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Abstract 
 
We further examine the interaction effect in nonlinear models that has recently been discussed by Ai and 
Norton (2003).  Statistical tests about partial effects and interaction terms are not necessarily informative in 
the context of the estimated model.  We suggest more useful ways that do not involve statistical testing to 
examine the interaction effect in binary choice models. 
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1.  Introduction 
 
 A recent, widely discussed contribution to econometric practice by Ai and Norton (2003) 
has proposed an approach to analyzing interaction effects of variables in nonlinear models.  The 
authors focus attention on a binary choice (logit) model, though their results are easily extended 
to other nonlinear models.  The main result of the study applies to a model that contains an 
interaction term, such as  
 

E[y|x1,x2,z] = F(β1x1 + β2x2 + β12x1x2 + δz). 
 
The authors argue that the common computation of the partial effect of the interaction term,  
γ12 = β12F ′(.), is misleading, and provides no useful information about the interaction effect in the 
model, Δ12 = ∂2F(.)/∂x1∂x2.  They then provide results for examining the magnitude and statistical 
significance of estimates of Δ12. This note argues that the proposals made Ai by and Norton are 
likewise uninformative about interaction effects in the model.  The magnitude, itself, has no 
economic interpretation, even when examined one observation at a time, as suggested, and 
proposed plots of, e.g., t statistics for individual specific estimates of Δ12 against corresponding 
estimates of F(.) are also uninformative about the relationships among the variables embedded in 
the model.  We argue that the indicated relationships are inherently difficult to describe 
numerically by simple summary statistics, but graphical devices are much more informative. 
 As a corollary to this argument, we suggest that the common practice of testing 
hypotheses about partial effects, as opposed to about structural parameters, is less informative 
than one might hope, and could usefully be omitted from empirical analyses.  The paper proceeds 
to a summary of the Ai and Norton (2003) results in Section 2, some discussion of the results in 
Section 3 and an application in Section 4.  Conclusions are drawn in Section 5.  
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2.  Estimation and Inference for Interaction Effects 
 
 Ai and Norton (2003) point out an ambiguity that arises in many recent applications that 
report partial effects for nonlinear models with interaction terms.  Consider a model of the form 
 
 E[y|x1,x2,z]  =  F(β1x1 + β2x2 + β12x1x2 + δz),     (1) 
 
where F(.) is a nonlinear conditional mean function such as the normal or logistic cdf in a binary 
choice model, x1 and x2 are variables of interest, either or both of which may be binary or 
continuous, and z is a related variable or set of variables, including the constant term if there is 
one.  From this point forward, we will specialize the discussion to the probabilities in a probit 
model, for which 
 
 E[y|x1,x2,z]   =  Prob(y = 1|x1,x2,z)  

=  Φ(β1x1 + β2x2 + β12x1x2 + δz)    (2) 
=  Φ(A), 

 
where Φ(A) is the standard normal pdf.  The results will generalize to other models with only 
minor modification.1  Partial effects in the model when x1 and x2 are continuous are 
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where φ(A) is the standard normal pdf.  When the variable of interest is binary, differentiation is 
replaced with first differencing.  Thus, if x1 is a dummy variable, the partial effect is 
 
 ΔE[y|x1,x2,z]/Δx1 =  E[y|x1 = 1,x2,z]  –  E[y|x1 = 0,x2,z] 

=  Φ(β1 + β2x2 + β12x2 + δz)  –  Φ(β2x2 + δz).  (4) 
 

The interaction effect is identified by the authors as the effect of a change in one of the 
variables on the partial effect on E[y|x1,x2,z] of the other variable; 
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Once again, differentiation is replaced with differencing when the variables are binary; 
 
                                                 
1 Ai and Norton analyze a logit model, rather than a probit model as done here.  A trivial modification of 
the notation will accommodate their case.  In the probit model, Φ(.) and φ(.) are familiar notations, while in 
the logit model, the counterparts are F(.) = Λ(.) and F ′(.) = Λ(.)[1-Λ(.)]. There is little substantive 
difference between the models and the results found here would be identical for a logit model. 
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or, when both variables are binary, 
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The notation Δ12(A) =  Δ12 will be used for all three cases. 

