
Vol. 41 (1990), N. 2, pp. 161-185 
Metroeconomica 

Cappelli Editore 1990 

CHAOTIC PATTERNS IN COURNOT COMPETITION 

A. van Witteloostuijn and A. van Lier 
University of Limburg, Maastricht 

(Received August 28th, 1988; final version August 20th. 1990) 

ABSTRACT 

Chaos theory offers a new mode of analyzing the complexity of nonlinear (economic) 
dynamics. A growing list of applications is mainly focused on modeling macroeconomic 
(growth and business) cycles and dynamic (consumer’s and firms’) choice. This paper 
provides a nonlinear dynamic model of Cournot competition. The model improves upon 
Rand (1978) and Dana and Montrucchio (1986) by permitting monopoly output to be 
positive. The existence of chaotic regimes is proven and simulation experiments illustrate 
the implications. 

I .  CHAOTIC PATTERNS IN ECONOMICS 

In the 1970s and 1980s chaos theory broke and still ((breaks across 
the lines that separate scientific disciplines. Because it is a science of 
the global nature of systems it has brought together thinkers from fields 
that had been widely separated)) (Gleick, 1987, p. 3). Gleick (1987, 
Chapter 2) does not hesitate to characterize the rise of chaos theory 
as a revolution, since it ((has become not just a canon of belief but 
also a way of doing science. ... Some carry out their work explicitly 
denying that it is a revolution; others deliberately use Kuhn’s language 
of paradigm shifts to describe the changes they witness)) (pp. 38-39). 

The essential notion of chaos theory is that (even simple) dynamic 
systems may generate seemingly random and chaotic patterns. Irregular 

The authors are very gratefui for the comments of an anonymous referee. Of course. the usual 
disclaimer applies. 
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and unpredictable time paths result from deterministic sources. Baumol 
and Quandt (1985) offer the illustrative, if imprecise, description that 
(([clhaos is defined as a fully deterministic behaviour pattern which is, 
in at  least some respects, undistinguishable from a random process or, 
rather, a process perturbed by substantial random elements. It displays 
extreme sensitivity to changes in parameter values, and is characterized 
by an infinite number of equilibria each approached by (superimposed) 
cycles of different periodicities, and whose simultaneous presence is what 
gives the appearance of randomness to a time series generated by 
a deterministic process)) (p. 3). Chaos theory reaches an analytical 
apparatus which has found application in many scientific disciplines. 

This paper loosely defines chaos as to three features of dynamic 
trajectories: (i) sensitive dependence on initial conditions; (ii) existence 
of periodic orbits of all periods; and (iii) existence of an uncountable 
set of initial conditions that each give rise to (asymptotically) aperiodic 
time paths (Kelsey, 1988, p. 9). The point of departure is a first-order 
difference equation, 

which can be associated with chaotic trajectories if nonlinearity gives 
a hill-shaped function. The key point is that (([ilt cannot be too strongly 
emphasised that the process is generic to most functions [(I)] with 
a hump qftunahle steepness)) (May, 1976, p. 461, italics added). Particular 
specifications of equation ( I )  can give a sequence of bifurcations such 
that ((the pattern never repeats)) (May, 1976, p. 461). For the moment, 
this intuition suffices. An excellent, general review of the merits of 
nonlinear dynamics is May (1976), whereas Kelsey (1988) and Baumol 
and Benhabib (1989) offer nice introductions of chaos theory in 
economics. 

In the late 1970s and early 1980s the methodology of nonlinear 
dynamics also entered the economic scenery. The most widespread use 
of chaos theory lies in the field of macroeconomic (business and growth) 
cycles (Stutzer, 1980; Benhabib and Day, 1980 and 1982; Day, 1982 
and 1983; Dana and Malgrange, 1984; Day and Shafer, 1985 and 1987; 
Grandmont, 1985 and 1986; Boldrin and Montrucchio, 1986; Deneckere 
and Pelikan, 1986; and Julien, 1988). These models induce ((the 
profession’s growing awareness of the fact that, even in the absence of 
extraneous shocks, the internal (nonlinear) dynamics of an economy 
may generate quite complex periodic orbits or even nonexplosive 
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‘chaotic’ deterministic trajectories, that may be hard to distinguish from 
‘truly random’ time series ... . Indeed, the recent approach to endogenous 
business cycles relies often on advances made lately in the mathematical 
theory of nonlinear dynamical systems, in particular the analysis of 
sudden qualitative changes displayed by their trajectories (‘bifucations’))) 
(Grandmont and Malgrange, 1986, p. 4) (I). 

