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Abstract

This study presents the results of an extensive Monte Carlo experiment to compare di�erent methods

of e�ciency analysis. In addition to traditional parametric-stochastic and nonparametric-deterministic

methods recently developed robust nonparametric-stochastic methods are considered. The experi-

mental design comprises a wide variety of situations with di�erent returns-to-scale regimes, sub-

stitution elasticities and outlying observations. As the results show, the new robust nonparametric-

stochastic methods should not be used without cross-checking by other methods like stochastic frontier

analysis or data envelopment analysis. These latter methods appear quite robust in the experiments.
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1 Introduction

Until recently estimation methods for frontier production and cost functions widely in use could be divided
in two broad groups: parametric-stochastic and nonparametric-deterministic. Both groups have their own
advantages and disadvantages. Parametric-stochastic methods such as stochastic frontier analysis (SFA)
require the functional speci�cation of the production or cost function as well as the distributions of
the stochastic parts but are considered robust against measurement errors. Nonparametric-deterministic
methods such as data envelopment analysis (DEA) and free disposal hull (FDH) do not require functional
form assumptions or distributional assumptions but are more sensitive to measurement errors.

There is a long history of attempts to combine nonparametric and stochastic methods for e�ciency
analysis. Grosskopf (1996) gives an early overview of those attempts. Most of these methods remained
in an experimental state. Recently two approaches, the so-called order-m and order-α approaches which
are explained below, appeared which have the potential of combining the advantages of the parametric-
stochastic and the nonparametric-deterministic approaches. These nonparametric-stochastic approaches
not require functional form or distributional assumptions and are robust with respect to measurement
errors.

This paper reports the results of an extensive Monte Carlo study with scenarios containing di�erent
production functions, returns-to-scale regimes and the introduction of outliers in addition to the general
presence of measurement errors. Considered are a wide range of e�ciency measurement methods, in-
cluding SFA, DEA and FDH as well as the recently developed order-m and order-α approaches which
are not considered in such comparisons so far. It is not clear a priori that the conceptual advantages of
the nonparametric-stochastic methods also materialize in small-sample situations with di�erent extents
of measurement errors and outliers. Including these methods in a uni�ed Monte Carlo experiment is thus
important for evaluating their properties in a direct comparison to the more traditional methods.

Indeed, the simulation results reveal that the traditional methods such as SFA and DEA are not as bad
as frequently posited on theoretical grounds, at least in the setting chosen in this paper. Moreover, it is
shown the robust nonparametric-stochastic order-m and order-α approaches can be much worse than the
more traditional approaches when measurement errors are not excessively large and outliers are absent.
Thus, these methods should not be employed as a standard procedure without cross-checking by other
methods.

The plan of the analysis is as follows. The following section 2 presents the methods of e�ciency mea-
surement which are considered in the Monte Carlo study of this paper. Section 3 gives a brief survey
of previous Monte Carlo studies and points out their de�ciencies. Section 4 describes the design of the
Monte Carlo experiment conducted in this paper and section 5 discusses the results of various scenarios.
Finally, section 6 draws conclusions for the choice of appropriate methods of e�ciency analysis.

2 Methods for Frontier Function Estimation

In this section we give an overview over the methods for frontier function estimation that are subse-
quently compared in the Monte Carlo experiment. We consider the three classes of parametric-stochastic,
nonparametric-deterministic and nonparametric-stochastic methods in turn. We keep this overview brief
and con�ned to the versions used subsequently in the Monte Carlo experiment. The volume edited by
Fried, Lovell and Schmidt (2008) provides a comprehensive and up-to-date overview of the methods.

Parametric-Stochastic

As the �rst class of models we consider the parametric methods of corrected ordinary least squares
(COLS) and stochastic frontier analysis (SFA). COLS simply estimates a linear regression through the
cloud of input-output points of the data sample and then shifts this regression line upwards until none
of the residuals is strictly positive. More speci�cally, in log-form the production function is

ln yi = ln f(xi,β) + ui (1)
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for a sample of n (i ∈ {1, ..., n}) observations for decision making units (DMUs) which is speci�ed here
for the case of two inputs, e.g. capital and labor, xi = (Ki, Li)′, and a translog functional form

ln f(xi,β) = β0 + β1 lnKi + β2 lnLi + β3(lnKi)2 + β4(lnLi)2 + β5 lnKi lnLi. (2)

It is immediate that the Cobb-Douglas production function is a special case of the translog with the
parameter restriction β3 = β4 = β5 = 0.

This linear regression in logs can be easily estimated by OLS resulting in the parameter estimate β̂ and
the residuals û1, ..., ûn. The residuals are then corrected by taking û∗i = maxi{ûi} − ûi for all i = 1, ..., n
making them all non-negative. This is equivalent to correcting the intercept β0 of the regression such that
all input-output combinations are below the estimated function. In the �nal step the measure of technical
e�ciency is computed as TEi = exp(−û∗i ). This e�ciency measure is bounded in the range (0, 1] and
represents the relative deviation of the actual output of DMU i from the output it should realize when
producing technically e�cient on the frontier function. A measure of unity indicates technically e�cient
DMUs. In COLS no measurement error is allowed for. Therefore COLS is a parametric but not really a
stochastic method.

SFA departs from this approach in that the residual is now represented by a two-part error term. In logs
the production function is here

ln yi = ln f(xi,β) + vi − ui (3)

where ln f(·) is the translog production function in equation (2) as before. The two-part error term
in this stochastic frontier model consists of a normally distributed component, denoted vi ∼ N(0, σ2

v),
intended to capture the usual measurement errors, and a half-normally distributed component, denoted
ui ∼ |N(0, σ2

u)|, which can assume only positive values and re�ects systematic downward departures from
the frontier function which are associated with ine�ciency. Other distributional assumptions could be
used but are less common in applications.

Aigner, Lovell and Schmidt (1977) show how to combine these distributional assumptions to form the
likelihood function. After maximizing the log of this likelihood function the measure of technical e�ciency
can be computed with the aid of the Jondrow et al. (1982) formula. This is a formula for the expected
value E(ui|εi) with εi = vi − ui which can be easily applied by plugging in the parameter estimates
resulting in ûi for i = 1, ..., n. The measure of technical e�ciency is readily computed as above by
TEi = exp(−ûi) with an analogous interpretation. Again a measure of unity indicates technically e�cient
DMUs. See Kumbhakar and Lovell (2000) and the chapter of Greene in Fried, Lovell and Schmidt (2008)
for more details of the parametric-stochastic approach.

Nonparametric-Deterministic

The nonparametric methods of the second class require no assumption about the form of the production
function and also no assumption about the distributions of the error terms. They are based on a set of
basic axioms discussed e.g. in Färe and Primont (1995) putting restrictions on a technology set which
can be generally stated as

T = {(yi,xi) : xi > 0 can produce yi > 0} . (4)

This technology set contains all, e�cient as well as ine�cient, DMUs and summarizes the possibilities
of transforming inputs xi to an output yi.

1 Based on this technology set an output-oriented distance
function can be de�ned as

θ(yi,xi) = sup {θ : (θyi,xi) ∈ T} (5)

1Actually, in most of the nonparametric e�ciency literature the case of multiple outputs where yi is a vector of outputs
is treated from the beginning. We restrict the notation here to the subsequent implementation with a single output in the
Monte Carlo experiment.
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where θ is a factor that increases the output holding inputs constant. The result is the largest possible
increase of the output such that the resulting input-output combination remains feasible, i.e. an element
of the technology set T . For e�cient DMUs on the frontier of the technology set we have θ = 1 indicating
that the output can not be increased further without leaving the technology set. For ine�cient DMUs
we have θ > 1 indicating the possible increase of the output while staying in the technology set.