The coefficient on the interaction term, β12 does not provide the change in the partial 
effect of either variable on the conditional mean function if the function is nonlinear. Even after 
scaling by φ(A) as in (3), the mismeasured interaction effect, φ(A)β12, which is what is likely to be 
reported by software that reports partial effects in the form of scaled coefficients, does not 
provide a useful measure of any interesting quantity.  Ai and Norton (2003) suggest, “[However,] 
most applied economists instead compute the marginal effect of the interaction term, which is 
∂Φ(.)/∂(x1x2) = β12Φ′(.)”.  A distinction is needed between the marginal effect of the interaction 
term, a first derivative which is meaningless – x1x2 cannot change partially independently of x1 
and x2 – and the interaction effect, which is the second derivative in (5a,b,c) and which is the 
main subject of their and this paper.  Ai and Norton’s discussion is motivated by the fact that 
statistical software (in their case, Stata® 7) typically mechanically computes a separate “partial 
effect” for each variable that appears in the model. The product variable would naturally appear 
as a separate variable in the model specification, and the software would have no way of 
discerning that it is a product of two variables.  

Asymptotic standard errors for the partial and interaction effects in any of these cases 
may be computed using the delta method, as suggested by the authors in their equations (4) and 
(5).2  The argument made in the paper is that for inference about interaction effects, the 
appropriate path to take is inference about the quantities in (5a,b,c), not about β12Φ′(A). In an 
application, they demonstrate with plots of  observation specific results from (5a) and associated t 
ratios against the predicted probabilities for models without then with second order terms, β12x1x2. 
 
3.  Inference About the Interaction Effect 
 
 While the computations suggested by Ai and Norton (2003) are correct, the indicated 
results are not as informative as might be hoped.  For example, the applied researcher looking for 
guidance for “best practice” (their p. 124) might wonder what inference should be drawn from a 
plot of the “t statistics” associated with individual observations on (5a) against the fitted 
probabilities in (1), as is done in their Figure 1b (and our Figure 3). 
 Consider, first, a case in which x1 and x2 are both continuous variables.  Even if β12 in (1) 
equals zero, the interaction effect in (5a) is likely to be nonzero; 
 

                                                 
2 A computation needed for the calculation will be the third derivative of the normal cdf; 
Φ̒̒̒(A) = (A2-1)φ(A).  The counterparts for the logit model would be Λ′′(A) = Λ(A)[1-Λ(A)][1-2Λ(A)] and 
Λ′′′(A) = Λ(A)[1-Λ(A)][1-6Λ(A)+6Λ2(A)]. Authors differ on whether the computation of partial effects is 
better done at the means of the data or averaged over the observations.  In the latter case, some further 
derivation is required to obtain an appropriate standard error for the average of N correlated individual 
partial effects.  (They all use the same estimated parameters.) See Greene (2008, p. 780-785).  In their 
applications, Ai and Norton advocate doing the computations for each individual observation separately 
and plotting some of the results.  We return to this suggestion below. 
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 {[∂2Φ(A)/∂x1∂x2] | β12 = 0}  =  β1β2Φ′′(A)     (6) 
     =  β1β2 × [– Aφ(A)].    
 
For a probit model, if the coefficients β1 and β2 are nonzero, since the density must be positive by 
construction, the result in (6) can be zero if and only if (β1x1 + β2x2 + δz) is zero.  (In the example 
developed below, each of the two coefficients is assessed as highly significantly different from 
zero.)  Thus, the interaction effect is zero when and only when the index function is zero, which, 
in turn, means that the probability is one half.  (This same result will apply in a logit model.)  The 
economic content of the hypothesis is equivalent to that the probability for the individual outcome 
equaling one is one half. 
 In a model in which there is a second order term, the result is less transparent.  Then, the 
desired effect is that in (5a).  As suggested in the article, one cannot assess the statistical 
significance of this interaction effect with a simple t test on the coefficient on the interaction term 
β12 or even β12F(A).  All coefficients and data could be positive; but Φ′′(A) = – Aφ(A) might still 
tip the result toward zero.  Even the sign of the interaction term depends on the data and, 
therefore, it could be close to zero numerically and insignificantly different from zero 
statistically.  In this case, Φ = .5 is neither necessary nor sufficient for the interaction effect to 
equal zero.  On the other hand, if Φ = .5, the interaction effect cannot be nonzero unless β12 is also 
nonzero.  Once again, it is unclear how one is to interpret this result in economic terms. 
 One might answer the preceding by suggesting that the hypothesis, such as it is, should 
be taken at face value – we are interested in when or whether the interaction effect is zero or not. 
How it becomes so is merely a mathematical property of the model.  We would agree.  The fault 
in this methodology is in the statistical testing about these partial effects. The computations are 
correctly prescribed. But, the hypothesis can be meaningless in the context of the original model. 
The issue becomes clear in the case of a simple partial effect.  In the probit model with no second 
order term, for example,  
 
