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Abstract

The photovoltaic (PV) industry in Italy has already crossed the

threshold of 1 GW of installed capacity. Currently there are approx-

imately 70,000 certified facilities in operation for a power generation

of 1,300 GWh/year. With these figures, Italy has become the second

country in Europe for PV installed power after Germany.

The energy produced would be sufficient to meet the power needs

of approximately 1,200,000 people. This leads to some questions: Will

this technology continue to grow exponentially even after the recent

reduction in rates by the Energy Bill? Will the number of installed

PV facilities still grow even with less public support and (probably) a

reduction in the technology purchase price?

The purpose of this paper is therefore to develop a conceptual

model to make a prediction of the PV installed power in Italy through

the use of “supervised” artificial neural networks. This model is also

applied to the analysis of the spread of this technology in some other

European countries.
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1 Introduction

In this work we want to develop and apply a computing model for forecasting
the future deployment of one of the sustainable electricity options, solar
photovoltaic (PV) technology in Italy. The conceptual model is developed
under the assumption of PV modules widely manufactured in the market at
present (see Figure 1), and the future implications of using PV technology
in the electricity sector is evaluated.

The word sustainable in this context implies energy, environmental and
economic sustainability. Generating cleaner electricity when compared to the
grid electricity sources constitutes environmental sustainability. PV electric-
ity mitigates CO2 emissions from the grid. Inclusion of such monetary ben-
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Figure 1: An installation of PV panels

efits from CO2 mitigation into the evaluation of the economic performance
of PV technology should encourage economic sustainability.

After a first assessment of the state of the art in Italy, we examine the
motivations at the base of the present work. Then, a conceptual model
is analyzed and developed through a supervised artificial neural network,
followed by some experimental results. Finally, a series of considerations are
made to focus on the current research and the future directions.

2 State of the art of PV in Italy

A study by the Politechnic of Milan analyzed the state of the art of photo-
voltaics in Italy in 2009, highlighting its characterization, the prospects for
development and potential in the Italian market.

The total photovoltaic power installed in Italy in 2009 amounted to ap-
proximately 490 MW, and during 2010 it crossed the threshold of 1 GW
of installed capacity. According to an approach that takes as reference the
installed capacity per capita in Italy there is an average installed power of
10.3 kW every 1,000 inhabitants. Currently there are approximately 70,000
certified facilities in operation for a power generation of 1.3 GWh/year. With
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these figures, Italy has become the second country in Europe for PV installed
power after Germany.

The total amount of photovoltaic capacity, both off-grid and on-grid, to
be installed (in Italy and other countries) is expected to increase in the fu-
ture through 2020. The PV development forecasts within 2020 in Spain and
Germany respectively reach 651 and 865 kW per 1,000 inhabitants, almost
one kWp per capita. In order to bridge the current photovoltaic gap, photo-
voltaic installations in Italy could be reasonably estimated at around 45 GW
by 2020: about 0.75 kWp installed per capita.

2.1 The Energy Bill

On June 5, 2009 was published the Directive 2009/28/EC of the European
Parliament and the Council on the promotion of energy from renewable
sources. The measure marks a major turning point in setting the EU en-
ergy policy in that, for the first time, the theme of renewable energy is faced
with a global vision.

With Directive 2009/28/EC, the Community has set itself the goal of
meeting by the year 2020, a share of at least 20% of final energy consumption
by using renewable sources. Member States were therefore assigned binding
targets which, unlike those established under the previous regime, are not
attributable to individual policy areas (e.g. production of electricity, use of
biofuels for transport), but embrace across all types of use of energy products.

The strategies to be adopted at national level in order to attain the objec-
tive set for Italy – 17% coverage of the final consumption of energy through
renewable sources by 2020 – must therefore take into due consideration the
general character of the new Community measure. It will be necessary to
act in a coordinated manner and to reduce consumption, to achieve a full
exploitation of the use of renewable sources to satisfy power consumption,
heat and transport sector.

