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1. INTRODUCTION 

The question of introducing some degree of objectiv- 
ity in the rejection of outlying observations has been 
the subject of considerable research in the statistics 
literature. This is a fundamental problem with cross- 
section samples where one typically has a large body of 
data on numerous variables. A few atypical observa- 
tions may make the data distribution nonnormal, de- 
stroying the optimality of the least squares estimation 
procedure, which could become very inefficient. 

In this article we consider the problem from the point 
of view of building an explanatory model of market 
rental values in terms of the observed traits of each 
housing unit in an urban area. Hence, this exercise 
belongs to the vast literature on hedonic price functions 
in urban economics, which has been reviewed by Gril- 
iches (1971), Ball (1973), and Quigley (1979). The 
microeconomic underpinnings of the empirical work 
in this area can be found in Rosen (1974), who provides 
a model of price determination of a differentiated and 
indivisible product under competitive conditions. 

The rest of the article is organized as follows. Section 
2 summarizes the effects of outliers in the context of 
maximum likelihood estimation of the linear model. 
Section 3 briefly surveys the possible solutions and 
shows the advantages of a robustification of the model's 
construction methodology, consisting of an internal 
sensitivity analysis of a model estimated by least squares 
with a particular sample. Its empirical application is 

illustrated in Section 4, where we present a model of 
the determinants of housing rental values for the Mad- 
rid Metropolitan Area. The final section, Section 5, 
contains some concluding comments. 

2. THE EFFECTS OF OUTLIERS 
We begin by briefly reviewing for later reference the 

maximum likelihood estimation of the linear model 

Y= X + U (1) 
where Y is a (n x 1) vector of responses, X is a (n x k) 
matrix of predetermined variables with rank k, , is a 
(k x 1) vector of parameters, and U is a (n x 1) vector 
of disturbances. 

Let f be the density function of U, and assume that 
E[U] = 0 and E[UU'] = a2 I. The maximum likelihood 
estimation of (1) leads to 

n n 

max In f(ei) = min ~ -g(ej), 
i=1 i=l 

(2) 

where -g = In f and e, = yi - x/ # are the sample 
residuals. 

Iff is differentiable, the maximum likelihood esti- 
mator of 6 is the solution (assumed unique) to the 
system 

Z I(ei)x; = O', 
i=l 

(3) 

where / is the first derivative of g, and xi is the ith row 
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of X. Another way of writing (3) is 

n 

~ ex Wi = 0', 
i= 

(4) 

where wi = e(ei)/ei. 
Thus, the maximum likelihood estimation of the 

linear model can be interpreted as (a) the minimization 
of a certain function g of the sample residuals; (b) the 
choice of a function k of sample residuals, whose com- 
ponents are orthogonal to the linear space generated by 
the columns of X; and (c) as weighted least squares with 
weights wi determined iteratively. 

Iff is symmetric, we may assume that it belongs to 
the potential exponential family-a general form sug- 
gested by Diananda (1949) and Box (1953), and studied 
by Box and Tiao (1973). In this case 

f(u) = kl(a)a-expl-k2(a) I u/a 12/(l+a)3, 

-l < a< 1, a < , -oo u < oo, (5) 

where a is the standard deviation, and a indicates the 
kurtosis of the distribution. 

For a = 0, the distribution is the normal; for a = 1, 
it is the Laplace distribution; and as a approaches -1, 
one obtains in the limit the uniform distribution. More- 
over, expression (5) includes leptokurtic distributions 
with tails wider than the normal when a > 0, and 
platokurtic distributions when a < 0. 

Taking a as known, the maximization of the likeli- 
hood of a linear model with disturbances given by (5) 
leads to 

n 2/( +a) 

min yi-x,#3 
i=l 

This includes as particular cases the minimization of 
absolute deviations (a = 1), least squares (a = 0), and 
the minimization of the maximum deviation (as a -- 
-1). Therefore, the decision on an adequate estimation 
criterion strongly depends on the specific characteristics 
of the distribution with which one is working. 

In this context, the problem with least squares is that 
it may become very inefficient in the presence of a few 
atypical data that make the distribution leptokurtic. To 
see this, assume that the disturbances in the linear 
model are N(0, a2) but there exists an unknown small 
proportion E of atypical observations. This fact can be 
modeled, following, among others, Tukey (1960), Box 
and Tiao (1968, 1973), and Guttman (1973), by assum- 
ing that these anomalous observations come from a 
normal distribution with zero mean and variance h a2 
with h > 1. Then the density function will be 

f(u) = (1 - )fN(UI 0, U2) + efN(u 0, h U2). (6) 

It is immediate that 

var(u) = a2(1 + (h - 1)) 
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Figure 1. TWO TYPES OF OUTLIERS. In case (A), the anomalous 

value of the response leads to a vertical displacement of the regres- 
sion line and a large residual. In case (B), the atypical value of the 
explicative variables determines the slope of the regression line but 
leads to a small residual. 

and f will be symmetric with kurtosis 
I + (h2 - 1) ) 

= 3((1 + (h- 1))2 -I =3 (b 1) 

with a > 1. Therefore, the distribution will be leptokur- 
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tic. In this case, least squares is no longer optimal. Also, 
since the variances of the parameter estimators depend 
directly.on the error variance, which is greater than a2, 
such estimates will be unreliable and very unstable in 
different samples. 

Finally, it is worthwhile to note that there are two 
types of possible outliers. If we consider sample points 
( i, x/), one may find an anomalous value of y, for the 
corresponding xi, as in Figure 1 (A). The residual for 
point P will be large, and its effect will be a vertical 
displacement of the regression line. Alternatively, we 
may have an atypical value of the vector of explanatory 
variables that may not be associated with an atypical 
response, as in Figure 1 (B). Here, point P alone essen- 
tially determines the slope of the regression line, so that 
in spite of the anomalous nature of the situation the 
residual may be very small or even zero. 

3. DIFFERENT APPROACHES TO SOLVE 
THE PROBLEM 

The practical approaches to deal with the problems 
posed by outliers can be summarized as follows: 

1. Appeal to the central limit theorem to justify the 
normality hypothesis in order to use least squares. Once 
the model has been estimated, use residual plots against 
the estimated values or the explanatory variables to 
detect possible outliers. 

2. Use a Bayesian approach that involves building a 
formal model which incorporates the a priori expected 
deviation with respect to the standard linear model by 
means of parameters in an extended model. 

3. Reject least squares in favor of a robust estimation 
procedure by selecting a function g that yields reason- 
ably efficient estimates under the normality assumption 
without suffering the instability of least squares in the 
presence of outliers. 

4. Robustify, rather than the estimation criterion, 
the methodology followed in the construction of the 
linear model. 

This requires checking at each stage that decisions are 
not determined by a small group of anomalous obser- 
vations. Hence, least squares is not abandoned, but 
instead the estimation process is supplemented by a 
battery of diagnostic checks that permit detection of 
potentially influential observations, measurements of 
their effects on estimated coefficients, and tests of 
whether they are significantly atypical. 

In the next section we briefly review these ap- 
proaches. 

3.1 The Use of Residual Plots 

This is the alternative suggested by the vast majority 
of statistics and econometric textbooks. Its main limi- 
tation is that, at best, residual plots can only serve to 
detect outliers of type A in Figure 1. However, in the 

context of a large sample of data on numerous variables, 
residual plots by themselves are not very helpful for 
detecting atypical multivariant values with several co- 
ordinates far from the mean values of the explanatory 
variables. Unfortunately, these outliers of type B in 
Figure 1 may have a great influence on the regression 
results and are, therefore, particularly damaging. 

3.2 The Bayesian Approach 

This has been used by Jeffreys (1961), Box and Tiao 
(1968), Chen and Box (1979 a, b, c), Box (1979, 1980) 
and others. It is possibly the most general and thorough 
approach to the problem, but we have been unable to 
implement it because of its computational complica- 
tions and the requirements of adequate software for its 
efficient application. Thus, we abstain here from further 
comments on it. 

3.3 Robust Regression Estimates 

The shortcomings of the least squares approach al- 
ready mentioned have led in the last 20 years to an 
extensive literature that aims to overcome these diffi- 
culties. Books by Mosteller and Tukey (1977), Huber 
(1981), and Barnett and Lewis (1978) present the prob- 
lem and contain numerous references. 

The instability of least squares in the presence of 
outliers is due to the form of the functions g and V in 
expressions (2) and (3). In this case, g(u) = u2, {(u) = 
u, and wi(u) = i/(u)/u = 1. Therefore, since all obser- 
vations are given equal weight, those data with a large 
residual in absolute value carry the least squares equa- 
tion towards them-an obviously undesirable effect. It 
is intuitively clear that a function g that grows more 
slowly when u is large will give a smaller weight to such 
atypical observations, leading, consequently, to more 
robust estimates. This solution has been advocated by 
Huber (1964) and others (see Stigler 1973 for historical 
comments). Hogg (1979) and Huber (1981) present a 
good summary of this approach. See also Jeffreys (1961, 
p. 214 ff.). 

These robust procedures are subject to three types of 
criticisms. First, the heuristic nature of the functions g 
or 4 introduce a certain arbitrariness in the formulation. 
Second, the small-sample properties of the estimates 
are unknown. Third, these methods are useful in deal- 
ing with outliers of type A in Figure 1, but they do not 
solve the problem posed by atypical values with small 
residuals. 

With respect to the first criticism, Chen and Box 
(1979a) have established that the functions g and A 

suggested in the literature are optimal for particular 
types of contamination. For instance, Huber's function 
g is optimal for a normal distribution with Laplace tails, 
which can be closely approximated by the contami- 
nated normal model presented in (6). Therefore, it can 
be argued that the methodology we use should depend 
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comments on it.

3.3 Robust Regression Estimates

The shortcomings of the least squares approach al­
ready mentioned have led in the last 20 years to an
extensive literature that aims to overcome these diffi­
culties. Books by Mosteller and Tukey (1977), Huber
(1981), and Bamett and Lewis (1978) present the prob­
lem and contain numerous references.

