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CREST-LEI, INSEE, Paris
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Abstract

Consider an agent facing a risky distribution of losses who can change this distribution by exerting some effort.
Should he exert more effort when he becomes more risk-averse? For instance, should we expect more risk-averse
drivers to drive more cautiously? In this article, we give sufficient conditions under which the answer is positive,
using results presented in Jewitt (1989). We first extend the standard models of self-insurance and self-protection
and show that the comparative statics depends only on the effect of effort on the net loss. We then present conditions
for the continuous case with applications.
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1. Introduction

Consider an agent who faces the risk of a monetary loss and who can choose the level of
a preventing activity (hereafter “effort”) so as to modify this distribution. One can think
for instance of an incompletely insured car owner who may drive more or less cautiously.
The study of the effect of increased risk-aversion on the level of effort is generally based on
the classical distinction proposed by Ehrlich and Becker [1972] between self-insurance
and self-protection. Self-insurance designates an effort aiming at loss reduction, for a
given probability of loss; while self-protection applies to an effort aimed at reducing the
probability of a given loss. It is now well-known (see Dionne and Eeckhoudt [1985] and
Briys and Schlesinger [1990] that while more risk-averse agents always choose a higher
level of self-insurance, it is not necessarily the case for self-protection.

In this article, we revisit this distinction using general single-crossing conditions pre-
sented in Jewitt [1989]. In Section 2, we first propose a more general model that encom-
passes both self-insurance and self-protection, and significantly extends previous results.
Effort is shown to increase with risk-aversion if conditional on the occurrence of a loss,
effort is a desirable good, irrespective of the impact of effort on the probability of loss. This
condition in fact seems to be the main difference between self-insurance and self-protection.
Indeed, if it does not hold, then increasing risk-aversiona priori leads to ambiguous effects
on the level of effort. However, we are also able to prove in Section 3 that self-protection
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increases with risk-aversion if and only if the initial probability of loss is low enough (see
Dionne, Eeckhoudt, and Godfroid [1998] for a related result).

The results above apply in a model where conditional on effort, the level of losses is
deterministic. In Section 4, we examine the general case in which the distribution of wealth
depends on effort. We there exhibit a simple sufficient condition for effort to increase with
risk-aversion. This condition appears to be satisfied in the most usual models, as shown by
illustrative examples. We show in particular that the comparative statics of coinsurance and
of franchise contracts is independent of the premium function. We conclude by providing a
simple proof of the link between the single-crossing condition and the comparative statics.

2. Self-insurance

Consider an agent with an increasing Von-Neuman-Morgenstern utility functionU . This
agent faces a risk of loss (or accident) and can engage in effort, chosen from an interval
[0, ē]. For a levele of effort, his wealth isw = W − c(e) with probability(1− p(e)) and
w = W − d(e) with probability p(e). The functionc(e) can be thought of as the cost of
effort. The differencel (e) = d(e)−c(e) is the loss, andW is the initial wealth. We assume
that effort is costly and that the loss is positive:

C0: c(e) is nondecreasing, and l(e) > 0.

Thus the expected utility of the agent is

p(e)U (W − d(e))+ (1− p(e))U (W − c(e)).

Note that this model encompasses the traditional models of both self-insurance (for which
p(e)≡ p, c is increasing, andd is decreasing)1 and self-protection (p is decreasing,c is
increasing, andd(e) = c(e)+ l with l > 0).

We are interested in whether a more risk-averse agent, whose utility functionV is an in-
creasing concave transformation ofU , will choose a higher level of effort. DenoteF(w,e)
the cdf of wealth given effort. Jewitt [1989] gives the following minimal sufficient condition
for this monotone comparative statics property to hold:2

Single-crossing condition: For all e1<e2, F(w,e1) − F(w,e2) changes sign at most
once, from nonnegative to nonpositive, when w increases.

