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Abstract

In this article, we present a reference case of mean field games. This
case can be seen as a reference for two main reasons. First, the case
is simple enough to allow for explicit resolution: Bellman functions are
quadratic, stationary measures are normal and stability can be dealt with
explicitly using Hermite polynomials. Second, in spite of its simplicity,
the case is rich enough in terms of mathematics to be generalized and to
inspire the study of more complex models that may not be as tractable
as this one.
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1 A short introduction to mean field games

Mean field games have been introduced by J.-M. Lasry and P.-L. Lions
(2006) in two seminal papers. They have been used in economic models
and noticeably to model endogeneous growth. Here, we want to detail
a reference case that can be used to build and study a lot of mean field
games models.

1.1 An idea from physics...

To well understand the nature of mean field games, the best thing to do
is certainly to focus on the notion of “mean field”. This notion is in fact
inspired from particle physics. Typically, particle physicists are interested
in interactions between so many particles that they cannot use traditional
physics and study each interaction among couples or triples of particles.
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Instead of that they rely on a statistical idea: to study interactions be-
tween particles they use a media and the mean field is this media. To
clarify, this field is created, in a certain sense, by the particles and impact
the behavior of the particles “who” created it. Hence, the interactions
between particles is summed up by the interaction between every single
particle and the mean field, which is, in some sense, representative of the
particles as a whole.
The simplest example is air pressure: pressure is created by the micro-
scopic movements of the particles and impacts particles in a macroscopic
way, creating winds for instance. Clearly, this approach is more meaning-
ful than a complete description of the interactions between air particles.
Although this example is simple, the type of reasoning is important and
used in quantum mechanics.

1.2 ... that can be used in game theory and eco-
nomics

The same reasoning can be used when it comes to model strategic inter-
actions between many agents in economics. A “mean field” could be used
to have a relevant representation of reality. This remark is the starting
point of mean field game theory.
As a first example, the heart of modern economics that is the general equi-
librium theory, can be considered a mean field game where the mean field
is obviously the vector of prices. Prices are indeed a relevant summary of
interactions between agents and, in turn, they influence each agent behav-
ior. This approach certainly clarifies what a market is: the market exists
because of agents interactions and, in turn, the market induces individual
behaviors.
The market is an example of mean field games but mean field games are
in fact a general tool to embed externality in models since mean fields are
not constrained to be prices. Penetration rates for technologies such as
wind turbines or solar panels are instances of mean field. Other examples
can be found like page ranking on the internet or ranking of fund man-
agers.

The new theory developed to study mean field games brings a com-
prehensive mathematical framework, some new concepts and a new way
to build models.

1.3 The definition of mean field games

The general framework of mean field game theory is given by four hy-
potheses:

• Rational expectations

• Continuum of agents

• Agents anonymity



• Social interactions of the mean field type

The first three hypotheses are common in game theory. The first one -
the rational expectation hypothesis - has been introduced in the 60’s and
is now widely accepted among game theorists. The second hypothesis is
often used to model games with a large number of players. It’s a rather
well accepted approximation that has been used for tractability purposes
and here, for mean field games, the limit of a game with N players as N
goes to infinity has been studied in Lasry et al. (2007) to support this
hypothesis. The third hypothesis has always been implicit in game theory
but is worth recalling. Basically, it says that agents are anonymous in the
sense that any permutation of the agents does not change the outcome of
the game.
The fourth hypothesis is specific to mean field games and is an hypothesis
on interactions between players1. The main idea is that a given agent
cannot take into account every single agent she is going to interact with.
Therefore, every agent is going to make a decision according to some statis-
tics regarding the overall community of agents. Moreover, this fourth as-
sumption means that an agent is really atomized in the continuum and has
no power but a marginal one. Since she cannot influence (but marginally)
the behavior of other agents, she has no other choices than considering a
strategy that depends only on herself and on information about the over-
all community, this information being enclosed in the mean field.
In other words, the couple (x,m) is sufficient and exhaustive to explain
interactions, where x is a personal characteristics and m the distribution
of those characteristics in the population.