The instability of least squares in the presence of
outliers is due to the form of the functions g and \f; in
expressions (2) and (3). In this case, g(u) = u2

, 1/I(u) =
u, and Wi(U) = 1/I(u)/u = l. Therefore, since all obser­
vations are given equal weight, those data with a large
residual in absolute value carry the least squares equa­
tion towards them-an obviously undesirable efTect. It
is intuitively clear that a function g that grows more
slowly when u is large will give a smaller weight to such
atypical observations, leading, consequently, to more
robust estimates. This solution has been advocated by
Huber (1964) and others (see Stigler 1973 for historical
comments). Hogg (1979) and Huber (1981) present a
good summary ofthis approach. See also JefTreys (1961,
p. 214 fT.).

These robust procedures are subject to three types of
criticisms. First, the heuristic nature of the functions g
or 1/1 introduce a certain arbitrariness in the formulation.
Second, the small-sample properties of the estimates
are unknown. Third, these methods are useful in deal­
ing with outliers of type A in Figure 1, but they do not
solve the problem posed by atypical values with small
residuals.

With respect to the first criticism, Chen and Box
(1979a) have established that the functions g and 1/1
suggested in the literature are optimal for particular
types of contamination. For instance, Huber's function
gis optimal for a normal distribution with Laplace tails,
which can be closely approximated by the contami­
nated normal model presented in (6). Therefore, it can
be argued that the methodology we use should depend
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tic. In this case, least squares is no longer optimal. AIso,
since the variances of the parameter estimators depend
directly,on the error variance, which is greater than u 2,

sueb,estimates will be unreliable and very unstable in
difTerent samples.

Finally, it is worthwhile to note that there are two
types of possible outliers. If we consider sample points
(Yi, xI), one may find an anomalous value ofYi for the
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point P will be large, and its efTect will be a vertical
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presence of outliers.
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context ofa large sample ofdata on numerous variables,
residual pl01s by themselves are not very helpful for
detecting atypical multivariant values with several co­
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This has been used by JefTreys (1961), Box and Tiao
(1968), Chen and Box (1979 a, b, c), Box (1979, 1980)
and others. It is possibly the most general and thorough
approach to the problem, but we have been unable to
implement it because of its computational complica­
tions and the requirements of adequate software for its
efficient application. Thus, we abstain here from further
comments on it.

3.3 Robust Regression Estimates

The shortcomings of the least squares approach al­
ready mentioned have led in the last 20 years to an
extensive literature that aims to overcome these diffi­
culties. Books by Mosteller and Tukey (1977), Huber
(1981), and Bamett and Lewis (1978) present the prob­
lem and contain numerous references.

The instability of least squares in the presence of
outliers is due to the form of the functions g and \f; in
expressions (2) and (3). In this case, g(u) = u2

, 1/I(u) =
u, and Wi(U) = 1/I(u)/u = l. Therefore, since all obser­
vations are given equal weight, those data with a large
residual in absolute value carry the least squares equa­
tion towards them-an obviously undesirable efTect. It
is intuitively clear that a function g that grows more
slowly when u is large will give a smaller weight to such
atypical observations, leading, consequently, to more
robust estimates. This solution has been advocated by
Huber (1964) and others (see Stigler 1973 for historical
comments). Hogg (1979) and Huber (1981) present a
good summary ofthis approach. See also JefTreys (1961,
p. 214 fT.).

These robust procedures are subject to three types of
criticisms. First, the heuristic nature of the functions g
or 1/1 introduce a certain arbitrariness in the formulation.
Second, the small-sample properties of the estimates
are unknown. Third, these methods are useful in deal­
ing with outliers of type A in Figure 1, but they do not
solve the problem posed by atypical values with small
residuals.

With respect to the first criticism, Chen and Box
(1979a) have established that the functions g and 1/1
suggested in the literature are optimal for particular
types of contamination. For instance, Huber's function
gis optimal for a normal distribution with Laplace tails,
which can be closely approximated by the contami­
nated normal model presented in (6). Therefore, it can
be argued that the methodology we use should depend
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on the specific structure of each particular sample. The 
third criticism leads to generalized M-estimates in 
which the weights wi in (4) depend not only on the 
residual but also on the observation's influence meas- 
ured by its distance to the center of the scatter of points 
as in Krasker and Welsch (1982). Although this ap- 
proach partially solves the problem, the solution re- 
mains heuristic and obtaining sampling properties of 
estimates is difficult. 

3.4 Robustification of the Methodology 

The main reason for constructing robust estimation 
methods is to guarantee that our results will not be 
fundamentally dependent on a few anomalous obser- 
vations. However, the fact that an estimate might be 
very sensitive to a small set of outliers does not mean 
that it is inefficient in every conceivable case. Before 
rejecting an estimation procedure, it is reasonable to 
investigate whether its good properties are preserved in 
each particular sample. 

Therefore, given a data set susceptible to being treated 
by means of a linear model, it is pertinent to ask the 
following questions: (a) Does this sample contain ob- 
servations whose a priori influence is much greater than 
the rest in the construction of the model? (b) Is it 
possible to measure the actual influence that each in- 
dividual observation has a posteriori on the parameter 
estimates? (c) Does there exist a test to determine 
whether an observation constitutes an outlier? 

We now review the answers that have been given to 
these questions. The first issue has been approached 
with the help of the "hat" matrix, whose properties have 
been discussed by Huber (1975), Hoaglin and Welsch 
(1978), Cook (1977, 1979), Belsley, Kuh, and Welsch 
(1980), and Weisberg (1980). 

The "hat" matrix V projects the vector Y on the 
linear space generated by the columns of X: 

Y = V Y, V = X(X'X)-'X'. (8) 

The matrix V is symmetric and idempotent. Its impor- 
tance for our purpose lies in the fact that e = (I - V)U 
= (I - V)Y, from which one obtains 

var(ei) a2(1 - vii) (9) 

with vii = (xi - )'(X'X)')(x - x), where X is the 
centered matrix of the observation, and l/n (X'X) is 
the variance and covariance matrix for the explanatory 
variables. 

Therefore, except for a constant term, vii represents 
the Mahalanobis distance of an observation xi to the 
center of gravity of the scatter of points, X. If a point xi 
is very far from X, its vii will be large and the variance 
of the corresponding residual will be small, as (9) indi- 
cates. In the limit, if vii = 1, the variance will be zero, 
which means that the point's position relative to the 
rest forces the regression equation to go through it, 
irrespective of the observed value for yi. 

It can be concluded that sample points with high vii 
are, potentially, influential. Since V is a projection 
matrix, 0 < vii < 1. Moreover, since the trace of an 
idempotent matrix is equal to its rank, E= I vii = k 
where k is the rank of X. Consequently, the average 
value of the vii's is kin. Following Belsley, Kuh, and 
Welsch (1980), in practice an observation is considered 
potentially influential if vii> 2k/n. 

Huber (1981) has suggested another interesting inter- 
pretation for the vii terms. Since V is idempotent, vii = 
j= v2. Thus, taking (8) into account 

n 

var( i) = S v0 var(yj) = 2vii. 
j=1 

Therefore, recalling that the sample mean of h inde- 
pendent observations with common variance a2 has 
variance a2/h, it is clear that 1/vii can be interpreted as 
the number of equivalent observations used to compute 
Yi. If vii = 1, then y, is computed with a single observa- 
tion, its residual is zero (see Equation 9). 

In an alternative approach to determine a priori 
influential observations, Andrews and Pregibon (1978) 
use the change of "volume" of the scatter of points 
when one eliminates a subset of observations. However, 
Draper and John (1981) have established that a measure 
of a single point's influence in this approach is precisely 
1 - vii. 

The second issue is how to determine the actual 
influence on the model of each observation in a given 
sample. There are several ways of doing this based on 
the empirical influence function IEA = SA - 6, where 
AA is the estimate obtained after eliminating the subset 

A of observations, and f is the estimate with the full 
sample (see Cook and Weisberg 1980). 

A simple way of obtaining a scalar measure of A's 
influence is to consider the distance between AA and A 
in a metric with statistical meaning. Cook (1977) intro- 
duced such a measure by 

DA = (A - )(X'X)( - )/ks2 

where s2 is the regression residual variance and 
(X'X)-'s2 is an estimate of the variance covariance 
matrix for ,. 

Using the subindex (i) to indicate that a referred-to 
characteristic has been calculated without the ith obser- 
vation, the Cook distance can easily be obtained from 

= ((i) - A)' (X'X)()(i - 6)/ks2 

= e vii/ks2(1 - vii)2. 

It is interesting to note that Di can also be written as 

Di = (Y(i - Y)' (Y(, - Y)/ks2. 

indicating that Di measures the Euclidean distance in 
which the prediction vector Y is translated after elimi- 
nating the ith observation from the regression. 

Finally, the construction of tests to determine the 
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on the specific structure of each particular sample. The
third criticism leads to generalized M-estimates in
which the weights W¡ in (4) depend not only on the
residual but also on the observation's influence meas­
ured by its distance to the center of the scatter of points
as in Krasker and Welsch (1982). Although this ap­
proach partiaIly solves the problem, the solution re­
mains heuristic and obtaining sampling properties of
estimates is difficult.

3.4 Robustification of the Methodology

The main reason for constructing robust estimation
methods is to guarantee that our results will not be
fundamentaIly dependent on a few anomalous obser­
vations. However, the fact that an estimate might be
very sensitive to a smaIl set of outliers does not mean
that it is inefficient in every conceivable case. Before
rejecting an estimation procedure, it is reasonable to
investigate whether its good properties are preserved in
eaeh particular sample.