The second class of applications of chaos theory to economic 
frameworks are nonlinear models of (consumers’ and firms’) dynamic 
choice (Rand, 1978; Benhabib and Day, 1981; Baumol and Quandt, 
1985; Dana and Montrucchio, 1986; Granovetter and Soong, 1986; 
Rasmussen and Mosekilde, 1988; and Iannaccone, 1989). These contri- 
butions ctshow that rational choice in a stationary environment can lead 
to erratic behaviour ... . We mean by erratic behaviour choice sequences 
that do not converge to a long-run stationary value or to any periodic 
pattern)) (Benhabib and Day, 1981, p. 459). A particular type of 
nonlinear models of dynamic choice focuses on Cournot competition 
(Rand, 1978; and Dana and Montrucchio, 1986). This paper offers 
a constructive critique of the two existing nonlinear models of Cournot 
(duopoly) competition. 

The paper is organized as follows. Section 2 describes the essential 
features of the two existing nonlinear models of Cournot (duopoly) 
competition. A basic flaw of these models is the (implicit) assumption 
that monopoly output is zero. Section 3 presents a model of Cournot 
duopoly competition which permits monopoly output to be positive. 
Section 4 illustrates the model’s features with the help of the results 
of simulation experiments. Section 5 briefly indicates the applicability 
of the analytical apparatus of nonlinear dynamics to topics of theory 
of competition in industrial organization. 

2. NONLINEAR MODELS OF COURNOT COMPETITION 

Examples of the introduction of chaos theory in industrial organization 
are scarce. Dana and Montrucchio (1986) argue that (([tlhe only 
exception is the seminal paper of Rand ..., which shows, in a very 

( I )  Of course, business and growth cycles with chaotic patterns may follow endogenously 
from agents’ behavior, where the agents’ decision making induces a chaotic sequence of 
choices [for instance, via agents’ hill-shape offer curves in Grandmont (1985)l. 
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abstract manner, that the Cournot titonnement in a duopoly model 
may display a complicated dynamical structure)) (p. 41). The current 
state of the art is not much different. Only Dana and Montrucchio’s 
(1986) treatment of Cournot duopoly models provides a further 
contribution to the application of nonlinear dynamics to topics in 
industrial organization (’). The nonlinear models of Cournot competition 
indicate that rivalry in a market can be associated with turbulent 
movements of the firms’ quantities if the competitors’ reaction functions 
are hill-shaped. 

Recall that the Cournot (1838) duopoly model implies that a firm 
i chooses a supply quantity (qi) so as to maximize a profit ( x i )  function, 
conditional upon the quantity offered by the rival j # (q’), 

Max x i  = p (qi  + qj) . qi - ci (qi), 
4‘ 

where p denotes the inverse demand function and so price and c the 
cost of production. Solving the maximand ( 2 )  gives the first-order 
condition 

p (qi + 4’) + qi ’ dp/d(q’ + qj) . ( 1 + dqj/dq‘) - dc’/dq’ = 0. (3) 

From condition (3) the firm’s reaction function follows: 

qi = ri (qJ) ,  (4) 

where i, j = 1 ,  2 and i # , j  with the Nash assumption that a firm expects 
a passive reaction of the rival upon its quantity strategy (dqj/dqi = 0). 
In the standard Cournot duopoly models (Tirole, 1988) chaotic patterns 
cannot emerge, since the rivals’ reaction functions (4) are assumed to 
be linear or insufficiently nonlinear (i.e.,  without a hill-shape). 

The introduction of nonlinear dynamics in a Cournot duopoly model 
requires that at  least one of the rivals’ reaction functions is hill-shaped. 
The reason is straightforward. Suppose that neither of the reaction 
functions takes a hill-shaped form; that is dri/dqj I (or 2 )  0 for q’ 2 0, 
where i, j = 1 ,  2 and i # j .  Assume that rival 1 and 2 react according 

(’) A further exception is perhaps Baumol and Quandt’s (1985) nonlinear model of 
advertking. 
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to the time sequence ..., t - I ,  t ,  t + I ,  ... . For example, if rival 1 offers 
a quantity q:-l at time t - 1, then rival 2 reacts by supplying q: at 
r ,  which provokes rival 1’s reaction q:+l at t + I ,  etcetera. Then, 
q f + l  = r’(q!) so that q f + l  = r i [ r ’ ( q i - l ) ]  = ki(qf-l). Now, dk’ldqf-, = 
= dr’/dqi . dr’/dqf-, 5 (or 2) 0. Hence, the absence of hill-shaped 
reaction functions implies that the second-order difference equation of 
a rival’s quantities shows not even a single hump. 