In anticipation of a Directive of the European Parliament, the Ministry
of Economic Development and the Ministry for the Environment, Land and
Sea issues the Decree of 19.02.2007 “Criteria and methods for increasing the
production of electricity by photovoltaic conversion of solar source. . . ” con-
firmed to the Manager of Electrical Services – GSE SpA – the role of imple-
menting the incentive mechanism of the photovoltaic known as the “Energy
Bill”.
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The plants came into operation after 01.01.2010 are entitled to an incen-
tive rate paid for a period of twenty years – from the date of entry into the
facility – which remains in constant currency for the entire period.

The higher rates are approved for the small household systems of up to 3
kW which are architecturally integrated. The lowest rates are valid for large
systems which are not architecturally integrated. Rates are provided for a
period of twenty years from the date of entry into operation into the facility
and remain constant, that is not subject to ISTAT updates, for the entire
period. The values in the above table were calculated with a deduction of 4%
rates reported in the Min. Decree of 19.2.2007 (2% for each year subsequent
to 2008). Then we are witnessing the spread of this technological innovation
in the social system.

3 Motivations

With such increasing fraction of PV electricity in the grid resource profile in
the future, the primary motivation of this research arises from the need for
examining certain implications of generating increased PV electricity in Italy
in the future. The front end implications include primary energy, cost, labor
consumption, and environmental impacts associated with the use of different
types of PV technologies. PV panels generate different amounts of electricity
based on the solar radiation available at various locations. Photovoltaic
electricity does not displace the entire average mix of resources in the grid
[1]. Hence there is a need to develop methodologies to accurately estimate
the potential CO2 abatement deriving from installed PV electricity at peak
demands.

Increased PV electricity generation has significant economic implications.
The cost of PV electricity has decreased from $5.4 per Wp (in 2001) to $4.8
per Wp (2009) [2]. With increased installation in the future, one of the mo-
tivations is also to evaluate the specific technology and policy changes that
will facilitate the highest increase in the economic performance of PV tech-
nology. In the future, the increased deployment of PV technology cannot be
evaluated in isolation but in competition with fossil based, non renewable
and other renewable technologies. The PV deployment under such a com-
petitive scenario is indeed dependent on its decreased production cost (due
to learning curve and economies of scale effect) and CO2 emission factor.

Hence evaluating the amount of PV electricity to be generated in the
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future under constraints of a CO2 cap is also an important motivation for
this research.

In this context we studied the effect of the deployment of photovoltaic
panels in the production of clean energy through the use of mathematical
models measuring the amount of clean energy produced, which could be
used at a forecasting level for strategic planning (e.g. for the modulation of
the incentive fund) and/or investment control and feed-back.

Figure 2: The contribution of different renewable sources in the acceleration
technology scenario (Source: ENEA)

The adoption of technological innovations such as photovoltaics to pro-
duce clean energy on a large scale within a social system would solve the
problem of minimizing emissions in energy production. This is a topic of
great importance because, according to the prevailing valuations, it is im-
portant to reach certain levels in good time to tackle the huge growth in
energy demand from Asian countries holding large reserves of coal (see Fig-
ures 2 and 3).
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Figure 3: Emissions and the Kyoto target point assessment for 2010 (Mt
CO2 eq.) (Source: ENEA)

4 The Mathematical Model

The mathematical model was developed after the following time discrete
assumption:

yt = yt−1 + g(t)(m− yt−1)

where

yt cumulative installed capacity to be forecasted at time t, in
MW;

yt−1 cumulative installed capacity at time t− 1, in MW;
g(t) diffusion coefficient;
m maximum installable PV power;

(m− yt−1) residual installable PV power.

The diffusion coefficient g(t) is still the sum of two terms: the attraction
function h(t) for the purchase of photovoltaic, and the incentive mechanism
introduced by governments for the installation of photovoltaic sites:

g(t) = αyt−1h(t) + β
√
yt−1

where:
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α process growth rate constant, representing new PV instal-
lations as a fraction of cumulative installed capacity until
t;

h(t) attraction function for buying PV;
β ·√yt−1 a factor related to the incentives introduced by government

to stimulate PV new installations.

