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Abstract

This work investigates the interrelation between production efficiency and population size of German
cities. The productive efficiency in this context is the scale efficiency, which is a result of positive and
negative agglomeration externalities. The investigation is performed in a two-stage process. First,
the efficiency in terms of scale efficiency is measured using nonparametric methods. The second stage
investigates the relation of scale efficiency and populations size. It turns out that the optimal city
size in Germany is about 220,000 inhabitants, which is almost the mean size of all German cities
involved. Although there are regional differences, optimal city size remains stable as the mean size.
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1 Introduction

There are many reasons that encourage people and firms settling in a city. On the one hand, cities
embody forces making life more comfortable like closeness to other people, jobs, recreational and shopping
facilities or institutions necessary for life in modern economies. That closeness helps in saving time every
day and thereby increases leisure time as well as complement utility for a person within a city and
helps direct and indirect increasing the productivity for firms in that city. These forces are mainly
acknowledged as agglomeration externalities, which depend on size of the specific urban agglomeration.
Those agglomeration externalities are often referred to as Marshall-Arrow-Romer-externalities (Marshall
(1890), Arrow (1962), and Romer (1986)). On the other hand, there are signs for an urban overload as
city size increases. These pros and cons for urbanization are widely discussed and often referred to as
average urban benefits regarding the agglomeration externalities on the one hand and average location
costs on the other hand (Capello and Camagni, 2000, pp. 1484ff .). Forces for agglomeration externalities
are for example education facilities, health services, skilled jobs, infrastructure, and social contacts which
are supported by close relationships within a city. The productivity of individuals and firm are effected
because closeness to related people and firms helps saving time and increases the flow of knowledge
and ideas or at least the possibility for it. Also located education facilities improve the knowledge of the
inhabitants and employees in firms. In addition an often mentioned aspect is the larger job market within
a city which helps finding a job and thus participating in the production process as well as knowledge
transfer from one firm to another. On the opposite, there are forces indicating that too many inhabitants
on a certain area is producing negative externalities as well as costs of urbanization. These forces are
recognized for instance by pollution, intensive use of energy, noise caused for example by traffic, high
urban rents, as well as long and time intensive duty strokes. They effect the productivity because too
many inhabitants within a city produce negative externalities like traffic jam and noise which decrease
the productivity by higher transportation costs and higher rents or social friction in the labor market. Of
course these forces occur at specific levels of population or population densities, respectively. Although
these effects may also rise in non-urban areas they are mainly connected to urbanization effects.

Thus a growing population in cities is leading to increasing agglomeration effects, which are later neu-
tralized by negative effects of overpopulation. These considerations obviously should lead to an optimal
city size. Contrariwise, it is observable that especially the largest cities in most industrialized countries
are continuously growing, which stands in contrast to an optimal city size, if this is below the size of the
largest city. Therefore, the research questions that are trying to answer in this work are the following.
Is there an optimal city size in Germany? If that is the case, is the optimal city size in the range of the
observed cities or does it predict further growing cities. Does the optimal city size depend on the region
where the cities are located within Germany or is it the same for all cities?

The purpose of this work is to investigate the relationship between efficiency and population size of
German cities in a static setting. The efficiency in this context is the scale efficiency, which takes care
of the specific size of the particular decision making unit. Therefore, the approach employed in this
work is a two stage process. Firstly, the efficiency is measured in terms of scale efficiency, which involves
estimating the efficiency of each city once for constant returns to scale and once for variable returns to
scale and taking the ratio of both. The second stage investigates the relationship of the efficiency and
the populations size of the cities. It results, that there is an optimal city size in Germany. The optimal
city size is about 220,000 inhabitants, which is almost the mean of all German cities involved in this
investigation. Although there are regional differences, optimal city size remains stable as the mean of the
underlying cities.

The work is organized as follows. The following Section 2 presents the related literature. Section 3 gives
a brief overview on the applied methods and Section 4 describes the data used in the estimations. The
empirical results are given and discussed in Section 5. At the end of this work conclusions are drawn in
Section 6.

2 Literature Review

There are two separated branches in the literature related to this work. One is concerned with optimal city
size and the other investigates spatial efficiency or productivity. A brief review of the received literatures
is given in the following. Another part of the literature concerning the optimal city size focuses on the
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size in terms of pure area size, see for example Henderson (1975). Because this work deals with size in
terms of population of the city, that part of the literature is not considered further.

Often times the Henry George Theorem is applied for the analysis of optimal city size and tested whether
it leads to an analytic rule to test city sizes and thus encourage cities to grow up to an optimal size. The
Henry George Theorem originally states that in any Pareto optimal allocation government spending on
a pure local public good is equal to land rents (Arnott, 2004, p. 1058).

Early insights of optimal city size with respect to the Henry George Theorem are given by Arnott and
Stiglitz (1979). Their model of an optimal city size can be analyzed by the relation of aggregate land
rents and expenditure on a pure local public good in a city. Furthermore, they point out conditions
where the model does not work for, like small economies and differing land rents. One result is that
in large competitive economies with Pareto optimal distribution of economic activity and defined land
rents the Henry George Theorem holds. Therefore, they derived rules for checking whether population
size is optimal. For a single city, Arnott (1979) shows that for the optimal city size the differential land
rent has to be equal to the expenditure on the public good, which is the only incentive for urbanization.
Arnott (2004) investigates, whether the Henry George Theorem leads to a practical rule for optimal city
size. Discussing the Henry George Theorem and presenting the disadvantages, he works out a generalized
version of the theorem, which allows for multiple outputs and multiple factors as well as heterogeneous
individuals. This version states that in an optimal sized city the aggregate land rents have to be equal
to the expenditure on the pure local public good. But for the generalized Henry George Theorem it
turns out, that aggregate profits should be zero for each spatial unit of replication for any Pareto optimal
allocation. Based on available data it is difficult to estimate those models directly, thus Arnott discusses
the analysis of Kanemoto et al. (1996), who firstly used the idea of Henry George in their investigation
of optimal city size. They use data for Tokyo with many restrictions on the Henry George Theorem.
Kanemoto et al. (1996) investigate the size of Japanese cities with special emphasis on Tokyo. On the
one hand, they are able to state that Tokyo is not too large. The conclusion is that Tokyo is not too
big thus there is no optimal size for cities within the observable range of city size in Japan. On the
other hand, Arnott (2004) states, that they do not use the main idea of Henry George thus it is still
questionable whether an optimal city size in the terms of Henry George Theorem could be established.