 Δ1 =   ∂E[y|x1,x2,z]/∂x1  =  β1 × φ(A).      (7) 
 
The density is positive if the index is finite.  Suppose one has (as in our example below), fit the 
model and found the estimate of β1 to be highly significantly different from zero.    In testing the 
hypothesis that Δ1 equals zero, one is in the contradictory position of testing the hypothesis that 
the product of two nonzero terms is zero.  In practice, in this setting, it rarely occurs that an 
estimated coefficient is statistically nonzero while the corresponding partial effect is not.  But it 
could – the sampling variance of the estimate of a highly nonlinear finction such as φ(A) could be 
very large.  If it should occur, the two outcomes are directly contradictory. Inuition, if not hard 
coded methodology, would suggest that the test based on Δ1 is the one that should be ignored.  If 
the hypothesis that β1 equals zero has already been rejected, it is pointless to test the hypothesis 
that Δ1 equals zero. 
 An interesting case is that in which x1 is a dummy variable and x2 is continuous.  In this 
instance, the interaction effect shows how the partial effect of the continuous x2 varies with a 
regime switch in x1; 
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As the authors note, the interaction effect depends on all variables in the model.  A test of zero 
interaction effect could now be carried out based on β2 = β12 = 0, which is sufficient, but not 
necessary. But, this is likely to be stronger than desired, since one might not have in mind to 



 5

eliminate the interaction effect by eliminating the second variable.  The hypothesis that the 
combination of terms in (8) equals zero at a specific data point could be tested using the methods 
suggested earlier, as there are configurations of the data that will equate (8) to zero (statistically) 
without imposing β2 = β12 = 0. When the model contains numerous variables however, 
interpreting the outcome would be difficult at best.  In our application, the model contains, in 
addition to x1 = gender and x2 = age, z = (income, education, marital status, and presence of 
children in the household).  Any number of different combinations of these variables could 
interact with age and gender to equate (8) to zero statistically. It is unclear what meaning one 
should attach to this. 
 The preceding suggests that one can test the hypothesis that the interaction effect is zero 
for a particular individual, or for the average individual in the data set.  It is unclear, however, 
what the hypothesis means.  It does seem that direct examination of Φ(A) given x1=1 and x1=0, or 
its derivative with respect to x2, evaluated at interesting combinations of the other variables can, 
absent statistical testing, be very revealing as we consider in an example. 
 