1.4 A first class of mean field games

From a mathematical point of view, a first class of mean field games, and
this class is the purpose of this paper, appeared in a stochastic control
form. With this representation, each agent can control - with a cost -
the drift and/or the volatility of a diffusion process and maximizes (in
expectancy) a utility criterium that depends on this dynamical process
and on the mean field of the problem. This type of framework is really
common in finance, in economics or in engineering and corresponds, in the
deterministic case to variations calculus. Noticeably, even in the stochas-
tic case, the problem, as far as the players are concerned as a whole, stays
deterministic because of the continuum of players and the law of large
numbers. In what follows, we are going to see that the equations of this
first class of mean field games have a forward/backward structure: a back-
ward PDE (Hamilton-Jacobi-Bellman) to model the individual backward
induction process that explains each agent’s choices ; a forward PDE (Kol-
mogorov) to model the evolution of the players as a whole, the evolution
of the community.

1When we say interactions here, we mean it in the micro sense since we want a micro-
foundation of the behaviors.



We are going to present this first class of mean field games in an ab-
stract way, in the sense that we want the reader to understand the tools
and hence we focus on a problem that has explicit solutions. Typically,
one may understand the problem as a stochastic control problem in which
each individual, in the continuum, chooses a characteristic in a state space
to resemble other people (in addition to the wish to be at a given place in
some parts - see below). Problems of that kind are quite common (even
though specification may be different) if one thinks of technology choices
for instance since agents may want to have a good technology but a tech-
nology that is widespread among others to avoid paying too much.

2 The general framework

In what follows, we consider a continuum of individuals (hereafter a pop-
ulation) that have preferences about resembling each other. This type of
problem is typically of the mean field game sort where individuals pay a
price to move from one point to another in the state space and have a
utility flow that is a function of the overall distribution of individuals in
the population. We are going to model it as follows:

• The state space is an n-dimensional space.

• Each agent has a “utility” function v that can be decomposed in
two parts: a pure preference part g : (t, x) 7→ g(m(t, x)) (where g is
increasing to model the willingness to be like others) that represents
what she gets from being having the characteristics x at time t (m
is the distribution function of the population) and a pure cost part
h : α 7→ h(α) that corresponds to the price to pay to make a move
of size α in the state space (h is typically supposed to be increasing,
strictly convex and such that h(0) = 0).

• Each agent discounts the time at rate ρ.

• Each agent’s characteristics is moved by a brownian motion in di-
mension n (specific to herself).

The problem we are dealing with can therefore be written as a control
problem:

u(t, x) = Max(αs)s>t,Xt=xE
[∫ T

t

(g(m(s,Xs))− h(|α(s,Xs)|)) e−ρ(s−t)ds
]

with dXt = α(t,Xt)dt+ σdWt.

As for any mean field game we use Lasry et al. (2006) to write the
associated system of partial differential equations:

Proposition 1 (Mean Field Games PDEs). The control problem is
equivalent to the following system of PDEs

(Hamilton− Jacobi) ∂tu+
σ2

2
∆u+H(∇u)− ρu = −g(m)



(Kolmogorov) ∂tm+∇ · (mH ′(∇u)) =
σ2

2
∆m

where H(p) = Maxa (ap− h(a))
Additional conditions are: m(0, ·) given, u(T, ·) = 0 and ∀t,m(t, ·) is a
probability distribution function.

Our goal here is to find stationary solutions of this problem in several
special cases where we always suppose that T is replaced by +∞ 2:

(Hamilton− Jacobi) σ2

2
∆u+H(∇u)− ρu = −g(m)

(Kolmogorov) ∇ · (mH ′(∇u)) =
σ2

2
∆m

with m a probability distribution function.

3 The quadratic cost framework

3.1 Presentation

One of the simplest framework to deal with mean field games is to consider
the special case of quadratic cost: h(a) = 1

2
a2. This case is indeed simpler

since it allows to replace the system of coupled PDEs by a single PDE,
either on u or on m (the good variable is actually ψ =

√
m as we will

see later on). Consequently, we focus extensively on quadratic costs even
though more complex models can be used to deal with problems involving
congestion for instance.