Therefore, given a data set susceptible to being treated
by means of a linear model, it is pertinent to ask the
foIlowing questions: (a) Does this sample eontain ob­
servations whose a priori influence is mueh greater than
the rest in the construction of the model? (b) Is it
possible to measure the actual influence that eaeh in­
dividual observation has a posteriori on the parameter
estimates? (e) Does there exist a test to determine
whether an observation constitutes an outlier?

We now review the answers that have been given to
these questions. The first issue has been approached
with the help ofthe "hat" matrix, whose properties have
been discussed by Huber (1975), Hoaglin and Welseh
(1978), Cook (1977, 1979), Belsley, Kuh, and Welseh
(1980), and Weisberg (1980).

The "hat" matrix V projects the vector Y on the
linear spaee generated by the eolumns of X:

V= V Y, V = X(X'XtIX'. (8)

The matrix V is symmetrie and idempotent. Its impor­
tanee for our purpose lies in the fact that e = (1 - V)U
= (1 - V)Y, from which one obtains

var(e¡) = 0"2(1 - Vii) (9)

with Vii = (x¡ - x)'(X'Xtl(x¡ - x), where X is the
centered matrix of the observation, and l/n (X'X) is
the varianee and covariance matrix for the explanatory
variables.

Therefore, except for a constant term, Vii represents
the Mahalanobis distanee of an observation Xi to the
center ofgravity of the seatter of points, X. If a point Xi

is very far from X, its Vii will be large and the variance
of the eorresponding residual will be smaIl, as (9) indi­
cates. In the limit, if Vi¡ = 1, the varianee will be zero,
which means that the point's position relative to the
rest forees the regression equation to go through it,
irrespective ofthe observed value for Yi.

It can be concluded that sample points with high Vii

are, potentially, influential. Since V is a projection
matrix, O < Vii ~ l. Moreover, since the trace of an
idempotent matrix is equal to its rank, r7= 1 Vii = k,
where k is the rank of X. Consequently, the average
value of the v¡¡'s is kln. FoIlowing Belsley, Kuh, and
Welsch (1980), in praetice an observation is eonsidered
potentiaIly influential if Vii> 2kln.

Huber (1981) has suggested another interesting inter­
pretation for the Vii terms. Sinee V is idempotent, Vii =

r1=1 V7j. Thus, taking (8) into aceount
n

var(y¡)= L v'f;var(Yj)=0"2Vii •
j=l

Therefore, recalling that the sample mean of h inde­
pendent observations with common varianee 0"2 has
variance O" 21h, it is clear that 1IV¡i can be interpreted as
the number ofequivalent observations used to compute
Yi. If Vii = 1, then Yi is computed with a single observa­
tion, its residual is zero (see Equation 9).

In an alternative approach to determine a priori
influential observations, Andrews and Pregibon (1978)
use the change of "volume" of the scatter of points
when one eliminates a subset ofobservations. However,
Draper and John (1981) have established that a measure
ofa single point's influenee in this approaeh is precisely
1 - Vii.

The second issue is how to determine the actual
influence on the model of eaeh observation in a given
sample. There are several ways of doing this based on
the empirical influence function lEA = IJA - {J, where
IJA is the estimate obtained after eliminating the subset
A of observations, and {J is the estimate with the fuIl
sample (see Cook and Weisberg 1980).

A simple way of obtaining a sealar measure of A's
influenee is to eonsider the distance between IJA and {J
in a metric with statistieal meaning. Cook (1977) intro­
duced such a measure by

DA = (IJA - {J)'(X'X)(IJA - {J)/ks 2
,

where S2 is the regression residual varianee and
(X'xt 1S2 is an estimate of the variance eovariance
matrix for {J.

Using the subindex (i) to indicate that a referred-to
eharacteristic has been calculated without the ith obser­
vation, the Cook distanee can easily be obtained from

D¡ = (IJU) - {J)' (X'X)(IJ(i) - {J)/ks 2

= eh;;/ks2
(1 - Vii)2.

It is interesting to note that D¡ can also be written as

D¡ = (VU) - Y)' (V(/) - Y)/ks 2
•

indicating that D¡ measures the Euclidean distanee in
whieh the prediction vector Y is translated after elimi­
nating the ith observation from the regression.

Finally, the construetion of tests to determine the
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on the specific structure of each particular sample. The
third criticism leads to generalized M-estimates in
which the weights W¡ in (4) depend not only on the
residual but also on the observation's influence meas­
ured by its distance to the center of the scatter of points
as in Krasker and Welsch (1982). Although this ap­
proach partiaIly solves the problem, the solution re­
mains heuristic and obtaining sampling properties of
estimates is difficult.

3.4 Robustification of the Methodology

The main reason for constructing robust estimation
methods is to guarantee that our results will not be
fundamentaIly dependent on a few anomalous obser­
vations. However, the fact that an estimate might be
very sensitive to a smaIl set of outliers does not mean
that it is inefficient in every conceivable case. Before
rejecting an estimation procedure, it is reasonable to
investigate whether its good properties are preserved in
eaeh particular sample.

Therefore, given a data set susceptible to being treated
by means of a linear model, it is pertinent to ask the
foIlowing questions: (a) Does this sample eontain ob­
servations whose a priori influence is mueh greater than
the rest in the construction of the model? (b) Is it
possible to measure the actual influence that eaeh in­
dividual observation has a posteriori on the parameter
estimates? (e) Does there exist a test to determine
whether an observation constitutes an outlier?

We now review the answers that have been given to
these questions. The first issue has been approached
with the help ofthe "hat" matrix, whose properties have
been discussed by Huber (1975), Hoaglin and Welseh
(1978), Cook (1977, 1979), Belsley, Kuh, and Welseh
(1980), and Weisberg (1980).

The "hat" matrix V projects the vector Y on the
linear spaee generated by the eolumns of X:

V= V Y, V = X(X'XtIX'. (8)

The matrix V is symmetrie and idempotent. Its impor­
tanee for our purpose lies in the fact that e = (1 - V)U
= (1 - V)Y, from which one obtains

var(e¡) = 0"2(1 - Vii) (9)

with Vii = (x¡ - x)'(X'Xtl(x¡ - x), where X is the
centered matrix of the observation, and l/n (X'X) is
the varianee and covariance matrix for the explanatory
variables.

Therefore, except for a constant term, Vii represents
the Mahalanobis distanee of an observation Xi to the
center ofgravity of the seatter of points, X. If a point Xi

is very far from X, its Vii will be large and the variance
of the eorresponding residual will be smaIl, as (9) indi­
cates. In the limit, if Vi¡ = 1, the varianee will be zero,
which means that the point's position relative to the
rest forees the regression equation to go through it,
irrespective ofthe observed value for Yi.

It can be concluded that sample points with high Vii

are, potentially, influential. Since V is a projection
matrix, O < Vii ~ l. Moreover, since the trace of an
idempotent matrix is equal to its rank, r7= 1 Vii = k,
where k is the rank of X. Consequently, the average
value of the v¡¡'s is kln. FoIlowing Belsley, Kuh, and
Welsch (1980), in praetice an observation is eonsidered
potentiaIly influential if Vii> 2kln.

Huber (1981) has suggested another interesting inter­
pretation for the Vii terms. Sinee V is idempotent, Vii =

r1=1 V7j. Thus, taking (8) into aceount
n

var(y¡)= L v'f;var(Yj)=0"2Vii •
j=l

Therefore, recalling that the sample mean of h inde­
pendent observations with common varianee 0"2 has
variance O" 21h, it is clear that 1IV¡i can be interpreted as
the number ofequivalent observations used to compute
Yi. If Vii = 1, then Yi is computed with a single observa­
tion, its residual is zero (see Equation 9).

In an alternative approach to determine a priori
influential observations, Andrews and Pregibon (1978)
use the change of "volume" of the scatter of points
when one eliminates a subset ofobservations. However,
Draper and John (1981) have established that a measure
ofa single point's influenee in this approaeh is precisely
1 - Vii.

The second issue is how to determine the actual
influence on the model of eaeh observation in a given
sample. There are several ways of doing this based on
the empirical influence function lEA = IJA - {J, where
IJA is the estimate obtained after eliminating the subset
A of observations, and {J is the estimate with the fuIl
sample (see Cook and Weisberg 1980).

A simple way of obtaining a sealar measure of A's
influenee is to eonsider the distance between IJA and {J
in a metric with statistieal meaning. Cook (1977) intro­
duced such a measure by

DA = (IJA - {J)'(X'X)(IJA - {J)/ks 2
,

where S2 is the regression residual varianee and
(X'xt 1S2 is an estimate of the variance eovariance
matrix for {J.

Using the subindex (i) to indicate that a referred-to
eharacteristic has been calculated without the ith obser­
vation, the Cook distanee can easily be obtained from

D¡ = (IJU) - {J)' (X'X)(IJ(i) - {J)/ks 2

= eh;;/ks2
(1 - Vii)2.

It is interesting to note that D¡ can also be written as

D¡ = (VU) - Y)' (V(/) - Y)/ks 2
•

indicating that D¡ measures the Euclidean distanee in
whieh the prediction vector Y is translated after elimi­
nating the ith observation from the regression.

Finally, the construetion of tests to determine the
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atypical data in regression models has used numerous 
approaches (see Barnett and Lewis 1978 for a survey of 
this topic). When the problem is considered within a 
likelihood ratio testing approach, the resulting test sta- 
tistic is a monotonic function of the Studentized resid- 
uals 

ri= eils - vii, (10) 

where the least squares residual has been divided by its 
estimated standard deviation. 

A shortcoming of this approach is that the distribu- 
tion of ri under the normality assumption is not Student 
t, because numerator and denominator are not inde- 
pendent. However, the substitution of s(i) for s in (10) 
yields a Student t distribution with n - k - 1 degrees 
of freedom. For computational reasons (see Weisberg 
1980), it is convenient to express it as 

ti = ri V(n - k - l)/(n - k- r), 

where ri is given by (10). The relevant distribution for 
obtaining the test's significance level is that of the 
maximum value of a sample of t statistics with n - k - 
1 degrees of freedom, which value is unknown. How- 
ever, approximate critical values have been tabulated 
using the Bonferroni inequality (see Miller 1977, and 
Cook and Prescott 1981). 

