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Abstract

This paper studies to which extent a firm usinga@r®e resource input and facing environmental
regulation, can still manage to have a sustainglbdevth of output and profits. The firm has a
vintage capital technology with two complementagtbrs, capital and a resource input subject to
guota, the latter being increasingly scarce throamgexogenously rising price. The firm can scrap
obsolete capital and invest in adoptive and/orvative R&D resource-saving activities. We show
that there exists a threshold level for the groratie of the resource price above which the firm wil
collapse. Below this threshold, two important pmigs are found. In the long-run, a sustainable
growth is possible at a growth rate which is indelent of the resource price. the short-run, not
only will the firms respond to increasing resoupr&e by increasing R&D on average, but they
will also reduce capital expenditures and speetheagscrapping of older capital goods. Finally, we
identify optimal intensive Vs extensive transitibgeowth regimes depending on the history of the
firms.
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1. Introduction

A crucial issue repeatedly addressed in the ongdelmate on sustainable development is
the possibility for the economies to keep on gragmvhile confronted to physical limits
and legal constraints such like those related o limited availability or regenerative
capacity of natural resources (fossil energy, ffehest, etc.), to economic and ecological
regulation (emission quotas, harvesting quotas), eicto financial resource constraints at
the firm or national economy level. One of the coon ideas turns out to be that such a
growth possibility is certainly widely open if theconomies are able to maintain a
permanent stream of innovations, assuring long-texhnological progress (see Arrow et
al., 2004, for a comprehensive view of sustainghili

In terms of economic theory, the issue actuallgdsaback to seminal studies on the
relationship between resource scarcity and innomatScarcer resources are increasingly
expensive, and this should in a way affect the behaf consumers and firms and end up
shaping the direction of technological progress. rélated fundamental hypothesis,
popularized by Hicks (1932), is the so-calleduced-innovation hypothesia change of
relative prices of production inputs stimulatesowation directed to save the production
factor that becomes relatively expensive. In thetext of the energy consumption debate,
this hypothesis simply stipulates that in periofisapidly rising energy prices (relative to
other inputs), economic agents will find it moreofttable to develop alternative
technologies, that is, energy-saving technolodresheir well-known work on the menu of
home appliances available for sale in the US (betwi958 and 1993), Newell, Jaffee, and
Stavins (1999) concluded that a large portion afrgy efficiency improvements in US
manufacturing seems to be autonomous, and therefotedriven by the Hicksian
mechanism outlined above. However, they also caledithat a non-negligible part of the
observed improvement can be attributed to pricengds and to the emergence of new
energy-efficiency standards, ultimately leadingh® elimination of old models.

Indeed, just like scarcity, regulation can alsoabdecisive determinant of technological
progress. As an immediate illustration of such eepial nexus, environmental economists

use to put forward the so-called Porter hypothéBmrter, 1991) according to which a
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carefully designed environmental regulation canrdase firm competitiveness by
encouraging innovation in environmental technolsgi& considerable amount of studies
has been devoted to the empirical corroboratiothisf hypothesis, reaching distinct and
contrasted conclusions (see Parto and Herbert-€op0®7, for an excellent compilation
of case studies).

In this paper,we study optimal firm response to the simultaneouccurrence of
environmental regulation constraints and to scarcig (of production inputs). This is
definitely much more than an academic exerciseic@yly, firms have to deal with
environmental regulation (like emission quotas atiter environmental norms) and with
the rising prices of some goods, usually naturabueces prices. More importantly, the
decisions of the firms, notably on the R&D invesiinside, do depend on both types of
constraints in a far nontrivial way. A real-lifeample of such a situation is documented in
Yarime (2007) on the Japanese chlor-alkali induptgducing chlorine and caustic soda
through electrolysis, therefore involving a largeryy consumption Initially, the industry
uses a mercury-based electrolysis technique whegulted in a major human and
ecological damag®Environmental regulation pushed this industrytartsthe adoption of
an alternative electrolysis technique, the US diagim technology. But this adoption was
drastically slowed down during the first oil shoblkcause it turned out that the US
technology was much more expensive in terms ofggneonsumption than the traditional
mercury-based technique. R&D programs have beemftre re-directed in the sake of
alternative devises, less polluting than the ladigt much less energy consuming than the

former.

In this paper, we consider theorst scenario for a firm: (1) no market power (the fiisn

price-taker), (2) liquidity-constraints (the firnamnot incur in a negative cash flow at any
date), (3) a quota constraint on the use of a resdnput (fossil energy or natural resource
like fish as immediate examples), which may featmession or extraction quotas, (4) the

price of this production input is increasing refleg scarcity, and (5) no substitution is

® Yarime (2007) reports that about 3% of total irtdpelectricity consumption in Japan can be attéblto
the chlor-alkali industry in 1996, which also acotaufor about one-fifth of total chemical indusinythis
year.

® It was relatively quickly established that the may released by the chlor-alkali industry to the
neighboring seas was the cause of the so-calledrdia disease, which caused about 700 victimsah th
time.
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possible between this resource and other produdatipats. In such a context, could the
firm experience a sustainable growth of profits?

Answering this question properly requires accountior a comprehensive set of
modernization instruments that the firm can useesponse to the above constraints. At
first place, the role of innovation and technol@glpoption at the firm and/or industry level
is key. If the firms respond to the latter consttgiand circumstances by doing more R&D
and/or adopting better technologies, then the &nability problem”, stated in the
beginning, can be at least partially solved. Buhé cannot always push on this command
button for many reasons. First of all, firms améjsct tofinancial or liquidity constraints,
as mentioned above. If the firms do not face ape tgf financial constraints, then they
could finance R&D expenditures and/or technologpmidn with no limit, which is
certainly unrealistic. Secondechnological complexity can be a decisive fackois very
well known thatthe success of R&D and technology transfer progrdepends, among
others, on the complexity and sophistication of tde&hnologies to be up-graded (see for
example, Segerstrom, 2000). We shall account faraour modeling.

In addition to innovative and/or adoptive R&D, fgnmay decide to scrap old and
definitely non-sustainable technologies with thessociated capital goods and to replace
them (or not) with leading technologies and newigment. If one aims to capture the
mechanisms of modernization, the latter instrumerts crucial. Typically, firms will
respond by combining all these instruments andhmpsing the optimal timing for each of
them. We take this avenue here by considering g@nt@chnologies at the firm level,
allowing the firm toinnovate to scrap and toinvest

We shall use vintage capital technologies in linthwlalcomson (1975), Benhabib and
Rustichini (1991), Boucekkine et al. (1997, 1998y &ritonenko and Yatsenko (1996,
2005). There are two inputs, capital and a resosutgect to quota, which can be fossil
energy or any natural resource. Capital goods mediat different dates embody different
technologies, the youngest vintages are the mesuree-saving. Beside realism, working
with vintage capital production functions allows tascapture some key elements of the
problem under consideration, which would be lostlanthe typical assumption of
homogenous capital. For instance, facing an enmssig, firms are tempted to downsize.

However, in the vintage capital framework where tinem also chooses the optimal age
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structure of capital, downsizing entails modern@at the oldest and, thus, the least
efficient technologies are then removed.

Main contributions

Our paper essentially makes three contributions:

)] Within a realistic (and thus sophisticated) fifrmmework, it characterizes finely
the inducement mechanisms at work. Essentially,vearnk identifies a highly nonlinear
inducement mechanism. In particular, there existsrashold level for the growth rate of
the resource price above which the firm will coflep for these price values, the
inducement mechanism does not even make sensew Blei® threshold, two important
properties are found out. In the long-run, sustamagrowth regimes are possible but
within such regimes, the growth rate of technolabiprogress is independent of the
resource price. In our work, this is a long-terrogarty, which occurs when the resource
price does not grow too much. In the short-run,itiseicement mechanism seems to work:
not only will the firms respond to increasing resmuprice by increasing resource-saving
investment on average, they will also reduce chmtaenditures and speed up the
scrapping of older (and more resource consumingjalagoods, which is highly consistent
with the evidence gathered by Newell et al. (1999).

i) Secondly, our paper makes a contribution to litegature of growth under scarcity
and regulation, which is an important componenthef modern environmental economics
literature (see for example, Tsur and Zemel, 200%}h respect to this literature, our
contribution is triple. We model scarcity as an @xgntial function of any positive growth
rate (including constant prices). Therefore, owdgtintegrates either Hotelling-like or
backstop technology pricing or combinations of bd8econd, since both scarcity and
regulation are considered, it is possible to stutiych one is more harmful (if any) to
growth. For constant resource prices (no scarcityg, show that sustainable growth
regimes are always possible thanks to endogenchsital progress under non-increasing
input quotas and despite liquidity constraints. &mstarcity, this property holds as long as
the growth rate of the resource price is below @dmold. Above this threshold, no
sustainable growth is possible. A third contribatirelies on the optimal transition
dynamics derived. In particular, we concentrateMo regimes: intensive growth (sustained
investment in new capital and in R&With scrapping of the oldest capital goods), and
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extensive growth (sustained investment in new ahpihd in R&Dwithout scrapping of
the oldest capital goods). In particular, our paigethe first one to disentangle the last
transition regime as a possible optimal regime.

i) Last but not least, the contribution is teatali To our knowledge, this is the first
paper with vintage capital, endogenous scrappind,emdogenous technological progress
(see next paragraph for more details). The techrdfculties are numerous but we
manage to find a way to bring out a fine enoughlysical characterization of optimal
paths.

