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Abstract – Heterogeneity is one of the distinguishing features in spatial 
econometric models. It is a frequent problem in applied work and can be very 
damaging for statistical inference. In this paper, we focus on the problems 
implied by the existence of instabilities in the mechanism of spatial dependence 
in a spatial lag model, assuming that the other terms of the specification 
remain stable. We begin the discussion with the role played by the algorithms 
of local estimation in detecting the instabilities. Problems appear when one 
must decide what to do once the existence of heterogeneity has been confirmed. 
The logical reaction is trying to parameterize this lack of stability. However, 
the solution is not obvious. Assuming that a set of indicators related to the 
problem has been identified, we propose a simple technique to deal with the 
unknown functional form. In the final part of the paper, we present some Monte 
Carlo evidence and an application to evaluate the instability in the mechanisms 
of spatial dependence in the convergence process of the European Regions. 
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1. INTRODUCTION 
 

Spatial econometric models are very often affected by problems caused 
by the lack of constancy of some of their elements. There are many reasons 
explaining the absence of stability in a given model. One the one hand, it is 
possible that instability arises from a chain of purely random shocks affecting 
the behaviour of the model across space. In this situation, the main problem is 
testing for the hypothesis of overall stability. On the other hand, the symptoms 
of heterogeneity may follow some regular pattern that can be known, to some 
extent, by the user. Obviously, the problem can be due to a wrong selection of 
the functional form, which causes anomalies in the estimation, including 
outliers. This function may not be the same across space or it may change 
according to some specific factor. The omission of important variables from the 
specification, whose impact varies from place to place, is another cause of 
concern. Additionally, the parameters of the model may evolve across space. 

 

In any of these situations, it would be difficult to maintain the original 
specification. The consequences are easily predictable: if we ignore the lack of 
stability, or if the solution adopted is not appropriate, the estimations are biased 
and inconsistent and the inference is misleading. 

 

Mur et al. (2009a) advance in this discussion by means of a battery of 
tests, the purpose of which is to test for the null hypothesis of stability in, 
respectively, (i) the systematic part of the equation, (ii) the mechanisms of 
spatial dependence, (iii) the residuals of the model and (iv) any combination of 
the previous elements. Furthermore, Angulo et al. (2008) show that the 
existence of instability in some of these elements may produce false symptoms 
of instability in the others. This is the reason for developing a new battery of 
robust stability tests, with the aim of identifying the origin of the heterogeneity. 

 

Our paper focuses on the particular case of the lack of stability in the 
mechanisms of spatial dependence, assuming that the user has some prior 
information on its causes. Specifically, we assume that heterogeneity follows 
some spatial pattern. This framework can be generalized by introducing 
exogenous variables associated with the problem of instability (e.g Farber et al., 
2008, point to the topological features of the network, to the number of 
connections of each node, as the potential source of instability). 

 

The simplest case of heterogeneity corresponds to the existence of a 
binary regime in the parameter of spatial interaction, where this parameter may 
take one of two values depending on the location of each point. The final result 
is very similar to the model of spatial regimes suggested by Anselin (1990), 
where there are a finite number of breaks. This discussion is not new in the 
literature. In fact, we may find a very interesting collection of papers that 
address a similar problem: Rietveld and Wintershoven (1998), Brunsdon et al. 
(1998b), Leung et al. (2000, 2003), Pace and Lesage (2004), LaCombe (2004) 
where a formal test of instability „by regimes‟ appears. There are also different 
applications, among which we may cite the works of McMillen and McDonald 
(1996), Páez et al. (2002a and b), McMillen (2004).  
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More specifically, there are many papers in the literature analyzing the 
instability of the parameters that model the convergence process in the 
European regions. The papers by Ertur et al. (2006), Le Gallo and Dall‟erba 
(2006), Fisher and Stirböck (2006) or Ramajo et al. (2008) are some of the most 
recent appearances on the subject. In general, all of them use dummy variables 
with the aim of establishing differences among the European regions in the 
convergence rates, in what has come to be known as convergence clubs. 
Following the same line we can find the papers of Mur et al. (2008, 2009b) that 
extend the instability analysis not only in the parameters of the exogenous part 
of the equation, but also in the dependence structure of the European Regions. 
There are enough reasons that justify the introduction of instability in the spatial 
dependence process as stated by Mur et al. (2008): “it seems unrealistic to 
assume that the Eastern regions, for example, should maintain relations with 
the rest of the territory of similar intensity to those of their Western counter-
parts. …. In other words, if the distribution of infrastructures in space is very 
uneven (especially those that have to do with communications between agents), 
it is reasonable to suppose that the capacity for interrelations with neighbors 
should also suffer”.  