In conclusion, the statistics vii, Di, and t, constitute 
the basis for the methodological robustification of the 
linear model. The vii terms depend only on the prede- 
termined variables and measure the potential influence 
of each observation taking into account its position 
relative to the rest of the sample. We would have a 
robust design if all points had analogous vii values. The 
Cook Di statistic captures the actual influence of each 
observation on the estimated parameters of the predic- 
tion vector Y. The statistic is interesting because it 
indicates the practical irrelevance of worrying about 
sample observations that, although anomalous, have 
little influence on the model. Finally, the t statistic 
summarizes both features and is used as a formal test 
of whether a single observation is an outlier. The next 
section contains an application of this way of attacking 
the problems posed by outliers. 

4. A MODEL FOR THE DETERMINANTS OF 
RENTAL HOUSING VALUES IN THE 

MADRID METROPOLITAN AREA 

4.1 The Problem and the Data 

In Spain, government intervention in the rental hous- 
ing sector takes two forms. First, several public insti- 
tutions promote-directly or indirectly-the construc- 
tion of public housing at rents below the market level. 
Second, since 1920 the government has enforced com- 
pulsory lease renewal and rent controls in the private 
sector. In 1964 rents were liberalized on new contracts. 

Therefore, the rental market sector includes only pri- 
vate housing units occupied after 1964. 

Our problem in this section is to build an explanatory 
model of market rental values in terms of the observed 
traits of dwelling units in the Madrid Metropolitan Area 
(MMA hereafter). This is not a behavioral relationship 
but a function that gives the rent resulting from the 
interaction of supply and demand for each variety of 
the differentiated product. The partial derivatives of 
that function are interpreted as the implicit or hedonic 
prices of the corresponding characteristics. 

The final aim is to use the estimated model to assess 
the economic advantages and the distributional conse- 

Table 1. Structural Housing Traits 
Name Description 

AGE 

OCUP 

M2 
ROOMI 
NFL 
DET 

Age of building 
AXIX 

A4164 
A6574 

a. Continuous Variables 
Building age in years since 

its construction 
Years of occupancy of the 

housing unit 
Space in squared meters 
Space in number of rooms 
Number of floors 
Deterioration state of the 

building 

b. Dummy Variables 

Built in XIX century 
Built in 1900-1940 
Built in 1941-1964 
Built in 1965-1974 

Mean 
21.9 

3.6 

68.0 
3.6 
5.1 
4.6 

Type of building 
MAGL "Marginal" housing (in bad con- 

dition) 
CHTW Chalet or townhouse 
APT Detached apartment building 

Other apartment building 

Type of promotion 
PRla Private firm 

User's cooperative, particular in- 
dividual, selfconstruction 

UNKa Unknown 

Hygienic services 
LESS Less than a full bathroom 

-One full bathroom 
TWOM Two or more bathrooms 

Payments of utilities 
HOTWa Hot water bill included in other 

concept 
HEAT" Heating bill included in other 

concept 
BEXP8 Building expenditures included 

in other concept 
Other variables 

TELPH With telephone 
CHEAT With central heating 
GAR With garage 
JANa With a janitor 
FURN With furniture 
FTENa First tenancy 
' Nonsignificant variables in the exploratory analysis. 

Standard 
Deviation 

23.0 

' 2.3 

42.8 
1.2 
2.8 

17.5 

Percent 

7 
19 
21 
53 

100 

3 

4 
38 
55 

100 

27 
45 

28 
100 

19 
70 
11 

100 

47 

38 

19 

36 
20 
7 

34 
15 
18 
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atypical data in regression models has used numerous
approaches (see Barnett and Lewis 1978 for a survey of
this topic). When the problem is considered within a
likelihood ratio testing approach, the resulting test sta­
tistic is a monotonic function of the Studentized resid­
uals

4.1 The Problem and the Data

In Spain, government intervention in the rental hous­
ing sector takes two forms. First, several public insti­
tutions promote-directly or indirectly-the construc­
tion of public housing at rents below the market level.
Second, since 1920 the government has enforced com­
pulsory lease renewal and rent controls in the private
sector. In 1964 rents were liberalized on new contracts.

where the least squares residual has been divided by its
estimated standard deviation.

A shortcoming of this approach is that the distribu­
tion of r¡ under the normality assumption is not Student
t, because numerator and denominator are not inde­
pendent. However, the substitution of s(i) for s in (10)
yields a Student t distribution with n-k - 1 degrees
of freedom. For computational reasons (see Weisberg
1980), it is convenient to express it as
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Table 1. Structural Housing Traits

Name Description

Standard
a. Continuous Variables Mean Deviation

AGE Building age in years since 21.9 23.0
its construction

OCUP Years of occupancy of the 3.6 • 2.3
housing unit

M2 Space in squared meters 68.0 42.8
ROOM" Space in number of rooms 3.6 1.2
NFL Number of f100rs 5.1 2.8
DET Deterioration state of the 4.6 17.5

building

Age of building
AXIX Built in XIX century

Builtin 1900-1940
A4164 Built in 1941-1964
A6574 Built in 1965-1974

b. Dummy Variables

• Nonsignificant variables in the exploratory analysis.

Therefore, the renta! market sector ineludes only pri­
vate housing units occupied after 1964.

Our problem in this section is to build an explanatory
model of market rental values in terms of the observed
traits ofdwelling units in the Madrid Metropolitan Area
(MMA hereafter). This is not a behavioral relationship
but a function that gives the rent resulting from the
interaction of supply and demand for each variety of
the differentiated product. The partial derivatives of
that function are interpreted as the implicit or hedonic
prices of the corresponding characteristics.

The final aim is to use the estimated model to assess
the economic advantages and the distributional conse-

Type of building
MAGL "Marginal" housing (in bad con-

dition)
CHTW Chalet or townhouse
APT Detached apartment building

Other apartment building

Type of promotion
PRla Private firm

User's cooperative, particular in­
dividual, selfconstruction

UNKa Unknown

Hygienic services
LESS Less than a full bathroom

009 full bathroom
TWOM Two or more bathrooms

Payrllents of utilities
HOTWa Hot water bill included in other

concept
HEAra Heating bill included in other

concept
BEXpa Building expenditures included

in other concept
Other variables

TELPH With telephone
CHEAT With central heating
GAR With garage
JANa With a janitor
FURN With furniture
FTEW First tenancy

(10)r¡=e¡/s~,

t¡ = r¡ .J(n - k - l)/(n - k - r7),

where r¡ is given by (10). The relevant distribution for
obtaining the test's significance level is that of the
maximum value of a sample of t statistics with n-k ­
1 degrees of freedom, which value is unknown. How­
ever, approximate critical values have been tabulated
using the Bonferroni inequality (see Miller 1977, and
Cook and Prescott 1981).

In conelusion, the statistics Vii, D¡, and t¡ constitute
the basis for the methodological robustification of the
linear model. The V¡¡ terms depend only on the prede­
termined variables and measure the potential influence
of each observation taking into account its position
relative to the rest of the sample. We would have a
robust design if aH points had analogous V¡¡ values. The
Cook Di statistic captures the actual influence of each
observation on the estimated parameters of the predic­
tion vector Y. The statistic is interesting because it
indicates the practical irrelevance of worrying about
sample observations that, although anomalous, have
little influence on the model. FinaHy, the t statistic
summarizes both features and is used as a formal test
of whether a single observation is an outlier. The next
section contains an application of this way of attacking
the problems posed by outliers.
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quences of public housing and rent control policies in 
Spain. The results of such an assessment will be re- 
ported elsewhere in Peina and Ruiz-Castillo (1983). 

Our data come from a 1974 survey of 4,067 housing 
units in the MMA (or .4% of the total number for that 
area). The sample used here consists of 460 private 
rental dwellings occupied between 1964 and 1974. Such 
data will be made available by the authors upon request. 

Hedonic price functions for urban areas usually in- 
volve two types of explanatory variables: a set of traits 
characterizing dwelling units of the buildings to which 
they belong, and a set of locational characteristics. 
Tables 1 and 2 describe the variables of either type that 
we could measure. 

Some comments on measurement problems are in 
order: 

1. In many cases, to get a value for a building's age, 
we had to consider the midpoint of the known construc- 
tion interval. This led to certain discontinuities for this 
variable. When we only knew that the building dated 
from the 19th century, the AGE variable was assigned 
the value 85, which implies that the construction date 
was assumed to be 1880. 

2. For each building, interviewers recorded a number 
of points for each of eight types of observed defects. 
Thus, the greater the value of the state of deterioration 
variable (DET), the worse the condition of the corre- 
sponding building. 

3. The accessibility variable is a weighted index of 
transportation times from each of the 85 zones that 
make up the MMA to six centrally located neighbor- 
hoods where 25% of all employment is concentrated. 
The weights reflect the relative importance of employ- 
ment in each of those neighborhoods relative to total 
employment in the six. Accessibility is measured in 
minutes of private and public transportation, weighted 
by the utilization rate of both modes for all transpor- 
tation purposes in the metropolitan area. 

4. The index HIGH is the first principal component 

Table 2. Locational Variablesa 
Standard 

Name Description Mean Deviatio 

ACC Accessibility index in 41.2 17.6 
minutes of transportation 
time 

POPD Population density in 19,950 20,683 
inhabitants per squared 
kilometer 

RENTb Average monthly family 18,826 4,764 
income in pesetas 

HIGH Socioeconomic index .06 .88 
OLD Buildings age index .13 1.14 
INFRAb Index of housing in bad -.07 .78 

conditions 
SCHOOLb Primary and secondary 7,351 4,345 

school enrollments 
*All variables take values in the 85 zones that make up the Madrid Metropolitan Area. 
b Nonsignificant variables in the explanatory analysis. 

explaining 34% of the variance of a set of 12 variables 
representing different socioeconomic aspects of the 85 
zones in the MMA. 