Relation to the literature

Our paper contributes to the literature of vintaggital models. Due to the analytical
complexity of vintage models, very few papers refy such specifications. A noticeable
exception is Feichtinger, Hartl, Kort, and Velio2005) who introduced a proper
specification of embodied technological progresdeulying the considered vintage capital
structure. They concluded that if learning costs i@mcorporated into the analysis (i.e.,
running new machines at their full productivity @otial takes time), then the magnitude of
modernization effect is reduced, and regulationdasarkedly negative effect on industry
profits. Our paper extends the latter result in tmportant directions: it endogenizes the
optimal lifetime of technologies and associatedigment through endogenous scrapping
decision and it endogenizes the pace of technabgicogress in the workplace by
considering an optimal innovative or adoptive R&Ecision (the technological progress is
exogenous at the firm level in Feichtinger et &005). In such a context, the set of
possible modernization strategies is much ricti@n. the other hand, our paper extends the
more traditional vintage literature following Solo#t al. (1966), like Boucekkine et al.
(1997) or Hritonenko and Yatsenko (1996), by endaogeg technical progress, which
definitely enriches the model in many directionsitaill be explained along the way.
Recently, Hart (2004) has built up a multisectagadogenous growth model with an
explicit vintage sector. Beside the macroeconompjzre@ach taken, this paper differs from
ours in many essential respects: there are twestgpdR&D, one output-augmenting and
the other, say, environmental-friendly, while inronodel only resource-saving adoptive
and/or innovative R&D is allowed. In addition, theodel of Hart (2004) has no explicit
scarcity feature, and the treatment of vintagestiser short (only two exogenously given

vintages are considered in the end, no endogemoagsng incorporated).
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On the other hand, our paper is directly relateth&literature on technological progress
under increasing energy prices and regulation, urgeged by Jaffe et al. (2002). As
explained above, it can be connected to the emapifindings in the field. Beside the
already mentioned paper of Newell et al. (1999)aih be indeed closely related to the
recent important work of Popp (2002). Using engrgtent citations, the latter establishes
that both energy prices and the quality of thetaagsknowledge have significantly shaped
energy-saving innovations, therefore confirming thelevance of the inducement
mechanism in this context. Moreover, Popp also sholgarly that the omission of the
existing quality of knowledge negatively affectg thstimation results. In our modeling, we
do account for the latter feature through the cexipt effecta la Segerstrom outlined
above. Last but not least, our paper can be alsectti connected to the theoretical
literature on scarcity and growth originating ir timits to growth stream. In particular, it
shares with Tsur and Zemel (2005) the objectivecharacterize the different possible
optimal patterns of technological progress and tliomhen the resources are increasingly
scarce. Our vintage approach and the inclusionnefrenmental regulation allows for
some more insight into the impact of scarcity ostamable development.

The rest of the paper is organized as follows. i@ec® formally describes our firm
optimization problem and outlines some of its preitles. Section 3 derives the optimality
conditions and interprets them. Section 4 is carex@mwith the long-term optimal behavior
of firms and Section 5 identifies the short-termdamization strategies that the firms

pursue in response to regulation and prices. Se6tmoncludes.
2. The firm problem

We shall consider the problem of a firm seekingnximize the net profit that takes into
account the consumptidf(t) of a regulated resource, the investmB(t) to innovative

and/or adoptive R&D, and the investmefi) into new capital:
I = je'“ [(1-6)Q(t) = p(t) E(t) = R(t) ~ k(t) a(t)]dt [L] ~ max 1)
! a,

wherek(t) is the given unit capital price (per capacitytym(t) is the given price of the
regulated resource, ande™ is the discounting factor. We assume that

p(t)=Pe*, y=0, P>0, reflectingscarcity of the resource. TherQ(t) is the total
product output &,
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QW) = | mr)dr, 2)

a(t)
@) = @A-6) Q(t) —p(ME(t) —R(t) —k(t)(t) 3)
is the net profit or cash flowgd is a tax rate on production or sales (which cdédalso
interpreted as an emission tax in the environmesdatext, see Feichtinger et al., 2005) .
We postulate a Leontief vintage capital productfanction as in Malcomson (1975),
Boucekkine, Germain, and Licandro (1997, 1999) oitadenko and Yatsenko (1996,
2005). In equation (2pg(t) measures the vintage index of the oldest macétiien use at
time t, or in other wordst-a(t) is the scrapping time at date The complexity of the
optimization problem considered in this paper corfiesn the fact thaia is a control
variable, which is quite unusual in economic thedie shall come back to this point in
detail later. For now, let us notice that we do asgume any output-augmenting (embodied
or disembodied) technological progress: whatevervihtager is, all machines produce
one unit of output. In our framework, the technatag progress is exclusively resource-
saving, which is the key component of the debataurad technological progress and
environmental sustainability.
In contrast to the related literature (notably tachtinger et al., 2005, 2006), we assume
that firms choose the optimal lifetime of their tapgoods, and also invest in adoptive
and/or innovative R&D. Let us caff(7) the level of the resource-saving technological
progress at date We postulate that this level evolves endogencastprding to:
B(T) _ f(ld?(f))’ d4>0 @)
BT B(1)

where f is increasing and concavef/dR>0, d*f/dR’<0. Equation (4) deserves a few

comments. It stipulates that the rate of resouasng technical progress is an increasing
(and concave) function of the R&D effort and a @asing function of its level. The latter
specification is designed to reflect the negatingact of technological complexity on
R&D success. The parametémeasures the extent to which complexity impactséte of
technological progress (see Segerstrom, 2000,xample). It will play an important role
hereafter, consistently with the available evideanehe role of technological complexity

in the adoption of new technologies.
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We also assume that the resource-saving technalggiogress is fully embodied in new
capital goods, which implies, keeping the Leonsé&fucture outlined above, that total

resource consumption is given by

t
_ M)
E(t)= | &=2dr. (5)
a({) B(1)
Now we introduce the quota constraint on the ragdlaesource:
E(t) < Emaxt), (6)

where the regulation functidBma(t) is given. The firms are also subject to a sedypd
of constraint, financial constraint, which we alswdel in a straightforward way by

imposing the non-negativity of cash-flovegt), at any date, as we will see later.

Let us now summarize the optimal control problertatkle. Theunknown functionare:

the investmentqt), £(t)=0, into new capita{measured in theapacity unit}

the R&D investmenR(t), R(t)=0, and the technologit),

the capital scrapping tintea(t), a’(t) 2 0, a(t) <t,

the outpuiQ(t), cash-flowc(t), and resource consumptib(t), tJ[0,c).
The constraintsare given by the quota (6), the positivity andiidity constraints, and other
regularity conditions:

Rt)=0, c(t)=0, u(t)=0, am =0, 4t)<t, (7)

The constrainta’(t)=0 is standard in vintage capital models and imptlest scrapped

machines cannot be reused. We shall also speeifypitial conditionsas follows:
) =a0<0, HKao)=fo, (1) = Ho(7), R(D=Re(7), 1[a0,0]. (8)

The optimal control problem (1)-(8) has severallraatatical peculiarities. We come back
to the technical part in the next Section 3 whéie necessary optimality conditions are
developed. Before this, let us start stressing timatour modelling, technological

improvements affect only the new capital goodssTiicrystal clear in equation (5) giving
total resource consumption. Of course, this neadtmde the case in general. Part of
resource-saving innovations is probably disembqdsel a more general formulation of
the problem taking into account this aspect woirldparticular, replace the ODE (4) for
A(t) by a PDE fori(r;t). This extension is out of the scope of this paercond, one would

find somehow strange to have imposed scarcity @xagsly increasing price) and a quota
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on the same input. There are two different respomsehis objection. The first one is to
defend the realism of such a specification. Supgbseresource input is fossil energy.
Then such a resource is typically increasingly szabut at the same time, pollution
guotas, as originated in international protocots,rdply upper bounds on the use of such
an input. Second, we will see rather quickly ttersity and quota do not have at all the
same implications within our set-up so that one daactly figure out that there is no
redundancy between the two characteristics. Lashbuleast, one has to mention that the
results obtained in this framework will remain qtaively the same in an optimal growth
set-up with a linear utility function. With nonliae utility functions, the (already extremely
complicated) problem becomes even more trickier uthe endogeneity of the interest
rate. We, therefore, choose the firm problem sgttwhich is rather traditionnal for the
questions raised in this paper (see Kamien and &thwi969)’.