4.  Application 
 
 Riphahn, Wambach and Million (RWM) (2003) constructed count data models for 
physician and hospital visits by individuals in the German Socioeconomic Panel (GSOEP).  The 
data are an unbalanced panel of 7,293 families, with group sizes ranging from one to seven, for a 
total of 27,326 family-year observations.3  To illustrate the computations, we fit pooled probit 
models for Doctor, defined to equal one if the individual reports at least one physician visit in the 
family-year observation and zero otherwise.4  In the full sample, 62.9% of the individuals 
reported at least one visit.  We have fit binomial probit models based on binary variables for 
marital status, gender and presence of young children in the household and continuous variables 
income, age and education.  Probit estimates for several specifications are given in Table 1.  
Female and Married are binary variables while Age and Income are continuous, so the last three 
variables in the table present the different types of interactions discussed above.  All estimated 
coefficients in all models are statistically significant at the 1% level save for that on Income in 
Models 1, 3 and 4, which is significant at the 5% level. 
 Table 2 reports the estimated partial effects for Age, Female and Income based on Model 
0.  The highly significant relationship between the binary gender variable and the probabilities is 
evident in the tabulated partial effects. On average, holding everything else constant, the 
probability that an individual reports at least one visit to the doctor is .13 larger for women than 
men. Since the overall proportion is .629, this effect is extremely large.  The sample splits 
roughly equally between men and women, so these values suggest that the average probabilities 
are about .629 - .13/2 = .564 for men and about .694 for women, for a difference of roughly 23%. 
The partial effect of Age on the probability appears to be about +.004 per year.  This is 
statistically highly significant for the average individual and for every individual in the sample.  
Over a 40 year observation period, if everything else were held fixed, this would translate to an 
increase in the probability of about 0.16.  If nothing else changed, by age 65, the probability of a 
doctor visit in any given year would increase from .694 at age 45 for women to .774, and from 
.564 to .624 for men.  However, this computation neglects the interaction between these two 
                                                 
3The data are described in detail in RWM (2003) and in Greene (2008, p. 1088). 
4All computations were done with NLOGIT 4.0 (http://www.nlogit.com).  The raw data may be 
downloaded from the data archive of the Journal of Applied Econometrics at 
http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/.  The data in the form of an NLOGIT 
project file may be downloaded from http://pages.stern.nyu.edu/~wgreene/healthcare.lpj. Program 
commands for replicating the results may be downloaded from. 
http://pages.stern.nyu.edu/~wgreene/InteractionEffects.lim. 
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effects suggested in Figure 5, where we find that the gap between women and men appears to 
diminish as they age. 
 
Table 1   Probit Estimates for Doctor.  (Absolute asymptotic t ratios in parentheses) 

Variable Mean Std.Dev. 
(Range) Model 0  Model 1 Model 2 Model 3 Model 4 

Constant   -.1243 
(2.138) 

-.1423 
(2.44) 

-.2510 
(4.03) 

-.3058 
(3.56) 

-.4664 
(5.18) 

Female* 0.4788 .4996 .3559 
(22.22) 

.4552 
(13.94) 

.7082 
(11.16) 

.3453 
(22.11) 

.7647 
(11.58) 

Age 43.53 11.33 
(25 - 64) 

.01189 
(14.95) 

.01137 
(14.05) 

.01559 
(15.20) 

.01589 
(9.89) 

.01963 
(10.96) 

Income .3521 .1769 
(0.0 - 3.1) 

-.1324 
(2.85) 

-.1197 
(2.56) 

-.1371 
(2.94) 

.4060 
(2.09) 

.4885 
(2.51) 

Married* .7586 .4279 .07352 
(3.56) 

.1387 
(4.99) 

.06241 
(3.01) 

.07877 
(3.80) 

.1168 
(4.11) 

Young 
Kids* 

.4027 .4905 -.1521 
(8.30) 

-.1613 
(8.71) 

-.1588 
(8.64) 

-.1525 
(8.32) 

-.1658 
(8.94) 

Education 11.32 2.325 
(7 - 18) 

-.01497 
(4.19) 

-.01587 
(4.43) 

-.01641 
(4.578) 

-.01452 
(4.06) 

-.0165 
(4.59) 

Female× 
Married 

   -.131 
(3.49) 

  -.09607 
(2.52) 

Female× 
Age 

    -.00820 
(5.74) 

 -.00787 
(5.40) 

Income× 
Age 

     -.01241 
(2.86) 

-.01418 
(3.27) 

* Binary Variable 
 
Table 2   Estimated Partial Effects for Age and Female Based on Model 0 

Variable Coefficient T ratio Partial 
Effect* 

Minimum 
Effect** 

Maximum
Effect** 

Minimum 
t ratio** 

Maximum
t ratio** 

Age 0.01189 14.95 0.00447 0.00308 0.00474 12.84 19.04 
Female 0.3559 22.22 0.130 0.107 0.141 19.81 22.85 
Income -0.1324 -2.85 -0.0498 -0.0528 -0.0343 -3.06 -2.56 
* Computed at the sample means 
** Based on values computed for each observation 
 