 

We are interested in the case of a spatial continuous break corresponding 
to a situation where the parameter of spatial dependence may change at each 
point in space. Specifically, our paper focuses on the problem of solving the 
estimation of the instability mechanisms that intervene in a given model, where 
the break is of a continuous type. 

 

The paper consists of six sections. In the second section, we review some 
fundamental concepts that underline the discussion about the lack of uniformity 
in the mechanisms of spatial dependence. In the third section, we develop a 
simple technique to obtain a preliminary estimation of the problem of instability 
and complete the discussion with a battery of specification tests. The fourth 
section contains a Monte Carlo study directed at checking the behaviour of 
these techniques. In the fifth section, we apply our proposals to two cases taken 
from the literature of applied spatial econometrics. We finish the paper with a 
brief section of conclusions and future prospects on the topic. 

 

2. SOME ISSUES IN THE TREATMENT OF LOCAL INSTABILITIES  
IN THE MECHANISMS OF SPATIAL DEPENDENCE 

 

There is not a lot of experience in handling models with problems of 
instability in the mechanisms of spatial dependence. The most important 
references, from our point of view, have already been cited in the previous 
section. Probably, the complexity of the algorithms of local estimation in non-
linear models is a factor that has delayed its development. Nevertheless, it must 
be acknowledged that the problem is tangible (it is another, more compact way 
of looking at the question of the LISA treated as singularities in the structure of 
spatial dependence, Anselin, 1995), important from a theoretical point of view 
(as shown by López-Bazo et al., 2004; Parent and Riou, 2005; Ertur and Koch, 
2007; Parent and Lesage, 2008) and with serious econometric consequences. 
We expect this subject to grow in importance in the near future. 
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To motivate the discussion, there are a series of fundamental aspects to 
which we would like to give briefly our attention. They are the following: 

 
(i)   Testing vs Modelling the instability 
(ii)  Continuous vs Discrete instability patterns 
(iii) Informative vs Non-informative estimation algorithms 
(iv) The bandwidth. 
 

Testing should, logically, precede modelling in order to indicate how the 
latter should be carried out. However, this joint approach has not been usual. As 
mentioned before, we can find a wide range of tests of instability directed at the 
different elements of the model, taken individually or in blocks (Anselin, 
1988b). Nevertheless, the question of the modelling is still in an embryonic 
state, even though the initial research into the subject of instability focused on 
the problem of the estimation (Casetti, 1972; McMillen, 1996; Brunsdon et al., 
1998a). 
 

The second question deals with the characterisation of the break, whether 
it is discrete or continuous. The first assumption (discrete break) is relatively 
popular in the applied literature, where the concept of the spatial regime (in 
reference to a model in which various structures of parameters coexist) is 
commonly used (Fisher and Stirböck, 2006, for example). Generally, the 
discussion is limited to the regression coefficients or to the variance, using an 
arbitrary division of space. The continuous approach is based on the concept of 
the hypersurface of parameters, introduced by the Geographically Weighted 
Regression literature (GWR in the following; e.g., Fotheringam et al., 1998). 
The latter technique focuses on the treatment of instability in the regression 
coefficients of spatial static models and, as is well known, produces biased 
estimators. Nevertheless, the bias of the GWR estimators will be, at worst, less 
than or equal to the Least Squares (LS in what follows), which do not 
contemplate, at all, the problem of instability. 
 

The contribution of our paper lies in the distinction between informative 
and non-informative approaches with respect to the type of break that affects 
the mechanisms of spatial interaction. Mur et al. (2009a) and Angulo et al. 
(2008) associate the break to the existence of certain indicators that play an 
active role in the creation of instability. As examples, we can cite the cases of 
communications infrastructures in space, regional endowments of human capital 
or the position of the nodes in networks of spatial interaction. This kind of a 
priori information is very valuable, and it must be used to model the instability 
as well as to obtain heterogeneity tests with better properties than those based 
on a discrete approach. Our proposal is to progress towards a more compact 
framework that combines the two aspects: first, it is necessary to detect and to 
characterise the break; then, this information should be reintroduced into the 
model to solve the specification adequately. 