3. Extremum conditions

Let us derive optimality conditions. For mathematiconvenience, we change the

unknown (decision) variablg(t) to

m(t) = Uv/AY), (9)

which is also the investment into new cap(tait measured inesource consumption units

rather than ircapacity unity In the variable®k andm, the optimization problem (1)-(8)

becomes
I = Ie_” [(1=-6)Q(M — p(HE() ~ R(t) ~k(®) A)mM(B)]dt [T ~ max  (10)
@) = 1-6)Q(t) —pE®) —R(t) —kHAHM(L), (11)
Q(t) = a:ft) B(r)m(r)dr, (12)
E(t) = jlm(T)OI T, E(t) < EmaX1), (13)
A
R(H)=0, m(=0, qt)=0, aft)=0, at)<t, (14)
§0) =<0, B@ao)=Lo, M) =me(7), R(7)=Ru(7), [a, O]. (15)

" The computations for the optimal growth model wittear utility are available upon request.
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The substitution (9) removeS(t) from equation (5) and adds it to the last terntha
functional (10). Equation (4) for the unknoyt) remains the same. In the cabd, the

solution of (4) has the form:

B(7) = (d£ f (R(v))dv+ ij , (16)

1/d
0
where the constanB:,B(O)=(djf(Ro(v))dv+,6’Odj is uniquely determined by the
E)

initial conditions (15). From now on, we work withe following explicit specification for
endogenous technological progress:

f(R)=bR', 0<n<1, b>O0. (17)
By (4), this implies that the elasticity of theeadf technological progress with respect to
R&D expenditures is constant and equah.td@he larger i, the bigger is the efficiency of
investing in R&D.
The optimization problemdP) (10)-(17) includes seven unknown functid®sg, m, a, Q,
¢, andE connected by four equalities (11), (12), (13), &@). Following Hritonenko and
Yatsenko (1996) and Yatsenko (2004), we will choBsen, anda’ as theindependent
decision variables (controls) of the OP and condiake rest of the unknown functiogsm,
a, Q, ¢, andE as thedependen(statg variables.
The majority of optimization models of mathematieglonomics are treated using first-
order conditions fointerior trajectories only In contrast, the nature of the OP (10)-(17)
requires taking into account the inequalitE@)<Ena (t), R(t)=0, m(t)=0, a{t)=0, a(t)<t,
andc(t)=0 on unknown variables in the constraints (13) @él#). These inequalities have
an essential impact on extremum conditions andn@tidynamics and are treated
differently in the below analysis. The inequalitl0 andm>0 are the standard constraints
on control variables, which are common in the opation theory. The non-standard
constraints' (t)=0 anda(t)<t are handled following the technique developed hyoHenko
and Yatsenko in several papers already cited. BhetmintE<Eq.x is considered in two
cases of Theorem 1 below. Finally, the constrai@ is the most inconvenient and is

analyzed separately in Section 5 (see also Remiaekov).

Let the given function®, k, and Eyqax be continuously differentiable, amdy and Ry be

continuous. To keep the OP statement correct, timothness of the unknown variables
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should be consistent. We will assume tRandm (anda’when necessary) are measurable
almost everywherg.e) on [0). Then, the unknown state variab&<, Q, andE in (10)-
(15) are a.e. continuous ond), as established in Hritonenko and Yatsenko (2006)
also assume a priori that the improper integrgll®) converges. Theecessary condition
for an extremunfNCE) in the OP (10)-(17) is given by the following tet@ent

Theorem 1 Let RXt), m*(t), a*(t), £*(t), Q*(t), c*(t), E*(t), tLJ[0,»), be a solution of the
OP (10)-(17).
(A) If E*(t)=Emax(t) and cX(t)>0 at t/740[0,%), and Enax (t)<0, then

H(®)=0 at RYt)>0, (18)
ok (1)<0 at m*X(t)=0, h(t)=0 at mx{t)>0, A, (29)
where

—ra~(r)

l'(t) = bnR‘“‘l(t)T L) m(r){(a_”% 1-6)- e‘”k(r)}d r-e™", (20)

a™(t)

L= [e7 -8B - Aam)dr-e" SOk, (21)

the state variable @) is determined from (13); Ht) is the inverse function of, and

B(r) = (db(}) R"(£)dé +B* j; . (22)
(B) If E*(t)<Emaxt) and c1()>0 at t/74, then
R()=0 at R{()>0,
KO<Oat m=0,  K(®=0 at m(H)>0, (23)
F(H<0 at dax(ty/dt=0, L'(t)=0 at daX{t)/d0, tIA,

where

a™(t)

L@ = [ e"[BOA-6)- p(n)]dr -e™ BHK(), (24)

Io'() =T e[ p(r) - A-6)A(a(r))Im(a(r))dr, (25)
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IR (t) is as in (20), and(t) is as in (22).

The proof is very long and technical and we remltits details in Appendix. The
expressions (20), (21), (24), and (25) are Fnechetderivativesof the functionall in
variablesR, m, anda’. The derivativd y(t) has different forms (21) and (24) depending on
whether the restriction (13) is active or inactiBefore giving the economic interpretation

of the optimality conditions, some technical comiseare in order.

Remark 1. If (13) is active (Case A), then the state varialdeis determined from
m(a(t))a’(t)=m(t)— Emax (t) and the state restrictiosi=0 on the variablea in (14) is satisfied if
Emax (1)<0, t[0,00). If the conditionE. (t)<0 fails for soma40[0,«), then Theorem 1 is still
valid in Case A if we replace the differential coamt a'(t)=0 in (14) with the stricter constraint
m(t) = max{0, Enax (t)} on the controim (see Hritonenko and Yatsenko, 2006).

Remark 2. To keep mathematical complexity reasonable, we hateincluded the constraint
c(t)=0 into the NCE. To be complet€heorem 1 needs to include two more caB&sE,,y, c*=0,
and E*=Ea, c*=0. The problem (10)-(17) in these cases should beenleas an OP with state
constraints, which leads to certain mathematicallehges (see Hartl, Sethi, and Vickson, 1995,
for an insight into this issue). As we shall sée, tegimec*(t)=0 does not appear in the long-term
dynamics (Section 4). We return to its analysi$attion 5, where it arises during the transition
dynamics as one of possible scenarios. Noticethlche corner cad®*(t)=0 is impossible with
our specification of functiof(R).

Remark 3. Sufficient conditions for an extremum for such Qe complicated and involve the
second Freshet derivatives of the functidndlhe authors derived and analyzed such a condition
Ier(t)  Trm(t)

the form| . ,
I mR(t) I mm(t)

< OatR=R*, m=m* for Case (A). It is not included into this paper.

Let us move now to some economic interpretationthefobtained first-order optimality
conditions. In order to compare more easily with éxisting literature, we start with Case
(A), that is, when the quota constraint is bindihgleed, in such a case, the latter can be
broadly viewed as an “equilibrium” condition in thesource market, where the quota plays
the role of supply. Let us interpret the optimatiynditions with respect to investment and
R&D, the case of scrapping being trivially fixed Bgmark 1 above. Using equations (19)

and (21), the (interior) optimal investment ruleyrh& rewritten as:
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@- H)a_f(t)e‘”{l——’g ;(t?)}dr =e"k(t) .

The interpretation of such a rule is quite nativaling in mind the early vintage capital
literature (notably, Solow et al., 1966, and Malsom, 1975) as exploited in Boucekkine,
Germain, and Licandro (1997). In our model, onet whicapital at daté costsk(t) or
e "k(t) in present valueThis is the right-hand side of the optimal rule &hoThe left-

hand side should, therefore, give us the margirakfit from investing. Effectively, it is
the integral of discounted gains from investingrothee lifetime of a machine bought tat
(sincea™(t) is by construction the lifetime of such a machinkt any date comprised

betweert anda™(t), a machine bought &will provide one unit of output but the firm has

to pay the corresponding energy expenditlﬁ%((t;i. Given our Leontief specifications,

%is the resource requirement of any machine bouptiatt. Thereforef(a(r)) plays
the role of the effective price of the input paidthe firm. How could this be rationalized?
Simply by noticing that under a binding quota, tlatter mimics a clearing market
condition as in the early vintage macroeconomarditure (see for example, Solow et al.,
1966)2 In such a framework, the marginal productivitifseaergy should be equalized
across vintages, implying a tight connection betwkhe effective price of resource and the
resource requirement of the oldest machine stdlrai@d. More precisely, the latter price,
which happens to be the Lagrange multiplier assegiao the binding environmental
constraint, is equal to the inverse of the resovegeirement of the oldest machine still in

use, which is equal t@(a(r)) at any dater comprised betweenanda™(t). Notice that in
such a case, the effective price of resoi@r is )Y)ot generally equal tat). The latter
does not play any role since resource consumptiecorbes predetermined equal to
p(t)Emaxt) in the constrained regime.

Things are completely different in the case whdre quota is not binding (case B of
Theorem 1). In such a case, the optimal investmgatbecomes (following equation (24)):

a’ft)e_rr{l_ﬁ}dr = e—rt k(t) ,
1-6)5(1)

t

8 In Solow et al., the role of resource is playedaor.
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and (1-6) B(a(r)) = p(t) as in the firm problem studied by Malcomson (197baking a

clear difference with respect to the constraintec#s Our framework thus extends
significantly the benchmark theory to allow forusitions in which resource input markets
do not necessarily clear due to institutional c@ists.