Rand’s (1978) approach to the Cournot duopoly model is very 
abstract indeed by directly postulating unspecified reaction functions 
with sufficient nonlinearity. Rand treats an example of an analytical 
hill-shaped function and a nonanalytical tent map. Analytical hill-shaped 
first-order difference equations can have chaotic regimes (Section I).  
Besides, nonanalytical first-order difference equations can also give 
chaotic patterns for particular ranges of parameter values (May, 1976, 
p. 465). Dana and Montrucchio (1986) supplement Rand’s treatment of 
chaotic behavior in Cournot duopoly models by, among other things, 
providing five specified examples. Given the desired hill-shaped specifi- 
cation of the reaction function(s), they derive (an) associated specification 
of profit function(s). 

Both Rand’s and Dana and Montrucchio’s reaction curves have the 
shape which is depicted in Exhibit 1 (for the analytical case). 

Exhibit I .  Hill-shaped Cournot reaction curve with zero monopoly output. 

The ad hoc assumption of hill-shaped reaction functions in Rand’s and 
Dana and Montrucchio’s analyses leaves an essential question unanswered: 
Can an economic rationale be provided for the (very complicated) 
nonlinear shape of the profit functions? Kelsey (1988) points out that 
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the ((shapes of the reaction functions [Rand] assumes are very extreme 
indeed. It does not look like they could be generated by plausible 
demand and cost functions)) (p. 19). 

One observation immediately strikes the eye. The usual illustration 
of a hill-shaped curve implies that r'(0) = qi = 0. The reaction curves 
in Rand (1978) and Dana and Montrucchio (1986) all show this feature. 
This means that the (implicit) assumption is imposed that firm i offers 
a zerg output in response to firm j s  zero production: that is, monopoly 
output is taken to be zero! However, this assumption is not very realistic. 
This extreme case can be bypassed by introducing a qL = r'(0) > 0, 
where qL represents firm i's monopoly output (which, for example, can 
follow from the standard maximization procedure of a monopolist). 
Exhibit 2 illustrates the shape of this reaction function. 

Exhibit 2. Hill-shaped Cournot reaction curve with positive monopoly output. 

The hill-shaped Cournot reaction curve with positive monopoly output 
induces a further question: Can a proof of the existence of chaotic 
regimes still be provided? Section 3 goes on to examine both questions 
of economic interpretation and proof of existence. 

3. COURNOT REACTION CURVES WITH POSITIVE MONOPOLY OUTPUT 

3.1. Economic Rationale 

3.1,1. Asymmetric Reaction Pattern 

The critical implication of the hill-shape of a reaction function is 
that a firm shows an asymmetric reaction pattern. For q' < q$ (Exhibit 
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2 )  firm i and j’s supplies are positively correlated, whereas q’ > q$ is 
associated with a negative relationship between qi and qj. Hence, for 
0 I qj < q i  firm i acts as a ,follower or imitator. If firm j expands 
output, so does firm i. Whenever firm j contracts supply, firm i too 
introduces a decrease of the quantity offered. However, if firm j expands 
its output beyond 96, then firm i starts to act as a ,fringe competitor 
or accomrnodator. On the one hand, whenever firm j expands output, 
firm i simply adapts to reduced residual demand. On the other hand, 
if firm j contracts output, then firm i adopts an aggressive strategy by 
expanding its supply. 

The asymmetric reaction pattern follows from the switch in sign of 
the first-order derivative of the reaction curve. A firm with an asymmetric 
reaction pattern can be called a dualist: that is, the firm’s reply can 
be to imitate as well as to accommodate, depending on the scale of 
the rival’s output. The reaction curve of a dualist is hill-shaped. 

3.1.2. Strategic Substitutes and Complements 

Types of reaction patterns can be distinguished as to the features of 
the cross-partial derivatives of the firm’s marginal profit with respect 
to its opponents’ action (Bulow et a[., 1986, pp. 491-497; and Tirole, 
1988, p. 208). Here it suffices to note that ((with strategic substitutes 
B’s optimal response to more aggressive play by A is to be less aggressive 
... . With strategic complements B responds to more aggressive play 
with more aggressive play)) (Bulow et af., 1986, p. 494). In terms of 
Cournot competition this means that strategic substitutes predict 
dr‘/dqj < 0, whereas strategic complements indicate dr‘/dqJ > 0. 

Hence, the substitute or complement nature of the firm’s reaction 
pattern is reflected in the sign of the reaction curve’s slope. Both cases 
are depicted in Exhibit 3 (Tirole, 1988, p. 208). 