Computing these distance functions under the assumptions of a convex technology set and constant
returns to scale is the purpose of data envelopment analysis (DEA) under constant returns to scale,
denoted DEAC. This is the DEA model originally proposed by Charnes, Cooper and Rhodes (1978). It
amounts to solving the following linear programming problem for each observation i ∈ {1, ..., n}

max
θ,λ

θ : xi ≥
n∑
j=1

λjxj , θyi ≤
n∑
j=1

λjyj ,λ = (λ1, ..., λn)′ = 0

 (6)

and denoting the solution value by θi which is equal or larger than unity. This solution can be easily
computed by the simplex algorithm or other linear program solvers. The measure of technical e�ciency
is analogous to those de�ned for the parametric approaches and is here TEi = θ−1

i ∈ (0, 1]. As in case of
COLS, all deviations from the frontier function are considered as ine�ciency. This e�ciency measure is
therefore deterministic in that it does not allow for measurement errors.

The other nonparametric and deterministic methods considered are DEA under variable returns to scale
(denoted DEAV) and free disposal hull (FDH). In the former the restriction Σnj=1λj = 1 is added to
the linear program (6) (Banker, Charnes and Cooper 1984). In the latter we abandon the convexity
assumption we are computing the FDH solution which retains the previous restriction and adds the
integer constraint λj ∈ {0, 1} to (6) (Deprins, Simar and Tulkens 1984). This makes the program an
integer programming problem for which, however, a very fast numerical algorithm has been proposed by
Tulkens (1993).

Nonparametric-Stochastic

The third class comprises methods which are both nonparametric and stochastic. In a sense they combine
the advantages of the parametric-stochastic approaches like SFA (less sensitivity to measurement error)
and the nonparametric-deterministic approaches like DEA or FDH (no requirement of functional and
distributional assumptions). Being stochastic makes the approaches robust since the frontier function is
not forced to envelop all observations, including maybe outlying ones. The book of Daraio and Simar
(2007a) as well as the chapter of Simar and Wilson in Fried, Lovell and Schmidt (2008) give thorough
overviews of the nonparametric-stochastic approach. These surveys provide much more detail compared
to the following sketch of the nonparametric-stochastic approach.

The order-m and order-α approaches are developed in a series of papers by Cazals, Florens and Simar
(2002), Aragon, Daouia and Thomas-Agnan (2005), Daouia and Simar (2007) and Daraio and Simar
(2005, 2007b). Both approaches are based on a probabilistic de�nition of the technology set. For the
present case of two inputs in the vector xi and a single output yi for a DMU i the probability of being
dominated is H(yi,xi) = Pr(Y ≥ yi,X ≤ xi) with upper-case letters denoting random variables, i.e. the
probability of producing more output with less input than DMU i. Using this concept an output-oriented
distance function can be de�ned as

θ1(yi,xi) = sup {θ : H(θyi,xi) > 0} . (7)

This distance function gives the largest possible increase of the output such that the resulting input-
output combination has a probability marginally larger than zero. For the actual computation of the
order-m e�ciency measure the probability is decomposed as

H(yi,xi) = Pr(Y ≥ yi|X ≤ xi) · Pr(X ≤ xi) = S(yi|xi) · F (xi), (8)

where S(·) is a conditional survivor function and F (·) is a distribution function. Assuming F (xi) > 0
for the relevant range of inputs, the statement H(θyi,xi) > 0 in the de�nition of the distance function
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is equivalent to the statement S(θyi|xi) > 0. The algorithm to compute the order-m e�ciency measure
relies on drawing at random a prespeci�ed number m < n of DMUs with no more input than xi from
the sample. These DMUs form a partial frontier function against which the e�ciency of DMU i under
consideration is evaluated by DEA or FDH. This procedure is repeated B times resulting in e�ciency
measures θ̂1mi, ..., θ̂

B
mi from which the �nal order-m e�ciency measure is computed as the simple mean

θ̂mi = B−1 · ΣBb=1θ̂
b
mi. Typical default values for m and B used in practice are m = 25 and B = 200

(Daraio and Simar 2007a), but results are generally quite robust to variations of m and B. To reduce
the computational burden we use m = 25 and B = 100 for the Monte Carlo experiments in this paper
where the e�ciency measure recorded is TEi = θ̂−1

mi .

By that procedure the e�ciency of each DMU is repeatedly evaluated against a partial frontier spanned
by just m < n of the sample DMUs. This prevents the entire sample being enveloped by the frontier
function and thus giving the procedure its robustness, while preserving the nonparametric nature of the
e�ciency measurement. As Cazals, Florens and Simar (2002) have shown, the order-m e�ciency measure
is a consistent estimator and converges at the usual parametric rate of n1/2 irrespective of the number of
inputs and outputs. This is rather exceptional for a nonparametric estimator which is usually subject to
the so-called �curse of dimensionality� meaning that the rate of convergence declines with the dimension
of the problem (here the number of inputs and outputs).

The related order-α approach is based on the de�nition of the production frontier as a quantile instead of
the repeated comparison to a partial frontier function. The output-oriented e�ciency measure of order
α ∈ (0, 1] is de�ned as

θα(yi,xi) = sup {θ : H(θyi,xi) > 1− α} , (9)

where α controls the probability of DMU i after having reduced ine�ciency in output direction to be
dominated by other DMUs which are using not more of the inputs. The choice of α is usually within
the interval [0.90, 0.99]. In the case α = 1 we are back at the de�nition of the frontier function as
enveloping all observations. A choice of α = 0.95 compares DMU i with the �ve percent of DMUs which
are producing more output with no more input. This means falsely classifying a DMU as e�cient in
�ve percent of the cases and is therefore analogous to committing a type-I error in statistical hypothesis
testing. This value of α is chosen in the Monte Carlo experiments below.

Daouia and Simar (2007) derive the statistical properties of the order-α e�ciency measure for the general
case of multiple inputs and multiple outputs. They show that the order-α e�ciency measure is strongly
consistent and converges at the usual parametric rate n1/2 to a normally distributed random variable.
Moreover, they show that order-α e�ciency measures have a bounded in�uence function, whereas order-
m e�ciency measures have an unbounded in�uence function and therefore are less robust.2 To compute
order-α e�ciency measures they devise an exact algorithm which is implemented in the software used for
this Monte Carlo study. This result is transformed into a measure of technical e�ciency TEi = θ̂−1

αi .

All computations are performed with R using the package frontier for the parametric (which is actually
based on the Fortran code of the program Frontier 4.1 by Coelli (1996)) and the package FEAR for the
nonparametric methods. The functions of the latter package are described in Wilson (2008).

3 Monte Carlo Literature

The �rst study with a Monte Carlo investigation of e�ciency measurement methods was conducted by
Banker et al. (1987). This study initiated a continuous stream of further studies which are reviewed in
this section. We provide a brief survey focusing on a selection of the more important studies in this area
which are discussed in chronological order.

Banker, Gadh and Gorr (1993) undertake a comparison of SFA3 and DEA in a setting with one output and
two inputs which are combined with a piece-wise Cobb-Douglas production function. As performance

2The in�uence function of an estimator, introduced by Hampel (1974), shows the e�ect of a small (tending to zero)
fraction of outlying observations on the estimator. If the in�uence function is unbounded a small fraction of outlying
observations is su�cient to cause divergence of the estimator.

3Banker, Gadh and Gorr (1993) call this corrected ordinary least squares but actually mean the stochastic frontier
function estimator of Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977).
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measures they use the mean absolute deviations and the Wilcoxon signed rank test of the true and
estimated e�ciencies. The SFA is based on half-normal and exponential ine�ciency distributions. The
results show that SFA is better for sample sizes of 50, 100 and 200 and large measurement errors, whereas
DEA performs better for the small sample size of 25 and small measurement errors. Both methods perform
bad for large measurement errors. Very important is the �nding that SFA fails to decompose ine�ciency
and measurement error (see also Ruggiero (1999) for more on that issue). The number of replications is
5 and is thus extremely low for a reliable Monte Carlo study.