Sveikauskas (1975) and Segal (1976) show that Hicks-neutral productivity increases by city size. The
critique by Moomaw (1981) makes clear that Sveikauskas estimates are biased upward by omitting capital
intensity or capital as explanatory variables, respectively. Nonetheless, Sveikauskas (1975) estimates
significantly positive linear correlation between city size and productivity for almost all manufacturing
industries while he also controlled for education and regional differences. Since he just investigates a
linear relationship he is only able to show that bigger cities have higher labor productivities. Thus it
would not result into an optimal city size below infinity or whole citizenship, respectively. Segal (1976)
on the other hand finds scale effects in cities by estimating production functions of the 58 largest US
cities. Using ordinary least squares estimation he finds constant returns to scale for production output
and labor productivity but also positive and significantly effects of city size. Thus metropolitan areas
with 2 million and more inhabitants have significantly higher labor productivity compared with smaller
metropolitan areas. Since Segal only investigates the largest cities the only viable result is that, if a city
is already large it is optimal to grow further and therefore no optimal size exists within the range of
observable city sizes.

For the US cities Yezer and Goldfarb (1978) estimate that the optimal city size is in the range of 1.5 to 2.5
million. They investigate the wage changes by region, occupation, and population size and compare these
with changes in firm efficiency related with changes in city size. The first effect reflects the household
costs. While the latter is based on Segal (1976) but with differing production functions for different
industries and therefore different types of cities in line with Henderson (1974). Thus the optimal city
size is in the equilibrium of output value maximization of firms and household decisions based on average
household costs.

A cross-section analysis for 58 Italian cities is given by Capello and Camagni (2000). They separately esti-
mate average location benefits and costs as a function of city size as well as their squares and interactions
with other variables, which are the type of urban function development and network integration level.
Average location benefits and costs are calculated as unweighted sums of many different indicators (for
instance the use of energy per capital as benefits and number of vehicles per squared kilometers). With
respect to average location benefits they estimate an inverted U-shaped curve with maximum at 361,000
inhabitants. Concerning urban overload by investigating average location costs they get an U-shaped
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curve with minimum at 55,500 inhabitants. Unfortunately, they do not show in which range of city size
average location benefits are above average location costs, which is obviously caused by the somewhat
questionable measurement that makes them incomparable.

As Alonso (1971) points out, the minimum of the average urban costs are not of interest but the point
where marginal costs equals marginal product for cities. At this point the level where average products
minus average urban costs are of the highest positive amount for the whole economy, because at this level
disposable income is maximized. Thus it is not a question of optimal city size but of efficient city size!
Comparing Germany, Japan, and the US it turns out that the highest excess of average product over
average public cost is for the population size class of 200,000 and bigger for Germany in 1964, which is
not further disaggregated. A brief literature overview about optimal city sizes developed by minimizing
urban public costs is given by Richardson (1972). He concludes that there are many mostly philosophic
approaches in the analysis without concerning a specific range of efficient city sizes or even a measurable
dimension for city size. This range would encourage a critical minimum size as well as a theoretical
maximum size.

On the other hand there is a lot of literature about non-parametric estimation of efficiency and produc-
tivity. Because this work deals with cities as aggregate of many firms and households, a brief review of
literature dealing with efficiency analysis for spatial decision making units is given.

A good overview is given by Worthington and Dollery (2000), who also include efficiency analyses for
firms and specific industries. Closely related is the work of Charnes et al. (1989), who employ data
envelopment analysis (DEA) techniques for analyzing the economic performance of Chinese cities. They
also investigate returns to scale for depicting the most productive scale size, which is introduced by
Banker (1984). The results show that Shanghai and smaller cities define the most productive scale size
but these results are not linked with population figures as a measure of size.

Susiluoto and Loikkanen (2001), Loikkanen and Susiluoto (2004), and Loikkanen and Susiluoto (2006)
investigate Finish regions and cities by DEA methods. In Susiluoto and Loikkanen (2001) it is obvious,
even it is not the goal of that work, that bigger cities, including Helsinki, achieve the highest DEA
efficiency scores while the lowest results are examined for smaller cities between 1988 and 1999. Although
it is not empirically supported and there are indicators for geographical (north-south) patterns, the
results support agglomeration effects. Loikkanen and Susiluoto (2006) estimate a significantly negative
correlation between DEA results and population size for the whole period of investigation from 1994
to 2002, which stands in contrast to the observations of the former work. Furthermore, Loikkanen and
Susiluoto (2004) use Tobit regressions, which result in positive estimates of population size in explaining
inefficiency. Therefore, smaller cities are more efficient in Finland according to this study.

Halkos and Tzeremes (2010) analyze Greek prefectures by DEA methods and also present population
density and changes of it. It turns out that the most efficient areas are not the most densely populated,
although it is not an analysis of cities. Major changes in the industry structure and institutional setups
as well as EU regularities in Greece cause some doubts regarding the results, because he does not control
for that changes.

Altogether, there is a lot of evidence for optimal city size but also for strong agglomeration effects, which
could dominate increasing urbanization costs for the whole range of possible population sizes and thus
leads to continuous increasing efficiency by city size. The aim of this work is to merge both approaches,
which are efficiency analysis and the investigation of optimal city size, and apply them to data for German
cities for a measure of efficient city size.

3 Theory

The investigation in this work is implemented by a two-stage analysis. In the first stage the specific
efficiency is measured for every unit of interest i.e. the cities in Germany. In a second stage these
efficiency measurements are taken as given and their relationship with population size is examined in
different regression setups. Those setups incorporate quadratic, cubic, and non-parametric models in
ordinary least squares, robust linear fit, and least median of squares estimations.

The efficiency of cities is measured by data envelopment analysis (DEA), which was developed by Charnes
et al. (1978). This approach enables the construction and analysis of efficiency of general decision making
units, which are cities in this work with multiple inputs and outputs without requiring any information
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about specific prices or the underlying production function. A good introductory overview about DEA
and distance functions is given by Coelli et al. (2005).

The output distance functions implemented in this work are those described by Shephard (1970) for
constant returns to scale (CRS) as well as variable returns to scale (VRS). These distance functions are
the reciprocals of those described by Farrell (1957). It is convenient to use both approaches because the
underlying production function in all cities does not have to be described by constant returns to scale.
These efficiency measurements by Shephard have values between zero and one. The value of one marks
the most productive cities. The measure of scale efficiency (SE) for each city is the ratio of the distance
function at CRS divided by the distance function at VRS.