5. We also applied principal components analysis to 
5 variables describing several buildings' characteristics 
in each of the 85 zones. The first principal component 
(OLD), explaining 38% of the variance, was dominated 
by the average age of buildings in each zone. The second 
component (INFRA), explaining an additional 21% of 
the variance, was interpreted as an index of the impor- 
tance of housing in bad condition in each zone. 

6. Of all the variables that might conceivably repre- 
sent local public sector activities, we could only meas- 
ure primary and secondary school enrollment 
(SCHOOL). 

7. It is always difficult to ascertain whether the rental 
amount in monthly expenditures in surveys of this type 
reflects gross or net rent. In our case, we only knew 
whether the payments for certain utilities were included 
or not in other measures, but did not know whether 
such a measure was the rent bill itself. We tried to 
account for these effects by constructing three dummy 
variables that take the value 1 if the person interviewed 
declared, respectively, that payments for hot water, 
heating, or building expenditures were included in the 
other measure. 

4.2 The Selection of the Functional Form 

To decide on the best functional form, we followed 
an iterative process that began with an exploratory 
analysis of the data to obtain a reasonable first repre- 
sentation. Next, we concentrated on the identification 
of possible outliers. Finally, we carried out the maxi- 
mum likelihood estimation of the dependent variable's 
best transformation and performed various checks to 
find an adequate metric for the predetermined varia- 
bles. 

For the initial exploratory analysis, we used three 
types of tools: bivariate plots of the response variable 
with respect to each explanatory variable, the empirical 
distribution of each variable, and residual plots from 
preliminary regressions with several sets of explanatory 
variables. The results were the following: 

1. The rent variable required transformation, possi- 
bly a logarithmic transformation. Plots of ei = F( yi) for 
the untransformed y variable showed curvature and 
heteroskedasticity. Moreover, the distribution of both 
the rent variable and the regression residuals had a 
strong positive asymmetry. Finally, the logarithm has a 
clear economic interpretation, indicating that each 
trait's effect depends on the level reached by the other 
housing attributes. 

2. To obtain linearity for the response, once rents 
were expressed in logs, the logarithmic transformation 
was also applied to the continuous variables OCUP, 
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M2, NFL, DET, ACC, and POPD. Since the case for 
OCUP and NFL was not clear, the decision to trans- 
form them was maintained only provisionally. 

3. Variables denoted by a in Tables 1 and 2 were 
initially rejected because they did not supply additional 
information. 

4. The building age variable showed a complex and 
highly nonlinear influence, probably because it captures 
very different effects and acts as a proxy for other 
variables. Moreover, as already indicated, its construc- 
tion was not free of difficulties. To identify nonlinear 
effects, its range was broken down into several intervals 
represented by a set of dummy variables. The results 

were that both 19th-century and very moder housing 
showed rents significantly higher, while housing from 
1940 was the least expensive. In a first approximation, 
we represented this effect by a second degree polyno- 
mial. To avoid the expected multicollinearity, the fol- 
lowing variables were defined: AGDM = AGE - AGE, 
and AGDM2 = AGDM2, where AGE is the mean age 
for all housing. 

With these decisions made, the resulting model ap- 
pears in column (1) of Table 3. The residuals' distri- 
bution is asymmetric, with asymmetry and kurtosis 
coefficients equal to -1.95 and 7.5. The Kolmogorov- 
Smirnov test leads to the rejection of the residuals' 

Table 3. Regression Results 

Coefficients (and standard errors) 

Variables Other 
(1) (2) (3) (4) (5) Alternative 

Variables 

CONSTANT 

AGDM 

AGDM2 

OCUPa 

M2a 

NFLa 

DET8 

MAGL 

CHTW 

APT 

LESS 

TWOM 

TELPH 

CHEAT 

GAR 

FURN 

BEXP 

ACC8 

POPD8 

HIGH 

OLD 

R2 

Standard 
error 

Number of 
observations 
a In logarithms. 

5.77 
(.77) 

-.012 
(.002) 
.0002 

(.00005) 
-.25 
(.04) 
.46 

(.07) 
.26 

(.06) 
-.06 
(.03) 
.11 

(.15) 
.66 

(.15) 
-.08 
(.06) 

-.19 
(.08) 
.06 

(.09) 
.05 

(.06) 
.11 

(.07) 
.28 

(.10) 
.33 

(.07) 

-.15 
(.13) 
.04 

(.02) 
.16 

(.04) 
-.06 
(.03) 

.71 

.48 

460 

7.14 
(.60) 

-.010 
(.002) 
.0002 

(.00004) 
-.25 
(.03) 
.42 

(.05) 
.20 

(.05) 
-.06 
(.02) 

-.0008 
(.11) 
.53 

(.12) 
.02 

(.05) 
-.23 
(.07) 
.07 

(.07) 
.14 

(.05) 
.09 

(.06) 
.29 

(.08) 
.29 

(.05) 

-.33 
(.10) 
.0009 

(.017) 
.10 

(.03) 
-.05 
(.02) 

.79 

.37 

451 

7.57 
(.35) 

-.012 
(.002) 
.0002 

(.00004) 
-.25 
(.03) 
.42 

(.05) 
.20 

(.04) 
-.06 
(.02) 

.54 
(.11) 

-.23 
(.07) 
.08 

(.07) 
.14 

(.05) 
.09 

(.06) 
.30 

(.08) 
.29 

(.05) 
.06 

(.05) 
-.38 
(.08) 

.10 
(.03) 

-0.7 
(.03) 

.79 

.37 

451 

7.81 
(.31) 

-.008 
(.002) 
.0001 

(.0003) 
-.25 
(.02) 
.40 

(.05) 
.18 

(.04) 
-.07 
(.02) 

.48 
(.10) 

-.23 
(.06) 
.18 

(.06) 
.14 

(.04) 
.11 

(.05) 
.26 

(.07) 
.24 

(.05) 
.11 

(.05) 
-.41 
(.07) 

.09 
(.03) 

-.06 
(.02) 

.82 

.33 

443 

8.13 
(.33) 

-.09 
(.03) 
.12 

(.08) 
-.08 
(.007) 
.39 

(.05) 
.19 

(.04) 
-.08 
(.02) 

AGEa 

AXIX 

OCUP 

.49 
(.10) 

-.25 
(.06) 
.19 

(.06) 
.15 

(.04) 
.13 

(.05) 
.25 

(.07) 
.26 

(.05) 
.12 

(.04) 
.41 

(.07) 

.08 
(.03) 

-.07 
(.02) 

.82 

.32 

443 
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M2, NFL, DET, ACC, and POPD. Since the case for
OCUP and NFL was not clear, the decision to trans­
form them was maintained only provisionally.

3. Variables denoted by a in Tables 1 and 2 were
initially rejected because they did not supply additional
information.

4. The building age variable showed a complex and
highly nonlinear influence, probably because it captures
very different effects and acts as a proxy for other
variables. Moreover, as already indicated, its construc­
tion was not free of difficulties. To identify nonlinear
effects, its range was broken down into several intervals
represented by a set of dummy variables. The results

were that both 19th-century and very modem housing
showed rents significantly higher, while housing from
1940 was the least expensive. In a first approximation,
we represented this effect by a second degree polyno­
mial. To avoid the expected multicollinearity, the fol­
lowing variables were defined: AGDM = AGE - AGE,
and AGDM2 = AGDM2

, where AGE is the mean age
for all housing.

With these decisions made, the resulting model ap­
pears in column (1) of Table 3. The residuals' distri­
bution is asymmetric, with asymmetry and kurtosis
coefficients equal to -1.95 and 7.5. The Kolmogorov­
Smimov test leads to the rejection of the residuals'

Table 3. Regression Results

Coefficients (and standard errors)

Variables Other
(1) (2) (3) (4) (5) Alternative

Variables

CONSTANT 5.77 7.14 7.57 7.S1 S.13
(.77) (.60) (.35) (.31) (.33)

AGDM -.012 -.010 -.012 -.OOS -.09 AGEa

(.002) (.002) (.002) (.002) (.03)
AGDM2 .0002 .0002 .0002 .0001 .12 AXIX

(.00005) (.00004) (.00004) (.0003) (.OS)
OCUpa -.25 -.25 -.25 -.25 -.OS OCUP

(.04) (.03) (.03) (.02) (.007)
M2a .46 .42 .42 .40 .39

(.07) (.05) (.05) (.05) (.05)
NFLa .26 .20 .20 .1S .19

(.06) (.05) (.04) (.04) (.04)
DETa -.06 -.06 -.06 -.07 -.OS

(.03) (.02) (.02) (.02) (.02)
MAGL .11 -.OOOS

(.15) (.11 )
CHTW .66 .53 .54 .4S .49

(.15) (.12) (.11) (.10) (.10)
APT -.OS .02

(.06) (.05)
LESS -.19 -.23 -.23 -.23 -.25

(.OS) (.07) (.07) (.06) (.06)
TWOM .06 .07 .OS .1S .19

(.09) (.07) (.07) (.06) (.06)
TELPH .05 .14 .14 .14 .15

(.06) (.05) (.05) (.04) (.04)
CHEAT .11 .09 .09 .11 .13

(.07) (.06) (.06) (.05) (.05)
GAR .2S .29 .30 .26 .25

(.10) (.OS) (.OS) (.07) (.07)
FURN .33 .29 .29 .24 .26

(.07) (.05) (.05) (.05) (.05)
BEXP .06 .11 .12

(.05) (.05) (.04)
ACCa -.15 -.33 -.3S -.41 .41

(.13) (.10) (.OS) (.07) (.07)
POPDa .04 .0009

(.02) (.017)
HIGH .16 .10 .10 .09 .OS

(.04) (.03) (.03) (.03) (.03)
OLD -.06 -.05 -0.7 -.06 -.07

(.03) (.02) (.03) (.02) (.02)

R2 .71 .79 .79 .S2 .S2
Standard

error .4S .37 .37 .33 .32
Numberof

observations 460 451 451 443 443

• In Iogarilhms.
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M2, NFL, DET, ACC, and POPD. Since the case for
OCUP and NFL was not clear, the decision to trans­
form them was maintained only provisionally.