Banker, Chang and Cooper (1996) put special emphasis on the issue of returns to scale in a Monte Carlo
setting very similar to that of Banker, Gadh and Gorr. Using mean absolute deviations as error measure
they conclude that DEA under variable returns to scale performs best, followed by DEA under constant
returns to scale and corrected ordinary least squares (COLS) even in the presence of collinearity and
misspeci�cation in the form of omitted and irrelevant variables. A weakness of this study is the again
very low number of 25 Monte-Carlo replications.

Bojanic, Caudill and Ford (1998) investigate the small-sample properties of parametric and nonparametric
methods for frontier function estimation in the presence of heteroskedastic measurement errors. The main
�nding is that heteroskedasticity generally leads to biased, i.e. overstated, measurement of ine�ciency.4

Comparing across methods, the parametric methods appear to be superior to DEA. This statement is,
however, only a relative one since all estimators do not perform very well. Further caveats are that the
simulation setting favors the parametric methods against DEA and the here also not overly large number
of 100 replications.

Ruggiero (1999) devotes special attention to the inability of SFA to separate measurement error and
ine�ciency. In a Cobb-Douglas framework with two inputs and one output, di�erent ine�ciency distri-
butions and di�erent variances of the measurement error he �nds that SFA does not outperform COLS in
most cases. Only in the most favorable situation and large sample sizes SFA performs clearly better. The
�ndings are based on a small number of 100 replications and do not consider nonparametric methods.

Resti (2000) employs a cost function setting based on a piece-wise multi-product Cobb-Douglas technology
with three outputs and two inputs for a comparison of SFA, DEA and three stochastic variants of DEA.
Main �nding is that the performance of the stochastic techniques relative to classical DEA variants under
constant and variable returns to scale depends on the parameter used to control the compromise between
error and ine�ciency minimization. He points to a reasonable agreement of the classical techniques and
concludes that �stochastic techniques usually do not outperform the classic ones� (Resti 2000, p. 570).

Ruggiero (2007) uses the same setting as in his previous study to show that while SFA is not able do
separate ine�ciency and measurement error for cross-sectional data, the additional information contained
in panel data allows to do this task more e�ectively. Comparing SFA and DEA he concludes that the
�... results suggest that the stochastic frontier model holds no real advantage over DEA. In particular,
the purported advantage of the stochastic frontier, i.e. the ability to allow measurement error, can be
overcome by averaging the data to smooth production� (Ruggiero 2007, p. 266).

Van Biesebroek (2007) compares a number of di�erent methods for productivity measurement in a dy-
namically optimizing framework by means of a Monte Carlo analysis. Especially for comparing DEA and
SFA he obtains some interesting general results. As expected, he �nds that DEA tends to outperform SFA
in small samples and in situations with small measurement errors (conversely, SFA is superior in larger
samples and for larger errors) and that speci�cation error is more detrimental to SFA. He �nds that the
loss of precision in the presence of large measurement errors is more a problem of DEA than of SFA, but
also observes the frequent failure of SFA to separate ine�ciency from noise, especially when measurement
error is large. He points to the possible problem of multicollinearity when using the translog function5

and to the problem of the very low number of replications in many other Monte Carlo comparisons of
productivity and e�ciency measurement methods.

Summarizing it can be said that the ranking of parametric-stochastic and nonparametric-deterministic
approaches depends on the speci�c setting chosen and that there is no clear superiority of one of the
approaches. Furthermore, it is striking that the number of Monte Carlo replications is rather low in these

4See Caudill and Ford (1993) for further results on the biases caused by heteroskedasticity.
5Gong and Sickles (1992) focus on functional form choice for econometric frontier estimation. They �nd in an experiment

with simulated panel data that constant elasticity of substitution (CES) and translog functional forms outperform other
functional forms and DEA in most cases. A caveat here is that only quite large sample sizes in the range of 500 to 2500
observations are considered.
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studies. The present study remedies for this e�ciency by basing all results on B = 1000 replications
of the Monte Carlo experiments. This makes the results of this study much more reliable than those
reviewed in this section. The next section explains the general design of the Monte Carlo experiment and
the di�erent scenarios which are explored in this experiment.

4 Monte Carlo Design

The design of the Monte Carlo experiment covers a baseline scenario in which the data are generated
by a Cobb-Douglas production function under constant returns to scale, where both inputs are treated
symmetrically and no outliers are induced. Subsequently the results from the baseline scenario are com-
pared with various extensions which treat the inputs asymmetrically, consider decreasing and increasing
returns to scale, use a more general constant elasticity of substitution (CES) production function and
induce outliers with di�erent frequencies. The parameter choice is oriented at the values used by Banker,
Gadh and Gorr (1993) and Ruggiero (1999).

Each scenario is simulated for di�erent sample sizes n ∈ {50, 100, 200}, extents of ine�ciency de�ned by
the standard deviation of ine�ciency σu ∈ {0.2, 0.3} and extents of measurement error de�ned by the
standard deviations of measurement error σv ∈ {0.05, 0.1, 0.15} and proceeds according to the following
steps:

1. Fix the sample size n, the standard deviation of the ine�ciency σu and the standard deviation of
the measurement errors σv.

2. Draw n values ofKi and Li from a continuous uniform distribution U(1, 20) and keep them �xed. As
well draw n values of ui from a half-normal distribution |N(0, σ2

u)| and transform them to e�ciency
levels by Ai = exp(−ui) which are also kept �xed.

3. Generate the output levels by the production function yi = Ai ·F (Ki, Li) and keep them also �xed.

4. For each of the B = 1000 replications draw n values of vi from a normal distribution N(0, σ2
v) and

use them as measurement errors disturbing the output ỹ
(b)
i = yi · exp(vi), where b = 1, ..., B.6

5. Apply the e�ciency measurement methods to the each of the B samples (ỹ(b)
i ,Ki, Li), i = 1, ..., n

and record the computed e�ciency estimate Â
(b)
i .

6. Compute the mean absolute error and the Spearman rank correlation coe�cient for each replication

b = 1, ..., B by MAE(b) = 1
nΣni=1|Â

(b)
i −Ai| and R

(b)
SP = 1− 6 ·Σni=1d

2
i /n(n2 − 1), respectively, with

di as the rank di�erence of Ai and Â
(b)
i .

7. Finally, average over b = 1, ..., B to reach the MAE and RSP values reported in the tables below.7

In the baseline scenario a Cobb-Douglas production function F (Ki, Li) = Kα
i L

1−α
i with α = 0.5 is

used. Asymmetry is introduced by using the baseline scenario with α = 0.8 as the single change. In the
scenarios with variable returns to scale the production function is modi�ed to F (Ki, Li) = (Kα

i L
1−α
i )ρ

with ρ = 0.8 in the case of decreasing returns to scale (DRS) and ρ = 1.2 in the case of increasing returns
to scale (IRS). The two scenarios with the CES production function use F (Ki, Li) = (Kα

i +Lαi )ρ/α where
ρ is �xed to unity (meaning constant returns to scale) and the parameter α now governs the elasticity of
substitution which is equal to 1/(1 − α). We consider two choices of α which lead to a relatively small
elasticity of substitution of 2 (α = 0.5) and a relatively large elasticity of substitution of 5 (α = 0.8).
Finally, the two outlier scenarios select a fraction η of observations for which the output levels in step 3
are each multiplied by a uniformly distributed random number from the interval [1, 1.5]. Two fractions of
outliers are considered corresponding to a relatively small extent of outliers for η = 0.05 and a relatively
larger extent of outliers for η = 0.1. All simulations are based on the same set of random draws for
each scenario and each combination of parameters generated by �xing the seed of the random number
generator.