Jewitt’s condition relies on earlier results by Hammond [1974] and Diamond and Stiglitz
[1974]. We give a simple, self-contained proof for the sufficiency of this condition in the
last section.

Intuitively, the effect of effort must be to decrease risk (in the sense of first-order stochastic
dominance) in the lower tail of the distribution of wealth at the cost of an increase in risk
in the upper tail. Applying this to our context leads to:

Proposition 1: Assume that C0 holds and that d(e) is nonincreasing. If e1<e2 and U
prefers e2 to e1, then any V more risk-averse than U prefers e2 to e1.
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Proof. For a level of efforte, the cdf of wealth is 0 ifw < W− d(e), p(e) if W− d(e) <
w < W − c(e), and 1 ifw > W − c(e).

For two levelse1<e2, the assumptions onc and d imply that−d(e1)≤ −d(e2) ≤
−c(e2) ≤ −c(e1), so that

F(w,e1)− F(w,e2) =


p(e1) ≥ 0 if W − d(e1) < w < W − d(e2)

p(e1)− p(e2) if W − d(e2) < w < W − c(e2)

p(e1)− 1≤ 0 if W − c(e2) < w < W − c(e1)

and 0 elsewhere. Thus the property quoted in the text is verified, whatever the sign of
(p(e1)− p(e2)). 2

As a consequence, a more risk-averse agent must choose a higher level of effort, the
reason for this being simply that a higher effort increases the worst outcome. Indeed our
result is independent of whether the probability increases or decreases withe; neither does
it require that the agent be risk-averse. Thus this proposition significantly extends previous
results in the literature on self-insurance, which is the special case in whichp(e) is constant.

Another generalization of earlier results on self-insurance obtains when assuming that
the probability of loss is constant(p(e) = p ∈ (0,1)). Let us add risks on final wealth, so
that the expected utility of the agent is

pE[U (w1) | e] + (1− p)E[U (w0) | e],

wherew0 andw1 are stochastic variables whose distribution may depend one (indeed they
generalize the previous termsc andd).

Proposition 2: If for all e, Pr{w1 < w0 | e} = 1, and for all e1 < e2, w0 | e1 (resp.
w1 | e2) dominatesw0 | e2 (resp.w1 | e1) in the sense of first-order stochastic dominance,

then a more risk-averse agent chooses a higher level of effort.

Proof. For i = 0,1, denoteGi (w,e) the cdf ofwi | e, which is positive on the interval
(ai (e),bi (e)). For e1 < e2, G0(w | e1) ≤ G0(w | e2) andG1(w | e1) ≥ G1(w | e2).
Therefore,

b1(e1) ≤ b1(e2) ≤ a0(e2) ≤ a0(e1).

For a levele, the cdfF(w,e)of wealth ispG1(w | e) if w < a0(e), andp+(1− p)G0(w | e)
otherwise, so thatF(w,e1)− F(w,e2) is equal to

p(G1(w,e1)− G1(w,e2)) ≥ 0 if w < a0(e2)

−(1− p)G0(w,e2) ≤ 0 if a0(e2) < w < a0(e1)

(1− p)(G0(w,e1)− G0(w,e2)) ≤ 0 if a0(e1) < w

and the single-crossing condition is verified. 2



22 BRUNO JULLIEN, BERNARD SALANIÉ AND FRANÇOIS SALANIÉ

The assumption on supports carries the idea that the occurrence of an accident reduces
the agent’s revenue. Assuming moreover thatp is a constant allows to avoid any other
assumption on the distributionsw0 andw1 and yields this simple result.

To summarize, this section offers a new characterization of self-insurance: self-insurance
obtains when effort is desirable conditional on having an accident and undesirable condi-
tional on not having an accident. Under self-insurance, a more risk-averse agent chooses a
higher level of effort.

