt dat de “route-minimalisatie” afstand
de gewogen veralgemenisering is van de Kemeny afstand, in die zin dat het
de enige afstandsfunctie is die voor elke strikt positieve gewichtsvector aan
de driehoeksongelijkheid voldoet. Verder laten we zien dat deze afstand
gemakkelijk kan worden berekend wanneer de gewichten over de posities
van de meningsverschillen monotoon toe- of afnemen.

123



Short Curriculum Vitae

Burak Can was born in April, 1982 in Adana, Turkey. Between 1988-1997,
he attended primary school at Cebesoy İ.Ö.O, then entered to Adana Anato-
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Debate Tournament in 2001 and he also taught sculpting at Fine Arts Club
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