6To avoid problems with wrong (positive) skewness for the SFA estimates we check the residuals of an OLS estimation
of the production function. Only if these are negatively skewed this draw is used to generate a replication of the e�ciency
estimates with all methods. Otherwise a new sample of measurement errors is drawn.

7The usage of rank correlation coe�cients is common in the literature and can be justi�ed by results of Ondrich and
Ruggiero (2001) who show that neither stochastic nor deterministic frontier methods are able to estimate absolute measures
of e�ciency but only relative ones.
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5 Monte Carlo Results

In this section we present the summary tables for the di�erent scenarios and discuss the main insights
which can be gained from them. We consider the mean absolute errorMAE (meaning the mean absolute
deviation of the true e�ciency level from the e�ciency level measured by the respective method) and the
Spearman rank correlation coe�cient RSP of the true and the measured e�ciency levels. A lower MAE
indicates that the estimate is closer to the true e�ciency levels on average, whereas a higher RSP shows
that true and estimated e�ciency levels are more strongly associated.

� insert table 1 about here �

Table 1 contains the results of the baseline scenario. Starting with the comparison of the parametric-
stochastic and the nonparametric-deterministic methods we observe that SFA mostly has a smallerMAE
(with some minor exceptions at the smallest sample size) and a similar RSP compared to DEAC. Com-
paring DEAC and DEAV we see that DEAC has larger MAE values than DEAV in many cases, but
also lower MAE values in other cases. DEAC shows a consistently larger RSP . DEAV itself has much
smallerMAE values compared to COLS, but also smaller RSP . MAE of COLS is smaller than FDH only
at small error variances, but RSP is uniformly much larger in the case of COLS. FDH itself uniformly
dominates order-m in terms of considerably smaller MAE values, but RSP also tends to be smaller for
FDH. Order-m has MAE values that are always considerably smaller compared to order-α for n = 100
and n = 200. Order-α, however, is slightly better in the cases with n = 50. In this comparison RSP is
uniformly larger for order-m.8

In addition, among the parametric methods the MAE is uniformly smaller for SFA compared to COLS,
whereas RSP is about equal. Comparing the nonparametric methods with variable returns to scale, DEAV

and FDH, we see that MAE is smaller in the case of the former with exceptions at large error variances.
RSP is also uniformly substantially larger in the case of DEAV. Thus, for this smooth Cobb-Douglas
production function DEAV relying on a convex technology set provides a better approximation than the
non-convex FDH.

In summary, this pattern of results leads to a reasonably clear ranking of the e�ciency measurement
methods

SFA � DEAC < DEAV � COLS � FDH � order-m � order-α

with ��� indicating strictly better and �<� indicating weakly better. It should be emphasized at this
place that the baseline scenario of the Monte Carlo experiment is very advantageous for the parametric
econometric approaches so that the good performance of SFA is not overly surprising. A bit more
surprising is that COLS is on the one hand dominated by the two DEA variants and on the other hand
is better than FDH except at large error variances. Also rather unexpected is that DEAV is frequently
better than DEAC in terms of MAE although not in terms of RSP . The performance of the order-m and
order-α approaches shows that in the absence of outliers these robust nonparametric methods are not a
very fortunate choice. In terms of MAE at the higher measurement error variances order-m and order-α
are occasionally (at the largest error variance) better than COLS and DEA but they are never better
than SFA or FDH. Compared to FDH, order-m and order-α tend to be better in terms of RSP but they
are not better than any of the other methods according to this criterion.9 We will see in the following
how this ranking changes when we depart from the baseline scenario in di�erent directions.

� insert table 2 about here �

8Results for the mean error ME (not reported here) show that the order-m and order-α approaches have the largest
negative biases (meaning the largest overestimation of A). Negative biases are also observed for FDH whereas we have
positive biases throughout for COLS. The smallest biases are observed for SFA and the DEA variants. Interestingly, bias
is reduced with larger sample size only for SFA and FDH.

9In the papers of Aragon, Daouia and Thomas-Agnan (2005), Daouia and Simar (2005, 2007) and Daraio and Simar
(2005) in which the order-m and order-α approaches are developed, numerical illustrations are used to demonstrate the
advantages of these methods. These numerical illustrations consist of a single draw of a data set and the introduction of a
small number (2 to 5) of deliberately positioned outliers and are therefore not comparable to the Monte Carlo analyses we
provide in this paper.
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Table 2 reports the results of one of these deviations, the asymmetry scenario. We �nd no, not even
numerical, changes for COLS and SFA. This is natural since the parameter change to induce the asym-
metry can be perfectly accommodated by the translog production function. The MAE values of DEAC

and DEAV increase only by small amounts relative to baseline. For FDH, order-m and order-α theMAE
values are decreasing, sometimes substantially. RSP changes in a reverse pattern. It is barely changing
for DEAC and DEAV and it is increasing for FDH, order-m and order-α.

� insert tables 3 and 4 about here �

Tables 3 and 4 show the results for the DRS and IRS scenarios, respectively. Again and for the same
reason as in the asymmetry scenario the results for COLS and SFA are identical to the baseline scenario.
For the nonparametric methods interesting di�erences of the DRS and IRS scenarios relative to baseline
CRS show up. We have strong increases of MAE for DEAC which are more pronounced for DRS rather
than for IRS. These occur together with marked reductions of RSP , which are again less pronounced for
IRS. These changes are more clearly recognizable for small sample sizes and small standard deviations. In
the case of DEAV MAE and RSP hardly change under DRS, whereasMAE increases and RSP decreases
slightly under IRS (although much less than in the case of DEAC). The FDH results are analogous to
DEAV with a slightly larger reduction of MAE under DRS and a smaller increase of MAE under IRS.
Here, RSP increases more than for DEAV compared to baseline under DRS, but also decreases more
under IRS in general. Furthermore, for order-m and order-α the MAE is reduced under DRS. The
extent of the reduction is larger than for DEAV and FDH. Under IRS MAE increases in a similar order
of magnitude as in the cases of DEAV and FDH. For the order-m and order-α methods RSP increases
under DRS while it decreases under IRS in an order of magnitude comparable to FDH.

� insert tables 5 and 6 about here �

Tables 5 and 6 contain the results for the CES scenario with the small and large elasticity of substitution,
respectively. Compared to the baseline scenario, the results for the parametric methods, COLS and SFA,
are here not a�ected by very much. For the nonparametric methods DEAC experiences increasing MAE
which is larger in the case of the larger elasticity of substitution. DEAV shows a similar pattern, but
less pronounced. In the case of FDH nearly no changes of MAE can be observed in case of the smaller
elasticity of substitution and minor reductions of MAE in case of the larger elasticity of substitution.
We also recognize consistent MAE reductions for order-m and order-α. These reductions are small in
magnitude and occur similarly for order-m and order-α. They are slightly larger for the larger elasticity
of substitution. In general, we observe here only minor changes of RSP which are largest in the case of
FDH.

� insert tables 7 and 8 about here �

Tables 7 and 8 �nally report the results for the outlier scenarios with small and large extents of outliers,
respectively. Compared to baseline, the introduction of outliers raises MAE substantially for COLS and
much less in the case of SFA. RSP decreases in the majority of occasions, in about equal magnitude for
COLS and SFA. Consistent with these observations a larger extent of outliers a�ects COLS much more
than SFA. We also observe substantial increases of MAE for DEAC and DEAV with DEAC being more
a�ected than DEAV, simultaneously RSP decreases. FDH shows hardly changed MAE values with a
slight tendency to decline whereas RSP decreases somewhat more. Overall FDH appears surprisingly
robust compared to the parametric methods and the DEA variants. The robust nonparametric and
stochastic order-m and order-α methods are quite stable across all scenarios. MAE values even tend so
be slightly smaller in the presence of outliers compared to the baseline scenario. Across methods, order-m
and order-α are only on rare occasions better than DEAC (clustered around the cases σu = 0.2, σv = 0.15).
Both order-m and order-α are much more frequently worse than DEAV and always worse than FDH and
SFA. At least, they are much better than COLS. In most of the cases order-m is better than order-α in
terms ofMAE. RSP is rather stable with only slight increases/decreases relative to the baseline scenario.
The increases of RSP tend to be larger for order-α especially for the smaller extent of outliers. These
latter �ndings are somewhat puzzling since the comparison is relative to the baseline scenario without
the additional outliers.