 
The following example shows that, indeed, the information produced by 

the algorithms of local estimation is really useful. We take the case of a spatial 
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lag model (SLM in what follows) with a structure of instability in the parameter 
of spatial dependence: 

 
 

This could be the case of a convergence model among European regions 
where externalities (Wy) with different intensities (hr) for different regions are 
introduced. In this case, equation (1) can be written:  

0
1

rtrt ,t n st ,t n

R

rs rtry y
s

h gg ln y w   
 

     

where yrt is the regional per capita income in region r and year t; 
rty ,t ng 

 is the 

corresponding growth rate between the years t and t + n; 
rt0ln y is the logarithm 

of the per capita income in region r and the base year t; wrs refers to the (r,s) 
element of the spatial W weighting matrix. 
 

We continue the discussion from a theoretical point of view. Suppose that 
in the case of a square regular lattice, the problem of instability follows a well-
defined spatial structure, for example, an elliptical paraboloid: 
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     (2) 

 

where c1 and c2 are the spatial coordinates associated with the corresponding 

point (in the case of regular lattices c1, c2 = 1,…, R ). The parameter  
controls for the degree of instability, and oscillates between 0 and 1. As a 
counterexample, we also introduce the case of instability without any spatial 
structure, so that the values of hr will be obtained from a uniform distribution 
U(-1;1). 
  

The values of the variables x and  come from two independent unit 
normal distributions; we assign a value of 1 both to 1 and to 2. In these 
conditions, and using a (20 x 20) regular grid together with a row-standardized 
weighting matrix based on rook-type movements, we obtained 1000 
independent draws. Every draw follows a SLM scheme of dependencies with a 
basic level of autocorrelation equal to 0.5 (this is the value of  in expression 1), 
but with heterogeneity according to the elliptical paraboloid of (2) or the 
uniform random distribution of the second case. 
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Next, we estimate model (1) using the Zoom algorithm described in 
López et al. (2009). This method consists in obtaining the maximum likelihood 
estimation (ML from now on) of the model for each point in the sample, using 
only the information of the, say, (m - 1) nearest points to the point in question: 

 

 20( m ) ( m ) ( m ) ( m ) ( m ) ( m ) ( m ) ( m )
mr,mr r r r r r r ry y x ; ~ N ;      W I             (3) 

 

The indices r and m mean that the data correspond to the local system 

defined around point r; 
1 2 1m

( m )
r r i i iy ( y , y , y ,..., y )


  where ki N( r ) and 

N(r) is the set of indices of the (m - 1) closest neighbours to point r. The same 

criterion is used to construct 
( m )

rx . Matrix (m)
rW is the weighting matrix 

obtained for this local system using the same connectivity criteria as in the case 

of W. Finally, ( m )
r , ( m )

r and 2
r,m  are the local parameters of interest. We 

refer to m as the Zoom size (equivalent to the window size in the literature of 
nonparametric methods or the bandwidth in the GWR literature). 

 
Figure 1 displays the results corresponding to the average value estimated 

for the parameter of local spatial autocorrelation, 
(m)
r̂ , in each of the two 

cases. Although this is only an example, the results are interesting because they 
show that the local estimation has good capacity to identify the type of 
instability that is acting in the sample (if there is any, obviously). 

 

 The fourth point refers to the zoom size or bandwidth. In the previous 
example, we adopted a simple decision so that, to resolve the ML estimation of 
the local SLM at each point of the sample, we specified a diagonal (R x R) 
matrix to select the corresponding observations: 
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being N(r) the set of nearest neighbours to point r. 

 
In our experience, the criterion of (4) works reasonably well with small 

values of m (see Davidson, 2000, for a more general discussion of this kind of 
kernel functions). The GWR literature uses the criterion known as cross-
validation in order to determine the most adequate specification of the 
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bandwidth (Fotheringham et al., 1998). This criterion consists in selecting the 
configuration of the bandwidth that minimises the mean squared error of 
prediction of the GWR estimation. The adoption of this criterion is not obvious 
in a pattern of simultaneous dependencies, like ours, in which case each 
observation influences (and receives influences) from all of its neighbours. In 
any case, the problem of how to determine the bandwidth in non linear models 
is still not solved and needs further reflection. 
 

Figure 1: Local estimation of . Lattice: (20 x 20) and Zoom = 16 
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3. LOCAL ESTIMATION OF SPATIAL INSTABILITIES 
  

This section focuses on the modelling of the heterogeneity. The usual 
algorithms of local estimation, like the SALE (Pace and Lesage, 2004) or the 
Zoom (Mur et al., 2008), are useful in order to unveil the heterogeneity that 
exists in the mechanisms of spatial dependence. On occasions, information may 
also be available about how the break processes are acting. If this information 
exists, it should be used to improve the estimation of the model. 