Let us interpret now the R&D optimal rule, whichailso new in the literature. Using (20),
it is given by

rr —ra”l(r)

bnR"‘l(t)T L (r)m(7) e_+(1—0)—e‘”k(r) dr=ge™
t

The right-hand side is simply the present valuem@rginal investment in R&D. The
marginal benefit is given by the left-hand siden@ary to the optimal investment rule, the
gains from doing R&D last forever: the R&D investmeinduces a knowledge
accumulation process, which is not subjected tmlelssence in our case, in contrast to
capital goods. The integrand can be understoodéft@s in mind the maximized function
(20) in the form

| = _[e‘” [(1-6) j B(r)m(r)dr - p(t) jm(r)dr— R(t) —k(t) B(t)m(t)]dt

0 a(t) a(t)

and the given endogenous law (16),(17) of motioteohnological progress. It should be
noticed that rewriting the problem in termsruoft), rather than in terms of investment in
physical units(t), does not mean rewriting a problem with input-sguechnical progress
as a problem with output-augmenting technical pregir As one can see, at the fixa(),
an increase oR(t) (and, thereforef(t)) increases not only the outp@(t) but also the
investment expenditures through the tek() S(t)m(t) . The left-hand side of the optimal

R&D rule takes precisely into account this trade-6in one hand, the marginal increase in

bnR™(t)

B(1), r=t, following the marginal rise ifR(t), that is, )
r

, Impacts positively output

by improving the efficiency of all vintages aftenet datet. Let us notice that, since
machines have a finite lifetime, this effect shobkl computed betweenanda™(z) for

) . . el — —ra”(r) a_l(T)_ ) .
each vintager, which explains the factoF—— = Ie *ds in the integrand. On
r

T

the other hand, the risingt) increases investment expenditures (for a fixét)), which

explains the negative terrs;" k(7 , ip the integrand.
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Let us now move to the study of the system of thentality conditions extracted above.
We first start by seeking for exponential solutidifier naturally growing variables like
R(t), the so-called balanced growth paths (Sectionmjrder to address in a standard way
the critical issue of sustainable growth under tanst, which is one of the main questions
asked in this paper. We then move to short-termaghyos (Section 5) to identify the

principal modernization routes.
4. Analysis of optimal long—term dynamics.
For the sake of clarity, we restrict ourselveshi® ¢tase

k(t)=k=const>0, E,_(t)=E =const>0. (26)
Alternative trajectories for the exogenous variablk€t) and Eya{t) are studied in
Boucekkine, Hritonenko, and Yatsenko (2008). Thenagl long—term dynamics of the OP
can involve interior regimes such that=0 andI,=0. Let us assume that the quota is
active in the long run:E(t)=Emaxt) at tl[t;, ), t=>0. We will study the alternative case
later. The corresponding long-term interior regini@,, my, a,) Iis determined by the

system of three nonlinear integral equations
r(t)=0, Im (t)=0, (27)

t
J' m(r)dr = E
a(t)

to[ty , o), (28)

max?

wherelg'(t) andly, (t) are determined by (20) and (21). The equatiods|éad to

_aat()

bnR"‘l(t)Hbdf R"(&)dé + Bd} _ m(r){e_”f 1-6) —e‘”k(r)}dr =e™", (29)

a(t)

1-6) | {1—{bda(jr)R”(€)d£+ Bd} /[bd}R"(f)d& BdTTe‘”dr:ke‘” (30)

attd[t, o).

We will explore the possibility of exponential sttins for R(t), while m(t) andt-a(t) are constant
to the system (28)-(30) separately in the case n>d and n<d. First of all, we start with the
following preliminary result: ifR(t) is exponential, theg(t) is almost exponentigdnd practically

undistinguishable from an exponent at largethe sense of the following lemma:
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Lemma 1.If R(t)=Roe™ for someC>0,ther?

1/d
ﬁ(t) ~ Ron/d[%j eCnt/d (31)
at large t. In particular At)=R,"“ (bd/Cn)"*e°"¢ if bdR,"=CnE'.
1/d n n 1d
Proof. At RM)=Re™ () =(d}bR0“eC“Vdv+ ij | PR e _DAR "  ga |
0 Cn Cn
_ bd 1/d
Dividing A(t) by B(t) = RO"’d[aj e“™? we obtain
; v/d ) vd
é(t) = 1l/d Cnt/d Eecnt-"B_n_E =1+ Can -1l (32)
Bt) (bd/Cn)~“e Cn R," Cn bdR,

Expanding the function (2° in (32) into the series, we obtai%% =1+¢&(t), where the

d d 2
small parametee(t) =1 Can -1 e‘cm+i(1—1j Can -1| €*"™+... decreases as
d{ bdR, 2d\d bdR,

e“™  The lemma is proved. 0

We now define the concept of balanced growth pedinsidered.
Definition 1. The Balanced Growth Path (BGP) is a soluti®h m, a to (28), (29) and
(30), where R) is exponential and () and t-gt) are positive constants, which satisfy
constraints (14), in particular, the non-negatiash-flow requirement.
If the quota is not binding, then the system tcbleed is

IR()=0, Im()=0, Ila'()=0, tU[ti o), (33)
wherelg'(t), In'(t) andly'(t) are determined by (20), (24), and (25). As shaelow, the
optimal long-term growth with inactive regulatioBL<Emay IS possible only ab>d (see
Section 4.2)?

° For brevity, we will omit the expression “at larfewhen using the notatidift) = g(t)

1%n the case of the inactive quota constraing itanvenient to introduce the Frechet derivative

1,'(t) = A-)e™[Pe” - Bat))Im(a(t)) (34)

in ainstead of the derivative (25) &l and use it during BGP analysis. Indeed, it is éasee that if
I/ (1)=0 at tO[ t, ,0) for somet;=0, thenl,'(t)=0 at t[ t, ,).
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4.1. Balanced growth in case=d.

Let the parameten of “R&D efficiency”’, 0<n<1, be equal to the parametiof “R&D
complexity”, 0<d<l. In this case, the optimal long-term growth iwes the active
regulation at natural conditions. More preciselye vget the following important

characterization:

Lemma 2. At n=d, any interior solution (R, m, a)pf the OP (10)-(17) with an
exponentially growing @ involves the binding quota(f=Enax Starting at some;>0,
under the condition<C, where C is the endogenous rate of optim@).R

Proof. Let us consideR(t)=Ree”!, thenB(t) = R, (b/C)"“ €™ by Lemma 1.

We assume thd(t)<Emax at [t,»), t=0. Then, by Theorem 1, an OP interior regifRert,
a) has to satisfy the nonlinear system (33)tpro). Substituting the above andS into the
expressions (20) and (34) figi(t) andl;'(t), we obtain from (33) that

R,(b/C)"" e = Pet, (35)

1- e—ra’l(r)
r

bd(b/C)** e [ecttrer 1-6) - k}m(r)dr ~e™, tO[t,»). (36)
t

Equation (35) determines which is such thata(t) - « att— o because of<C. Equation
(36) determines m at a given a. After introducing the function f(t) =
(1-6)[1-e ¥ O] /r —kand differentiating (36), we have

m(t) =[r —C(L-d)](C/b)** /bd/ f(t). 137
Sincef(t)<(1-8)/r for any possiblé& anda, then
m(t) > const =r[r —C(L-d)](C/b)*/bd/ (1-8)/r >0. Therefore, by (13)E(t) increases
indefinitely att - oo, our assumption is wrong afit)=Emnax at some> t;.

The lemma is proved. [

Some comments are in order here. First of all, ghatiinvolves a control variable, that is,
R at the minute, the restrictiop<C on the price of energy is still highly interestir@f

course, it is important to observe that since ttosvth rateC is endogenous, it may depend
on ), and, therefore, the restriction might be impdssitWe will show that it is not whence

the optimal controlR(t) better characterized and the optimal growth tencovered.
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Nonetheless, the restrictign<C sounds as a natural (sufficient) condition for fine to
overcome increasing scarcity as reflected by atbtrpositive growth rate of the energy
price. The fact that a permanent growth regime dog$y active regulation at a finite time
is much less surprising, provided such a regimetexiSecond, the restrictioeC is
indeed sufficient. We will see below that a balahaggrowth with the active quota
regulation can take place gtC as well. This is part of the following key theoravhich
essentially establishes the existence of balanoadtly paths in the sense of Definition 1
when the economic and institutional environments held constant. This theorem is

crucial in that it fully characterizes the endogesgrowth rateC.

Theorem 2 (about thebalanced growth). At n=d andy<C, the interior optimal regime —
BGP (R4, my, ay) exists,

Ri)=Re™, Qut),BAt).calt) ~ €', mu(t)= M =const, as(t)=t—E/M, (38)
where the constants C arM are determined by the nonlinear system
_ A fE/IM
CY9[r/C +d 1] =db1’dl\7{1 e —12}(1—9) , (39)
__—EIM —CE/M _ ~1EIM
1-e e e __k ’ (40)
r r-C 1-6

that has a positive solution, at least, at smaMamely, if r <<1 and

r¥d < EbY9[1-/2kr /(1-6)], (41)

then C, 0<C<r, is a solution of the nonlinear egoat

@d)/dre _ A —d\ = dERYA| 1 K r
C [r-C@-d)]=dEb {1 /2(1_8)(\/E+\/E”+o(r) (42)

and M =E,/C/2k/(1-68) +o(r). Therefore, the growth rate C does not dependhen t

energy price but does depend on the regulation patarsE and8.
The uniqueness of the solution is guaranteed if

yowe _ADVE [ 2K

41-d) V1-6 (43)

If y<C, then the BGP (38)xists for anyR >0. If y=C, then the BGP (38} possible at

the condition
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= Cd

R>EP————.
(r-C)(1-6)

(44)

The proof is long and it is reported in AppentfiBefore commenting on the theorem, let

is state the following useful corollary.