In general, for the nonparametric approaches it can be stated that a greater extent of outliers leads to
increases ofMAE for the DEA variants, but is associated with fewer changes and even decreases ofMAE
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in the cases of FDH, order-m and order-α. Moreover, little changes of RSP are observed for order-m
and order-α. In this respect they are robust. We recognize that the parametric methods COLS and
SFA are not much a�ected by changes of the Monte Carlo setting except for the introduction of outliers.
Even the case of the CES production function which is not a special case of the translog function (as
the Cobb-Douglas function is) leads to only minor changes of MAE and RSP compared to the baseline
scenario. This means that the translog function has good approximating power also for the CES function.

6 Conclusion

Which general guidelines for the application of e�ciency analysis methods can be derived from the results
discussed above? Since we are faced here with results from a Monte Carlo experiment it is di�cult
to derive general guidelines. All Monte Carlo experiments are faced with the problem of �speci�city�
(Hendry 1984, p. 941) meaning that those experiments can cover only a small part of the space of
possible parameters and functional forms. Thus we have generated only selective results pertaining to a
limited set of points of the parameter space.

Keeping this caveat in mind we can summarize a few general patterns. SFA shows a good performance
also in the CES scenarios and even in the presence of outliers. Although we have to be cautious with this
statement since the experimental design is quite favorable for SFA, we can say that the criticism raised
against this method (i.e. that it is not able to separate ine�ciency and measurement error) can not be
con�rmed by the present study. The performance of DEA and FDH is also quite remarkable even for
larger measurement error variances and in the presence of outliers. Some changes can be observed when
increasing or decreasing returns to scale are induced. The results are, however, not much a�ected by the
CES scenarios even in the case of the larger elasticity of substitution.

Overall, we have the ranking of SFA dominating DEA, which itself is dominating FDH and order-m
and order-α are dominated in general. Nevertheless, order-m becomes better at larger measurement
error variances and for larger extents of outliers. When outliers are induced, order-m and order-α are
rather stable and sometimes even slightly better compared to their performance in the baseline scenario.
Moreover, order-m performs better than the theoretically more robust order-α approach. This conclusion
is, however, somewhat tentative. Maybe di�erently designed Monte Carlo experiments with less well
behaved environments change this conclusion.

Compared to that the performance of the robust nonparametric-stochastic methods, the order-m and
order-α approaches, appears not to be very advantageous in well behaved settings. At the bottom line
it can be said that it is not appropriate to use order-m and order-α routinely in situations which are
characterized by a smooth well behaved production environment with no outliers or limited extents of
outliers. Even with the induction of additional outliers it depends much on the values of the other
parameters whether these methods become better than more traditional methods of e�ciency analysis.
Thus, it is always wise to cross-check the results with other methods to asses their validity.
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Table 1: Baseline Results

COLS SFA DEAC DEAV FDH order-m order-α

Mean Absolute Error (MAE):

σu = 0.2 σv = 0.05 n = 50 0.059 0.040 0.037 0.046 0.099 0.126 0.124

n = 100 0.066 0.038 0.043 0.045 0.110 0.153 0.172

n = 200 0.079 0.032 0.049 0.046 0.086 0.167 0.204

σv = 0.10 n = 50 0.125 0.063 0.085 0.077 0.097 0.121 0.120

n = 100 0.135 0.058 0.092 0.080 0.101 0.141 0.160

n = 200 0.160 0.054 0.113 0.093 0.085 0.154 0.193

σv = 0.15 n = 50 0.181 0.083 0.131 0.112 0.098 0.119 0.119

n = 100 0.195 0.070 0.142 0.121 0.103 0.134 0.152

n = 200 0.231 0.069 0.175 0.146 0.096 0.146 0.184

σu = 0.3 σv = 0.05 n = 50 0.055 0.042 0.035 0.055 0.132 0.161 0.158

n = 100 0.059 0.041 0.040 0.047 0.141 0.187 0.205

n = 200 0.073 0.033 0.043 0.046 0.106 0.191 0.230

σv = 0.10 n = 50 0.111 0.068 0.075 0.078 0.127 0.155 0.154

n = 100 0.119 0.063 0.082 0.076 0.131 0.175 0.194

n = 200 0.143 0.056 0.098 0.085 0.102 0.179 0.220

σv = 0.15 n = 50 0.169 0.088 0.120 0.110 0.127 0.150 0.149

n = 100 0.179 0.081 0.128 0.112 0.126 0.163 0.182

n = 200 0.211 0.074 0.156 0.131 0.108 0.167 0.209

Spearman Rank Correlation (RSP ):

σu = 0.2 σv = 0.05 n = 50 0.796 0.803 0.864 0.690 0.414 0.515 0.450

n = 100 0.888 0.884 0.836 0.787 0.580 0.579 0.510

n = 200 0.893 0.897 0.875 0.794 0.675 0.667 0.570

σv = 0.10 n = 50 0.631 0.632 0.685 0.560 0.331 0.449 0.395

n = 100 0.710 0.707 0.657 0.622 0.498 0.526 0.483

n = 200 0.735 0.736 0.708 0.639 0.561 0.578 0.509

σv = 0.15 n = 50 0.493 0.495 0.552 0.459 0.280 0.381 0.339

n = 100 0.559 0.558 0.522 0.498 0.415 0.449 0.425

n = 200 0.594 0.594 0.574 0.516 0.461 0.480 0.434

σu = 0.3 σv = 0.05 n = 50 0.844 0.858 0.924 0.735 0.485 0.607 0.535

n = 100 0.939 0.936 0.903 0.860 0.687 0.725 0.662

n = 200 0.937 0.944 0.931 0.858 0.759 0.785 0.713

σv = 0.10 n = 50 0.741 0.743 0.804 0.644 0.433 0.550 0.495

n = 100 0.828 0.824 0.780 0.742 0.615 0.663 0.620

n = 200 0.842 0.844 0.820 0.752 0.674 0.713 0.656

σv = 0.15 n = 50 0.631 0.633 0.688 0.557 0.380 0.487 0.440

n = 100 0.710 0.707 0.664 0.634 0.535 0.588 0.561

n = 200 0.735 0.736 0.710 0.647 0.583 0.624 0.583

Note: all �gures are based on B = 1000 replications.
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Table 2: Asymmetry Scenario

COLS SFA DEAC DEAV FDH order-m order-α

Mean Absolute Error (MAE):

σu = 0.2 σv = 0.05 n = 50 0.059 0.040 0.038 0.047 0.094 0.115 0.115
n = 100 0.066 0.038 0.044 0.043 0.102 0.139 0.152
n = 200 0.079 0.032 0.051 0.047 0.079 0.142 0.172

σv = 0.10 n = 50 0.125 0.063 0.089 0.080 0.092 0.109 0.110
n = 100 0.135 0.058 0.097 0.084 0.096 0.127 0.142
n = 200 0.160 0.054 0.118 0.098 0.080 0.129 0.161

σv = 0.15 n = 50 0.181 0.083 0.137 0.118 0.096 0.110 0.111
n = 100 0.195 0.070 0.149 0.128 0.101 0.123 0.137
n = 200 0.231 0.069 0.181 0.153 0.097 0.126 0.154

σu = 0.3 σv = 0.05 n = 50 0.055 0.042 0.035 0.054 0.123 0.145 0.145
n = 100 0.059 0.041 0.042 0.044 0.130 0.170 0.183
n = 200 0.073 0.033 0.044 0.046 0.096 0.163 0.194