  
The case that we describe is when instability is related to some indicator 

that affects the interaction of each point with its surroundings. This is the 
problem analysed by Mur et al. (2008 and 2009a) and Angulo et al. (2008), 
where a series of tests of heterogeneity are developed, using an instability 
indicator. To implement the tests, it is not necessary to know the functional 
form that relates the parameter (unstable) to the variable, or variables, of 
instability. However, this information is fundamental for carrying out the 
estimation. Below, we propose a partial solution, which is relatively simple and 
which requires little information; it consists, basically, of adapting the 
expansion of parameters method of Casetti and Poon (1996). 

  

The problem we wish to deal with is the lack of information about the 
form adopted by the function h[-] in: 
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 This function is unknown but it can be approximated by a McLaurin 
expansion of a high enough order: 
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where h
(d)

 refers to the d
th
 derivative of function h. We suppose that the 

arguments of function h[-] are identified.  
 

For example, if we associate the break with the Cartesian coordinates of 
the corresponding points, a linear approximation leads to: 
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In the case of a quadratic expansion: 
 

  2 2
1 2 1 20 1 2 3 4 51 2rh c c c c c cz                                    (8) 
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where the parameters are defined accordingly. Then, it suffices to substitute the 
approximation of (6) into (5) to „linealize’ the structure of matrix H: 
 

0
i

n

i q
i




 H H                                                                                            (9) 

 

where 1
iq ridiag( q ,r ,...,R, ) H  and qi the corresponding variable from the 

change. After that, we can ‘expand’ the main equation of the SLM: 
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i i
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i q i q
i i

y y X y X   
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where 
i iq qW H W . The error term  is the sum of the original error, , and 

of the approximation errors committed in relation to matrix H. In general terms, 
model (10) coincides with the model proposed by Huang (1984) although, in 
this case, using a very particular sequence of linearly independent weighting 
matrices. 

 

In our case, using the parameterization of the W matrix given in (9), it is 
relatively simple to obtain a Lagrange Multiplier statistic that tests the linear or 
non-linear restrictions on the parameters of the model (details of matrix 
information and score in Appendix II.a). For example, the null hypothesis that 
all the parameters associated with the expansion are zero: 

 

0 1

0

0

no

n

A

H : ...

H : H

    
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

                                                           (11) 

 

corresponds to the case where there is no heterogeneity in the behaviour of the 
parameter of spatial dependence, . The resulting statistic is the so-called 

SLM
BreakLM , in its raw version (Mur et al., 2008), or SLM

BreakLM*  in its robust 

version (Angulo et al., 2008). We should equally point out that the rejection of 
the null hypothesis of (15) may be due to other factors such as, for example, a 
non adequate selection of the basic determining elements (variables z) or to a 
poor approximation to function h(-). 

 

We use the Lagrange Multiplier associated to the null hypothesis of (11) 
to evaluate the quality of the approximation to the unknown function h[-]. In 
other words, returning to the example of expressions (7) and (8), the question is 
whether a simple linear approximation is sufficient to explain the symptoms of 
instability, detected using the Cartesian coordinates, as in (7), or whether it is 
necessary to adopt more complex expansions, like the quadratic one of (8). The 
rejection of (11) leads us, in the first place, to propose a simple linear 
approximation, like that of (7). Model (8) should be the following step. Both 
specifications are related by the null hypothesis: 
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                                                                          (12) 

 
 The test statistic will be obtained, as usual, as the quadratic form of the 

score vector over the inverse of the information matrix of (detail are provided in 
Apendix II.b): 

 

 

                  (13) 
 
 

4. MONTE-CARLO EVIDENCE 
  

In the previous section, we have expressed our interest in the problem of 
choosing an adequate functional form to capture the pattern of instability that 
affects the autocorrelation coefficient. 

 

We have obtained several instability tests, as a necessary first step in the 
process of modelling the instability of the parameter . To proceed in this 
direction, we need, at least, information about the variables that are acting on 
the break (we refer to them as break indicators). In what follows, we assume 
that the parameter of dependencies evolves over space according to the 
geographical coordinates of each point, and our intention is to model the 
instability.  