Coroallary 1. For a given energy price growth rajelet C be the solution of (39)-(40), C be
independent of; then, no BGP is possible gC.
The proof immediately follows from the proof of Theorem 2 wided in Appendix

(precisely, from formula (A13): indeed, }>C , thenc,(t)<O0 at large).

Theorem 2 and its Corollary make clear when thm faan still grow in the long-run
despite scarcity. Without scarcity=0Q), sustainable growth regimes are possible despit
input quotas and liquidity constraints. And suchraperty actually holds up to a certain
threshold level of the growth rate of resource @ifor of the scarcity degreéljheorem 2
brings more striking results. First of all, it sldube noted that the resource price

p(t) = Pe" is not involved in the BGP (38) whgsC. In particular, the overall innovation

rate is independent of the characteristics of thergy price patterns. In our model, this
property comes naturally: ify<C, then by Lemma 2 any balanced growth regime should
involve active regulation (or a binding quota), awtive regulation eliminates the resource
price from the NCE formulas (18)-(22), as stated aconomically interpreted in Section 3.
So, the optimal long term dynamid®,( m,, a,) are the same for amgsource price path
up to a certain rate. Second, this important ptgpves not mean that resource prices play
no role in the long-run. On one hand, Corollaryhbws clearly that there is no hope to
have a BGP if the growth rate of resource pricar{ather words the degree of scarcity) is
large enough. On the other hand, the resource goes matter in the edge-of-knife case
)=C. Indeed, in the latter case, while the price leRestill does not impact the endogenous

balanced economy rat€, the cash-flow non-negativity requirement precisghplies

1 The proof of the Theorem is based on some appw@tiém induced by the assumption that r is a small
number (equal to some percents), that is r <<l¢hvi realisticNotice that by doing so, we are NOT
assuming that r goes to zero. Doing so is erroneaus would imply an infinite objective function
along the interior solution.
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condition (44), which limits the long-run R&D invesent level depending on the value of
P.

Finally, notice that even ify<C, and while the long-term optimal policy is to @st the
same in machines and in R&D whatever the resource prajectory is, the latter does
affect the optimal value of functional (10), sinkempacts the optimal cash flows:
higherp means a lower level of cash We shall see in Section 5 that the resource price
impacts crucially the transition dynamics in ourdeb The role of this price in the long-
run dynamics is also a valid question whenl (then the environmental regulation is not
binding) and will be considered in Section 4.2 héey.

Some more technical comments before comparativiestare useful. First of all, more can
be said about the unigueness of the growth @tesmpatible with the BGP requirements.
Indeed, if equation (42) has a solution @< r, then, in the general case, it has another
solution Cy, r<Cy<r/(1-d). However, the larger solutio@; has no sense, since @tr the
value of (1) is infinite andc*(t)<0 (by (A13) given in Appendix). Second, it is yer
important to notice that in Theorem 2, the BGP escahrameterR is actually
undetermined. We have the indeterminacy of the -teng dynamics under the BGP,
because technical progress is endogenous. It hapfmn similar problems in the
endogenous growth theory. A typical example isltheas-Uzawa model (Boucekkine and
Ruiz-Tamarit, 2008).

We shall now move to comparative statics, whichgaeicularly useful in the context of
Theorem 2 and its Corollary. Since the BGP growate € is independent of; what are the
possibilities to alter the value @, for a given, possibly higher energy price growate?
The needed properties are summarized hereafter.

Corollary 2. At (26) and r<<1, a decrease oF leads to the decrease of both optimal
parameters C andM , and leaves the long-term lifetime of capital goamhaltered since

M ~E . A decrease of capital price k and/or of the &increases the optimal C ard

and diminishes the long-term lifetime of capitabds.

More stringent regulation through a decreaseEinis bad for the growth rate of firms’
output and profit. Even though the firms can resptmtighter quotas by more innovation,
such an instrument does not allow to completelguenvent the impact of more severe

regulation. Lower capital prices are good for inm@nt (in resource consumptions units)
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and also prove to be beneficial for the growth ratdirms’ output and profit. Lower
equipment prices make firms wealthier and such sitipe wealth effect boost the
investment either in capital or in R&D. For the sareasons, a lower tax rafraises the
optimal growth rateC, and stimulates the two latter forms of investménshould be
noted at this point that both regulation paramet@nd 8 do matter in the BGP growth
rateC. And they work in a way opposite to the Porter higests, depressing growth and
investment in the long-run.

A further interesting result concerns the optinwedd-term lifetime of capital goods. Since
as()=t-M /E, and M ~E, it follows thata tighter environmental regulation leaves the

optimal lifetime of capital goods unaltered. Whaelower E does reduce the optimal

lifetime of machines, such a tighter regulationoafsushes the investment downward,
which forces the maximizing firm to use fewer mags longer. These two effects appear
to offset each other in our framework. Under desiren prices for capital goods (or a

falling tax rate), the firm invests more and udas machines for a shorter time. This is
somehow consistent with the recent literature onbaied technological progress

observing that a more rapid investment-specifichiietogical progress (like the one

conveyed by the information and communication tetbgies) reduces the relative price of
capital goods and decreases their lifetime dueismg obsolescence costs (see, for
example, Krusell, 1998).

4.2. Cases<d and n>d.

In these cases, no BGP in the sense of Definiti@xi¢ts. However, a long-term regime
with exponentially growingR and decreasingn appears to be possible at a special
combination of given parameters (see also Yatsdd&acekkine and Hritonenko 2009, for
other related dynamics)

Theorem 3.Let (26) hold. Then:

(a) If n<d, then no interior optimal regime with axponentially growing R exists.

(b) If n>d, then an interior optimal regime (R ms, a,) such that R(t) grows
exponentially, m(t) -0 at t— o, and Et)<Emax is possible ONLY if=C, where C is the

endogenous rate of R).



22

The proofis provided in Boucekkine, Hritonenko, and YatserfR608. When n>d, the
efficiency of the R&D investment appears to be bighs compared with the investment
into the new capital. Theorem 3 concludes thathé&optimal long-time regime, almost all
the output goes to R&D investment and the part ayital investments (exponentially)
decreases in the total distribution of the outplso, thequota constraint needs not to be
binding and we can keep a larger amount of older assetse(sve buy an increasingly
smaller amount of new capital).

In addition, by (29), the restrictickx(1-8)/r on the given capital price is necessary for the

the caser>d, in particular, an interior optimal path with axpenentialR, is impossible if
J=0 (the resource price does not increase). Onlynwthe resource price increases at the
rate)=C, an interior regime with exponentially increasiiy and decreasingn, is
possible. The increase fe” raisesa,(t), that is, decreases the lifetime of capital goods
In other words, a kind of induced-innovation medhanseems to be active in the case
n>d, that is, when the R&D activity is highly efficierso efficient that the investment into
equipment goes to zero. In such a case, the fiimpgrpetual sharp modernization, and is
not suffering at all from any regulation. We hagenbtice that this regime is not a BGP in
the sense of Definition 1, becausg(t) asymptotically tends to zero. We shall disregard

such a configuration in the short-term dynamicgisedelow.

5. Transition dynamics: Intensive Vs extensive growth

From now on, we set=d. For simplicity sake, let assumptions (26) hold.

Since we have to deal with short-term dynamicsia $ection, some comments on initial
conditions are in order. The Gddlution R*, m*, a*) satisfies the initial conditions (15).
An essential initial condition is(0)=ay because the endogenoaf) is continuous. If

apza(0), then the dynamics oR{, m*, a*) involves a transition from the initial state

a(0)=apto the long term interior trajectosy.

By (14),c(0) = (1-6)Q(0)-p(0)E(0)-R(0)-kB(0)mp(0) = 0 at the initial state=0, or

PE(0) +kBm, (0) < (1-6) j [/30 + j Ro(v)dv}mo(r)dr— R, (0). (45)
a 8
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Otherwise, the economic system is not possible=@tbecause the resource and capital

pricesp(0)=P and k are too high. Condition (45) implies two simplenstraints:
P <@-6)B and kmy0)<E@0)1-6). (46)

In the following, we shall sketch two possible saion depending on the initial conditions

(initially dirty Vs clean firm).

5.1. Optimal intensive growth (the case of a dirtyirm).
Let us assume th&(t)=Emnax Starting with an instari, t=0.

Scenario 1: The intensive growth at the active resource quota. Let t,=0. The optimal
dynamics at>ty follows Case A of Theorem 1 (with tikgt)=Eax restriction). This regime
is agrowth with intensive capital renovation induced by technical progress. In order to
make a new capital investment(t), the firm needs to scrap some obsolete capital

m(a(t))a’(t), following equality (13) or

t

j M(7)d7 =Emay

a(t)
The optimal R&D innovatiorR*(t) is the interior trajectorR,(t) determined fromg'(t)=0,
wherelg(t) is given by (20). The optimdR*(t) reaches the trajectofg,(t) immediately
aftert.. The OP has the interior turnpike trajectagyfor the capital lifetime, determined

from I, (t)=0 or

a™(t)

[e™ @-6)[B®) - Ba()]dr = e KkB(1) .