There are two possible representations for an output distance function of a city i. These are defined as:

θi (xi,yi) = max {θ | (yi · θ) ∈ P (xi)} , (1)

and

δi (xi,yi) = min {δ | (yi/δ) ∈ P (xi)} , (2)

where xi and yi are the (12× 1) and (6× 1) vectors for inputs and outputs for city i, since there are 6
sectors in tha data set with one output and two input factors in each sector (see Section 4). P (xi) is
the output set, which describes the production functions. In Eq. (1) the θ is the distance for which θi
is the maximum value, and in Eq. (2) δ is one possible distance functions for which δi is the minimum,
respectively. Eq. (1) is the representation equivalent to Shephard (1970, p. 207) with output orientation,
which is used in the analysis of this work. Contrarily, Eq. (2) is the equivalent to Eq. (1) based on
Farrell (1957), which is the more common representation used for example in Coelli et al. (2005). The
calculation of the distance functions needs non-negative inputs and outputs, thus it is necessary to put
special emphasis on the inputs and outputs as well as on their proper measurement.

To get estimates for the output distance functions for each city the DEA approach is used. For DEA
measurements a linear programming model has to be solved. The linear programming involves finding the
maximum of weighted outputs, which are still part of the production possibility set. Due to the duality
in linear programming it is equivalent to find the minimum of weighted inputs and is called envelopment
form. The envelopment form for constant returns to scale is

min
θ,λ

θCRS,i, (3)

st − yi + Y λ ≥ 0

θxi −Xλ ≥ 0

λ ≥ 0,

where θCRS,i is the efficiency score for a particular city i, Y is a 6×N matrix containing all 6 outputs in
the N cities, λ is a N × 1 vector of weights, and X is a 12×N matrix for the 12 inputs in the N cities.

For variable returns to scale one constraint is added to Eq. (3). That additional constraint is 1′λ = 1
and leads to the linear program in Eq. (4)

min
θ,λ

θV RS,i, (4)

st − yi + Y λ ≥ 0

θxi −Xλ ≥ 0

1′λ = 1

λ ≥ 0.

Solving all models for all cities results in one estimate for the technical efficiency for CRS and one for VRS
for every city. Based on these results for technical efficiencies, scale efficiency SEi in city i is calculated
as the division of the technical efficiency for CRS divided by the technical efficiency for VRS
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SEi =
θCRS,i
θV RS,i

. (5)

Because the technical efficiency for CRS is smaller or equal to the technical efficiency for VRS, the
measurement for scale efficiency is always in the range between zero and one, with one for scale efficient
and smaller than one for scale inefficient city. The detailed calculated results are listed in table 5 in
the appendix. Notice, the measurements for technical efficiency are in terms of Shephard (1970) with
output orientation and so they are smaller or equal to one, which represents the proportion of efficiency.
The measurement for scale efficiency gives the percentage of inefficiency of the city. Furthermore, a
scale efficiency of one indicates the most productive scale size measured in output quantities caused
by the output orientation of the DEA (Banker and Thrall (1992)). The most productive scale size is
characterized either by one city or a range of cities. Cities with scale efficiency coefficient less than one
do not have the efficient size and are either too small or too large . Although, it should be considered
that scale efficiency does not imply that the city or the sectors within the city are technical efficient
by constant or variable returns to scale. This can be seen in table 5 in the appendix, which points out
that Wolfsburg has the value of one for scale efficiency but the same technical inefficiency for constant
and variable returns to scale. All other scale efficient cities are also technical efficient for constant and
variable returns to scale. These scale efficient cities could be exclusively used to determine the optimal or
efficient city size. But since it is a range of city sizes and to some extant measurement errors are present,
these intervall is reduced to one solely measure for optimal city size by a linear regression.

To test whether population size has a relation with scale efficiency two different linear models are applied.
These models need a quadratic term for population size to estimate optimal population size with respect
to scale efficiency or average productivity, respectively. Thus an optimal city size exists when the linear
term has a positive coefficient and the quadratic term has a negative coefficient. In addition, cities
population distribution in Germany follows an exponential rule, i.e. the number of cities decreases by a
constant when the population increases by that constant, which is commonly known as Zipf’s-Law which
described in Zipf (1949). Zipf’s -Law is also called the rank-size rule which is described for instance
in Richardson (1972) or Nitsch (2005) and states that the rank of a city is described by the number
of inhabitants of the largest city divided by the population of that city. Thus the distribution of cities
can be described by an exponential function. Therefore, it is proper to use logarithms of population
in the specifications to avoid that the biggest cities leverage the estimates caused by the exponential
distribution. The model, which is tested, is in specification I

SEi = β0 + β1log(populationi) + β2 (log(populationi))
2

+ ui, (6)

with ui the residuals in city i. The empirical results for Eq. (6) should result in an inverted U-shaped
functional form with one maximum point. Thus β1 should be significantly positive and β2 significantly
negative. To check the correctness of the specification of the quadratic model of specification I a cubic
function is also estimated. This cubic model is represented by specification II in form

SEi = β0 + β1log(populationi) + β2 (log(populationi))
2

+ β3 (log(populationi))
3

+ ui, (7)

with β3 the estimator for the cubic term, which should not be significant if the correct model is quadratic.
Therefore the test for the quadratic model is whether the cubic term has a significant effect on scale
efficiency.

4 Data

In this analysis a data set for 112 NUTS3-districts that are classified as cities (so called “kreisfreie Städte”
or “Stadtkreis” in Germany)1 is used. The time period for which data are available is 1998 until 2007.
The data are taken from the regional database of the Statistical Offices of Germany2 (“Statistische Ämter
des Bundes und der Länder”) and the INKAR database of the Federal Agency of Building and Urban

1A list of the included cities is given in the Appendix.
2The dabase is available on internet by https://www.regionalstatistik.de/genesis/online/logon (last check on 30th May

2011).
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Development3 (“Bundesamt für Bauwesen und Raumordnung”). It is a balanced panel, so for all cities the
number of employees and the value added is known for each sector in every year. The sectors are defined
at an one-digit industry specification (WZ 2003 of the Federal Statistical Office of Germany (Federal
Statistical Office (2003)) which is a level of aggregation equivalent to the European wide classification
NACE Rev. 1.1):

AB agriculture, forestry, and fishing

CDE wide manufacturing (including mining/quarrying, energy and water supply)

D core manufacturing

F construction

GHI private non-financial services

JK financial and business services (finance, insurance, and real estate)

LMNOP public and social services

Because of the minor importance of the agriculture, forestry and fishing sector in German cities the sector
AB has been omitted. As Moomaw (1981) critized that the disregard of the capital stock in Sveikauskas
(1975) leads to biased estimates, the capital stock has to be added. The capital stock for each city and
the wide manufacturing sector is computed with the perpetual-inventory-method (Park, 1995) supposing
capital stocks capi,t develop as

capi,t = (1− d)capi,t−1 + invi,t, (8)

with d the constant depreciation rate and invi,t the city specific investments in the wide manufacturing
sector for each city i at time t. Furthermore, if investments change with constant growth rates ginv,i the
starting capital stock at time t = 0 can be calculated as

capi,0 = invi,0 ·
1− ginv,i
d+ ginv,i

. (9)

Eq. (9) is the result of the capital accumulation with investments growing at a constant rate and therefore
leading to an infinite geometrical series.