3. Variables denoted by a in Tables 1 and 2 were
initially rejected because they did not supply additional
information.

4. The building age variable showed a complex and
highly nonlinear influence, probably because it captures
very different effects and acts as a proxy for other
variables. Moreover, as already indicated, its construc­
tion was not free of difficulties. To identify nonlinear
effects, its range was broken down into several intervals
represented by a set of dummy variables. The results

were that both 19th-century and very modem housing
showed rents significantly higher, while housing from
1940 was the least expensive. In a first approximation,
we represented this effect by a second degree polyno­
mial. To avoid the expected multicollinearity, the fol­
lowing variables were defined: AGDM = AGE - AGE,
and AGDM2 = AGDM2

, where AGE is the mean age
for all housing.

With these decisions made, the resulting model ap­
pears in column (1) of Table 3. The residuals' distri­
bution is asymmetric, with asymmetry and kurtosis
coefficients equal to -1.95 and 7.5. The Kolmogorov­
Smimov test leads to the rejection of the residuals'

Table 3. Regression Results

Coefficients (and standard errors)

Variables Other
(1) (2) (3) (4) (5) Alternative

Variables

CONSTANT 5.77 7.14 7.57 7.S1 S.13
(.77) (.60) (.35) (.31) (.33)

AGDM -.012 -.010 -.012 -.OOS -.09 AGEa

(.002) (.002) (.002) (.002) (.03)
AGDM2 .0002 .0002 .0002 .0001 .12 AXIX

(.00005) (.00004) (.00004) (.0003) (.OS)
OCUpa -.25 -.25 -.25 -.25 -.OS OCUP

(.04) (.03) (.03) (.02) (.007)
M2a .46 .42 .42 .40 .39

(.07) (.05) (.05) (.05) (.05)
NFLa .26 .20 .20 .1S .19

(.06) (.05) (.04) (.04) (.04)
DETa -.06 -.06 -.06 -.07 -.OS

(.03) (.02) (.02) (.02) (.02)
MAGL .11 -.OOOS

(.15) (.11 )
CHTW .66 .53 .54 .4S .49

(.15) (.12) (.11) (.10) (.10)
APT -.OS .02

(.06) (.05)
LESS -.19 -.23 -.23 -.23 -.25

(.OS) (.07) (.07) (.06) (.06)
TWOM .06 .07 .OS .1S .19

(.09) (.07) (.07) (.06) (.06)
TELPH .05 .14 .14 .14 .15

(.06) (.05) (.05) (.04) (.04)
CHEAT .11 .09 .09 .11 .13

(.07) (.06) (.06) (.05) (.05)
GAR .2S .29 .30 .26 .25

(.10) (.OS) (.OS) (.07) (.07)
FURN .33 .29 .29 .24 .26

(.07) (.05) (.05) (.05) (.05)
BEXP .06 .11 .12

(.05) (.05) (.04)
ACCa -.15 -.33 -.3S -.41 .41

(.13) (.10) (.OS) (.07) (.07)
POPDa .04 .0009

(.02) (.017)
HIGH .16 .10 .10 .09 .OS

(.04) (.03) (.03) (.03) (.03)
OLD -.06 -.05 -0.7 -.06 -.07

(.03) (.02) (.03) (.02) (.02)

R2 .71 .79 .79 .S2 .S2
Standard

error .4S .37 .37 .33 .32
Numberof

observations 460 451 451 443 443

• In Iogarilhms.
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Table 4. Possible Outliers 
Observation 

numberDit 
1 .03 .06 -6.6 
2 .04 .05 -5.3 
3 .06 .08 -5.4 
4 .03 .02 -4.1 
5 .04 .03 -3.7 
6 .05 .03 -3.7 
7 .06 .04 -3.7 
8 .03 .02 -3.6 
9 .05 .03 -3.3 

10 .05 .02 -3.0 
11 .04 .02 -3.0 
12 .11 .04 -2.8 
13 .03 .01 -2.8 
14 .03 .01 -2.5 
15 .03 .00 2.4 
16 .04 .01 -2.4 
17 .12 .04 2.4 
18 .15 .00 -0.7 
19 .15 .00 .07 

normality with a = .01. The distribution appears to be 
a normal contaminated by a small number of negative 
values, since it is symmetric around the median (whose 
value is .07) and reasonably normal in the range .07 + 
1.5 a, where a is the residuals standard deviation. 

The internal analysis of the model's robustness 
yielded 19 observations worthy of attention, which are 
included in Table 4. The last two (numbers 18 and 19) 
are the potentially more influential with the largest vi 
values, although their actual influence is negligible ac- 
cording to the Di statistic. The first 17 observations 
with the largest ti values were carefully reviewed, with 
the result that the first 9 appeared to suffer from data 
transcription errors (omission of a zero in the rent 
figure). Since several of the next 8 observations were 
open to doubt, we decided to maintain them provision- 
ally. Consequently, we estimated a new regression with 
451 data points with results summarized in column (2) 
of Table 3. As can be seen, the elimination of the first 
9 observations improves the results without changing 
them substantially. The coefficients of most variables 
remain essentially constant with the following excep- 
tions: (a) the coefficients of MAGL and APT become 
practically zero, suggesting that they should be elimi- 
nated from the model; (b) the influence of POPD 
appears to be captured now by the accessibility index; 
and (c) the coefficients of TELPH and ACC increase, 
making them significant. 

In view of this information, we estimated a new 
model without the variables MAGL, APT, and POPD, 
but introducing the variables previously rejected for the 
model with 460 data points. As a result, BEXP was 
provisionally included in the model because, although 
not significant (it has a t value of 1.2), it appears to be 
potentially important. Column (3) of Table 3 summa- 
rizes the final model fitted with 451 data points. 

Next, we repeated the robustness analysis for this 
model in order to detect new anomalous data. We 
confirmed the atypical nature of the 8 observations 
previously commented upon, although their actual in- 
fluence appeared to be generally small judging by their 
Di values. At any rate, we reestimated the model with- 
out these 8 observations, obtaining the results presented 
in column (4) of Table 3. We should remark that (a) 
the variables TWOM, CHEAT, and BEXP, which were 
not formally significant with a = .05, become signifi- 
cant without any doubt; (b) the rest of the coefficients 
are not significantly altered; and (c) the Kolmogorov- 
Smirov test, as well as tests on the asymmetry and 
kurtosis, lead to the acceptance of the hypothesis of the 
residuals' normality with a = .10. 

In conclusion, if we compare the latter with the initial 
model, it can be observed that after eliminating the 18 
observations that we considered as outliers (3.7% of the 
total), the residual variance has diminished by 55%, the 
proportion of explained variability has increased by 
17%, and we can reasonably accept the hypothesis that 
the residuals are normally distributed. Most coefficients 
have changed very slightly, and when this is not the 
case and the model becomes more compatible with a 
priori economic information: the distance to the center 
of Madrid measured by the logarithm of the accessibil- 
ity index, and the fact that a housing unit has two or 
more bathrooms, telephone, central heating, and build- 
ing expenditures included in another measure, become 
significant variables in the model presumably free from 
atypical values. 

To test the former specification we have performed 
the maximum likelihood estimation of the Box-Cox 
transformation parameter X for the rent variable. This 
has been done for the models with 460, 451, and 443 
data. The results, which are practically insensitive to 
different specifications of the continuous explanatory 
variables, are presented in Table 5. 

As we keep eliminating atypical observations, the 
maximum of the likelihood function for X gradually 

Table 5. Maximum Values of the Likelihood Function for Different Specifications of the Box-Cox 
Parameter and the Sample Size 

x 
n -.2 -.1 .0 .1 .2 .3 .4 .5 

460 -4866 -4816 -4775 -4745 -4727 -4721 -4729 -4750 
451 -4635 -4605 -4585 -4574 -4574 -4584 -4605 -4637 
443 -4493 -4469 -4454 -4447 -4450 -4464 -4489 -4524 
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Table 4. Possible Outliers

Observatían v, DI tinumber

1 .03 .06 -6.6
2 .04 .05 -5.3
3 .06 .08 -5.4
4 .03 .02 -4.1
5 .04 .03 -3.7
6 .05 .03 -3.7
7 .06 .04 -3.7
8 .03 .02 -3.6
9 .05 .03 -3.3

10 .05 .02 -3.0
11 .04 .02 -3.0
12 .11 .04 -2.8
13 .03 .01 -2.8
14 .03 .01 -2.5
15 .03 .00 2.4
16 .04 .01 -2.4
17 .12 .04 2.4
18 .15 .00 -0.7
19 .15 .00 .07

normality with a = .0 l. The distribution appears to be
a normal contaminated by a small number of negative
values, since it is symmetric around the median (whose
value is .07) and reasonably normal in the range .07 ±
1.5 q, where q is the residuals standard deviation.

The internal analysis of the model's robustness
yielded 19 observations worthy of attention, which are
included in Table 4. The last two (numbers 18 and 19)
are the potentially more influential with the largest Vii

values, although their actual influence is negligible ac­
cording to the Di statistic. The first 17 observations
with the largest ti values were carefully reviewed, with
the result that the first 9 appeared to suffer from data
transcription errors (omission of a zero in the rent
figure). Since several of the next 8 observations were
open to doubt, we decided to maintain them provision­
ally. Consequently, we estimated a new regression with
451 data points with results summarized in column (2)
of Table 3. As can be seen, the elimination of the first
9 observations improves the results without changing
them substantially. The coefficients of most variables
remain essentially constant with the following excep­
tions: (a) the coefficients of MAGL and APT become
practically zero, suggesting that they should be elimi­
nated from the model; (b) the influence of POPD
appears to be captured now by the accessibility index;
and (c) the coefficients of TELPH and ACC increase,
making them significant.