The attraction function h(t) can be assumed as the difference of two costs:

h(t) = cNR − cPV
t

where cNR is the cost of one kWh produced by a non-renewable source of
energy and cPV

t is the cost of one kWh produced by a photovoltaic system.
The discrete mathematical model developed for the prediction of growth

of “on-grid connected” photovoltaic systems in Italy, at the base of this work,
so is the following:

yt = yt−1 + yt−1

�
α(cNR − cPV

t ) +
β

√
yt−1

�
(m− yt−1)

where it should be noted that the computation of the trend of cumulative
PV power at time t is due to certain factors including, above all:

• the development of previously cumulated power;

• the incentive mechanism introduced by governments to promote the
installation of photovoltaic systems in the area;

• the cost to produce one kWh from a PV system.

The results of its analytical application to the available data are summa-
rized in Table 1, where installed powers are expressed in MW.

Table 1: Forecasting results in MW obtained from the mathematical model

YEAR 2002 2003 2004 2005 2006

Empirical 3.62 7.60 12.00 18.50 30.00

Theoretical 3.86 7.27 11.92 18.38 29.77
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The results are summarized by the value of the square index of deviation
I2 = 0.012204, independent of the units used to express the data on which it
is applied and computed as follows:

I2 =

��n
i=1(yi−xi)2

n�n
i=1 xi

n

where x1, . . . , xn are the theoretical data, y1, . . . , yn the empirical data and
n is the total number of observations.

The model has subsequently been tested through the use of a supervised
neural network1, confirming its validity and highlighting the significant con-
tribution that can be obtained with such tools.

5 The Neural Network Model of the System

5.1 Dynamical discrete systems

The techniques used in this work are the classical for evaluating a system
process by a series of observed data, and fall under the general category of

1Implemented in the Wolfram Mathematica software environment available in the Lab-
oratory for the Quantitative Analysis of Data of the Dept. of Economics, Mathematics
and Statistics of the University of Foggia.
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system identification. Figure 4 illustrates the concept of discrete dynamical
system underlying the assumed model.

Figure 4: A dynamical system with input signal u(t), noise signal e(t) and
output signal y(t).

The output signal y(t) from system is observable and measurable, and it
is the signal we want to understand and describe. The input signal u(t) is an
external measurable signal influencing the system. Finally, the noise signal
e(t) affects the system but, unlike the previous signal, it is not measurable.

All these signals are time dependent.

5.2 Modeling PV growth through a neural network

To simulate the growth of PV we consider a discrete dynamic model in which
the cumulated PV power at time t is the sum of two factors:

• the previous PV cumulated power;

• the diffusion coefficient multiplied by the still installable photovoltaic
power.

The dynamical system considered above can also be modeled by an arti-
ficial neural network. This network consists of a combination of FeedForward
or Radial Basis Function neural networks, and a specification of the vector
of inputs to the network. Both of these parts must be specified by the user.

The input vector, or vector of regressors (as is often called talking about
dynamical systems), contains the values of past input and output values of
the system specified by three indices: na, nb and nk. So the shape of the
input vector for the model of the dynamic system can be written as follows:

x(t) = [y(t− 1) · · · y(t− na)u(t− nk) · · · u(t− nk − nb + 1)]T
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Figure 5: The cumulative installed PV power at time t.

Index na represents the number of past output values that are inserted
as input of our time series, also known as “order of the model”. Value nb

represents the number of past input values taken as inputs, and finally nk

represents a simple displacement of the temporal sequence of input values to
be entered into the system.

A models with regressors, as in the expression previously reported, is
called ARX model (Autoregressive model with eXtra input signal). Figure
6 shows a neural network ARX model with a layer of hidden neurons and
a feedforward type network (in fact there are no cycles among the various
network elements).