σv = 0.10 n = 50 0.111 0.068 0.078 0.080 0.118 0.137 0.139
n = 100 0.119 0.063 0.086 0.078 0.122 0.158 0.173
n = 200 0.143 0.056 0.102 0.088 0.094 0.150 0.183

σv = 0.15 n = 50 0.169 0.088 0.126 0.115 0.119 0.135 0.136
n = 100 0.179 0.081 0.135 0.119 0.122 0.149 0.165
n = 200 0.211 0.074 0.162 0.137 0.105 0.143 0.175

Spearman Rank Correlation (RSP ):

σu = 0.2 σv = 0.05 n = 50 0.796 0.803 0.868 0.684 0.445 0.545 0.498
n = 100 0.888 0.884 0.831 0.808 0.607 0.660 0.601
n = 200 0.893 0.897 0.879 0.801 0.699 0.733 0.658

σv = 0.10 n = 50 0.631 0.632 0.692 0.555 0.366 0.462 0.430
n = 100 0.710 0.707 0.652 0.635 0.512 0.570 0.533
n = 200 0.735 0.736 0.714 0.648 0.572 0.618 0.565

σv = 0.15 n = 50 0.493 0.495 0.560 0.456 0.300 0.378 0.356
n = 100 0.559 0.558 0.515 0.505 0.426 0.473 0.455
n = 200 0.594 0.594 0.580 0.525 0.467 0.503 0.469

σu = 0.3 σv = 0.05 n = 50 0.844 0.858 0.926 0.730 0.570 0.658 0.612
n = 100 0.939 0.936 0.895 0.872 0.699 0.765 0.724
n = 200 0.937 0.944 0.934 0.861 0.765 0.820 0.772

σv = 0.10 n = 50 0.741 0.743 0.808 0.639 0.491 0.579 0.546
n = 100 0.828 0.824 0.773 0.751 0.624 0.693 0.663
n = 200 0.842 0.844 0.826 0.758 0.680 0.739 0.703

σv = 0.15 n = 50 0.631 0.632 0.695 0.553 0.416 0.496 0.470
n = 100 0.710 0.707 0.656 0.638 0.540 0.606 0.588
n = 200 0.735 0.736 0.717 0.655 0.586 0.641 0.615

Note: all �gures are based on B = 1000 replications.
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Table 3: Decreasing Returns to Scale Scenario

COLS SFA DEAC DEAV FDH order-m order-α

Mean Absolute Error (MAE):

σu = 0.2 σv = 0.05 n = 50 0.059 0.040 0.089 0.046 0.095 0.117 0.115
n = 100 0.066 0.038 0.099 0.044 0.102 0.138 0.153
n = 200 0.079 0.032 0.132 0.044 0.079 0.144 0.175

σv = 0.10 n = 50 0.125 0.063 0.119 0.076 0.093 0.111 0.111
n = 100 0.135 0.058 0.130 0.078 0.095 0.124 0.140
n = 200 0.160 0.054 0.172 0.091 0.080 0.130 0.163

σv = 0.15 n = 50 0.181 0.083 0.157 0.111 0.096 0.111 0.111
n = 100 0.195 0.070 0.171 0.120 0.100 0.121 0.135
n = 200 0.231 0.069 0.220 0.144 0.096 0.127 0.156

σu = 0.3 σv = 0.05 n = 50 0.055 0.042 0.076 0.055 0.125 0.149 0.147
n = 100 0.059 0.041 0.085 0.047 0.129 0.167 0.181
n = 200 0.073 0.033 0.115 0.044 0.096 0.165 0.198

σv = 0.10 n = 50 0.111 0.068 0.104 0.077 0.120 0.141 0.142
n = 100 0.119 0.063 0.113 0.074 0.119 0.154 0.170
n = 200 0.143 0.056 0.154 0.083 0.094 0.152 0.186

σv = 0.15 n = 50 0.169 0.088 0.140 0.109 0.121 0.137 0.137
n = 100 0.179 0.081 0.152 0.111 0.118 0.144 0.160
n = 200 0.211 0.074 0.195 0.130 0.104 0.143 0.177

Spearman Rank Correlation (RSP ):

σu = 0.2 σv = 0.05 n = 50 0.796 0.803 0.592 0.689 0.438 0.553 0.487
n = 100 0.888 0.884 0.696 0.799 0.621 0.652 0.588
n = 200 0.893 0.897 0.699 0.806 0.702 0.721 0.640

σv = 0.10 n = 50 0.631 0.632 0.508 0.551 0.356 0.470 0.421
n = 100 0.710 0.707 0.591 0.630 0.520 0.565 0.531
n = 200 0.735 0.736 0.622 0.648 0.574 0.608 0.555

σv = 0.15 n = 50 0.493 0.495 0.432 0.449 0.299 0.391 0.354
n = 100 0.559 0.558 0.491 0.502 0.427 0.468 0.451
n = 200 0.594 0.594 0.538 0.522 0.468 0.495 0.461

σu = 0.3 σv = 0.05 n = 50 0.844 0.858 0.744 0.737 0.529 0.647 0.581
n = 100 0.939 0.936 0.800 0.868 0.731 0.773 0.725
n = 200 0.937 0.944 0.812 0.866 0.778 0.819 0.765

σv = 0.10 n = 50 0.741 0.743 0.664 0.640 0.470 0.575 0.527
n = 100 0.828 0.824 0.720 0.749 0.641 0.696 0.664
n = 200 0.842 0.844 0.749 0.759 0.687 0.735 0.694

σv = 0.15 n = 50 0.631 0.632 0.583 0.549 0.406 0.501 0.461
n = 100 0.710 0.707 0.630 0.639 0.551 0.606 0.588
n = 200 0.735 0.736 0.672 0.653 0.590 0.635 0.607

Note: all �gures are based on B = 1000 replications.
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Table 4: Increasing Returns to Scale Scenario

COLS SFA DEAC DEAV FDH order-m order-α

Mean Absolute Error (MAE):

σu = 0.2 σv = 0.05 n = 50 0.059 0.040 0.068 0.049 0.102 0.136 0.132
n = 100 0.066 0.038 0.064 0.049 0.115 0.168 0.191
n = 200 0.079 0.032 0.082 0.054 0.092 0.189 0.232

σv = 0.10 n = 50 0.125 0.063 0.107 0.082 0.100 0.130 0.129
n = 100 0.135 0.058 0.108 0.086 0.107 0.157 0.179
n = 200 0.160 0.054 0.135 0.101 0.090 0.177 0.223

σv = 0.15 n = 50 0.181 0.083 0.148 0.117 0.101 0.128 0.127
n = 100 0.195 0.070 0.153 0.126 0.106 0.148 0.170
n = 200 0.231 0.069 0.190 0.153 0.097 0.166 0.212

σu = 0.3 σv = 0.05 n = 50 0.055 0.042 0.060 0.054 0.137 0.172 0.167
n = 100 0.059 0.041 0.059 0.050 0.150 0.205 0.227
n = 200 0.073 0.033 0.073 0.052 0.114 0.216 0.261

σv = 0.10 n = 50 0.111 0.068 0.095 0.081 0.133 0.166 0.164
n = 100 0.119 0.063 0.096 0.081 0.140 0.194 0.217
n = 200 0.143 0.056 0.117 0.091 0.109 0.204 0.252

σv = 0.15 n = 50 0.169 0.088 0.135 0.114 0.132 0.161 0.160
n = 100 0.179 0.081 0.138 0.117 0.134 0.181 0.204
n = 200 0.211 0.074 0.169 0.138 0.112 0.192 0.241

Spearman Rank Correlation (RSP ):