3. Self-protection

Let us now turn to the case whered(.) is increasing—so that conditional on having an
accident, one would like to reduce effort. One important result due to Meyer (theorem 4
in Meyer [1975]) states that givene1<e2, it is possible to find an increasingU such
that, if U preferse2 to e1, then so does anyV more risk-averse thanU . Thus a mono-
tone comparative static result would hold, provided attention is restrained to agents that
are risk-averse enough. However, this result vanishes when applied to our case because we
consider that effort is a continuous variable: therefore, for a givene2 chosen byU , we have
to discard an infinite number of candidatese1 < e2 to ensure thatV will indeed choose an
effort not lower thane2. The distinction between ranking two levels of effort (as discussed
by Meyer) and finding the optimal effort (as in this article) is illustrated by the following
result.

Proposition 3: Let p(e), c(e), and d(e) be continuously differentiable, with c(e) and
d(e) increasing. Assume U is increasing and continuously differentiable and that the agent
characterized by U strictly prefers effort e0 ∈]0, ē[ to any other effort,with 0< p(e0) < 1.

Then there exists more risk-averse utility functions V1 and V2 such that V1 (resp. V2)

chooses a higher(resp. lower) level of activity than U.

Proof. Let 0< λ < 1,0< α < inf{1− p(e0), p(e0)}.
Choosee2 < e0 close enough toe0 so that

Max
p(e)≤α

E(U | e) < E(U | e2) and (1)

E(U | e0)− E(U | e2) < λα[U (W − d(e2))−U (W − d(e0))] (2)

and define the more risk-averse utility functionV2(x) = (1 + λ)U (x) − λmax{U (x),
U (W − d(e2))}. Fore≥ e0 (assumingc(e) < d(e2) for the comparison betweene2 ande
to be nontrivial),

E(V2 | e)− E(V2 | e2) = [E(U | e)− E(U | e2)]

− λp(e)[U(W−d(e2))−U(W−d(e))].

This is strictly negative forp(e) ≤ α because of (1) andd(e2) < d(e). It is strictly negative
for p(e) ≥ α because of (2),E(U | e) ≤ E(U | e0) andd(e) ≥ d(e0). Therefore,V2

preferse2 < e0 to anye≥ e0.
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The reverse case obtains by choosinge1 > e0 such that

Max
1−p(e)≤α

E(U | e) < E(U | e1) and

E(U | e0)− E(U | e1) < λα[U (W − c(e0))−U (W − c(e1))]

and the utility functionV1(x) = (1−λ)U (x)+λ inf{U (x),U (W−c(e1))}. Then a similar
argument using

E(V1 | e)− E(V1 | e1) = [E(U | e)− E(U | e1)] − λ(1− p(e))

× [U (W − c(e))−U (W − c(e1))]

shows thatV1 preferse1 to anye≤ e0. 2

The intuition is given graphically in Briys and Schlesinger [1990]. Whend(.) is increas-
ing, a higher level of effort would lead an agent to obtain a lower wealth when he has an
accident. But the marginal utility of wealth in case of an accident can be made arbitrarily
higher forV than forU , so that reducing effort may be optimal.

The ambiguity is illustrated by the following example. A driver must go through a cross-
road without any visibility, with the risk of a collision. Going faster through the cross-road
reduces the time of exposure and therefore the probability of collision but increases the
severity of the damage in case of accident. It is not clear whether a more risk-averse driver
prefers to reduce or to increase the speed. This illustrative example has the same structure
that the standard model of self-protection presented in Ehrlich and Becker [1972]. Indeed,
there have been difficulties in providing comparative statics results on risk aversion for self-
protection (see Dionne and Eeckhoudt [1985] and Briys-Schlesinger [1990]). To address
this issue, we restrict attention to risk-averse agents and assume that

C1: U is concave, c(e) and d(e) are increasing convex, d(e) > c(e), p(e) is decreasing
convex and p′′(e)p(e) ≥ 2(p′(e))2.

ConditionC1 ensures that self-protection can be desirable and also that the maximization
program determining its level is concave.3

For the problem to be meaningful, we also assume that the optimal level of effort forU
is interior (this can be ensured through appropriate Inada-like conditions):

C2: The level of effort for U is strictly between0 andē.