 

The procedure we suggest consists in three stages: 
 

(i) „Linealize‟ the break, as in (7) and (8), in order to solve the corresponding 
tests. The coordinates of the centroid of each cell will be used as break indi-

cators. We employ the SLM
BreakLM  test to check for the two restrictions of (14): 

0 1 2 0H :                                (14) 
 

(ii) Rejection of the above null hypothesis should be treated as evidence in 
favour of a break which admits, at least, a linear approximation. The problem 
now is to discuss whether the linear approximation of (7) is enough to tackle the 
problem. A second order polynomial in the geographical coordinates, as in (8), 
is a more general specification which leads us to a new instability test. The 
restrictions in this case will extend to five parameters:  
 

0 1 2 3 4 5 0H :          . 
 

(iii) Statistic (13) allows us to complete the discussion about the adequacy of 

the linear approximation. The null hypothesis ( 0 3 4 5 0H :      ) implies 

that a first order polynomial (linearity) is enough whereas the alternative 
hypothesis requires a second order polynomial. 
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Table 1 presents the main results obtained from the Monte-Carlo experi-
ment. The first column indicates the type of break introduced into the parameter 
of spatial dependence. Particularly, we have tried out very simple mechanisms 
of break of a discrete type, in a North-South (H2) or Centre-Periphery (H3) 
regime, first order (H4) and second order (H5) order polynomial processes, 
wavy (as in H6 to H8) and also random processes of instability (H1) where the 
parameter of local dependencies comes from a uniform distribution without a 
spatial pattern. The details of these functions appear in the Appendix I. 

  

H0 is the Control Case (the parameter is constant over space). The 
conclusion here is that there do not appear to be problems with the size of the 
tests. The sequence of Multipliers works well, especially for the case proposed 
in Section 3. According to these results, we can be confident in distinguishing 
between breaks that follow a first or a second order polynomial in the spatial 
coordinates (models H4 and H5). 

 
 

Table 1: Size and power of the instability tests. 
A selection of cases of interest. 

 

 Regular Lattice 7X7 Regular Lattice 20x20 

 SLM
BreakLM

(1) SLM
BreakLM

(2) Break
(3,4,5)LM

 
SLM
BreakLM

(1) SLM
BreakLM

(2) Break
(3,4,5)LM

 

H0 0.039 0.053 0.063 0.042 0.046 0.046 

H1 0.118 0.179 0.153 0.192 0.268 0.190 

H2 0.910 0.484 0.503 1.000 1.000 1.000 

H3 0.000 1.000 0.979 0.018 1.000 1.000 

H4 1.000 1.000 0.055 1.000 1.000 0.042 

H5 0.000 1.000 0.878 0.000 1.000 0.945 

H6 0.480 0.469 0.384 1.000 1.000 0.998 

H7 0.267 0.424 0.349 0.002 0.003 0.023 

H8 0.035 0.010 0.002 0.023 0.030 0.022 

(1)Break indicators: LINEAR TREND OF THE COORDINATES. 
(2)Break indicators: SECOND ORDER POLINOMIAL OF THE COORDINATES. 

 
 

The problems appear in other aspects such as, for example, the iden-
tification of random mechanisms (H1). The tests, in this case, perceive some 
traces of instability but the signs are too weak to support a strategy to identify 
the nature of the break. This result is no surprise given that the break indicators 
introduced into the tests (geographical coordinates) have no relation with the 
nature of the break that really exists in the model (totally random). In the cases 
of a discrete break (H2 and H3), the situation is a bit confusing. Linear patterns 
are well adapted to North-South regimes whereas Centre-Periphery regimes 
appear to require polynomials of a higher order. Of course, there are several 
other factors which have an impact on these results (how the clubs are defined, 
where they are located, etc) and that must be taken into account. Finally, cases 
H6, H7 and H8 are used as counter-examples in the sense that they are very far 
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from the ideal conditions explored in Section 3. It is clear that, as we introduce 
stronger nonlinearities into the break patterns, the performance of the battery of 
tests is greatly reduced. In fact, sample size has hardly any effect on the 
behaviour of the tests. 

 

5. SOME APPLICATIONS 
 

The literature on spatial models has dealt, on several occasions, with 
problems of instability similar to ours. In most cases, the solution has been the 
introduction of a discrete break, depending on the geographical location of each 
point. The final result is a kind of club structure that seems too rigid. Below, we 
look again at two applications in which the topic of instability plays a crucial 
role. 

 

The first comes from Anselin (1988, chapter 12) and corresponds to the 
example of the determinants of neighbourhood crime in Columbus, Ohio. The 
second example consists in the work of Mur et al. (2008), who identify a 
Centre-Periphery break in the mechanisms of spatial dependence of the per 
capita income in Europe. 