The reaction function which follows from strategic complements 
(curves I), describes the reaction pattern of an imitator, whereas an 
accommodator’s responses are reflected in the reaction curve with 
strategic substitutes (curves 11). 

3.1.3. Idle Capacity 

Bulow et al. (1985, p. 180, Fig. 1) provide an answer to the first 
question by offering an economic interpretation of hill-shaped reaction 
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Exhibit 3. Strategic substitutes and complements. 

curves with positive monopoly output in terms of strategic substitutes 
and complements. Here the following brief intuition suffices. Starting 
from monopoly output a firm is willing to increase supply in reaction 
upon entry, which contradicts the downward slope of standard Cournot 
reaction curves: that is, starting from monopoly output the firm regards 
outputs as strategic complements. This assumption follows from the 
literature on entry deterrence. Two arguments offer a case in point. 
First, the aggressive strategy after entry is described in the literature 
on idle capacity as an entry-deterring instrument (Spence, 1977 and 
1979; and Ware, 1985). Second, the post-entry expansion policy can be 
grounded in long-run reputation arguments, even if this strategy is not 
profit-maximizing from a short-run perspective (Milgrom and Roberts, 
1982 and 1987; and Arvan, 1986). 

However, the expansion policy does not pay if the rival’s scale moves 
beyond a particular point. After a certain scale of expansion (qT)  the 
benefit of accommodation starts to dominate over the advantage of the 
aggressive strategy, which implies that the standard downward slope of 
the Cournot reaction curve sets in: that is, the firms consider outputs 
to be strategic substitutes. The hill-shape of Cournot reaction curves 
can follow from demand specifics. The key point is that the ((assumption 
that each firm’s marginal revenue is always decreasing in the other’s 
output ... is quite a restrictive assumption. For example it is never 
satisfied in the relevant range for economists’ second-favourite demand 
curve - constant elasticity demand)) (Bulow et al., 1985, p. 178). 
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3.2. Proof of Existence 

3.2. I .  Li and Yorke’s Theorem 

Granovetter and Soong ( 1  986, pp. 92-93) provide a graphical intuition 
which suggests that chaotic regimes can occur in hill-shaped functions 
with a positive intercept (in a model of nonlinear consumers’ choice) 
without, however, offering a proof. Li and Yorke ( I  975) provide however 
a theorem which can be used to prove the existence of chaotic regimes. 
This paper employs an abbreviate version of this theorem. 

Theorem I :  The first-order difference equation ( I )  gives chaotic regimes 
if there exists a value of x, such that 

Following Day (1982 and 1983) Li and Yorke’s theorem can be 
re-expressed as 

f ( x r n )  XC < x* < xm, (6) 

where 

xm =f(x ’ )  = max ,f(x) > 0 and ,f(xC) = x*. (7) 

If the function f ( x )  is hill-shaped, the inequality x* < xm is equivalent 
to x < x* and the inequality ,f(xm) 5 xc can be formulated as ,f’ (xm)  I XI, 

where , f2 = ,f[,f(.)]. Then, the theorem of Li and Yorke can be expressed 
as 

f 2 ( X m )  5 x’ < xm. (8) 

Form (8) will be used to prove that there exists an uncountable set of 
initial conditions that give rise to chaotic time paths for a significant 
class of hill-shaped reaction functions with positive monopoly output. 
Three cases are considered: (i) one firm (re)acts as a dualist, whereas 

(3) Hence, if there exists a three-period cycle, then there are chaotic regimes as well. 
This result is related to Sarkovskii’s (1964) theorem (Kelsey, 1988, p. 5) .  
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the rival is an imitator (Subsection 3.2.2); (ii) one firm is a dualist, 
while the rival responds as an accommodator (Subsection 3.2.3); and 
(iii) both rivals behave as dualists (Subsection 3.2.4). It appears that 
all three cases can be associated with chaotic reaction patterns. 

3.2.2. Dualist Against Imitator 

The reaction function of firm i, ri(qi) ,  is assumed to be hill-shaped 
(with positive monopoly output), whereas the reaction function of firm 
j is supposed to resemble r j (q i )  = qi.  This scenario describes competition 
between a dualist and a perfect imitator. Rival i and j react according 
to the time sequence ..., t - I ,  t ,  t + 1, ... . This means that 

With doubled lengths of the time intervals equation (9) has the same 
form as the first-order nonlinear difference equation ( I ) .  Exhibit 
4 illustrates the applicability of Theorem I to a first-order difference 
equation which resembles Exhibit 2's hill-shaped Cournot reaction curve 
with positive monopoly output (the dualist, curve I) and the 45O-line 
(the perfect imitator, curve 11). 