The data of investments in the wide manufacturing sector is also taken from the regional database of the
Statistical Offices in Germany for the time period 1995 until 2007 in real units and is given without the
energy and water supply industry. The starting capital stock is estimated for 1995. The average annual
depreciation rate is set to 10 percent per annum (d = 0), which is quiet high but results in positive capital
estimation caused by massive changes in investments in the first period of observation. The average
growth rates of investments is calculated by the development of investment figures. Unfortunately, for
some cities (Cottbus, Potsdam, and Stralsund) the growth rates of investment were shrinking by more
than 10 percent, caused by immense changes after the German Reunification and the associated structural
changes in the industry. Therefore, the average growth rates for all cities in East-Germany was applied
which is above minus 10 percent and thus the denominator in Eq. (9) is positive which results in positive
starting capital stocks for all cities. Because of the higher uncertainty in the estimates of capital figures
for the first years of observation, the figures should be treated with caution especially for the first years
until the starting capital stock is furthermore depreciated and the capital stock is largely driven by last
investments. Therefore, only the average of the last 5 years is used in further estimations, which implies
that the first 9 years before the year 2004 for capital are out of consideration. Thus the starting capital
stock depreciated away to 40 percent in 2004 and thereby reduces the involved uncertainty in that input
factor. The captial stock for the other industry sectors is calculated based on the capital intensity in
the wide manufacturing sector for each city and the ratio of captial intensity of the wide manucaturing

3The database is available on CR-ROM upon request to the Federal Agency of Building and Urban Development
at http://www.bbsr.bund.de/cln_032/nn_187652/BBSR/EN/Home/homepage__node.html?__nnn=true (last check on
30th May 2011).
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sector compared to the other industry sectors in whole Germany, which is given by the OECD Database
for Structural Analysis (STAN4) .

Population figures are also taken from the regional data base of the Statistical Offices in Germany. A
person is only counted for a city if it has the principal residence within this city. So the figure does not
account for people with secondary residence to avoid double countings, although many people have a
secondary residence in a city and are part of those productive employees. Nonetheless, the use of the
population figures for the number of inhabitant within a city is permitted, because people that spend
more than half of their time in the city are required to have their principal residence in that particular
city.

All variables in the analysis of Section 5 are used as the arithmetic average over the years 2004 until
2008. Descriptive statistics are given in table 1 with value added and capital stock in Euro [€] and labor
force and population in thousand [T].

Table 1: Descriptive statistics

variable Min. 1st Qu. Median Mean 3rd Qu. Max. SD
value added [€] 919,000 1,875,000 3,975,000 7,740,000 7,372,000 73,390,000 12,470,104
capital [€] 100,400 4,535,000 10,140,000 26,410,000 25,610,000 282,000,000 46,803,062
labor force [T] 18.42 43.33 76.12 139.70 137.30 1,551.00 209.38
population [T] 35.28 64.67 120.60 231.70 239.80 3,396.00 387.15

Table 1 shows that there are many small cities with low average value added in the total industry in
the years 2004 till 2008 as well as low capital stock, labor force, and population in the time span. That
distribution results in a median of each of these variables that is much lower than the respective mean.
The median is almost of half the size of the respective mean for each variable and the mean is in the fourth
quartile except for population. This indicates that the largest cities are of such a size that they have
a strong influential power on the estimation of the mean and consequently on the standard deviation
(SD). The descriptive statistics indicate the skewness of the data, which results in an heteroscedastic
distribution of the data, with a decreasing variance in city size caused by many different small cities.
The skewness of the cities does not effect the efficiency analysis, which relies on relative measurements.
For further analysis the data has to be transformed to become more narrow. That is done by taking
the logarithm of population. Furthermore, all input variables as well as value added as output are
non-negative as required in DEA.

5 Empirical Results

In this section the estimation results for population size on scale efficiency are presented and discussed.
Furthermore, an illustration (figure 2) for scale efficiency is given in the appendix, where the largest cities
with over half a million population size are pointed out by boxes. That figure demonstrates the local
distribution of the cities with their efficiency scores as well as the regional distribution of the largest
cities. In addition, it can be seen in the figure that the largest cities are not necessarily the cities with
highest efficiency scores. Also there is no specific region in Germany that only locates cities with low
efficiency score and thus it is obvious that the efficiency scores are not asymmetric distributed over the
German regions.

The estimations are performed by several methods. Since there are just four observations with the value
of one for scale efficiency (compare table 5 in the appendix) the estimations can be performed by normal
regressions and do not have to be performed by Tobit or Logit regressions for trancated observations.
These methods involve ordinary least squares (OLS), least median of squares (LMS), and robust fit
MM-estimations. The OLS estimation minimizes the sum of squared residuls

min
β

N∑
i=1

(ui)
2

= min
β

N∑
i=1

(yi − xiβ)
2 (10)

4The database is available on the internet by http://stats.oecd.org/Index.aspx?DatasetCode=STAN08BIS&lang=en
(last check on 30th May 2011).
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with the solution β̂OLS =
(
X ′X

)−1
X ′y and xithe i -th row within the explanatory matrix X in the city

i. The OLS-method is the best linear unbiased estimator, if some assumptions hold, like homoscedasticity
of the residuals.

By considering the distribution of city size with many small cities and only few largest cities it can be seen
that the variance is declining and thus results in a heteroscedasticity problem. That problem leads to
inefficient OLS estimations and wrong standard errors. Therefore, standard errors for the OLS estimates
are calculated with a heteroscedasticity consistent covariance matrix, which is estimated by

(
X ′X

)−1
X ′ΩX

(
X ′X

)−1 (11)

with

Ω = diag

[
u2
i

(1− hii)
2

]
. (12)

Eq. (11) together with Eq. (12) represent the HC3 matrix as denoted in and Long and Ervin (2000). X
is the p×N -matrix containing the explanatory variables and constant, with p the number of coefficients
that are estimated, i.e. constant plus 2 explanatory variables in the estimation of specification I and 3
for estimation of specification II, and N the number of cities, which is 112. As weighting the leverage of
observation i is taken hii = xi

(
X ′X

)−1
x′i, which is the ii -element in the Hat-Matrix. The leverage of

the observation hii is between 1/N and one with high values for leverage points. MacKinnon and White
(1985, p. 313) and also Long and Ervin (2000, p. 222) show by experiments that the HC3 matrix is
prefereable especially for small sample sizes smaller 250, which is the case in this analysis. The remaining
problem is the presence of outliers in explaining and explanatory variables. Since the OLS approach is
not robust against those outliers, the estimates are biased. Therefore, further methodes are applied that
are more robust against outliers.