The quadratic cost framework is characterized by a simple Hamiltonian
(H(p) = 1

2
p2) and therefore the system to solve is simplified:

Proposition 2 (Mean Field Games PDEs with quadratic costs).
With quadratic costs, the system can be written as:

(Hamilton− Jacobi) ∂tu+
σ2

2
∆u+

1

2
|∇u|2 − ρu = −g(m)

(Kolmogorov) ∂tm+∇ · (m∇u) =
σ2

2
∆m

In its stationary form, the system is simply:

(Hamilton− Jacobi) σ2

2
∆u+

1

2
|∇u|2 − ρu = −g(m)

(Kolmogorov) ∇ · (m∇u) =
σ2

2
∆m

2The transversality condition that appears in the case of infinite horizon is not relevant in
the stationary case.



3.2 From two coupled PDEs to one

We are going to enounce two propositions that show the interest of the
quadratic costs.

Proposition 3 (One PDE in u). Let’s consider a couple (K,u) where
K is a scalar. If (K,u) is a solution of the equations (1) and (1′) then
(u,K exp( 2u

σ2 )) is a solution of our initial stationary problem.

σ2

2
∆u(x) +

1

2
|∇u(x)|2 − ρu(x) = −g

(
x,K exp(

2u(x)

σ2
)

)
(1)

∫
K exp(

2u(x)

σ2
) = 1 (1′)

Another way to look at the problem is to consider an equation in m
or more exactly an equation in ψ where ψ is defined as the square root of
m.

Proposition 4 (One PDE in ψ =
√
m). Let’s consider a couple (K,ψ)

where K is a scalar. If (K,ψ) is a solution of the equations (2) and (2′)
then, m = ψ2 and u = σ2 ln

(
ψ
K

)
are solutions of our initial stationary

problem.

σ4

2

∆ψ(x)

ψ(x)
= ρσ2 ln(

ψ(x)

K
)− g(ψ2(x)) (2)∫

x

ψ(x)2dx = 1 (2′)

The partial differential equation in ψ invites us to consider the case
where (t, x) 7→ g(m(t, x)) is the logarithm function ln(m(t, x)) as an ex-
ample of our population problem that may be solved easily and explicitly.
This is our next application.

4 Application to the logarithmic utility
function

4.1 The basic framework

4.1.1 Presentation

We are going to build a very precise and explicit example that goes into
the quadratic cost framework. We consider one population and we sup-
pose that all people in the population have the same preference function
which is simply g(m(t, x)) = ln(m(t, x)).

These preferences mean that inside the population, people want to re-
semble one another. However, they are prevented to do so by the noise
and our problem is to find the optimal behavior of individuals in such a
context.



To sum up, we want to find stationary solutions to the problem:

u(t, x) = Max(αs)s>t,Xt=xE
[∫ ∞

t

(
ln(m(s,Xs))−

|α(s,Xs)|2

2

)
e−ρ(s−t)ds

]
with dXt = α(t,Xt)dt+ σdWt

In other words, we want to find a solution of the following system of
PDEs:

(Hamilton− Jacobi) σ2

2
∆u+

1

2
|∇u|2 − ρu = − ln(m)

(Kolmogorov) ∇ · (m∇u) =
σ2

2
∆m

4.1.2 Resolution

Proposition 5 (Gaussian solutions). Suppose that ρ < 2
σ2 .

There exist three constants, s2 > 0, η > 0 and ω such that ∀µ ∈ Rn, if
m is the probability distribution function associated to a gaussian variable
N (µ, s2In) and u(x) = −η|x − µ|2 + ω, then (u,m) is a solution of our
problem.

These three constants are given by:

• s2 = σ4

4−2ρσ2

• η = 1
σ2 − ρ

2
= σ2

4s2

• ω = 1
ρ

[
ηnσ2 − n

2
ln

(
2η
πσ2

)]
Interestingly, we can come back to the control parameter α. This

control parameter describes the move each agent wants to make given her
characteristics. We have the following result:

Proposition 6 (Optimal control). In the framework of the preceding
proposition, the optimal control parameter α is given by α(x) = −2η(x−
µ). This means that for any agent, her characteristics Xt follows an
Ornstein-Uhlenbeck process that mean-reverts around µ:

dXt = −2η(Xt − µ)dt+ σdWt

Proof:

Because H(p) = 1
2
p2, the optimal control is α(x) = H ′(∇u(x)) =

∇u(x).
The preceding proposition gives the result.