σu = 0.2 σv = 0.05 n = 50 0.796 0.803 0.804 0.690 0.389 0.482 0.417
n = 100 0.888 0.884 0.732 0.761 0.543 0.509 0.447
n = 200 0.893 0.897 0.697 0.760 0.652 0.614 0.507

σv = 0.10 n = 50 0.631 0.633 0.697 0.571 0.312 0.431 0.371
n = 100 0.710 0.707 0.599 0.609 0.477 0.486 0.438
n = 200 0.735 0.736 0.595 0.619 0.546 0.543 0.462

σv = 0.15 n = 50 0.493 0.495 0.591 0.472 0.262 0.370 0.322
n = 100 0.559 0.558 0.490 0.490 0.403 0.427 0.398
n = 200 0.594 0.594 0.502 0.503 0.454 0.461 0.406

σu = 0.3 σv = 0.05 n = 50 0.844 0.858 0.878 0.734 0.461 0.573 0.499
n = 100 0.939 0.936 0.837 0.842 0.648 0.674 0.597
n = 200 0.937 0.944 0.816 0.836 0.738 0.746 0.660

σv = 0.10 n = 50 0.741 0.743 0.799 0.649 0.411 0.528 0.470
n = 100 0.828 0.824 0.734 0.729 0.591 0.627 0.573
n = 200 0.842 0.844 0.736 0.735 0.661 0.686 0.615

σv = 0.15 n = 50 0.631 0.632 0.709 0.566 0.356 0.472 0.421
n = 100 0.710 0.707 0.635 0.625 0.520 0.566 0.531
n = 200 0.735 0.736 0.649 0.635 0.574 0.607 0.555

Note: all �gures are based on B = 1000 replications.
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Table 5: CES Scenario with Small Elasticity of Substitution

COLS SFA DEAC DEAV FDH order-m order-α

Mean Absolute Error (MAE):

σu = 0.2 σv = 0.05 n = 50 0.059 0.040 0.039 0.046 0.097 0.124 0.121
n = 100 0.066 0.038 0.045 0.045 0.110 0.152 0.170
n = 200 0.079 0.032 0.052 0.048 0.086 0.164 0.200

σv = 0.10 n = 50 0.125 0.063 0.090 0.080 0.095 0.118 0.118
n = 100 0.135 0.059 0.098 0.084 0.101 0.140 0.158
n = 200 0.160 0.054 0.119 0.098 0.085 0.151 0.190

σv = 0.15 n = 50 0.179 0.085 0.138 0.117 0.097 0.117 0.117
n = 100 0.195 0.070 0.149 0.126 0.103 0.133 0.150
n = 200 0.231 0.069 0.182 0.151 0.096 0.143 0.180

σu = 0.3 σv = 0.05 n = 50 0.055 0.042 0.035 0.053 0.129 0.157 0.155
n = 100 0.059 0.041 0.042 0.047 0.142 0.186 0.203
n = 200 0.073 0.033 0.045 0.047 0.106 0.189 0.227

σv = 0.10 n = 50 0.111 0.067 0.079 0.080 0.124 0.150 0.150
n = 100 0.119 0.064 0.087 0.079 0.130 0.173 0.192
n = 200 0.143 0.056 0.104 0.088 0.102 0.176 0.216

σv = 0.15 n = 50 0.168 0.088 0.127 0.114 0.124 0.146 0.146
n = 100 0.178 0.081 0.135 0.117 0.126 0.161 0.180
n = 200 0.211 0.074 0.163 0.136 0.108 0.165 0.205

Spearman Rank Correlation (RSP ):

σu = 0.2 σv = 0.05 n = 50 0.796 0.802 0.868 0.687 0.430 0.517 0.461
n = 100 0.888 0.884 0.832 0.781 0.570 0.577 0.514
n = 200 0.893 0.897 0.877 0.790 0.671 0.669 0.574

σv = 0.10 n = 50 0.630 0.632 0.690 0.559 0.351 0.454 0.408
n = 100 0.708 0.705 0.651 0.613 0.487 0.521 0.482
n = 200 0.735 0.736 0.709 0.636 0.556 0.578 0.512

σv = 0.15 n = 50 0.502 0.503 0.565 0.469 0.298 0.389 0.354
n = 100 0.559 0.558 0.517 0.490 0.404 0.441 0.421
n = 200 0.594 0.594 0.574 0.513 0.457 0.479 0.436

σu = 0.3 σv = 0.05 n = 50 0.844 0.857 0.926 0.735 0.508 0.612 0.550
n = 100 0.939 0.936 0.896 0.854 0.670 0.719 0.661
n = 200 0.937 0.944 0.933 0.853 0.747 0.781 0.708

σv = 0.10 n = 50 0.741 0.744 0.807 0.643 0.457 0.556 0.512
n = 100 0.828 0.824 0.774 0.735 0.602 0.657 0.617
n = 200 0.842 0.844 0.821 0.748 0.667 0.711 0.656

σv = 0.15 n = 50 0.631 0.632 0.692 0.557 0.401 0.494 0.455
n = 100 0.708 0.705 0.655 0.624 0.524 0.579 0.556
n = 200 0.735 0.736 0.710 0.644 0.578 0.622 0.583

Note: all �gures are based on B = 1000 replications.
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Table 6: CES Scenario with Large Elasticity of Substitution

COLS SFA DEAC DEAV FDH order-m order-α

Mean Absolute Error (MAE):

σu = 0.2 σv = 0.05 n = 50 0.059 0.040 0.042 0.047 0.095 0.121 0.120
n = 100 0.067 0.038 0.049 0.047 0.109 0.151 0.168
n = 200 0.079 0.032 0.056 0.050 0.085 0.161 0.197

σv = 0.10 n = 50 0.124 0.063 0.096 0.083 0.094 0.117 0.117
n = 100 0.134 0.058 0.102 0.086 0.101 0.138 0.156
n = 200 0.160 0.054 0.125 0.102 0.084 0.148 0.186

σv = 0.15 n = 50 0.179 0.084 0.146 0.121 0.096 0.115 0.116
n = 100 0.194 0.069 0.155 0.129 0.103 0.131 0.148
n = 200 0.231 0.069 0.189 0.156 0.097 0.141 0.177

σu = 0.3 σv = 0.05 n = 50 0.056 0.042 0.037 0.052 0.126 0.153 0.152
n = 100 0.060 0.041 0.045 0.048 0.141 0.184 0.201
n = 200 0.073 0.033 0.049 0.048 0.105 0.186 0.223

σv = 0.10 n = 50 0.111 0.068 0.085 0.082 0.122 0.147 0.148
n = 100 0.120 0.064 0.092 0.081 0.129 0.170 0.189
n = 200 0.143 0.056 0.109 0.092 0.101 0.173 0.212

σv = 0.15 n = 50 0.167 0.087 0.133 0.117 0.123 0.144 0.145
n = 100 0.177 0.080 0.140 0.119 0.125 0.159 0.178
n = 200 0.211 0.074 0.168 0.140 0.108 0.162 0.201

Spearman Rank Correlation (RSP ):

σu = 0.2 σv = 0.05 n = 50 0.794 0.799 0.871 0.689 0.442 0.516 0.470
n = 100 0.888 0.884 0.830 0.774 0.565 0.578 0.518
n = 200 0.893 0.896 0.878 0.787 0.672 0.672 0.582

σv = 0.10 n = 50 0.632 0.633 0.695 0.561 0.361 0.452 0.415
n = 100 0.711 0.708 0.650 0.611 0.483 0.518 0.481
n = 200 0.735 0.736 0.709 0.633 0.554 0.579 0.515

σv = 0.15 n = 50 0.502 0.504 0.567 0.469 0.307 0.388 0.359
n = 100 0.561 0.560 0.514 0.485 0.396 0.435 0.418
n = 200 0.594 0.594 0.574 0.510 0.456 0.479 0.438