If as(0)=ap, then the optimah*=a,. If as(0)%zay, then we can show that the optinalt)
will reach a,(t) at some time>t. If a,(0)<ap, then the optimal investmemt*(t)=0 is
minimal at 0<4<t, (otherwisec*(t)=0 andm*(t) is determined by additional considerations).
Later, att>t;, the optimalm*(t) has cycles (theeplacement echoeas in Boucekkine,
Germain and Licandro, 1997) determined by the gtehy of m(t) on [ap, tk]. A formal
proof of this optimaim*, a* dynamics can be done similarly to Hritonenko arats¥énko
(2005).
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Under Scenario 1, the resource price does not &melCE formulas (18)-(22). However,
an increase of the resource price reduces thespameling optimat*(t) and, therefore,
can make the optimal transition longerdi{0)>ap). Figure 1 and the following simulation

example illustrate this scenario.
Example 1.Let

r=0.05, &=n=0.5, b=0.01, E,.(t)=E =10.5, k(t)=0.12, p(t)=0.5,
6=0, @a=-2, G~1, R(1D=0, my(n=5.25, 1[-2,0].

andB=£(0)=1 by (16). Then, there is the BGP, determined by Témaa2 above,
Rt)=R €™, C=0.01, my(t)=M =2.1, a,(t)=t-5 , t0[0,),

indicated by the grey lines in Figure 1. In thised(0)=mya,=5.25*2=10.5 is equal t&n.{0)=
E , hence, the quota (13) is active startin@. Sincea,(0)=—5 < a;=—2, then the optimad*(t)= -2
andm*(t)=0 at 04<t,=3. Aftert,, the optimabk*(t) coincides with the BGB,(t) andm*(t)=m*(t-5)

exhibitsreplacement echoes
5.2. Optimal extensive growth (the case of a firmen-polluter).

This case means that the consumed resdtft}eat the initial state=0 is lower than the
limit Emax. Let us assume th&(t)<Enax at Et<ty, where the momertf will be determined.
Mathematically, this scenario is more complicatedl anvolves the case*(t)=0, not

covered by Theorem 1.

We assume thai(t)=Pe” is not too high, so that
a™(t)

L'®= [ e7|a-6)8¢)-PerJdr-ekaw) >0

on the “extensive-growth” part [@,] of transition dynamics. Themy*(t) is maximal on
interval [0,t]. On the other side, by (20%(t)>0 at smalR*(t), hence, the optim&*(t) is

positive. In this case, the constraif{t)=0 in (14) limits both control&* and m*:
(1-6) Q*(1) —R(t) —k(®)B()m*(t) —p(E*(t) 2 0.

Then, the transition optimal dynamics on some ahigieriod [0,t] is determined by the

restrictionc*(t)=0, i.e., the optimai*(t) andR*(t) are connected by
R(t) + k(O)B(One(t) = 1-6) Q*(1) —p(OE*(t), [0, t].

Therefore, we need a first order condition for ttase.
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Lemma 3. If E*(t)<Emaft) and cXt)=0 at tJ[0,t], then the interior optimal Rt)>0
satisfies the condition

a’(r)

Ie'(®) =bnR (W[ A7 (0)mMT)| L-6) [x(€)dé - x(Dk(7) [dT-x(1)=0,  (48)

where the functiony(t)=exp¢rt) at tl[tg,c0) and x(t) is found from the following Volterra

integral equation of the second kind:

a™(t)

XOkMOA®) = Ike'“""[(l—e)ﬁ(t) = p(@OLx®dr + [e"[(1-6)B(t) - p(r)ldr (49)

at tJ[0,ty]. The optimal mft)>0 is found from (53) at the given @) and the optimal
a*(t)=0 at Iy'(t)<0 or a*(t)>0 satisfies {'(t)=0, where

o' (t) =T e[ p(r) - A- ) B(a(r))Im(a(r))dr . (50)

Proof is provided in Appendix.
Lemma 3 defines the following extensive-growth scenon some initial period [Qy] of

the transition optimal dynamics.

Scenario 2:Extensive growth. If j=0 (the pricep(t) is constant), then by (50)'(t)<0 at
a=ay, henceg*=ag is optimal whileE(t)<Enmax (as in Example 2 below). So, one can buy a
new capital and there is no need to remove thewd] i.e., we havan extensive growth.

If >0 (p(t) increases), then the optimaf(t)=0 while Pe*<f and a*(t) increases
following 1,'(t)=0 at Pe” >f on [Of]. If )<C (p(t) increases slower than the BGP), then
the optimal capital lifetimé-a*(t) increases whil&(t)<Emaxt).

By (48), Ir(t)>0 at smallR*(t), hence, the optimaR*(t) is positive and, thereforgd*(t)
increases. If#*(t) increases, then by (46) the optimal investnmahtis maximal and is
determined by Lemma 3 whilE(t)<Enyax Since both optimain* and t-a*(t) increase, the
quotaE(t)=Enax will be reached soon and the optimal renovationadyics will switch to
Scenario 1 with the active constraint (13). The gmaf the “extensive-growth” transition

period [0,t] is determined from conditioB(tk)= Enax
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Example 2.Let all given parameters be as in Example 1 but
mo(7) = 2, 70[-2,0]. (51)

Then the BGP (51) is the same as in Example 1hautransition dynamics is different.

In this caseE(0)=myag=2*2=4 is less thafs(0)=E =10.5, hence, the quota (13) is inactive on an
initial interval [0, 1] at the beginning of the planning horizon. The aiyics of optimaln*(t) and
R*(t) on [0, t] follow the restrictionc*(t)=0 and is shown in Figure 2. The determinatiombf
and R* is based on Lemma 3. It appears tha{t)=17.8, R*(t)=0.003 at 8t<t,. Then, the
corresponding*(t) increases fast and reaches the limit vafire10.5 att, <0.36. The later optimal
dynamics ontf,) is described by Case A of Theorem 1 and is sindl&cenario 1. Namely, since
ax(0.36)<a,=—2, thena*(t)= -2 and the optimam*(t)=0 is minimal during the second part of
transition dynamics, 0.36 k< t=3. Later, att>3, a*(t)=a,(t) and the optimam*(t)=m*(t-5) is

determined by its previous dynamics on [-2, 3].

The optimal dynamics highlighted in this scenanie quite new in the related economic
literature (see for example, Boucekkine, Germaith lasandro, 1997). They deserve some
comments:

i) At first, note that the modernization policy dem by the firm consists of increasing
investment in new equipment and R&kithout scrapping the older and more resource
consuming machines. In Hritonenko and Yatsenko§188d Boucekkine et al. (1997), the
modernization policy also encompasses scrappingobdhe older capital goods in a way
similar to the intensive growth scenario describedection 5.2. The reason behind this
difference is quite elementary: a firm with a lomoeigh initial capital stock (and so, with
low enough initial resource consumption) has neitive to scrap its old machines as long
as its resource quota constraint is not bindingdntrary, at a binding quota, investing in
new machines is not possible without scrapping sobsmlete older machines because of
market clearing conditions or binding regulatiomsipaints.

i) Note that in our case firms which are histoligdsmall” polluters are precisely
those which are historically “small” producers. &xdled to a country level, our exercise
predicts that historically poor countries will findl optimal to massively invest and,
therefore, to massively pollute during their depeh@nt process. During such a transition,
new and clean machines will co-exist with old amtlydnachines in the productive sectors,

implying an unambiguously dirty transition.
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5.3. The impact of resource price on extensive gradku

In the case of extensive growth (Scenario 2), thesition dynamics is directly impacted

by the behavior of the resource priee” . Let >0 and, for simplicity saked =0.

Theorem 4.If the transition dynamics perid@, tx] with E*(t)<Enaxis relatively short such

that St, <<l andt, {n%]xmO <<1, then an increase of the resource pri¢g picreases the
8,

R&D investment RY), decreases capital investment(th*and increases the length df
the period. In the case of an arbitrary interJ@J ty], the R&D investment Rt increases,

at least, on some parts @@, t]. The capital lifetime t-at) remains the same while

Pe" < and becomes shorter whéte" >/,

The proof is in Appendix. Apart from technicalitieBheorem 4 allows us to deepen the
knowledge on functioning of the induced-innovatidticksian mechanisms in a
sophisticated model like ours where firms have ghcentrols in hand. The theorem
establishes the existence of such a modernizatechamism, at least, during some time
along the transition. It is not difficult to constt extreme cases, not covered by Theorem
4, where the Hicksian mechanism fails to appeaswéver, the general wisdom one has to
extract from this exercise is that the latter medra is still relevant in sophisticated
models like ours.