 Based on the regression results in Table 1, conclusions based on Table 2 about  statistical 
significance of the partial effects of Age, Female and Income are foregone.  The economic 
content of the results is shown in Figure 1 which traces the impact of Age for a particular 
demographic group, married women under 46 with children, average income and 16 years of 
education. 
 Among the problems of partial effects for continuous variables such as Age and Income is 
accommodating the units of measurement.  For Age in particular, it is informative to examine the 
impact  graphically as in Figure 1.  The partial effect per year as well as the range of variation are 
evident in the figure. To underscore the point, consider the income variable, which ranges from 
0.0 to about 3.1 in the sample and has a measured partial effect in Model 0 of -0.0498 with a t 
ratio of -2.85.  A change of one unit in Income is larger than five sample standard deviations, so 
the partial effect (per unit change) could be quite misleading.  Once again, a graphical device that 
accommodates this scaling issue, such as Figure 2, is likely to be more informative than a simple 
report of the partial derivative, even if averaged over the sample observations. 
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Figure 1   Relationship between Age and Probability of Doctor Visit 

 
 

 
Figure 2   Relationship between Income and Probability of Doctor Visit 

 
 Consider, then, the interaction effects implied by Model 0, where we examine the 
interaction between Age and Income.   Figure 3 shows the counterpart to Ai and Norton’s (2003) 
Figure 1(b). It plots the t ratio for the hypothesis that the estimated effect in the second derivative 
in (5a|β12=0) is zero against the estimated probabilities for a random 10% of the observations in 
the sample.  The effect predicted earlier is obvious.  The spray of points with t ratios close to zero 
corresponds precisely to those observations which have estimated probability near to 0.5.  Since 
the average predicted probability in the sample matches the sample proportion of ones, 0.629, 
with a sample standard deviation of 0.09, most of the observations are in the range of 
probabilities that correspond to statistically insignificant interaction.  This would be less 
pronounced in an unbalanced sample such as Ai and Norton’s in which the sample proportion is 
only about 12% - it is clear in their figures that only a small fraction of the predicted probabilities 
are near 0.5 and the t ratios are correspondingly near to zero.  It remains uncertain how this 
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relationship of the probability to .5 relates to the economic content of the interaction of Age and 
Income in the model.   
 

 
Figure 3   Relationship Between t Statistics and Probabilities 

In a Model with No Interaction Term 
 
 It seems less than obvious what the economic content of Figure 3 might be, however, or 
how the reader can relate the information it contains to the variation in the variable of interest, 
Prob(Doctor=1|x1,x2,z).  We can examine the interaction effect more directly, as is done in Figure 
4.  Figure 4 shows the interaction effect in Model 0, specifically for Age and Female.  In the 
figure, the partial effect, not the probability is plotted on the vertical axis.  Figure 4 is a plot of (3) 
with Income, Kids, Married and Education held constant. The upper curve is for men; the lower 
is for women.  The interaction effect is the change in the partial effect of Age with respect to 
change in gender, which is the distance between the two curves.  The distance is given by (5b), 

{ ( [ | , , ] / )}/E y Female Age z Age FemaleΔ ∂ ∂ Δ .  (The values of the two functions in Figure 4 are 
the slopes of the two functions in Figure 5 to follow.  Although the functions in Figure 5 appear 
to be linear, there is actually a very small amount of curvature, as shown in Figure 4.)  The 
interaction effect is of second order, as suggested in the figure, where we have multiplied the 
scale by 100 to enhance the visibility.   
 

 
Figure 4   Interaction Effect Between Age and Gender 
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 We might propose something like Figure 4 as an alternative to Figure 3 as an analysis of 
the interaction effect.  However, the derivatives in Figure 4 remain unintuitive.  Figure 5 is based 
on Models 0 and 2. The left panel plots the predicted probabilities for men and women using 
Model 0 which has no second order term..  The predictors are essentially parallel. (There is a very 
small, indiscernible difference in the slopes.)  In the second model, there is an embedded second 
order term in the equation.  We could interpret an “interaction effect” in this model as the change 
in the distance between the two sets of predicted probabilities.  Perhaps confirming expectations, 
we see that in the expanded model, this interaction effect shows up as a narrowing of the distance 
between the two predictors.  In economic terms, the impact of the interaction is to narrow the gap 
between predicted probabilities for men and women as age increases.  None of Table 2, Figure 3 
or Figure 4 would reveal this superficially. 
 