In view of this information, we estimated a new
model without the variables MAGL, APT, and POPD,
but introducing the variables previously rejected for the
model with 460 data points. As a result, BEXP was
provisionally included in the model because, although
not significant (it has a t value of 1.2), it appears to be
potentially important. Column (3) of Table 3 summa­
rizes the final model fitted with 451 data points.

Next, we repeated the robustness analysis for this
model in order to detect new anomalous data. We
confirmed the atypical nature of the 8 observations
previously commented upon, although their actual in­
fluence appeared to be generally small judging by their
Di values. At any rate, we reestimated the model with­
out these 8 observations, obtaining the results presented
in column (4) of Table 3. We should remark that (a)
the variables TWOM, CHEAT, and BEXP, which were
not formally significant with a = .05, become signifi­
cant without any doubt; (b) the rest of the coefficients
are not significantly altered; and (c) the Kolmogorov­
Smirnov test, as well as tests on the asymmetry and
kurtosis, lead to the acceptance of the hypothesis of the
residuals' normality with a = .10.

In conclusion, ifwe compare the latter with the initial
model, it can be observed that after eliminating the 18
observations that we considered as outliers (3.7% ofthe
total), the residual variance has diminished by 55%, the
proportion of explained variability has increased by
17%, and we can reasonably accept the hypothesis that
the residuals are normally distributed. Most coefficients
have changed very slightly, and when this is not the
case and the model becomes more compatible with a
priori economic information: the distance to the center
of Madrid measured by the logarithm of the accessibil­
ity index, and the fact that a housing unit has two or
more bathrooms, telephone, central heating, and build­
ing expenditures included in another measure, become
significant variables in the model presumably free from
atypical values.

To test the former specification we have performed
the maximum likelihood estimation of the Box-Cox
transformation parameter Afor the rent variable. This
has been done for the models with 460,451, and 443
data. The results, which are practically insensitive to
different specifications of the continuous explanatory
variables, are presented in Table 5.

As we keep eliminating atypical observations, the
maximum of the likelihood function for A gradually

Table 5. Maximum Values of the Likelihood Function for Different Specifications of the Box-Cox
Parameter and the Sample Size

n

460
451
443

-.2

-4866
-4635
-4493

-.1

-4816
-4605
-4469

.0
-4775
-4585
-4454

.1

-4745
-4574
-4447

.2

-4727
-4574
-4450

.3

-4721
-4584
-4464

.4

-4729
-4605
-4489

.5

-4750
-4637
-4524
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Table 4. Possible Outliers

Observatían v, DI tinumber

1 .03 .06 -6.6
2 .04 .05 -5.3
3 .06 .08 -5.4
4 .03 .02 -4.1
5 .04 .03 -3.7
6 .05 .03 -3.7
7 .06 .04 -3.7
8 .03 .02 -3.6
9 .05 .03 -3.3

10 .05 .02 -3.0
11 .04 .02 -3.0
12 .11 .04 -2.8
13 .03 .01 -2.8
14 .03 .01 -2.5
15 .03 .00 2.4
16 .04 .01 -2.4
17 .12 .04 2.4
18 .15 .00 -0.7
19 .15 .00 .07

normality with a = .0 l. The distribution appears to be
a normal contaminated by a small number of negative
values, since it is symmetric around the median (whose
value is .07) and reasonably normal in the range .07 ±
1.5 q, where q is the residuals standard deviation.

The internal analysis of the model's robustness
yielded 19 observations worthy of attention, which are
included in Table 4. The last two (numbers 18 and 19)
are the potentially more influential with the largest Vii

values, although their actual influence is negligible ac­
cording to the Di statistic. The first 17 observations
with the largest ti values were carefully reviewed, with
the result that the first 9 appeared to suffer from data
transcription errors (omission of a zero in the rent
figure). Since several of the next 8 observations were
open to doubt, we decided to maintain them provision­
ally. Consequently, we estimated a new regression with
451 data points with results summarized in column (2)
of Table 3. As can be seen, the elimination of the first
9 observations improves the results without changing
them substantially. The coefficients of most variables
remain essentially constant with the following excep­
tions: (a) the coefficients of MAGL and APT become
practically zero, suggesting that they should be elimi­
nated from the model; (b) the influence of POPD
appears to be captured now by the accessibility index;
and (c) the coefficients of TELPH and ACC increase,
making them significant.

In view of this information, we estimated a new
model without the variables MAGL, APT, and POPD,
but introducing the variables previously rejected for the
model with 460 data points. As a result, BEXP was
provisionally included in the model because, although
not significant (it has a t value of 1.2), it appears to be
potentially important. Column (3) of Table 3 summa­
rizes the final model fitted with 451 data points.

Next, we repeated the robustness analysis for this
model in order to detect new anomalous data. We
confirmed the atypical nature of the 8 observations
previously commented upon, although their actual in­
fluence appeared to be generally small judging by their
Di values. At any rate, we reestimated the model with­
out these 8 observations, obtaining the results presented
in column (4) of Table 3. We should remark that (a)
the variables TWOM, CHEAT, and BEXP, which were
not formally significant with a = .05, become signifi­
cant without any doubt; (b) the rest of the coefficients
are not significantly altered; and (c) the Kolmogorov­
Smirnov test, as well as tests on the asymmetry and
kurtosis, lead to the acceptance of the hypothesis of the
residuals' normality with a = .10.

In conclusion, ifwe compare the latter with the initial
model, it can be observed that after eliminating the 18
observations that we considered as outliers (3.7% ofthe
total), the residual variance has diminished by 55%, the
proportion of explained variability has increased by
17%, and we can reasonably accept the hypothesis that
the residuals are normally distributed. Most coefficients
have changed very slightly, and when this is not the
case and the model becomes more compatible with a
priori economic information: the distance to the center
of Madrid measured by the logarithm of the accessibil­
ity index, and the fact that a housing unit has two or
more bathrooms, telephone, central heating, and build­
ing expenditures included in another measure, become
significant variables in the model presumably free from
atypical values.

To test the former specification we have performed
the maximum likelihood estimation of the Box-Cox
transformation parameter Afor the rent variable. This
has been done for the models with 460,451, and 443
data. The results, which are practically insensitive to
different specifications of the continuous explanatory
variables, are presented in Table 5.

As we keep eliminating atypical observations, the
maximum of the likelihood function for A gradually

Table 5. Maximum Values of the Likelihood Function for Different Specifications of the Box-Cox
Parameter and the Sample Size

n

460
451
443

-.2

-4866
-4635
-4493

-.1

-4816
-4605
-4469

.0
-4775
-4585
-4454

.1

-4745
-4574
-4447

.2

-4727
-4574
-4450

.3

-4721
-4584
-4464

.4

-4729
-4605
-4489

.5

-4750
-4637
-4524
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approaches zero. The maximum is reached for X = .3 
with the full sample, .2 with 451 data, and .1 with 443 
data. In the latter case, a 95% confidence interval does 
not include the logarithmic transformation (X = 0). 
Although this suggests that the model might still contain 
further outliers, we did accept the logarithmic transfor- 
mation as adequate because it is reasonable from an 
economic point of view and is not dramatically rejected 
by the empirical evidence (see Atkinson 1982 for a 
recent analysis of the transformation parameters' sen- 
sitivity to outliers). 

As regards the explanatory variables, we have already 
pointed out that the first exploratory models did not 
indicate whether to express the OCUP and NFL varia- 
bles with or without a logarithmic transformation. To 
decide this issue, we performed the following 2 x 2 
factorial experiment in which the sums of squared 
residuals are presented for each possible specification: 

OCUP 
NFL 45.34 

In NFL 44.22 

In OCUP 
46.25 

45.14 

The results suggest that the number of floors should be 
in logs, while the years of occupancy should not be 
transformed. 

The last variable whose specification was open to 
doubt was the building age. We searched for the best 
nonlinear specification using the procedure suggested 
by Box and Tidwell (1962), but unfortunately the com- 
putation algorithm did not converge. Finally, we ap- 
plied the following criterion. First, among the plausible 
transformations, choose the one generating the smallest 
sum of square residuals. Next, study the possibility of 
supplementing that specification with one or more of 
the dummy variables AXIX, A4164, or A6574. 

This procedure leads to the logarithmic transforma- 
tion, corrected by the dummy AXIX. Since the coeffi- 
cient of the log of AGE was negative and that for AXIX 
was positive, this formulation is consistent with our 
information on the relationship's pattern: ceteris pari- 
bus, the greater the building age, the smaller the housing 
rent except for the 19th-century buildings, whose solid 
construction (or other unobserved characteristics) re- 
quire an upward correction. 

4.3 The Selection of the Final Model 

Since we want to predict market rents for housing 
units whose rents are government controlled, a relevant 
criterion to choose the number of regressors is the mean 
squared prediction error. An estimate of this error 
serving to compare different models is the Mallows 
statistic: Cp = (SSRp/a2) + 2p - n, where SSRp is the 
sum of squared residuals with p regressors, a2 is an 
unbiased estimator of the residual variance in the model 
with the largest number of variables, and n is the sample 
size. The Cp statistic permits the selection of the subset 

that maximizes the model's predictive capacity (or min- 
imizes the mean squared error). 

This criterion did not lead to the inclusion of new 
variables to our previous list. The best model is pre- 
sented in column (5) of Table 3, and has a Cp of 12.6 
with 17 explanatory variables. Once this model was 
selected, we repeated the internal analysis of each ob- 
servation and searched for other sources of specification 
errors. The results were as follows: 

1. The maximum value for the t statistic for the 
Studentized residuals was 3.5. The two next values were 
3.1, while the rest of the data presented no problems. 
These three observations are close to the explanatory 
variables' center of gravity, so that their influence on 
parameter estimates is small. At any rate, there was no 
observation with a high Di value. Therefore, we con- 
cluded that the final model is robust to outliers. 