This said, the picture conveyed by Theorem 4 isesurate and peculiar modernization
process. While rising resource prices may stimuR&D at some points in time, they
definitely depress investment in capital goodsdtomes optimal for the firm to find an
efficient way to save resources, and to delay tlvestment in equipment. Modernization
also works via scrapping, provided resource prenesshifted to large enough levels. In
such a case, the firms start to scrap older equipraed technologies while decreasing
investment in equipment and increasing the resesaueg R&D effort. This is quite
consistent with available descriptions of how timelucement works in practice. For
example, Newell et al. (1999) make it clear thanaor observed effect of changes in
energy process and in energy-efficiency standardise commercialization of new models

and elimination of old ones.
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6. Concluding remarks

In this paper, we have studied in depth the optil@havior of a firm subject to
environmental-based quotas, resource scarcity gouadity constraints. In addition, the
vintage structure adds realism to the problem ustisly and considerably enriches the
discussion. We have extracted some new resultsgrein the investigation of short-term
dynamics (optimal modernization strategies) orhia &nalysis of long-run growth regimes
(sustainability). We have also characterized tha@egd contours of the Hicksian
mechanisms at work in the model, ultimately showiageculiar but predominant nature.
A few remarks are in order. Of course, our resattssbased on price-taking firms and our
modeling of liquidity-constraints is probably toample. Adding market power is no
problem, although it is not likely that our resulisuld be dramatically altered. Modelling
and treating the liquidity constraints more acalgais a much more complicated task,
both mathematically and conceptually. We beliexa #ilowing firms to incur into debt to
fasten its modernization and compliance to legahdards is a quite decisive issue that

should be considered in more comprehensive reseBnchis our next step.

7. Appendix

Proof of Theorem 1 The proof is based on general perturbation teghes of the optimization
theory. Analogous approach has been earlier usediianenko and Yatsenko (1996, 2005, 2006)
and Yatsenko (2004) for simpler vintage models witbgenous technological change.

Let us consider Case (B) first.

Case (B) If the restriction (13) is inactivé* (t)<Ena(t) attl4, then we choosB, m, andv=a' as
theindependentunknown variables of the OP. Then, the differemésstrictiona’(t)=0 in (14) has
the standard form(t)=0. We assume th& m, andv are measurable am{t)e", m(t)e", v(t)e" are
boundeda.e.on [0). Substituting (17) to (16), we obtain expresdi®2) for 4(t).

We refer to measurable functiod®, om, anddv as theadmissible variationsif R, m, v, R+JR,
nH+Am, andv+dv, satisfy constraints (14)-(15).

Let us give small admissible variatiodR(t), dm(t), andov(t), tlI(0,0), toa, m, andR and find the
corresponding variatio®d =1(R+dR,m+dm,v+dv)—I(R,m,v) of the objective functional.
Using (10)-(13), we obtain that
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1

[dbi(R(fHd?(E))“d& ij"(m(r)mn(r))dr

d - Te—rt [ t
0 a(t)+aa(t)
-pt) [ (mz)+an(r))dz - (R(t) + R(t))

a(t)+da(t)

—k(®)(m(t) + OYT\(t))(dbi (R(E) +R(¢))"d¢ + B jd]dt (A1)

—Te‘”[ j [db(}) R"(£)d& + ijd m(r)d7 - p(t) j m(r)dz - R(t)

0 a(t) a(t)
- k(t)m(t)(db} R"(£)dé + B j"]dt

t
where da(t) = [v(£)dé . To prove the Theorem, we shall transform the esgion (Al) to the
0

form
a :J. (1 (£) TBR() + 1, () LML) + 1, (t) Lv(t))dt + o(| AR, | o [ov]) (A2)
0
where the norm ig{f | =esssup|e™ f (t)]. It will involve several steps. First, using theylor
[0)
expansiorf(x+ox)=f(x)+f'(x) x+o(X) twice, we have that
1
(dbj(R(f)+aR(E))"d£+ ijd
0

1

= (dbi (R'(&) + nRT(HR(E) +0o(R(¢)))"d¢ + B jd (A3)

=B(r)+bns™ (r )l R™(§)R($)dE + l O(AR(£))d¢.

t t a(t)+aa(t)
Next, using (A3) and the elementary propertyj f(r)dr = I f(r)dr - I f(r)dr of
a(t)+aa(t) a(t) a(t)

integrals, we transform (Al) to
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as= _[e‘"[bn j m(r)[:’ld(r)jR”‘l(f)d?(E)dgfdzdt

max{a(t),0}
+[e™ [ (B(r)- pt)an(r)dmt
0 max{a(t),0}

a(t)+a(t) (A4)

flet [ (P - Anmpdmt - [ (RO + kO BOAOId

a(t)

-Te‘”k(t)m(t)ﬁl'd (t)}bnR"l(f)da(g)ddeTe‘”o(d?(t),a‘m(t))dt,

where maxf(t),0} emphasizes that the variatiodR(t), dn(t) are non-zero only on the interval
[0,e0).
Next, we interchange the limits of integration lire tsecond term of (A4) as

o al(t)

[e™ [ (B@) - p)dn(n)dat=[ [ e (B(t)~ p(r))dz [am(t)dt,

0 a(t)

o

in the first term as

t

[ el [ mop bR @O dE@adrir
0 max{a(t)0} 0

0 00 a'l(r)

:bnj j j e d& (7)) B(r)° d7 [R™(t) AR(t)dt,

and in the fifth term similarly. To transform th&ird term, we use the Taylor expansion
a(t)+d(t)

f(t,r)dr = f (t,a(t)) +o(da(t)) . Collecting coefficients ofR, dm, and da, we rewrite
a(t)

(A4) as:

o al(r)

[~e™ +bn[ ( | e™dé~ek(r)) in(r) B (r)dr [R™ ()] BR(t)dlt

o'—-.8 O'—-.S ot—3

a

a™(t)

fe'"(ﬁ(t) p(r))d7 —e"k(t) B(t)] Lam(t)dt

e (p(t) - Ala)m(a(t) Bh(t)0|t+je'"0(5R(t) am(t), aa(t))dt.

t
Finally, recallingda(t) = [ ov(£)dE, we convert the last expression to
0
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o o ar)
a= j [-e™ +bnj ( j e dé — e Tk(r)) () B¢ (r)dr [R™(t)] (BR(t)dt
a(t)

+[ [ ] e(BM) - p()dr —e™k(t) B()] [Bm(t)dt (A5)

t

]
0
+T ]o e (p(r) - B(a(r))m(a(r))dr Bﬁ/(t)dt+Te‘“o(d?(t),&n(t),d/(t))dt
0 t 0
Formula (A5) in notations (21), (24), (25) providée required expression (A2). The domain (14)
of admissible control&®, m, v has the simple standard fofRe0, m=0, v=0. So, the NCE (23)
follows from the obvious necessary condition tha variationd/ of functional / can not be
positive for any admissible variatiodR(t), dn(t), ov(t), t0[0,e0).
Case (A) If the restriction of (13) is activé&(t) = Ea(t) attd40[0,), then we choosB andm as
theindependent unknowrms the OP. The dependestdte variablea is uniquely determined from
the initial problem

m(a(t))a'(t) = m(t) - Enax (),  a(0)= &0,
obtained after differentiating (13). As shown inteinenko and Yatsenko (2006) Bf.., (t)<0, then
for any measurable(t)=0, a unique a.e. continuous functiaft)<t exists and a.e. hag(t)=0 (see
Remark 1 about the possible c&&g, (t)>0). Therefore, the state restricticsif)=0 anda(t)<t in
(14) are satisfied automatically, so we can excluffem the extremum condition.
Similarly to the previous case, let us give smdihassible variationgR(t) anddm(t), t{J[0,»), to R
andm and find the corresponding variatiah = | (R+ R, m+Jdm) — | (R,m) of the functional.

In this case, the variatioda is determined bym. To find their connection, let us present (13) as

Enax(t) = j'm(r)dr= j'(m(r)+c)'m(r))dr

a(t) a(t)+aa(t)
then
t a(t)+aa(t)
[am(r)dr = [m(z)dr +o(|an, |ce]) . (A6)
max{a(t)0} a(t)

We will use the above formula (A4) for the variatidl as a function ofdR, dm, and da and

eliminateda from (A4) using (A6). To do that, we rewrite thert term of (D4) as
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0 a(t)+da(t)
fe™ [ (pt)-B@)m(r)dmdt
0 a(t)
a(t)+aa(t) 00 a(t)+ch(t)
—j e (pt)-Baw) [ mz)dmt+ j e [ (B@w)-B@)mr)dmit
a(t) a(t)

(A7)
= j e (p(t) - B(a(t)) j an(r)drdt + j e o(da(t), am(t))dt

max{a(t)0}

o a’(7)

= j je-”(p(r) B(a(r))dr Bm(t)dt + j eo(da(t), om(t))dt

0 t

0 a(t)+aa(t)
by adding J_rJ. e " B(a(t)) J. m(7)drdt  and applying (A6). The integral
0

a(t)

a+da

I (B(a) - B(r))m(7)dT in (A7) has the orden(da) becauses(7) is continuous.