Under these assumptions, the optimal level of self-protectioneu for U is uniquely deter-
mined by

−p′(eu) = p(eu)U ′(A)d′(eu)+ (1− p(eu))U ′(B)c′(eu)

U (B)−U (A)
,

whereA = W − d(eu) andB = W − c(eu).
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As the maximization programs are concave, the level of self-protection is larger forV
than forU if the RHS of the first-order condition evaluated ateu is smaller forV than for
U , or, with obvious notation:

dE(V | e)
de

∣∣∣∣∣
eu

≥ 0.

A direct computation then shows that this is the case if and only if

p(eu)[V
′(A)1U −U ′(A)1V ] ≤ (1− p(eu))[U

′(B)1V − V ′(B)1U ]
c′(eu)

d′(eu)
,

where1V = V(B)− V(A),1U = U (B)−U (A). Now if V is more concave thanU ,

V ′(B)
U ′(B)

≤ 1V

1U
≤ V ′(A)

U ′(A)

asB > A, so that both terms in brackets are positive. Let us definep∗ by

p∗

1− p∗
=
(

U ′(B)1V − V ′(B)1U

V ′(A)1U −U ′(A)1V

)
c′(eu)

d′(eu)
,

where 0< p∗ < 1.
As the functionp/(1− p) is increasing and maps (0, 1) into(0,∞), we obtain:

Proposition 4: Assume C1 and C2 hold for U and V, with V more risk-averse than U.
Then self-protection is higher for V than for U if and only if p(eu) < p∗.

The intuition is clear: for a low probability of loss, the more risk-averse agent exerts more
effort to self-protect, as the intuition suggests. For a high probability of loss, he is mainly
interested in reducing the maximal loss, which leads to less self-protection. A similar result
is obtained by Dionne et al. [1998] in an independent work, in which they restrict attention
to what they call “proper risk behavior.”

Note however that the thresholdp∗ depends on bothU andV , as well aseu. We need, of
course, to show that the condition is not vacuous—that there exist cases in whichp(eu) < p∗

and cases in whichp(eu) > p∗. To prove this, we note thatp∗ depends on the function
p(.) only througheu. Assume that the initial functionp(.) is replaced by a new function
q(.) such that

−q′(eu) = q(eu)U ′(A)d′(eu)+ (1− q(eu))U ′(B)c′(eu)

U (B)−U (A)
.

ThenU still chooses the same leveleu, p∗ is unchanged, andV chooses a higher level of
self-protection if and only if the inequalityq(eu) < p∗ holds. This shows that our condition
has predictive content.
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This result was already shown by Dionne and Eeckhoudt [1985] for the case of quadratic
utility functions whend(.) = c(.)+ l , l > 0; then the thresholdp∗ equals 1/2 and is thus
independent of the value ofl . More generally, assume thatl is small compared to wealth.
Then tedious calculations show that

p∗ ∼ 1

2
− l

12

PvRv − Pu Ru

Rv − Ru
,

whereRu andRv denote absolute risk aversion, whilePu andPv denote absolute prudence.
We see that, wheneverV is more prudent thanU , p∗ will be below 1

2 for l close to zero.
As another example in whichd(.)= c(.) + l , considerCARA utility functions with

risk-aversion indicesα for U andβ for V . Then a direct computation shows that

p∗

1− p∗
= β − α + αeβl − βeαl

(β − α)eαl eβl − βeβl + αeαl
,

which decreases from 1 to 0 asl increases from 0 to infinity. Therefore,p∗ decreases with
l from 1/2 to 0. Note thateu is always increasing with respect tol , so thatp(eu) is also
decreasing, and the comparison withp∗ is ambiguous.

To conclude this section, let us consider again our model in the case when in addition
to the risk of accident, the individual faces a background risk on wealth, independent from
the occurrence of an accident. Then his expected utility is

p(e)EU(w̃ − d(e))+ (1− p(e))EU(w̃ − c(e)).