One robust estimation approach is the LMS method of Rousseeuw (1984), which minimizes the median
of squared residuals instead of the sum as OLS does. The objective function is

min
β

mediu2i (13)

There is no analytic solution for the LMS-method and thus the residuals have to be compared with
other solutions with respect to minimize the median of the squared residuals. The advantage of the
LMS estimation is that it is much more robust against residual outliers than the OLS estimation. The
breakdown point, which states how many percent of the observation which are allowed to diverge without
changing the estimates is 0.5 for the LMS method indicating the robustness of this method and its results,
respectively. This insensitivity with respect to outliers explains the differences of the estimates of LMS
and OLS. These estimations are performed by use of the R package MASS. Although LMS-results are
highly robust, the results are inefficiency. Thus additional methods are needed which are not only robust
but also efficient.

An additional robust method is the MM-estimation as described in Yahai (1987) in order to regard
random regressors with possible outliers. The MM-estimator consists of three steps, where two different
maximum likelihood type estimations have to be solved. First an initial regression estimate β̂0 has to be
found, which should be robust by means of a high breakdown-point. That breakdown-point determines
the robustness of the MM-estimation since this breakdown-point is not being decreased by the following
steps. The applied robust method for getting the starting estimation is the iterated re-weighted least
squares (IRWLS) method as described in Yahai (1987) or Maronna et al. (2006). The IRWLS approach
is computed in the three following steps:

1. Compute initial starting point for the estimate of β̂0 by least absolute deviation estimation and
scale ŝ, with

min
∑N
i=1 |ui| with ui = yi − x′iβ̂0 and ŝ = 1

0.675medi (ui | ui 6= 0).

2. Iterate the estimatation of β̂k for k = 0, 1, 2, 3, . . . with the constant scale ŝ by

solving
∑N
i=1 wi,kxi

(
yi − x′iβ̂k+1

)
with ui,k = yi − x′iβ̂k and wi,k = W

(
ui,k

ŝ

)
with W () a nonin-

creasing function for positive arguments.
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3. Stop the iteration when maxi (|ui,k − ui,k+1|) /ŝ < ε.

The second step of the MM-estimation computes the M-scale ŝN , which is the scale for the residuals ui
resulting of the initial regression estimate β̂0. This is a maximum likelihood type estimation and therefore
gives the first M in the name of the method. The objective function is

min
β̂

N∑
i=1

ρ0

ui
(
β̂0

)
ŝN

 (14)

with the first order condition

N∑
i=1

ψ0

ui
(
β̂0

)
ŝN

xi = 0, (15)

where ρ0 () is a real function in the residuals which are scale invariant by the M-scale ŝN and ψ0 () is the
first derivative of ρ0 (). The properties of the function ρ0 () are given in Huber (1981) or Yahai (1987),
for instance symmetry, continuity, a supremum between zero and infinity, and monotonic increasing for
positive values where ρ0 (0) = 0. The sum in Eq. (14) devided by N and the supremum of ρ0 () has to be
0.5, such that the breakdown-point of the estimater is 0.5. In that step the initial regression estimate and
the resulting residuals of the first step are taken as given and Eq. (14) is minimized by the M-scale. The
third step minimizes a different maximum likelihood type function ρ1 () ≤ ρ0 () with the same supremum
and the M-scale ŝN of the second step taken as given

min
β̂

N∑
i=1

ρ1

ui
(
β̂1

)
sN

 . (16)

This estimator is another maximum likelihood like estimation, which justifies the second M. Yahai (1987)
shows that the estimates found by those steps are as robust as the LMS-method with a breakdown-point
of 0.5 but are highly efficient. For further explanations see Maronna et al. (2006).

Table 2 shows the results for both specifications in Eq. (6) and Eq. (7) and for robust fit, ordinary least
squares (OLS), and least median of squares (LMS) estimation. All Computations are performed with R
using the package FEAR for DEA as well as robustbase, which covers the book Maronna et al. (2006),
for the nonparametric methods and least median of squares estimations. The functions of the package
FEAR are described in Wilson (2008).

Table 2: Regression results for specification II and II

specification I specification II
MM OLS LMS MM OLS LMS

intercept -0.844 * -2.625 * 0.088 -3.948 0.659 6.329
(0.476) (1.544) (0.357) (4.544) (27.058) (4.141)

log(population) 0.297 *** 0.598 ** 0.153 ** 1.063 -0.200 -1.360
(0.076) (0.261) (0.059) (1.093) (6.772) (1.018)

(log(population))² -0.012 *** -0.025 ** -0.006 *** -0.075 0.039 0.115
(0.003) (0.011) (0.002) (0.087) (0.563) (0.083)

(log(population))³ 0.002 -0.002 -0.003
(0.002 ) (0.016) (0.002)

R² 0.195 0.239 0.106 0.169 0.241 0.134
Note: Significance is denoted by *** on 1%, ** on 5%, and * on 10% level (standard errors are reported in parentheses).

Table 2 shows that the linear term and the quadratic term for logarithm population size is significant at
least at 5 percent level of significance for every approach. Furthermore, the estimates are of expected sign
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so that population has an inverse U-shaped distribution on scale efficiency. The results for specification
II are not significant at all. Therefore, collinearity diagnostics have been computed like the condition
number of the X matrix for specification II as well as variance inflation factors for both specifications
(Fox and Monette (1992)). Both diagnostics indicate that collinearity is a problem in the underlying
data by a condition number larger than 100 and high variance inflation factors for the population size
variables. This is not surprisingly since the logarithm of population size is in the range between 10
and slightly above 15 which results in almost proportional quadratic and cubic terms. Altogether, the
regression results in table 2 indicate that specification I is preferable and the distribution is quadratic
with an inverted U-shaped design.5

The coefficient of determination R², which is maximized by OLS estimation, is calculated as described
in Hayfield and Racine (2008)

R² =

(
ΣNi=1

(
SEi − SE

) (
ŜEi − ŜE

))2
ΣNi=1

(
SEi − SE

)2
ΣNi=1

(
ŜEi − ŜE

)2 , (17)

the fitted values for the regressand have a different mean (ŜE) than the observations (SE), in which
case the sum of the residuals is not equal to zero. The robust estimations leave some observations out of
recognition or down weight these observations, respectively. As a result the estimated errors do not have
a zero mean reasoning the use of Eq. (17), with the mean of the fitted values instead of the mean of the
observed values as stated in Hayfield and Racine (2008).