 

5.1. The classical example of crime (Anselin 1988) 
 

The author relates the crime variable in 1980 in Columbus (CRIME 
defined as residential burglaries and vehicle thefts per thousand households in 
the 49 neighbourhoods of the sample) with INCOME and HOUSING values in 
thousands of dollars. The basic model offers clear signs of misspecification due 
to an omitted spatial lag but, „when spatial dependence is acknowledged, 
evidence is found for structural instability‟ (p. 200). There are symptoms of 
heteroskedasticity and also of an East-West trend in the spatial expansion of the 
parameters. 

 

The SLM estimated by Anselin appears in the first column of Table 2, 
under the heading of equation (2.1). Equation (2.2) corresponds to the ML 
estimation of this model but with a linear spatial instability pattern in the 
parameter associated with the spatial lag. In the last column, we apply a 
quadratic expansion to this coefficient. According to the Lagrange Multipliers, 
the evidence of spatial instability is weak although it points towards a nonlinear 
scheme. The battery of likelihood ratios (LR in what follows) at the bottom of 
the table, confirms this impression. All the coefficients in equation (2.3) are 
highly significant and have the right sign. 

  

The map of spatially varying estimated lag coefficients appears in the 
left-hand panel of Figure 2. There is a strong clustering of high values in the 
central neighbourhoods of Columbus, with values between 0.25 and 0.30. The 
intensity of this spatial interaction decreases as we move towards the periphery 
of the city, obtaining negative estimates in the neighbourhoods situated in the 
most external rings. Not surprisingly, the LISA measures that appear in the 
right-hand panel show a similar picture (high-high connections in the centre of 
the city and non-significant or even low/high and high/low relations towards the 
periphery. 
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Table 2: Determinants of neighbourhood crime in Columbus 

(Anselin 1988) 
 

 Equation (2.1) Equation (2.2) Equation (2.3) 

CONSTANT 
45.0571 45.4362 53.2119 

(6.28) (6.90) (9.23) 

INC 
-1.0307 -1.1918 -0.8567 

(-3.38) (-3.98) (-2.78) 

HOUSE 
-0.2660 -0.2308 -0.1745 

(-3.01) (-2.61) (-2.22) 

W_CRIME 
0.4314 0.4538 0.2849 

(3.67) (4.02) (2.95) 

1 
 0.0127 0.009 

 (1.55) (0.1036) 

2 
 -0.0074 0.0051 

 (-0.87) (0.57) 

3 
  -0.0048 

  (-3.76) 

4 
  -0.0068 

  (-4.35) 

SLM
BreakLM

(1) 2.38 (p-val: 0.3042)   

SLM
BreakLM

(2) 6.52 (p-val: 0.1635)   

Break
(3,4,5)LM

 
 6.16 (p-val: 0.0450)  

Log-likelihood -182.39 -181.00 -173.97 

LR (eq 2.1 vs 2.2) 2.80 (p-val: 0.2464)   

LR (eq 2.1 vs 2.3)   16.86 (p-val: 0.0021) 

LR (eq 2.2 vs 2.3)  14.06 (p-val: 0.0009)  

(1)Break indicators: LINEAR TREND OF THE COORDINATES. 
(2)Break indicators: SECOND ORDER POLINOMIAL OF THE COORDINATES. 

 
 

5.2. The case of Mur et al. (2008) 
 

This case comes from Mur et al. (2008) where the authors study the 
spatial distribution of per capita income in Europe in the year 2004 (variable 
INCOME), using NUTS III regions. The authors introduce the population 
density, (DENSITY), and the weight of the agricultural sector in the regional 
product, (AGRI_WEIGHT) in the right-hand side of the equation. The 
estimation of the simple linear model offers clear signs of misspecification that 
lead to a SLM, whose estimation appears in the first column of Table 3, under 
the heading of equation (3.1). In equation (3.2), we estimate a model with a 
linear pattern of instability in the parameter of spatial dependence, which 
equation (3.3) generalizes into a second order polynomial pattern. 



24     Fernando Lopez, Ana Angulo and Jesús Mur  

 

Figure 2: Determinants of neighborhood crime in Columbus 
(Anselin 1988) 

 

Map of the estimated coefficients (eq. 2.3) 
 

 
 
 

LISA Measures 

 
 
The authors find evidence of instability in model (3.1) that they interpret 

as a Centre-Periphery discrete break as it is shown in Figure 3.a, because the 
interaction seems to be is stronger in external zones of the continent. Moreover, 
the results of Table 3 point towards a nonlinear break in this model. The ample 
model of (3.3) is clearly superior to the other two, whatever the criteria applied. 