Defines the new utility functionŝU (x) = EU(w̃ + z) andV̂(z) = EV(w̃ + z). Then the
comparative static exercise reduces to the above problem for utility functionsÛ and V̂ .
Pratt [1988] shows that provided that eitherU or V has a decreasing absolute risk aversion,
V̂ is more risk averse than̂U wheneverV is more risk averse thanU . It follows that all the
preceding results extends to the case of background risk and DARA utility functions.

4. The general case

Now consider the general case in which the final wealthw is a random variable with compact
support. The wealth distribution is characterized by a cdfF(w,e) that depends on effort
e. The single-crossing condition ensures that a more risk-averse agent chooses a higher
level of effort. To apply it to our framework, we definel =W − c(e) − w, so thatl is a
random loss with cdfG(l ,e) while c(e) is interpreted as the cost of effort (it is arbitrary,
introduced for clarity and needs not even be increasing). This framework clearly generalizes
the two-states of nature model studied in the previous sections. A general result obtains as
follows:

Proposition 5: Assume l= φ(ε,e), whereε is a random variable whose distribution is
independent of e, φε >0 andφεe<0. Then a more risk-averse agent chooses a higher level
of effort.
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Proof. Under our assumptions, we can writew = ψ(e, ε) with ψε < 0 andψeε > 0. Let
H(ε) be the cdf ofε. Fore2 > e1, we have

1(w) ≡ F(w,e1)− F(w,e2) = H(ε2)− H(ε1),

wherew = ψ(e1, ε1) = ψ(e2, ε2). Sinceψeε > 0, ε1 must decrease more slowly thanε2

whenw increases. AsH is nondecreasing,1 can thus change sign only once, from positive
to negative. Therefore, the single-crossing condition applies. 2

The conditionφεe < 0 means that effort must reduce the loss in bad states of nature
(high ε), at the cost of increasing it in good states of nature.4 This is exactly the property
captured by the definition for self-insurance at the end of Section 2. One simple and fairly
usual example is provided by the case where the loss is distributed around its mean with
an additive noise:l = µ(e) + σ(e)ε. Thene increases with risk aversion if the variance
decreases withe (note that the expectationµ(e) does not play any role).

This example can be applied to coinsurance: interpretσ(e) as the uninsured share of
the risk,µ(e) as the associated premium, ande as the agent’s decision. Then more risk-
averse agents choose to insure a higher share of the risk. Similarly, it is easily shown
that in the (nondifferentiable) case in whichl =µ(e) + min{ε, l (e)} with l ′(e)<0, effort
also increases with risk-aversion. This case is interesting in that self-protection reduces
the maximal loss supported by the agent; thusl (e) can be interpreted as the deductible in
an insurance contract, ande just defines the choice of deductible: we therefore see that
more risk-averse agents should choose a lower deductible.The interesting part of these
two results is that they show that the fact that more risk-averse agents buy more insurance
doesn’ t depend on the relationship between the coverage and the premium but only on the
nature of the coverage. The design of a financial portfolio, or the choice of a production
level under risk, also offer numerous examples for which Proposition 5 allows for direct
conclusions.

In the case of a smooth distribution, we obtain

Proposition 6: If the distribution of losses is characterized by a positive density g(l ,e)
on a compact interval, self-protection increases with risk aversion if∂

∂l (
Ge
g ) > 0.