By the definition in Eq. (17) the coefficient of determination is the squared correlation of the observed
regressand to the fitted values of the regressand. Because the correlation is in the range between minus
one and plus one, the resulting coefficient of determination is between zero and one. It should be noticed
that this coefficient of determination is used in the cases of the robust linear fit estimations (MM) as well
as the least median of squares estimations. These estimations are more robust than the ordinary least
square estimations against some violations of its underlying assumptions, i.e. the normal distribution of
the error term, which implies no outliers. In cases, where outliers are present, the robust estimations
better fit to most observations except the outliers, which results in lower coefficients of determination.

The maximum of scale efficiency with respect to the logarithm of population in the case of MM-estimation
is at 0.296831

2·0.012059 = 12.30745 (with exact figures) or about 221,338 for population in total. In case of the
OLS estimation the optimal city size is 0.598295

2·0.024885 = 12.02120 (with exact figures) or about 166,242 for
population in total, and for LMS estimation the result is 0.152813

2·0.006499 = 11.75665 (with exact figures) or
about 127,600 for population in total, respectively. Thus the maximum points are always in the range
of observed population size. Figure 1 illustrates the fitted values for specification I as well as a kernel fit
estimation.

5Additionally, a regression equation specification error test (RESET, Ramsey (1969)) has been performed, which was
not able to reject the null hypothesis of no misspecification for specification I.
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Figure 1: Fitted estimates for quadratic models and kernel regression
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Figure 1 shows the fitted values for all approaches in specification I as well as the estimated function for
a nonparametric kernel fit estimation. For the nonparametric kernel fit regression a bandwidth has to be
chosen. This bandwidth is fixed at 0.32 with respect to the underlying data in logarithm of population as
the only explanatory variable by least squares cross-validation. A kernel function is a weighting function
for the observation and the weights depend on the bandwidth. Since the underlying explanatory variable
is continuously, a second order Gaussian kernel is implemented as described by Hayfield and Racine
(2008). The computation is performed with R and the package np, which is explained by Hayfield and
Racine (2008). For more details on kernel functions see Aitchison and Aitken (1976) or Li and Racine
(2003).

As it can been seen from the figure the global maximum point for the kernel fit regression is below 12
for the logarithm of population and thus of almost the same amount as the LMS estimation. There is a
local maximum point at over 14 for the logarithm of population, which results as a spurious outcome of
the data sparsity in this region/at this size and can be explained by the 4th to 2nd largest cities.

Figure 1 points out the estimated graph and the maximum points of each approach as well as reasons
for the specific results. For instance the OLS estimation is influenced by few inefficient observation with
low population size as well as the largest observation, which is the capital Berlin with a relative low
scale efficiency. Furthermore, the maximum points are around 12 for the logarithm of population, that is
160,000 in total population size. Tukey (1979, p. 103) writes: ”It is perfectly proper to use both classical
and robust/resistant methods routinely, and only worry when they differ enough to matter. BUT when
they differ, you should think HARD.”. Thus it is the question whether the differences in the optimal
city size are of a reasonable magnitude and when this is the case which result is more trust-worthily.
The figure demonstrates that there are many inefficient observations for small cities with population less
than 100,000 and cities with population between 270,000 and 730,000 inhabitants. These observations
influence the OLS estimation (the fitted or estimated scale efficiency is not as high as for the robust
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estimations) and cause heteroscedasticity6 and may contain outliers. Therefore, the OLS estimation does
not seem to be proper for these observations. In addition, the kernel regression fit has two maximum
points, with the global maximum point at below 12 and a local maximum point at over 14 for the
logarithm of population, which is caused by the inefficient observation in the range between 12.5 and
13.5 that result in the local minimum point between 12 and 13 for the logarithm of population. Thus the
kernel regression seems also to be inadequately to describe the observation, which may be different for
other bandwidth but is not further estimated in this work caused by its nonparametric character which
prevents further interpretations. The robust estimations, especially the robust linear MM-estimation,
with quadratic term for the logarithm of population fits the observations best and therefore an optimal
city size of about 220,000 inhabitants, which is the result for the robust linear fit model, is most proper
for these observations. These findings are also supported by the empirical results in table 2, which states
that the robust linear fit MM-estimator in specification I has an higher coefficient of determination than
the LMS-model and is only slightly below the R² of the OLS-estimation. Interestingly, the maximum
point at about 220,000 inhabitants is almost the mean of the observed cities population in Germany
(compare with table 1).

Furthermore, the robust linear fit model (MM-estimation) is employed for investigating geographical
differences in Germany, to answer the question of whether or not there are differences for the optimal
city size. The comparison is investigated for east and west Germany as well as for north and south
Germany. Possible geographic differences may be explained by the historical transitions of some areas in
Germany. Such a transition is cause by the German Reunification 1990 which leads to a change of the
economic system associated with massive subsidies of west German economy. There were still differences
in the economic performance in both parts observable as shown in Kirbach and Schmiedeberg (2008) or
Sinn (2002). An other transition is caused by the structural change in north Germany by the decline of
the shipbuilding industry and the economic transformation in North Rhine-Westphalia from a coal and
steel region to hightech industries like microsystems (Jakoby (2006)). The comparisons ire performed
by separated estimations for each area. The estimation approach is the robust linear MM-estimater,
which best considers the heterogeneity of the observed cities and outliers. The border is the former
inner-German border before the German Reunification 1990. Thus all 22 cities of the former German
Democratic Republic are accounted for east Germany except Berlin which is viewed as a west German
city. The results are presented in table 3.

Table 3: Results for optimal city size in West- and East-Germany

east Germany west Germany north Germany south Germany
intercept -10.316 -0.836 ** -1.761 * -0.966

(7.154) (0.408) (1.044) (0.629)
log(population) 1.895 0.297 *** 0.437 *** 0.321 ***

(1.234) (0.065) (0.166) (0.100)
(log(population))² -0.080 -0.012 *** -0.017 *** -0.013 ***

(0.053) (0.003) (0.007) (0.004)
N 22 90 56 56
R² 0.274 0.218 0.192 0.182
Note: Significance is denoted by *** on 1%, ** on 5%, and * on 10% level

(standard errors are reported in parentheses).