Exhibit 4. Dualist against imitator. 

This paper uses the specification 

qi = ri<qj> = I - c 1 .  (qj - I + I/&)' 
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for the dualist’s hill-shaped reaction curve. 
For a significant class of second-degree reaction functions ri with 

positive monopoly output and assuming that firm j acts as a perfect 
imitator, the existence of chaotic regimes can be proven algebraically 
with the use of condition (8). Following Rand (1978) and Dana and 
Montrucchio (1986) output is scaled to qi, q j E [ O ,  I]. If r i ( l )  = 0 and 
the maximum of ri  is I ,  then condition (8) indicates that a necessary 
condition for proving Li and Yorke’s chaos is r ’ (0)  x*. That is, the 
monopoly output is restricted by the upperbound X* (i.e., the location 
of the maximum). 

Proposition 1: If qi = r i ( q j )  = 1 - CI . (qj - 1 + I/&)z and = rj (& = qi, 

there exists an uncountable set of initial conditions with chaotic 
(asymptotically aperiodic) time paths and for every natural number 
k there exists a time path with period k for 3.0795 ... s ct < 4. 

The proof of Proposition 1 is offered in Appendix A. Proposition 
1 indicates that Cournot duopoly competition can be associated with 
chaotic trajectories if a dualist (that is, a firm with a hill-shaped reaction 
function) competes against a perfect imitator, even when monopoly 
output is assumed to be positive. 

Proposition 1 is robust as regards to modifications of the assumption 
that rival j (re)acts as a perfect imitator. First, take the case where 
competitor j only imitates imperfectly. 

Proposition 2: If the reaction function of firm i has the parabolic form 
as indicated in Proposition 1 but with 3.0795 ... < ct < 4, then the case 
where the reaction function of rival j reflects imperfect imitation also 
gives rise to chaotic time paths. 

The proof of Proposition 2 is given in Appendix B. The key point 
is that the reaction function of firm j is turned into r j ( q i )  = qi + 6(qi) ,  
where 6 (qi)  indicates a small disturbance. The composed reaction 
function r i ( r j )  then has the same shape as the one in the proof of 
Proposition I ,  except for a small disturbance term, so that Li and 
Yorke’s condition can still be satisfied if the disturbance is small enough. 

3.2.3. Duahst Against Accommodator 

The assumption that rival j (re)acts as an imitator, can be dropped 
in favor of the well-established case which assumes a downward sloping 
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Cournot reaction curve. That is, the dualist i (reaction curve I) faces 
an accommodator j (reaction function 11). This scenario is illustrated 
in Exhibit 5. A for perfect accommodation. This means that the accom- 
modator j (re)acts according to r j ( q i )  = 1 - qi = q j .  

Exhibit 5. A. Dualist against accommodator. B. Composed reaction function. 

Exhibit 5 shows graphically that Li and Yorke’s theorem can be applied. 
The composed reaction function (Exhibit 5.B) can be used to illustrate 
that condition (6) does hold. By making use of Proposition 1 this result 
can be proven algebraically. 

Proposition 3: If the reaction function of firm i has the parabolic form 
as indicated in Proposition 1 with 3.6708 ... I c1 < 4, then the case where 
the reaction function of rival j reflects perfect accommodation is also 
associated with chaotic time paths. 

Proposition 3’s proof is presented in Appendix C. Proposition 
3 indicates that Cournot accommodation can also give chaotic time 
patterns if one of the two firms decides on the basis of a hill-shaped 
reaction function with a positive intercept (i.e.,  if one of the rivals is 
a dualist with positive monopoly output). 

3.2.4. Dualist Against Dualist 

The third case describes the scenario where both firms have the same 
hill-shaped reaction function with positive monopoly output. That is, 
the two rivals behave as dualists. This case is depicted in Exhibit 6.A. 

Exhibit 6.B graphically proves the existence of Li and Yorke’s chaos. 
The analytical proof follows from Proposition 1 .  



Exhibit 6. A. Dualist against dualist. B. Composed reaction function. 

Proposition 4: If the reaction functions of firm i and j have identical 
hill-shaped forms, chaotic regimes can be derived. 

Proposition 4 is proven in Appendix D. Proposition 4 predicts that 
Cournot competition between two rivals which are making use of 
equivalent hill-shaped reaction functions with positive monopoly output, 
can be associated with chaotic trajectories of output. 