2. Residual plots did not show any evidence of spec- 
ification errors. The residual distribution is normal 
according to the Kolmogorov-Smirov test with a = 
.05. 

3. Finally, the estimation situation is adequate with- 
out multicollinearity problems: the condition index of 
the X'X matrix was only 8.8 (see Belsley, Kuh, and 
Welsch 1980). 

4.4 The Economic Interpretation 
In the first place, the above analysis indicates that 

82% of rent differences for market housing in the MMA 
can be explained by the 17 characteristics that were 
empirically relevant. While the information on struc- 
tural traits is rather rich, data on attributes referring to 
housing location in the 85 zones of the MMA were very 
poor. Thus, it is not surprising that the latter, the 
accessibility index ACC, the socioeconomic index 
ALTA, and the buildings age index OLD explained 
only 4% of the observed variability, while the 14 struc- 
tural characteristics explained the remaining 78%. If we 
had data on local public goods levels, pollution of 
different types, and the distribution of nonresidential 
land uses, we should expect that the location variables' 
relative importance would have been greater. 

In the second place, all variables appear with the 
expected algebraic sign. As for the coefficients' inter- 
pretation, the following comments are in order: 

1. For the variables in logarithms AGE, M2, NFL, 
DET, and ACC the coefficients measure the elasticity 
directly. Thus, a 10% increase in housing size measured 
in squared meters leads to a 4% increase in rents, which 
indicates that there are decreasing returns to scale in 
this variable. The -.4 elasticity for the accessibility 
index is somewhat low; two dwellings identical in every 
respect, except for a difference of 50% on transportation 
time to the Central Business District, would have a 20% 
difference in rent. The .19 elasticity for number of 

NFL
InNFL
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approaches zero. The maximum is reached for A = .3
with the full sample, .2 with 451 data, and .1 with 443
data. In the latter case, a 95% confidence interval does
not inelude the logarithmic transformation (A = O).
Although this suggests that the model might still contain
further outliers, we did accept the logarithmic transfor­
mation as adequate because it is reasonable from an
economic point ofview and is not dramatically rejected
by the empirical evidence (see Atkinson 1982 for a
recent analysis of the transformation parameters' sen­
sitivity to outliers).

As regards the explanatory variables, we have already
pointed out that the first exploratory models did not
indicate whether to express the OCUP and NFL varia­
bles with or without a logarithmic transformation. To
decide this issue, we performed the following 2 x 2
factorial experiment in which the sums of squared
residuals are presented for each possible specification:

OCUP In OCUP
45.34 46.25
44.22 45.14

The results suggest that the number of floors should be
in logs, while the years of occupancy should not be
transformed.

The last variable whose specification was open to
doubt was the building age. We searched for the best
nonlinear specification using the procedure suggested
by Box and Tidwell (1962), but unfortunately the com­
putation algorithm did not converge. Finally, we ap­
plied the following criterion. First, among the plausible
transformations, choose the one generating the smallest
sum of square residuals. Next, study the possibility of
supplementing that specification with one or more of
the dummy variables AXIX, A4164, or A6574.

This procedure leads to the logarithmic transforma­
tion, corrected by the dummy AXIX. Since the coeffi­
cient of the log ofAGE was negative and that for AXIX
was positive, this formulation is consistent with our
information on the relationship's pattern: ceteris pari­
bus, the greater the building age, the smaller the housing
rent except for the 19th-century buildings, whose solid
construction (or other unobserved characteristics) re­
quire an upward correction.

4.3 The Selection of the Final Model

Since we want to predict market rents for housing
units whose rents are government controlled, a relevant
criterion to choose the number of regressors is the mean
squared prediction error. An estimate of this error
serving to compare different models is the Mallows
statistic: Cp = (SSRp/u 2

) + 2p - n, where SSRp is the
sum of squared residuals with p regressors, u2 is an
unbiased estimator ofthe residual variance in the model
with the largest number ofvariables, and n is the sample
size. The Cp statistic permits the selection of the subset

that maximizes the model's predictive capacity (or min­
imizes the mean squared error).

This criterion did not lead to the inelusion of new
variables to our previous list. The best model is pre­
sented in column (5) of Table 3, and has a Cp of 12.6
with 17 explanatory variables. Once this model was
selected, we repeated the internal analysis of each ob­
servation and searched for other sources ofspecification
errors. The results were as follows:

1. The maximum value for the t statistic for the
Studentized residuals was 3.5. The two next values were
3.1, while the rest of the data presented no problems.
These three observations are elose to the explanatory
variables' center of gravity, so that their influence on
parameter estimates is small. At any rate, there was no
observation with a high Di value. Therefore, we con­
eluded that the final model is robust to outliers.

2. Residual plots did not show any evidence of spec­
ification errors. The residual distribution is normal
according to the Kolmogorov-Smirnov test with a =
.05.

3. Finally, the estimation situation is adequate with­
out multicollinearity problems: the condition index of
the X'X matrix was only 8.8 (see Belsley, Kuh, and
Welsch 1980).

4.4 The Economic Interpretation

In the first place, the aboye analysis indicates that
82% of rent differences for market housing in the MMA
can be explained by the 17 characteristics that were
empirically relevant. While the information on struc­
tural traits is rather rich, data on attributes referring to
housing location in the 85 zones of the MMA were very
poor. Thus, it is not surprising that the latter, the
accessibility index ACe, the socioeconomic index
ALTA, and the buildings age index OLD explained
only 4% ofthe observed variability, while the 14 struc­
tural characteristics explained the remaining 78%. Ifwe
had data on local public goods levels, pollution of
different types, and the distribution of nonresidential
land uses, we should expect that the location variables'
relative importance would have been greater.

In the second place, all variables appear with the
expected algebraic signo As for the coefficients' inter­
pretation, the following comments are in order:

l. For the variables in logarithms AGE, M2, NFL,
DET, and ACC the coefficients measure the elasticity
directly. Thus, a 10% increase in housing size measured
in squared meters leads to a 4% increase in rents, which
indicates that there are decreasing returns to scale in
this variable. The -.4 elasticity for the accessibility
index is somewhat low; two dwellings identical in every
respect, except for a difference of50% on transportation
time to the Central Business District, would have a 20%
difference in rento The .19 elasticity for number of
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approaches zero. The maximum is reached for A = .3
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OCUP In OCUP
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the X'X matrix was only 8.8 (see Belsley, Kuh, and
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housing location in the 85 zones of the MMA were very
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only 4% ofthe observed variability, while the 14 struc­
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land uses, we should expect that the location variables'
relative importance would have been greater.

In the second place, all variables appear with the
expected algebraic signo As for the coefficients' inter­
pretation, the following comments are in order:
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floors does not have an immediate interpretation; per- 
haps taller buildings are more desirable on average 
because they possess some characteristic not reflected 
in our survey. Finally, the -.08 elasticity for housing 
deterioration state seems reasonable. 

2. For the continuous untransformed variables 
OCUP, ALTA, and ANTIG the coefficients, multiplied 
by 100, represent the percentage in rent increase attrib- 
utable to a unit increase in the corresponding charac- 
teristic. The 8% for occupancy years can be interpreted 
as the annual rate of rent inflation during the 1965- 
1974 period. The market premiums for location in 
more moder zones or for better socioeconomic con- 
ditions are, respectively, 7% to 9%. 

3. When the dependent variable appears in logs, the 
expression (exp 13j - 1)- 100, where 1fj is the coefficient 
of a dummy variable, is interpreted as the percentage 
change in rents due to the presence of the attribute in 
question. For the 9 significant dummy variables, such 
effects, expressed in percent, are as follows: 

FURN AXIX CHTW LESS TWOM 
29.0 12.7 62.9 -21.8 20.5 

TELF CHEAT GAR BEXP 
16.0 14.0 28.3 13.3 

In conclusion, the goodness of fit is very satisfactory, 
and the economic explanation of rent differences in 
terms of the final model's 17 significant variables is, on 
balance, quite reasonable. 

5. CONCLUSIONS 

To prevent least squares' great sensitivity to outliers, 
an internal study of the model's robustness was rec- 
ommended in Section 3 highlighting the potentially 
influential observations, as well as those that, in fact, 
clearly affect the estimation results. The diagonal terms 
of the projection matrix V is a good indication of the 
former, while the Cook Di statistic is adequate to meas- 
ure the latter. Moreover, a t statistic serves to determine 
which observations can be considered atypical. 

Our empirical application of this methodology could 
be placed in the context of Chapter 4 of Belsley, Kuh, 
and Welsch (1980). These authors analyze the Harrison 
and Rubinfeld (1978) data on market values and char- 
acteristics of 506 owner-occupied dwelling units in the 
Boston Metropolitan Area. In the first place, they detect 
the nonnormality of OLS residuals in such a regression. 
Then they compute M-estimators, observe that some 
coefficients are considerably modified, and verify that 
the weighted Studentized residuals follow a normal 
distribution. On the other hand, using some statistics 
different from ours, they detect that 10% of the sample 
consists of influential observations, and informally ana- 
lyze the consequences of applying OLS after deleting 5 

of outliers on the functional form. 
In Section 4, we also found nonnormality of OLS 

residuals in an exploratory model. However, when we 
apply the robustification strategy we recommend, we 
find that (a) decisions regarding the model's functional 
form and the variables to include in it can be consid- 
erably affected by a few outliers; (b) the residuals' lack 
of normality can be attributed to some identified data 
coding errors and other anomalous observations; and 
(c) the elimination of outliers improves the statistical 
model of rent housing values in the MMA, enhancing 
its economic meaning. 
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