As table 3 shows there are differences in the estimates for east and west Germany and the estimates for
east Germany are not significant at 10% level due to the small number of observations (N). The optimal
city size for west German cities is 0.29694

2·0.012105 = 12.26518 for the logarithm of population or 212,178 for the
total population, respectively. This result is almost the same as for whole Germany since most cities are
treated as west German cities. The optimal city size for east German cities is 1.8954

2·0.0795 = 11.92075 for the
logarithm of population or 150,355 for the total population, respectively. Thus the optimal city size for
cities in east Germany is much smaller than the counterpart for west Germany cities. In addition, the
coefficient estimate for the quadratic term in east Germany is much higher as the one for west Germany,
which indicates that the same amount of exceeding or shortfalling of city size results in a much higher loss

6A Breusch-Pagan-Test is performed but not reported here, which rejects the null-hypothesis of no heteroscedasticity at
5% level of significance.
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of scale efficiency for east German cities. This conclusion is also visualized by figure 3 in the Appendix.
Even when Berlin is treated as an east German city (which is not reported here, but is available upon
request) the results remain stable indicating the robustness of the previous results. In addition, the
coefficients of determination are quite high although the robust linear MM-estimator is applied.

The second comparison, namely between north and south Germany looks for north-south-differences
within Germany. To have an equal number of cities in both regions the line of discrimination between
both regions is drawn at the latitude of the median city which has the latitude of 50.94°N. Thus almost
all east German cities except for the three most southern located are treated as north German cities.

The results shown in table 3 is again that there is an optimal city size for both regions caused by the
inverted U-shaped shape of the relation between scale efficiency and population size. Although the
estimates in specification I for north and south German cities are similar, the resulting optimal city size
for each area is different. The estimated optimal city size of north German cities is 0.437112

2·0.017401 = 12.55997
in logarithm of population or 284,921 for total population, respectively. Likewise, the optimal city size for
South-German cities is 0.320978

2·0.013206 = 12.15273 in logarithm of population or 189,612 for total population,
respectively. The coefficients of determination are for the north and the south almost the same at 18-19
percent. That is not very high but is due to the heterogeneity of the cities and the performed robust
linear MM-estimator.

It is worthwhile to notice, that all estimations result in an inverted U-shaped shape of the relation of
scale efficiency with respect to population size with an positive estimate for the linear population size
regressor and a negative estimate for the quadratic population size regressor. Furthermore, the optimal
city size resulting from these estimates is always within the observed range of German cities and at the
level of the mean sized city. The mean of Germans cities population is 231,700 (see table 1) and the mean
of population in southern Germany is 155,600 and almost half the size of the mean of the population in
northern Germany with 307,500. Therefore, it does not surprise that the optimal city size in southern
Germany is smaller than in the northern part of Germany. Also the optimal city size in West-Germany
including Berlin is slightly less than its mean with 251,900 inhabitants and the optimal city size for the
eastern part of Germany is slightly larger than its mean of 148,200 inhabitants. The regional distributions
of population are summarized in table 6 in the Appendix as well as in table 4 which presents the mean,
median, and comparison between the calculated optimal city cize and mean city size.

Table 4: Comparison between calculated optimal city size, mean city size, and median city size

area optimal city size mean city size median city size difference optimal - mean city size
whole 221,301 231,700 120,600 -10,399
east 150,355 148,300 99,560 2,055
north 284,921 307,600 177,800 -22,679
south 189,612 155,800 101,400 33,812
west 212,178 252,100 125,700 -39,922
Note: Optimal city size is calculated by MM-estimation results.

As shown in table 4 the optimal city size is in all cases close to the mean of the underlying cities and thus
respective different to the median of those cities. This result is stable even for different regional areas
with remarkable differences in their mean and median city sizes.

6 Conclusion

This work investigates the relation between efficiency and population size of German cities. The relevant
efficiency in this context is the scale efficiency, which considers the specific size of the particular city.
Therefore, the approach employed in this work is a two stage process. First, the efficiency in terms of
scale efficiency is measured, which involves estimating the efficiency of each city once for constant returns
to scale and once for variable returns to scale and taking the ratio of both. The second stage investigates
the relation of the efficiency and the population size of the cities. The central result is, that there is
an optimal city size in Germany. The optimal city size is about 220,000 inhabitants, which is almost
the mean of all German cities involved in this investigation. Although there are regional differences in
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optimal city size, it remains stable that the optimal city size is the mean of the underlying cities. The
findings are similar to the estimate of Alonso (1971) and consistent to those estimates of Capello and
Camagni (2000). Furthermore, it turns out the largest cities have too many inhabitants which stand to
contrast to findings of Kanemoto et al. (1996) for Japan but is similar to the results of Loikkanen and
Susiluoto (2004) and Loikkanen and Susiluoto (2006) for Finland.

Improved achievements on efficiency could be obtained by a more unified population distribution over all
cities with the size of the mean. Cities with a suboptimal low city size should attract people in cities with
a surplus population. This is not only maintained by the economic performance of the industries within
a city but also by the higher attractiveness of small cities compared to overpopulated cities, which lose
attractiveness by the negative externalities caused by overpopulation e.g. traffic jams, noise, pollution,
and so on, resulting in negative economic performance.

On the agenda for further research is the analysis of industry specific optimal city size, depending on the
degree of specialization in the cities. This could be analyzed in a dynamic approach of optimal city size
as part of a panel data analysis to account for unobserved effects. These effects could be accounted for
by adding further variables as the costs of living indices, area sizes of cities, geographic distances which
affect network possibilities between neighboring cities, especially facing the clusters of cities in figure 2.

Another promising extension is the adoption of multi-level analysis since industries are one level of interest
and these are part of the next level namely the city, and these are part of states (Bundesländer). On
each level are specific rules and laws, which influence firms and people to settle in a specific city. So
the analysis should account for these different levels. A further approach might by the investigating of
the time series either by adopting dynamic models or by taking time as an other level in a multi-level
analysis. In addition, it would be very interesting to evaluate the causality between citiy growth and
change in efficiency. That analysis could be similar to the investigation of efficiency in Spanish regions
by industry sector and time of Maudos et al. (2000), who test for convergence and increasing efficiency
in a developing process. Moreover, other reasons for the observed inefficiency should be determined to
establish solutions for for getting more efficient without changing the population size in cities that are
too large or too small.