4. SIMULATION EXAMPLES 

4.1. Functional Specifications 

The implications of hill-shaped Cournot reaction curves can be 
illustrated through simulation of competition for a series of (coun- 
ter-)moves ('). The simulation experiments cover 120 moves (or periods 
t = 1, ..., 120): that is, both rivals act and react 60 times. Rival i sets 
supply in odd-numbered periods ( t  = 1 ,  3, 5 ,  ..., 119), whereas rival J?s 
replies are effectuated at  even-numbered dates ( t  = 2, 4, 6,  ..., 120). 
Two initializations dictate the simulation results. First, by varying the 
value of the parameter (a) the steepness of the hill-shaped reaction 
function (10) can be tuned. Second, variation of the first move (4;) 
manipulates the initial competitive condition, 

The experiments simulate the dualist against imitator rivalry (Subsection 
3.2.2). Firm i is the dualist [qi = ri(qj)  = 1 - a . (qj - 1 + and 

(4) For example, Baumol and Quandt (1985) an Baumol (1986) also offer interesting 
simulation examples, whereas Sterman (1989) presents the results of an experimental study. 
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firm j acts as a perfect imitator [qj = r’(qi) = qi]. Since the results are 
similar for both rivals, this section presents only firm i’s outputs (at 
odd-numbered periods). Exhibit 7 indicates the initial values of the 
simulation experiments. 

Exhibit Simulation Initial monopoly Steepness 
experiment output parameter 

I 0.3 10 3.35 8 
II  0.300 3.35 9 
111 0.310 3.34 10 and 12 
IV 0.998 3.35 1 1  

Exhibit 7. Initial values simulation experiments. 

The simulation experiments reveal three properties of complex dynamics: 
(i) chaotic regimes for particular parameter values (Subsection 4.2); (ii) 
sensitive dependence on initial conditions (Subsection 4.3); and (iii) 
sudden breaks in qualitative patterns (Subsection 4.4). These features 
can pose serious problems to econometric estimation (Subsection 4.5). 

4.2. Chaotic Trajectories 

The first consequence of nonlinear dynamics can of course be the 
occurrence of chaotic trajectories. If rival firms are engaged in Cournot 
competition while at least one competitor is making supply decisions 
on the basis of a sufficiently steep, hill-shaped reaction function, the 
time pattern of both rivals’ quantities mimics a random walk. The first 
simulation experiment (I) illustrates this point. Exhibit 8 depicts the 
series of supplies of firm i [the Lyapunov exponent ( L )  is 0.481 ( 5 ) .  

In period t = 1 firm i starts to supply close to monopoly output 
(qi = 0.31). The subsequent reactions of firm i reveal a chaotic trajectory. 
The series of firm i ‘s supplies fails to show a systematic (periodic) 
pattern: history does not repeat. For example, the pattern of quantities 
from period t = 105 to t = 109 differs qualitatively from the trajectories 

(’) The Lyapunov exponent indicates chaos for L > 0 (Lorenz. 1989, pp. 186-191). 
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Exhibit 8. Chaotic trajectory. 

in both history and future. The time pattern of firm i’s outputs mimics 
a random walk. 

4.3. Sensitive Dependencies 

The second property of complex dynamics can be illustrated by 
assuming a small change in the initial conditions. The second simulation 
(11) assumes monopoly output to be slightly below the first simulation’s 
level. Exhibit 9 shows that the trajectory of rival i’s quantities changes 
dramatically ( L  = 0.49). This means that history matters. 

Period t = 1’s monopoly output is slightly below the first simulation’s 
level (42 is decreased from 0.31 to 0.30). The trajectory of firm i’s 
outputs in simulation experiment I1 is completely different from 
experiment 1’s pattern. For example, any resemblance between simulation 
I and 11’s output trajectory in period t = 57 to t = 65 and t = 79 to 
t = 83 is absent. This illustrates the observation that the pattern of 
quantities is extremely sensitive to minor changes (here a 0.01 reduction) 
in the level of initial monopoly output. Exhibit 10 shows that the same 
is true for small variations in the value of parameter cr(L = 0.49). 

The third simulation (111) retains monopoly output at  experiment 1’s 
level, but introduces a minor reduction in ci (c( is reduced from 3.35 
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Exhibit 10. Sensitive dependence on c(. 

to 3.34). A sidelong glance at Exhibit 8 and 10 reveals that a 0.01 
variation of parameter tx induces a radical transformation of firm i's 
output pattern. 