 

Figure 3.b shows the map of the local estimates using a linear expansion 
in the coefficient of the spatially lagged income. The map associated with 
equation 3.3 appears in Figure 3.c. A large number of regions, located at the 
centre of the continent (depicted in white, 754 regions out of a total of 1274), 
have an intermediate value in this coefficient. The intensity of the dependence 
decreases as we move towards the East or the West of the continent but 



         Région et Développement      25 

 

increases if we move North or South. The higher levels correspond to various 
Mediterranean points together with the northernmost Swedish regions. 

 

Table 3: Income per capita in the European regions (Mur et al., 2008) 
 

 Equation (3.1) Equation (3.2) Equation (3.3) 

CONSTANT 
3.4872 3.6143 4.2404 

(17.47) (17.50) (18.22) 

AGRI_WEIGHT  
-0.0236 -0.0256 -0.0250 

(-13.95) (-13.14) (-11.54) 

DENSITY 
0.0947 0.0949 0.1004 

(13.19) (11.62) (11.97) 

W_INCOME 
0.6488 0.6727 0.9927 

(32.49) (32.55) (20.67) 

1 
-- -0.0001 0.0006 

 (-1.33) (2.99) 

2 
-- -0.0007 -0.0166 

 (-4.59) (-7.78) 

3 
-- -- -0.0001 

  (-4.95) 

4 
-- -- 0.0002 

  (7.50) 

SLM
BreakLM

(1) 25.67 (p-val: 0.0000)   

SLM
BreakLM

(2) 70.39 (p-val: 0.0000)   

Break
(3,4,5)LM

 
 49.48 (p-val: 0.0000)  

Log-likelihood -110.49 -97.77 -69.73 

LR (eq 3.1 vs 3.2) 25.45 (p-val: 0.0000)   

LR (eq 3.1 vs 3.3)  81.53 (p-val: 0.0000)  

LR (eq 3.2 vs 3.3)   56.08 (p-val: 0.0000) 

(1)Break indicators: LINEAR TREND OF THE COORDINATES. 

(2)Break indicators: SECOND ORDER POLINOMIAL OF THE COORDINATES. 
 
 

6. CONCLUSION AND FUTURE PROSPECTS 
  

Space tends to be diverse and singular, a characteristic that facilitates the 
existence of peculiarities in econometric models. Instability is one of these 
characteristics. The severe consequences of not taking into account the lack of 
stability in spatial relationships require the development of a research line into 
this topic. The literature in spatial econometrics has dealt with this question on 
different occasions, although the discussion has mainly been limited to the 
regression coefficients. However, the mechanisms of spatial dependence also 
present clear signs of instability, as reflected by the LISA measures. 
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Figure n°3: The Mur et al (2008) study 
 

Figure 3.a: Discrete break. Map of the estimated coefficients 
 

 
 

Figure 3.b: Map of the estimated coefficients (eq. 3.2) 
 

 
 

Figure 3.c: Map of the estimated coefficients (eq. 3.3) 
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Local estimation algorithms are an interesting technique to measure the 
impact of the heterogeneity as shown, for example, by López et al. (2009). The 
purpose of our paper is to offer support for the usefulness of this technique and 
to develop some new tools. The solution has a computational cost but appears to 
be effective. The question of what to do with the results of the local estimation, 
once we confirm the existence of instability in the mechanisms of spatial 
dependence, is really complex. In our opinion, the objective must be to model 
the instability in order to solve the specification. This is the purpose of the 
techniques analysed in the paper, which allow us to begin the discussion. 
However, the solution is not completely satisfactory. Clearly, more work is 
needed in order to obtain an overall and compact treatment of the topics of 
nonlinearity and instability in space and in spatial econometric relationships. 

 
 
 

APPENDIX I 
Functional forms used in the experiment 

  

We have used several functional forms in the Monte Carlo exercise in 
order to develop the idea of continuous instability in the parameter of spatial 
dependence. The principal element of this discussion is the diagonal H matrix, 
expression (5), which captures the different assumptions of instability 
introduced into the experiment. 