One more detailed look into the industry data of the cities could lead to separating different city types
characterized by specialization in different industries and services as introduced by Henderson (1974). A
more industry disaggregated database is needed to answer this question. But different city types may
be one explanation for the range of optimal city sizes, caused by the requirement of the specialized local
industry.
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Appendix

Appendix 1

Table 5: Cities
City Population θCRS θV RS SE City Population θCRS θV RS SE
Aachen 256779 0.646 0.655 0.985 Kempten 61508 0.695 0.722 0.962
Amberg 44542 0.744 0.807 0.922 Kiel 233994 0.694 0.704 0.986
Ansbach 40559 0.706 0.764 0.924 Koblenz 106833 0.705 0.709 0.994
Aschaffenburg 68680 0.829 0.839 0.988 Krefeld 237905 0.739 0.740 0.998
Augsburg 261109 0.762 0.793 0.961 Landau 42150 0.621 0.737 0.842
Baden-Baden 54398 0.886 0.891 0.994 Landshut 61125 0.724 0.782 0.927
Bamberg 69824 0.706 0.706 0.999 Leipzig 501137 0.561 0.668 0.839
Bayreuth 73992 0.733 0.737 0.994 Leverkusen 161190 0.940 0.957 0.982
Berlin 3395673 0.627 0.984 0.637 Lubeck 211928 0.670 0.737 0.908
Bielefeld 326873 0.690 0.887 0.778 Ludwigshafen 163290 1.000 1.000 1.000
Bochum 386003 0.737 0.746 0.988 Magdeburg 228424 0.565 0.573 0.987
Bonn 312397 0.710 0.816 0.870 Mainz 190854 0.655 0.659 0.995
Bottrop 119671 0.585 0.587 0.997 Mannheim 308159 0.851 0.866 0.983
Brandenburg 74552 0.546 0.586 0.932 Memmingen 41156 0.706 0.758 0.931
Bremen 546149 0.824 0.859 0.959 Monchengladbach 261638 0.671 0.774 0.867
Bremerhaven 117114 0.734 0.738 0.995 Mulheim 170160 0.810 0.841 0.963
Brunswick 245506 0.673 0.681 0.988 Munich 1261289 0.885 0.944 0.938
Chemnitz 247963 0.554 0.594 0.933 Munster 270535 0.761 1.000 0.761
Coburg 41981 0.696 0.738 0.943 Neubrandenburg 68431 0.577 0.590 0.978
Cologne 977860 0.762 0.799 0.954 Neumunster 78459 0.669 0.696 0.962
Cottbus 105822 0.567 0.599 0.946 Neustadt 53800 0.571 0.689 0.829
Darmstadt 140213 0.748 0.754 0.992 Nuremberg 496129 0.729 0.749 0.973
Delmenhorst 75762 0.626 0.683 0.917 Oberhausen 219141 0.650 0.656 0.991
Dessau 80881 0.569 0.589 0.965 Offenbach 119022 0.819 0.851 0.963
Dortmund 588420 0.751 0.839 0.895 Oldenburg 158512 0.676 0.682 0.991
Dresden 492613 0.596 0.606 0.983 Osnabruck 163969 0.694 0.735 0.945
Duisburg 502805 0.753 0.765 0.984 Passau 50593 0.721 0.742 0.972
Dusseldorf 574621 0.978 1.000 0.978 Pforzheim 119061 0.742 0.790 0.939
Eisenach 43867 0.561 0.647 0.867 Pirmasens 43268 0.639 0.737 0.867
Emden 51576 0.721 0.765 0.942 Potsdam 146746 0.575 0.679 0.848
Erfurt 202103 0.563 0.623 0.904 Ratisbon 129679 0.763 0.769 0.992
Erlangen 103101 0.984 1.000 0.984 Remscheid 116299 0.705 0.706 0.999
Essen 585589 0.832 1.000 0.832 Rosenheim 60191 0.674 0.693 0.972
Flensburg 85980 0.683 0.706 0.967 Rostock 198910 0.585 0.588 0.995
Frankenthal 47340 0.723 0.847 0.853 Salzgitter 108257 0.781 0.791 0.988
Frankfurt/M 648383 0.978 1.000 0.978 Schwabach 38716 1.000 1.000 1.000
Frankfurt/O 64754 0.543 0.565 0.960 Schweinfurt 54338 0.778 0.778 0.999
Freiburg 214682 0.654 0.659 0.993 Schwerin 97044 0.544 0.554 0.983
Furth 113006 1.000 1.000 1.000 Solingen 163743 0.788 0.794 0.993
Gelsenkirchen 269518 0.734 0.740 0.993 Spires 50440 0.642 0.695 0.924
Gera 104692 0.515 0.523 0.984 Stralsund 58725 0.511 0.582 0.877
Greifswald 52997 0.694 0.697 0.997 Straubing 44590 0.703 0.751 0.936
Hagen 197802 0.719 0.740 0.973 Stuttgart 592028 0.872 0.898 0.971
Halle 237600 0.545 0.564 0.967 Suhl 43245 0.535 0.639 0.837
Hamburg 1743712 0.945 1.000 0.945 Trier 100740 0.622 0.623 0.999
Hamm 184330 0.619 0.621 0.997 Ulm 120398 0.769 0.792 0.971
Heidelberg 143350 0.710 0.739 0.961 Weiden 42695 0.675 0.713 0.947
Heilbronn 121198 0.703 0.707 0.994 Weimar 64421 0.516 0.566 0.912
Herne 171334 0.622 0.632 0.985 Wiesbaden 274002 0.904 0.914 0.990
Hof 48950 0.687 0.688 0.999 Wilhelmshaven 83739 0.693 0.724 0.957
Ingolstadt 120777 0.888 0.895 0.992 Wismar 45448 0.608 0.759 0.800
Jena 102075 0.655 0.660 0.992 Wolfsburg 121647 0.898 0.898 1.000
Kaiserslautern 98735 0.616 0.638 0.966 Worms 81551 0.669 0.723 0.925
Karlsruhe 284487 0.765 0.793 0.965 Wuppertal 360140 0.731 0.742 0.984
Kassel 193914 0.766 0.828 0.924 Wurzburg 133318 0.642 0.649 0.989
Kaufbeuren 42321 0.991 0.992 0.999 Zweibrucken 35275 0.745 0.782 0.952
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Appendix 2

Figure 2: Germany map with scale efficiency and major cities

Note: Circles indicating the scale efficiency and boxes highlight cities with over half a million population
size. Larger circles are for more efficient cities and larger boxes for larger cities but the relative size of the
circles is not equal to the relative efficiency. It visualizes that the largest cities are not the most efficient.
The figure drawn withn R using the package mapdata.
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Appendix 3

Figure 3: Optimal city size for east and west Germany
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Note: Circles indicate east German cities and boxes indicate west German cities. Firs are robust linear
regressions separated for east and west German cities.
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Figure 4: Optimal city size for north and south Germany
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Note: Circles indicate north German cities and boxes indicate south German cities. Fits are robust linear
regressions separated for north and south German cities.

Appendix 4

Table 6: Descriptive statistics for population in thousands in different areas of Germany

Min. 1st Qu. Median Mean 3rd Qu. Max. SD
east 43.2 64.5 99.6 148.3 201.3 501.1 131.2
west 35.3 69.0 125.7 252.1 260.0 3396.0 425.1
north 43.9 94.3 177.8 307.6 269.8 3396.0 500.8
south 35.3 50.1 101.4 155.8 148.3 1261.0 199.9
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