Proof. Choosingε to be uniform on [0, 1], thenG(φ(ε, e),e) = ε so thatφe = −Ge
g ,

which gives the condition. 2

As g ≡ Gl , the ratio−Ge
g can be interpreted as the marginal rate of substitution between

loss and self-protection at a constant level of the cumulative distribution of losses. In the
space(l ,e), the iso-cumulative curves must then be convex. This expresses a property of
decreasing returns to effort. Indeed assume that the agent is ready to bear a given proba-
bility P that the loss is higher than a given levell . This defines a corresponding effort by
G(l ,e(P, l )) = 1− P. Then our condition amounts to the concavity ofe(P, l ) in l : if the
agent is able to accept higher losses, then he can only reduce effort at a decreasing rate.
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5. A simple proof of the single-crossing condition

The proof is based on the following lemma, which is of more general range of applicability
(a similar result appears in Meyer [1977], Theorems 1 and 2):

Lemma 7: Consider an agent endowed with a VNM function U, nondecreasing, facing
two wealth distributions with cdfs F1(w) and F2(w). Denoteδ(w) = F1(w)−F2(w). Then
the following properties are equivalent:
(i) If U prefers F2 to F1, then so does any V more risk averse than U;
(ii) If

∫
U ′(w)δ(w)dw ≥ 0, then for allw0 :

∫ w0 U ′(w)δ(w)dw ≥ 0.

Proof. Suppose (i) holds and
∫

U ′(w)δ(w)dw≥0. Integrating by parts, one gets∫
U (w)dF1(w)≤

∫
U (w)dF2(w), so thatU prefers F2 to F1. For a givenw0, de-

noteV(w)= min(U (w),U (w0)). V is more risk-averse thanU , so that from (i) we get∫
V ′(w)δ(w)dw ≥ 0, or equivalently

∫ w0 U ′(w)δ(w)dw ≥ 0. This shows (ii).
Reciprocally, suppose thatU prefersF2 to F1. Then

∫
U ′(w)δ(w)dw ≥ 0. Suppose

that (ii) holds. IfV is more risk-averse thanU , then there exists a concave nondecreasing
functionk such thatV = k ◦U , so that∫

V ′(w)δ(w)dw =
∫

k′(U )U ′(w)δ(w)dw

= k′(U (w̄))
∫

U ′(s)δ(w)dw

−
∫ {

k′′(U )U ′(w)
∫ w

U ′(s)δ(s)ds

}
dw,

wherew̄ is an upper bound of the support of the wealth for both distributions. This is
nonnegative, from (ii) and the concavity ofk. Therefore,V prefersF2 to F1, and (i) holds.

2

We can now prove the sufficiency of single-crossing condition. Denote byeu the optimal
choice of effort forU , assuming it is unique. Fore< eu, suppose thatδ(w) = F(w,e)−
F(w,eu) is nonnegative, then nonpositive. Defineu(w) = ∫ w U ′(s)δ(s)ds. We know that
u(−∞) = 0, and thatu is nondecreasing, then nonincreasing, whenw increases. Moreover,
u(+∞) ≥ 0 sinceU preferseu to e. Thereforeu is nonnegative everywhere. This proves
(ii) in Lemma 7, which is equivalent to (i). From (i) any more risk-averseV preferseu to
all e< eu, so that his optimal choice of effort cannot be smaller thaneu.

If U has multiple optimal choices, takeeu to be the largest optimal choice forU . Then
any optimal choice forV that is not an optimal choice forU is larger thaneu.5

The fact that the condition is a minimal condition, follows from the fact that ifδ(w)

changes sign from negative to positive, it is possible to find a nonnegative functionU ′(w)
such that (ii) is violated.
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Notes

1. This last condition is necessary for the existence of an interior optimal level of effort.
2. See also Athey [1997].
3. The proof of concavity is omitted: simply write the second-order condition and use the first-order condition.
4. A related but stronger condition, referred to as a simple risk-reducing deterministic transformation, appears

in Dionne and Gollier [1992] and Meyer [1992], where it is used for different purposes.
5. We only assume thatV is more risk averse, so thatU ′(w) − V ′(w) may cancel on some range. It is thus

possible that an optimal choice forV coincides with a smaller optimal choice ofU , theneu is also optimal for
V andδ(w) evaluated between the two optimal choices cancels on the range whereV ′ differs fromU ′.
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