 
Figure 5  Predicted Probabilities for Models 0 and 2, By Gender 
 
 We now consider the interaction of two continuous variables.  Table 3 displays the 
estimated probabilities and interaction effects based on (5a) in Model 3, where there is a second 
order, interaction term involving Age and Income.  We observe, in contrast to Figure 2, that the 
interact effect is now statistically significant for every observation in the sample.  Figure 6 is the 
counterpart to Ai and Norton’s 2(b).  In these data, we find no observations for which the 
interaction effect is even close to zero, at least statistically.  The numerical values average 
between -0.005 and -0.001.  This seems economically trivial, though there is no obvious metric 
on which to base an evaluation.  The measured value is a second derivative of the probability. 
 
Table 3  Estimated Interaction Effects Between Age and Income in Model 3 
 Mean Standard Deviation Minimum Maximum 
Probability 0.6291 0.1002 0.4015 0.8366 
Interaction Effect -0.004244 0.0007766 -0.005085 -0.001669 
t Ratio -2.73 0.12 -3.18 -2.17 
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Figure 6   Relationship Between t Statistics and Probabilities 

In a Model with Interaction Between Age and Income 
 
 As in Figure 3, Figure 6 does not suggest obviously how the probability of interest varies 
with Age or Income.  We do note, based on Model 0 in Table 1, that Age and Income appear to act 
in opposite directions.  Thus, the striking result in Figure 7 might not be unexpected.  Figure 7 
displays the relationship between Income and the fitted probability for four ages, 25, 35, 45 and 
55.    The interaction effect between Age and Income acts to reverse the sign of the partial effect 
of Income at about age 34.  Once again, this result would not have been anticipated by the 
analysis in Table 3 or Figure 6. 
 

 
Figure 7   Relationships between Age and Income and Probability of Doctor Visit 
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5.  Conclusions 
 
 The preceding does not fault Ai and Norton’s (2003) suggested calculations. Rather, we 
argue that the process of statistical testing about partial effects, and interaction terms in particular, 
produces generally uninformative and sometimes contradictory and misleading results.  The 
mechanical reliance on statistical measures of significance obscures the economic, numerical 
content of the estimated model.  We conclude, on the basis of the preceding, in the words of the 
authors, that “to improve best practice by applied econometricians,” a useful way to proceed in 
the analysis is a two step approach: 
 
1.  Build the model based on appropriate statistical procedures and principles. Statistical testing 
about the model specification is done at this step  Hypothesis tests are about model coefficients 
and about the structural aspects of the model specifications.  Partial effects are neither 
coefficients nor elements of the specification of the model.  They are implications of the specified 
and estimated model. 
 
2.  Once the model is in place, inform the reader with analysis of model implications such as 
coefficient values, predictions, partial effects and interactions.  We find that graphical 
presentations are a very informative adjunct to numerical statistical results for this purpose.  
Hypothesis testing need not be done at this point.  Even where the partial effects are the ultimate 
target of estimation, it seems it would be rare for a model builder to build a structural model by 
hypothesizing (statistically) about partial effects and/or predictions that would be made by that 
model.   
 

This prescription conflicts with common practice.  Widely used software packages such 
as Stata, NLOGIT, EViews, and so on all produce standard errors and t statistics for estimated 
partial effects, and it has become commonplace to report them among statistical results.  The 
computations detailed in the example above were also simple to apply. See footnote 4.  Ai and 
Norton have also made generally available a set of Stata code, INTEFF, for this purpose.  In this 
note, we suggest that in spite of the availability of off the shelf software which facilitates the 
computations, the most informative point in the analysis at which to do hypothesis testing is at the 
model building step, not at the analysis step.  
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