Substituting (A7) into (A4) and collecting the cfieients of dm anddR, we obtain the expression

=[ (1R® RO + 17, () B()dt + o[ R, |am]) (A8)

in the notations (20) and (21). The rest of theopi® identical to Case B.
The Theorem is proved.[]

Proof of Theorem 2: By Lemma 1, ab=d

B ()= R(b/c)* c (A9)
The substitution of (26), (38), and (A9) into eqaat(29) leads to

1 I=n _
. o | " -7 _ o T(T+E/M)
bV (Re*!)™ | [R[gjd eCTJ {e er 1-6) - ke‘”}dr —e™,
t

and, after integration, to

1 nl

Nhd— n A TEIM
dMbC {1 & (1—9)—k}e‘”:e‘”,

c@-d)-r

that can be rewritten as (39). Substituting (338)(and (A9) to (30) gives
t+E/M

(1_0) I[i_eC(r—E/M)—Ct]e—rrdr ~ ke—rt ,
t

which becomes (40) after integration.
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Equations (39) and (40) may have a positive saluiband M at natural assumptions. In

particular, letr<<1. Then, presenting the exponents in (40) ag #yor series, we obtain

%{1—1+r§/|\7—%(r§/|\7)2 +o(r2)}

—i[l—cﬁ/mﬁ(cﬁ/m? +0(C?)~1+1E/M - L(E/M)? +o(r2)}:L
r-C 2 2 1-6
or
S P — - 1 1 S — K
E/M-—(E/M)*|-|E/IM -=——(r2=C*)(E/M)? |+0(r) =——
{ 2( )}{ 2r—C( ) )} (r) 1o
or
(E/M)?[(r +C)—r]+o0(r) = 2k/(1-6),
which has the solutionM = E,/C/2k/(1-8) +o(r).
Now, expressing the exponent in (39) as the Tasgdoies, we obtain
CED[r —C(1-d)] = db”dl\W{E/ |\W—%(E/|\W)2 +0(r) —k/(1—e)}. (A10)

Substituting the obtaineM into (A10) leads to one equation (42) ©rTo analyze this equation,

we use the new variabbe = \/E and rewrite (42) as
1(B) = Fa(x), (A11)

_ y2/d-2 204 _  WdE] 4 k r
where Fi(x)=x*"?(r +x*(d-12), F,(x)=db" E[l /2(1_9)[X+x”.

These functions are shown in Figure 3 and are thatt;(0)=0, F,'(x)>0 at O<x<\/F, F1'(x)=0 at

x=\/F, and F,/(x)>0 at O<X<\/F, F,'(X)=0 at x= T . Also, F,(X)<0<F(x) at small 0x<<1.
Therefore, to have a solution 0x<< \/F to equation (A11), it is necessary and sufficitrat
Fz(\/r)>F1(\/F), which leads to the inequality (41). The suffitieondition for the uniqueness of
x is F1'(X)<F'(x) at 0s<+/r , which leads to (43).

Finally, let us prove that,(t)>0 at larget.

1d -CE/M
bj 1_e Ct

By (12), t)=RM| — €. Therefore,
y(12), Q1) [C a
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o) = (L= 6) Qa(t) — kBAMMA®L) — Ra(t) - E p(t)

= ﬁ{m (Rj [ﬂ a-6)- k} —1}eCt - EPe". (A12)
C C

Expressing the exponent in (A12) as the Tayloreseaind using (A10), we obtain

c,\(t) = ﬁ{m (gj [% (1—49)—%%} (1—49)+o(r)—k]—1}e“ - EPe’

2 (A13)
S>RITZCAD) gy -1le - EPer =R =S (1- )™ - EPe?
Cd Cd
. = . = == Cd
Thus, c,(t)>0 at large enoughfor any positive valueR if y<C,and atR>EP ————
(r-C)1-0)

if y=C. The theorem is proved. O
Proof of Lemma 3: We apply the method of Lagrange multipliers toetakko account the equality-

constraint

®) + k(D) AOm(t) = Q(t) -p(HE®), [0, t].

Let us introduce the Lagrange multiplidgft), t0J[0,), for this equality and notice thad{t)=0 at

tO[ty,0) because of the complementary slackness conditiow. we minimize the Lagrangean
L=1+ j (c(t) -0)A(t)dt
0

instead of the functiondl (10). Providing all transformations as in the @grob Theorem 1, we

arrive to the following expression
A= (L) R +I7,(t) @(t) + 1, (1) Bu(t))dt,
0

where

a’(r)

fR'(t):bnR“‘l(t)T B @OmD)| [e" - MO~ L= ADIK() |dr e [L-AD)] =0

a’(1)

= [ e L-ADIBWM) - p(r)]d7 —e™ [L-ADIBOK),

andl,'(t) is given by the same formula (25).
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Following the method of Lagrange multipliers, wél whooseA(t) from the conditionl” m(t)=0,
t0[0, tJ. In the new variablg(t)=[1-A(t)]€", it leads to the formula (49). The expressionl?b&(t)

in the variabley is (48) andl’ r(t)=0 on [0,t,] for interior R*. The lemma is proved. [

Proof of Theorem 4: We will compare the transition dynamics on {g, under two different
increasing pricep(t) andp(t)+dp, wheredp=const>0 on [@& *(t)] or [0,0). The perturbationyp
causes perturbatiord@(t), dm(t), JR(t) anddB(t) of the corresponding optimat(t), m*(t), R*(t)
and £*(t) on interval [0,t,) as well as the chang®, of the interval length. The further optimal
dynamics ont],) follows the above Scenario 1. i, JR(t)=0 becausér'(t) does not depend on

p, anddm(t)=0 becausen*(t) is boundary ont{, t;]. However,

min{t.t.}
IB(t) =bdB () j R (r)AR(r)dr  for all t0[0,00). (A14)

0
By (56), da(t)=3Jp/ £'(a(t)) <0 on [0,t] is determined from the equatidg(t)=0 or da(t)=0 if
p(t)<f. The perturbationgm(t), dR(t), d3(t), and the auxiliaryyx(t) should not violate equalities
(53)-(55). Varying (53), we obtain

t

R(t) +kBMIME) - [ [B(7) - pO)lam()dT +

0

: (A15)
+k(t)m(t)3B(t) -j m(7)3B(r)dr = —E(t)p.
Varying (49), we obtain
x(Ok(®)A(t) - j e I[BM) - p(n)]dx(t)dr =
‘ (A16)

a™(t)

- j e dr.
t

a™(t)

=3B [ X(&)dé -kM)x(t)

Finally, varying (48), we obtain
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t [a(r)
~@-mRO[ B @M [ x(6)dé —x(r)k(r)]dr -

[1—er@' 0D

-a- n)d?(t)f B (0)m(r)

. —k(r)zle‘”dr+

a™(r)

+R(t)j B (1) I)((E)df X(r)k(r)]d’m(r)dr+ (A17)

a™(r)

+(@1- d)R(t)j B (r)m(r){ [x(&)de - x(r)k(r)}éﬁ(r)dr—

= % R*"(t)ox(t) + R(t)jk £(7) m(r){k(r)d)((r) - f 5X(5)df}dr.

The proof is clear in the case of snigll<<1 andt, {n%]xmo <<1. Then, 9B(t) = o(t,) by (A14)
2,

_aT@t-)
and by (A16)Jx(t) = —aplk(et)w[y o(t, )] <0, t0[0,t], at §>0. By (A17),

R(t) = -3x(t) (f Y { [ = (ﬂm(ﬂ{& - k(r)}e'”dr} [1+0(t, )] >0,

_EQ®*+RO ;. o <0
G0

td[o,t,]. Therefore R*(1) is larger andn*(t) is smaller at a higher resource pnx8.

on the interval [@,]. SubstitutingdR to (A15), we obtaindm(t) =

Let us estimate the chang® of the interval length. The instartis determined from the

b
equality I m(r)dr = E,,. Varying this equality, we obtain

a(ty)

t
m(t, )&, =m(a(t,))da(t,) - .[ om(r)dr. As shown aboveda(t)>0 and dn(t)<0, therefore,

a(ty)
&>0.
In the case of an arbitrary {f}, we have the system (A14)-(A17) of four non-Volteintegral
equations of the second kind faR(t), om(t), d3(t), ox(t), tO[0,t], which is difficult to analyze
gualitatively. The only conclusion we can providehe following.
Let OB(t)>0, then by (A15)JR(t)>0, at least, on some parts of interval f), Now let 53(t,)<0,
then JB(t)<0 on some final parttdt], t<ty, by continuity. Then, by (A16Jx(t)<0 on [t]. By
(A17)
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R*™"(t)

AR(t) > -Ix(t) d=n)bn

-1
—k(r)}e‘”dr} >0 at  tot,

o _ A-r@(r)-n)
{ g (r)m(r){le—

hencedR(t)>0, at least, near the end of intervalt[],

The theorem is proved.
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Figure 1.Transition and long-term dynamics under active mmment regulation from Example 1
(at specific initial conditionsy andmy). The dotted lines indicate the BGP regime. Thghdd line
shows the inverse functiat.
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Figure 2. Transition and long-term dynamics under inactirei®nment regulation from Example

2. The optimal dynamics at active regulation (Exkari) is shown in grey color.
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Figure 3.Solving the nonlinear equation (A9) with respectite unknownx :\/E.
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