σu = 0.3 σv = 0.05 n = 50 0.843 0.854 0.927 0.734 0.528 0.614 0.564
n = 100 0.939 0.937 0.892 0.848 0.663 0.717 0.662
n = 200 0.937 0.944 0.933 0.849 0.745 0.781 0.711

σv = 0.10 n = 50 0.741 0.742 0.810 0.644 0.472 0.558 0.521
n = 100 0.828 0.825 0.770 0.729 0.596 0.654 0.616
n = 200 0.842 0.844 0.821 0.744 0.664 0.710 0.658

σv = 0.15 n = 50 0.632 0.633 0.696 0.560 0.408 0.492 0.460
n = 100 0.710 0.707 0.652 0.621 0.521 0.577 0.553
n = 200 0.735 0.736 0.710 0.641 0.576 0.621 0.584

Note: all �gures are based on B = 1000 replications.
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Table 7: Outlier Scenario with Small Extent of Outliers

COLS SFA DEAC DEAV FDH order-m order-α

Mean Absolute Error (MAE):

σu = 0.2 σv = 0.05 n = 50 0.156 0.042 0.075 0.063 0.096 0.120 0.119
n = 100 0.136 0.057 0.074 0.065 0.106 0.150 0.170
n = 200 0.260 0.057 0.172 0.105 0.088 0.149 0.194

σv = 0.10 n = 50 0.157 0.059 0.100 0.085 0.096 0.117 0.117
n = 100 0.160 0.064 0.110 0.094 0.101 0.140 0.160
n = 200 0.256 0.062 0.182 0.127 0.091 0.142 0.185

σv = 0.15 n = 50 0.196 0.081 0.138 0.115 0.100 0.117 0.116
n = 100 0.207 0.073 0.153 0.130 0.104 0.135 0.153
n = 200 0.279 0.069 0.211 0.164 0.104 0.139 0.177

σu = 0.3 σv = 0.05 n = 50 0.146 0.044 0.069 0.067 0.127 0.152 0.153
n = 100 0.088 0.051 0.053 0.054 0.140 0.188 0.208
n = 200 0.237 0.045 0.147 0.092 0.107 0.174 0.222

σv = 0.10 n = 50 0.155 0.065 0.095 0.087 0.126 0.149 0.149
n = 100 0.135 0.072 0.093 0.085 0.131 0.176 0.197
n = 200 0.237 0.062 0.163 0.116 0.106 0.165 0.211

σv = 0.15 n = 50 0.190 0.085 0.130 0.115 0.127 0.146 0.146
n = 100 0.182 0.085 0.134 0.118 0.128 0.165 0.186
n = 200 0.261 0.079 0.195 0.151 0.115 0.158 0.202

Spearman Rank Correlation (RSP ):

σu = 0.2 σv = 0.05 n = 50 0.793 0.802 0.776 0.641 0.373 0.525 0.498
n = 100 0.796 0.797 0.744 0.676 0.543 0.579 0.509
n = 200 0.850 0.850 0.620 0.594 0.554 0.631 0.563

σv = 0.10 n = 50 0.643 0.646 0.675 0.564 0.323 0.458 0.423
n = 100 0.633 0.633 0.606 0.562 0.475 0.517 0.480
n = 200 0.703 0.703 0.597 0.551 0.498 0.548 0.499

σv = 0.15 n = 50 0.515 0.518 0.564 0.477 0.284 0.396 0.360
n = 100 0.498 0.498 0.478 0.451 0.392 0.433 0.413
n = 200 0.574 0.574 0.528 0.479 0.433 0.464 0.430

σu = 0.3 σv = 0.05 n = 50 0.844 0.859 0.868 0.696 0.430 0.593 0.550
n = 100 0.885 0.888 0.871 0.808 0.648 0.703 0.644
n = 200 0.901 0.902 0.743 0.711 0.655 0.747 0.706

σv = 0.10 n = 50 0.747 0.754 0.786 0.638 0.408 0.545 0.508
n = 100 0.780 0.781 0.752 0.702 0.578 0.642 0.602
n = 200 0.817 0.817 0.720 0.672 0.605 0.682 0.648

σv = 0.15 n = 50 0.644 0.646 0.690 0.564 0.374 0.492 0.455
n = 100 0.666 0.666 0.637 0.601 0.508 0.567 0.543
n = 200 0.716 0.716 0.660 0.606 0.541 0.600 0.573

Note: all �gures are based on B = 1000 replications.
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Table 8: Outlier Scenario with Large Extent of Outliers

COLS SFA DEAC DEAV FDH order-m order-α

Mean Absolute Error (MAE):

σu = 0.2 σv = 0.05 n = 50 0.162 0.044 0.092 0.067 0.096 0.119 0.119
n = 100 0.189 0.076 0.131 0.101 0.099 0.140 0.162
n = 200 0.256 0.075 0.196 0.157 0.090 0.152 0.200

σv = 0.10 n = 50 0.174 0.061 0.109 0.087 0.096 0.116 0.116
n = 100 0.203 0.068 0.146 0.117 0.098 0.133 0.153
n = 200 0.277 0.070 0.211 0.173 0.094 0.145 0.190

σv = 0.15 n = 50 0.206 0.081 0.145 0.119 0.100 0.116 0.116
n = 100 0.234 0.072 0.175 0.145 0.104 0.131 0.149
n = 200 0.306 0.071 0.237 0.200 0.107 0.143 0.183

σu = 0.3 σv = 0.05 n = 50 0.152 0.045 0.083 0.069 0.127 0.152 0.153
n = 100 0.176 0.081 0.117 0.087 0.129 0.175 0.198
n = 200 0.267 0.085 0.196 0.159 0.107 0.174 0.227

σv = 0.10 n = 50 0.169 0.066 0.104 0.090 0.125 0.147 0.148
n = 100 0.188 0.084 0.135 0.107 0.124 0.166 0.188
n = 200 0.283 0.086 0.207 0.172 0.109 0.167 0.218

σv = 0.15 n = 50 0.194 0.086 0.134 0.116 0.126 0.146 0.146
n = 100 0.214 0.089 0.159 0.133 0.125 0.159 0.180
n = 200 0.302 0.089 0.226 0.193 0.117 0.162 0.208

Spearman Rank Correlation (RSP ):

σu = 0.2 σv = 0.05 n = 50 0.783 0.799 0.779 0.648 0.372 0.526 0.495
n = 100 0.751 0.752 0.608 0.614 0.545 0.586 0.537
n = 200 0.828 0.830 0.779 0.682 0.556 0.645 0.561

σv = 0.10 n = 50 0.645 0.655 0.663 0.564 0.325 0.461 0.423
n = 100 0.614 0.615 0.544 0.536 0.485 0.519 0.497
n = 200 0.701 0.702 0.666 0.599 0.509 0.567 0.508

σv = 0.15 n = 50 0.529 0.538 0.561 0.480 0.289 0.402 0.362
n = 100 0.494 0.495 0.456 0.445 0.406 0.438 0.428
n = 200 0.582 0.583 0.561 0.511 0.447 0.483 0.442

σu = 0.3 σv = 0.05 n = 50 0.835 0.862 0.861 0.703 0.426 0.590 0.549
n = 100 0.843 0.845 0.718 0.728 0.638 0.698 0.655
n = 200 0.896 0.899 0.844 0.758 0.639 0.754 0.705

σv = 0.10 n = 50 0.744 0.759 0.777 0.642 0.412 0.551 0.510
n = 100 0.756 0.757 0.674 0.666 0.580 0.639 0.611
n = 200 0.814 0.817 0.771 0.700 0.602 0.692 0.651

σv = 0.15 n = 50 0.647 0.655 0.685 0.566 0.379 0.497 0.457
n = 100 0.652 0.653 0.599 0.582 0.513 0.563 0.547
n = 200 0.719 0.720 0.690 0.630 0.552 0.616 0.582

Note: all �gures are based on B = 1000 replications.
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