4.4. Qualitative Breaks 

A peculiar feature of complex dynamics is that a chaotic trajectory 
is associated with sudden breaks in the qualitative pattern. The fourth 
simulation experiment (IV) reveals this feature as supply suddenly shows 
a regularity for two significant time intervals. Exhibit 1 1  presents the 
result ( L  = 0.48). For two (short) periods of time the pattern suggests 
that history repeats. 

1 7 1  
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09 - 

0 8  - 
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0 5  
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0 3  - 
0 2  

01 

0 -  

- 

Exhibit I I .  Qualitative breaks 

Experiment IV retains a's value at -simulation I and 11's level, but 
assumes monopoly output to increase from 41; = 0.300 to 4; = 0.998. 
From period t = I 1  to t = 19 an t = 105 to t = 113 firm i's supply 
remains almost constant, which suggests convergence to a single 
equilibrium point. However, after period t = 21 respectively t = 115 the 
pattern breaks down again. 

4.5. Econometric Dilemma 

Deterministic chaos poses serious problems to econometric estimation 
(Baumol and Benhabib, 1989). On the one hand, a time trajectory which 
is extremely sensitive on initial conditions, is difficult to predict. On 
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the other hand, it is problematic to distinguish deterministic chaos from 
stochastic randomness. This is even more relevant if one recognizes 
Kelsey’s (1988, p. 12) observation that imposing a random error term 
on a hill-shaped function implies that chaos becomes more common. 
However, (at least) three arguments can be put forward to modify this 
claim. 

First, chaotic trajectories are associated with (long) periods of 
regularity. This follows from the feature that sudden regularities 
characterize the qualitative pattern. Second, new econometric techniques 
have been (and are) developed to test whether deterministic chaos or 
stochastic randomness (predominantly) underlies a particular time series 
(Brock, 1986). Third, an additional argument follows from the specifics 
of this paper’s application. The fact that individual firms can offer 
a chaotic series of quantities, does not necessarily mean that the 
trajectory of market supply is dictated by chaos as well. 

First, if a dualist Faces an imitator, the firms’ chaotic output 
trajectories are replicated at the market level. To be precise, if market 
supply follows from the summation of two subsequent moves (i.e., an 
output decision of both rivals), market output is determined by 
2 . qi + 6 (qi). Perfect imitation of a dualist [S (qi) = 01 implies that one 
firm’s chaotic output trajectory is duplicated at the market level. Second, 
if a dualist and perfect accommodator are engaged in duopoly Cournot 
competition, the results is reversed. The firms’ chaotic trajectories are 
not observed at  the market level as market output follows from 
q’ -+ 1 - qi = 1.  That is, perfect accommodation induces stationary market 

The implications for market output are not so obvious if two dualists 
compete over quantities. Summation of two subsequent output levels 
in the four simulation experiments mimics market supply (Q) in I 

a dynamic dualist against dualist game with doubled period lengths (7). 
Hence, QT = 9 l T - [  + qiT: that is, Q, = qf + 9<, Q,  = q i  + q i ,  etcetera. 
The four simulation experiments give the same result: the chaotic output 
trajectories of both rivals seem to induce chaotic patterns of market 
supply. Bearing in mind that 120 moves give market supply for 60 
periods ( T =  I ,  ..., 60), Exhibit 12 illustrates this result for simulation 111. 

supply. 

5 .  COMPETITION AND NONLINEAR DYNAMICS 

This paper improves upon Rand’s (1978) and Dana and Montrucchio’s 
(1986) models of Cournot duopoly competition by permitting monopoly 
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Exhibit 12. Chaotic market supply. 

output to be positive. Bulow et al.’s (1985) argument indicates the 
economic plausibility of hill-shaped Cournot reaction curves with positive 
monopoly profit. Future research can be directed to at least two topics. 
First, this paper ignores the dilemma of the specification of cost and 
demand functions, as hill-shaped reaction curves [Exhibit 2 and 
Proposition 13 are postulated on the basis of a priori arguments. This 
raises the question whether there is- a (large) class of economically 
plausible demand and/or cost functions which predicts such asymmetries. 
Second, other models of competition can be analyzed as to the 
(non)existence of complex dynamics, where the quest for chaotic regimes 
in models of competition is not to be restricted to one-shot Cournot 
games. 