 

To simplify the discussion, we have assumed that, in all cases, the 
instability has a geographical basis. This assumption means that the parameter 
of dependence evolves regularly over space depending on the coordinates of the 
corresponding point. In what follows, we will refer to c1 as the abscissa of the 
centroid of each cell of the lattice and c2 as the ordinate of this point on a 
hypothetical coordinate axis. Moreover, as a control case, we will use a SLM 
whose parameter of dependence remains stable, and equal to 0.5. In the other 
cases, there is an „average level‟ of dependence for the lattice close to the mark 
of 0.5. The functional forms used in the simulation appear in Table A.1, where 

R is the sample size, 
1

2

R
a


  and c1 and c2 are the coordinates of the centroid 

of each cell (c1, c2 = 1,…, R ). 
 
 

APPENDIX II.a: 
Matrix information and score vector 

 

After solving the approximation of (9), it is possible to obtain the ML 
estimation of the resulting model. The log-likelihood function is standard: 

 
 

     2

2

1
2

2 2 2

R R
l( y; ) ln ln ) ln '(  


      A Ay Xβ Ay Xβ             (A.1) 
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Table A.1: Instability functions 
 

 Function 3D perspective 2D perspective 

H0 
Control  
Case 

21
0 5h( , ) .,c c   

  

H1 

Random 
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1 2

0 1

h( , , ) uc c

where u U( , )

 
 

  

H2 

Discrete 
North-South 

1 2

2

2

0 2 1
2

0 8
2

h( , , )c c

R
. if c

R
. if Rc

 


 


  
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H3 

Discrete 
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Periphery 
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0 8

0 2

i

( i , )
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. if ( a ) cc

. in other case


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
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


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with slope 

2
1 2  

c
h( , , )c c

R
   
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1 2

1 2

  ( a ) ( a )c c
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e
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 Function 3D perspective 2D perspective 

H6 

Opposite 
Paraboloids 

 2 2
1 2

1 2

2

1
+

2

( a ) ( a )c c

h( , , )c c

( a )c e




    





 

  

H7 

Centered 
Waves 

 
1 2

2 2
1 2 1

2

h( , , )c c

sin ( a ) ( a )c c







  

 

  

H8 

Dispersed 
Waves 

   
1 2

2 2
1 2 1

2

h( , , )c c

sin ( a ) sin ( a )c c



 



  

 

  
 

 
 

where  is the vector of parameters of the model 
2

i[ , , ]'     and A is a 

matrix 

0
i

k

R i q
i




 A I W . The score vector can be written as: 

 

 

0 1

12
2

2

1

2 2

i i

( i , ,...,n )

q q

'

l( y; )
g( y; ) ' tr

R '


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 

 







 
 
 
 
   

  
 
 

  
 

Ay Xβ X

W y A W
                       (A.2) 

 

where y  A X . The Hessian matrix can easily be obtained: 
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(i=0,1,...,n)
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     (A.3)  

 
The information matrix corresponds to the negative expectation of the 

previous expression: 
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      (A.4) 

 
 
 

APPENDIX II.b:  
Matrix Information and score vector 

 

The null hypothesis is: 
 

0 3 4 5

0

0

A

H :

H : no H

     



                              (A.5) 

 
We need to obtain the corresponding Multiplier, for which it will be 

necessary to evaluate the score vector in the H0 of (A.5): 
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where 
1 20 0 1 2R q q     A I W W W  and 00 y   A X . The 

information matrix must also be evaluated in the null hypothesis: 
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CARTES DE DÉPENDANCE SPATIALE CONTINUE 
 

 

Résumé - L’hétérogénéité est un problème fréquent dans les modèles 
économétriques spatiaux avec de sérieuses conséquences pour l’inférence 
statistique. Cet article s’intéresse aux problèmes induits par l’existence 
d’instabilités dans le mécanisme de la dépendance spatiale dans un modèle 
spatial autorégressif, en supposant que tous les autres termes de la spéci-
fication restent stables. Nous commençons par discuter le rôle joué par les 
algorithmes d’estimation locale pour détecter les instabilités. Ensuite, il est 
problématique de décider ce qu’il convient de faire une fois l’hétérogénéité 
détectée. La réaction logique consiste à paramétriser cette absence de stabilité. 
Cependant, la solution n’est pas immédiate. Dans ces conditions, en supposant 
qu’un ensemble d’indicateurs reliés au problème ont été identifiés, nous 
proposons une technique simple permettant de traiter cette forme fonctionnelle 
inconnue. Finalement, nous présentons quelques résultats de simulations de 
Monte-Carlo et une application permettant d’évaluer l’instabilité des 
mécanismes de dépendance spatiale au sein du processus de convergence des 
régions européennes.  