6 Implementation of the Neural Network

6.1 Input data

The data on which to test the neural network (shown in Figure 7 as input to
Mathematica) are the same on which the discrete mathematical model has
been tested. They come from the document entitled “National Survey Report
on PV Power Applications in Italy 2009” provided by the IEA (International
Energy Agency). The annual cumulative power, available from 1992 to 2009,
is expressed in MW. Price refers to the production cost and is expressed in
Euro per W.
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Figure 6: An ARX neural network model

<<Italia.dat

anno = {

{1992},{1993},{1994},{1995},{1996},{1997},{1998},{1999},{2000},

{2001},{2002},{2003},{2004},{2005},{2006},{2007},{2008},{2009}

}

potenza = {

{0.100},{0.100},{0.150},{0.335},{0.404},{0.677},{0.780},{0.905},

{1.155},{1.635},{3.620},{7.600},{12.000},{18.500},{30.500},

{83.900},{295.000},{656.800}

}

prezzo = {

{9.27319},{9.64063},{9.32129},{9.32129},{9.32129},{9.32056},

{9.3},{8.8},{7.75},{7.4},{7.5},{7.3},{6.8},{7},{6.4},{6.5},{6},{4.5}

}

Figure 7: Input data to the neural network in Mathematica list format
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6.2 The neural network model

For creating the neural network model a series of input data were used,
including the vector of prices (on which the neural network will have to prac-
tice), the yearly data series of the cumulated power, the vector of regressors
na, nb, nk (which determines the number of inputs to the neural network and
the time horizon used for the forecast) and the number of hidden neurons
nh.

The Mathematica code used to create the neural network and the related
computational error are shown in Figure 8.

{model1,fitrecord} = NeuralARXFit[prezzo, potenza,

{{1},{2},{0}},FeedForwardNet, {2,2}];

0 5 10 15 20 25 30
0

20

40

60

80

Iterations

RMSE

Figure 8: Performance of the round mean square error (RMSE) in creating
the neural network model.

The creation of the neural network performed by the code described above
results in the model shown in Figure 9 where in input we have:

• the power cumulated at the immediately previous time;

• both the current and the previous price.
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The two neurons in the hidden layer are fully connected to the inputs and
participate in the estimated output. Their activation (sigmoid) function is
typical of the problems of “time series”.

NetDisplay[model1]

1

y1 �t � 1�
u1 �t � 0�
u1 �t � 1�

y�1 �t�
1 1

Figure 9: Visual representation of the neural network model.

The mathematical form corresponding to the mathematical model gener-
ated by the neural network is as follows:

where

• p(t− 1) corresponds to the price at time t− 1;

• p(t) is the price at time t;

• y(t− 1) represents the comulated power at time t− 1.

6.3 Theoretical vs. empirical data

The chart in Figure 10 shows the trend curves of empirical data, i.e. those
actually observed, and theoretical data, namely those forecasted by the neu-
ral network. Note that, except for an initial phase of adaptation of the neural
network to the data, the graph shows a good predictive power of the model
since the two curves, with increasing time, overlap.
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NetComparePlot[prezzo, potenza, model1, PredictHorizon->1,

PlotStyle-> {Hue[.0],Hue[.6]},

PlotLegend-> {"Empirico","Teorico"}]

Figure 10: Representation of the trend of empirical vs. theoretical data.

6.4 Hidden neurons

Some parameters of the neural network can be represented and examined to
better understand the behavior of the model. In Figure 11 the graph shows
the trend, as a function of time, of the hidden neurons when the model is
used to predict the data.

6.5 Linear parameters

The graph in Figure 12 shows the parameters, derived from the linear model
at each time, of the regression vector vs. the analyzed data.

6.6 Final error distribution

Of utmost importance is also the analysis of the errors made by the model
in making the prediction (in our case the cumulated powers) on the basis of
available data.