APPENDICES 

A.  Dualist Against Imitator 

Proof of Proposition I .  Firm j acts as a perfect imitator, which gives 
(with doubled length of the time intervals) the following difference 



equation for qi: 

For the sake of convenience, qi is replaced by I and ri by f :  
Second-degree polynomials with the following properties are considered: 

max f ( x )  =,f(s*) = xm = 1 with 0 < x* < I ,  and (A2.i) 

. f ( l )  = 0. (A2.ii) 

O C X j l  

The parabola 

.fa(..) = 1 - a .  (x - I + I/&)2 with a > 1 (A3) 

satisfies the conditions (A2.i) and (A2.ii) (then s* = 1 - I/&). Applying 
Li an Yorke’s condition - , f2  (xm) [ =.f(O)] < x* < xm (=  1)  - with the 
further restriction , f(O) > 0 (positive monopoly output) to the parabola 
(A3) gives the inequalities 

0 < 1 - a .  ( I / &  - I 1 - I/&. (A41 

The inequality on the left hand side can be solve analytically and gives 

Numerically solving the inequality 1 - a. ( I / &  - 

is equivalent to a . ,,h + & - 2 . a - I 2 0) imposes a second restriction . 

on the parameter a: 

I 1 - I/& (which 

tl 2 3.0795 ... . (A61 

Combining (A3), (A4), (A5) and (A6) now gives the result that the 
class of parabola’s 

. fm( -x )  = 1 - a . (-x - 1 + 
and 

with 0 I .Y I 1 
(A7) 3.0795 ... I a < 4 

has the properties (A2.i) and (A2.ii), , f(O) > 0 and satisfies Li and 



Yorke’s condition. Therefore, the difference equation (A I )  gives rise to 
chaotic regimes. Q.E.D. 

B. Small Disturbances 

Proof of Proposition 2. The reaction functions 

(B1.i) 

rj(qi) = qi + 6 (q’) with 6 (0) > 0 (Bl.ii) 

are assumed. With doubled length of the time intervals the output of 
firm i at ((time f + 1 )) is 

If again qi is replaced by x, substitution of the function , fm(x ) ,  as 
indicated by (A3) in Appendix A, gives 

where z is a ((disturbance term)). If -the function ,fe satisfies Li and 
Yorke’s condition, then this condition can still be satisfied when .fa is 
disturbed by a small z. So, if 6 (the disturbance of the linear reaction 
function rj )  is ((small enough)), the conditions for the existence of chaotic 
time paths can still be satisfied. Q.E.D. 

C .  Dualist Against Accommodutor 

Proof of Proposition 3. Firm , j  acts a perfect accommodator, which 
gives (with doubled length of time intervals) the following difference 
equation for qi: 



If r’(qi) = I - a. (9j  - 1 + I/&)’ with 0 < a < 4 (reaction curve of 
a dualist with positive monopoly output), (CI) gives 

If  again, for the sake of convenience, yi is replaced by x, (C2) can be 
rewritten as 

x,+, =.f(x,) 
and 0 < a  ~ 4 .  

with .f(x) = I - c1 . (x - I/&)’ 
(C3) 

The function f ( x )  is a second-degree polynomial with maximum location 
x* = I/& and maximum value xm = I .  Applying Li and Yorke’s 
condition - , f2 (xm)  I x* < xm (= I )  - to the parabola (C3) gives the 
inequalities 

Combining the inequality on the right hand side with 0 < CL < 4 reveals 

Numerically solving the inequality on the left hand side (which is 
equivalent to c13 . Ji - 4 . a3 + 4 . a2 . & + 2 . ct2 - 4 . c 1 .  & + I 2 0)  
imposes a second restriction on  the parameter a: 

a 2 3.6708 ... . (C6) 

Combining (C3), (C5) and (C6) provides the result that the class of 
parabola’s (composed of a hill-shaped reaction function with positive 
monopoly output and the reaction function of a perfect accommodator) 

(C7) 
,f,(x) = 1 - a . (x - I/&)’ 
with 0 2 x 2 I and 3.6708 ... I < 4. 

satisfies Li and Yorke’s condition. Therefore, the difference equation 
(CI) gives rise to chaotic time paths. Q.E.D. 
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D. Dualist Against Dualist 

Proof of Proposition 4. With reference to Appendix A this proof 
can be brief. Appendix A proves that the function ,fu (x) in the difference 
equation gives rise to chaotic time paths. Two dualists firm i and i react 
according to the same reaction function (with doubled length of the 
time intervals). So, 

and with qi replaced by x 

The function .f, v,) gives rise to (asymptotically aperiodic) time paths, 
because a time path of .fUvu) can be derived by skipping the ((odd 
terms)) in a time path of ,f,. Because ,f, generates time paths with period 
k (Proposition I ) ,  where k can be every natural number, the function 
.fuvu), gives the same result. Q.E.D. 
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