The histogram in Figure 13 is the representation of the result of the error
distribution of the model applied to the input data.
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NetPlot[model1,prezzo,potenza,DataFormat-> HiddenNeurons,

PlotStyle-> {Hue[.1],Hue[.3],Hue[.5],Hue[.7],Hue[.9]},

PlotLegend-> Map["Neurone N\[Degree] "<>ToString[#]&,

Range[Length[model1[1,1,1,1]]]]]

Figure 11: Hidden neurons’ values in the neural network model.
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NetPlot[model1,prezzo,potenza,DataFormat-> LinearParameters,

PlotStyle-> {Hue[.1],Hue[.5],Hue[.9]}]

5 10 15

5

10

Output: 1

Figure 12: Representation of the linear parameters of the neural network.
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NetPlot[model1,prezzo,potenza,DataFormat-> ErrorDistribution]

�0.4 �0.2 0.0 0.2 0.4 0.6
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Distribution of Errors

Figure 13: Error distribution of the neural network model.
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6.7 Forecasting results

To obtain estimates of the real cumulated powers, we have applied to the
neural network model developed earlier the data vector inputs, the cumulated
power at the previous year, the price per Watt produced in the current
forecasting year and in the previous one:

model1[[1]][{1.635, 7.5, 7.4}] (* y (2002)=3620 KW *)

{3.80}

model1[[1]][{3.798123572024224‘, 7.3, 7.5}] (* y(2003)=7600 KW *)

{7.34}

model1[[1]][{7.3408999441937794‘, 6.8, 7.3}] (* y(2004)=12000 KW *)

{12.14}

model1[[1]][{12.138557099791342‘, 7, 6.8}] (* y(2005)=18500 KW *)

{18.46}

model1[[1]][{18.46328449471389‘, 6.4, 7}] (* y(2006)=30500 KW *)

{30.47}

model1[[1]][{30.465007408843576‘, 6.5, 6.4}] (* y(2007)=83900 KW *)

{83.72}

model1[[1]][{83.71931076357305‘, 6.0, 6.5}] (* y(2008)=295000 KW *)

{294.43}

model1[[1]][{294.4250328435696‘, 4.5, 6.0}] (* y(2009)=656800 KW *)

{656.38}

model1[[1]][{656.3822847076975‘, 4.5, 4.5}] (* y(2010)=? KW *)

{735.63}

Table 2 summarizes the trend of empirical and theoretical data computed
by the neural network (data expressed in MW). Data refer to years ranging
from 2002 to 2009, with a forecast for 2010 of 735.63 MW. The square index
of deviation is now I2 = 0.002074, better than that computed through the
analytical model in Section 4.

Table 2: Trend of empirical and theoretical data computed by the neural
network with two hidden layers and RMSE=0.233946

YEAR 2002 2003 2004 2005 2006 2007 2008 2009

Empirical 3.62 7.60 12.00 18.50 30.50 83.90 295.00 656.80
Theretical 3.80 7.34 12.14 18.46 30.47 83.72 294.43 656.38
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7 Conclusions and Future Work

As seen in the presentation neural networks are a powerful and versatile tool
for forecasting. In activities that require the use of predictive models neural
network-based applications are increasingly important, and the Mathematica
environment offers a wide variety and wealth of research tools and modeling.

From the analysis of the two indices of square deviation (see Section 4
and subsection 6.7) it can be seen that the neural network model, although
working with a small number of input data, is an order of magnitude more
efficient than the discrete mathematical model.

This conclusion stimulates our work to evolve not only in the study of
photovoltaics in Italy but also in European Community countries for which
data were published by IEA [3] (see Figure 14).

Figure 14: IEA data for European countries.

The research here undertaken with the study of neural networks applied
to photovoltaics is not an end in itself but it goes in one more comprehensive
direction.
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In fact, among the new research challenges facing us are the applications
of neural networks in the following areas of development:

• provide, as a function of some initial parameters, the trend in the price
of electricity in a free market of this commodity;

• to ascertain whether there may be conditions allowing forecasting elec-
tricity consumption and thus create an application that (based on a
neural network model) can predict the possibility of micro and macro
black-out through the formalization of an index able to express the
“Critical Energy Factor”.
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