4.2 Comments on the preceding example

The preceding example is interesting in the fact that we have been able
to exhibit explicit solutions (this can be generalized to a more complex
brownian motion). One caveat, though, is that these solutions are specific



to the logarithmic case.
Another problem with our setting is that we only describe possible sta-
tionary solutions and the possible path from an initial distribution to a
stationary solution is not dealt with.
This comment leads to the third issue in this example which is the infinite
number of solutions. This problem can be dealt with in a very simple way.
It’s indeed possible to say that, in addition to their willingness to be like
each others, agents in the population love a certain characteristics µ∗. In
that case, the stochastic control problem can be replaced by:

Max(αs)s>t,Xt=xE
[∫ ∞

t

(
ln(m(s,Xs))− δ|Xs − µ∗|2 −

|α(s,Xs)|2

2

)
e−ρ(s−t)ds

]
with

dXt = α(t,Xt)dt+ σdWt

With this quadratic form, one can generalize the preceding computa-
tions and we get the following localization result.

Proposition 7 (Localization). In this new problem any gaussian solu-

tion has to be centered in µ∗. The variance coefficient is s2 = σ2

4η
where η

is now the unique positive solution of:

2η2 − η
(

2

σ2
− ρ

)
= δ

5 Stability in the logarithmic case

Let’s consider the logarithmic case of the last section and let’s work for
simplicity in dimension 13. We have found stationary solutions of the
problem and up to a translation we can consider that µ = 0 so that the
stationary solution we consider is:

u∗(x) = −ηx2 + ω

m∗(x) =
1√

2πs2
exp

(
− x2

2s2

)
An interesting question is the stability of this stationary solution.
We are going to consider two notions of stability. The first notion of
stability is the classical physical notion of local stability. If an equilibrium
is given, it will be said locally stable in the classical sense if, after a
small perturbation, the system goes back (perhaps asymptotically) to
the initial equilibrium. A second notion of stability is inspired from the
eductive viewpoint in economic theory (see Guesnerie (1992)). Typically,
the equilibrium will be said to be locally stable in the eductive sense if, the
common knowledge that the equilibrium is in a given neighborhood allows
agents to find, by a mental process4 (i.e. without any time-dependent
learning) the actual equilibrium.

3The results we will obtain can be generalized really easily in higher dimension using
Hermite Polynomials in higher dimension.

4In the seminal articles on eductive stability, the mental process was linked to the notion
of rationalizable solutions, see Guesnerie (1992) for more details.



5.1 Local physical stability

To work on the local stability in the classical sense, we consider the PDEs
of Proposition 3 and we introduce perturbations on the solutions (for
µ = 0). These perturbations can be written as:

m(0, x) = m∗(x)(1 + εψ(0, x))

u(T, x) = u∗(x) + εφ(T, x)

φ(T, ·) = φ(·) and ψ(0, ·) = ψ(·) are given and represent respectively

the relative perturbation on m∗ and the absolution perturbation on u∗5.

We are going to study the dynamics of the functions φ and ψ where
we consider the linearized PDEs.

Proposition 8 (Linearized PDEs). The linearized PDEs around (u∗,m∗)
are:

(Hamilton− Jacobi) φ̇+
σ2

2
φ′′ − 2ηxφ′ − ρφ = −ψ

(Kolmogorov) ψ̇ − σ2

2
ψ′′ + 2ηxψ′ = −φ′′ + x

s2
φ′

A more convenient way to see these linearized PDEs is to introduce

the L operator: f 7→ Lf = −σ2

2
f ′′ + 2ηxf ′

Proposition 9 (Linearized PDEs). The above equations can be written
as:

(Hamilton− Jacobi) φ̇ = Lφ+ ρφ− ψ

(Kolmogorov) ψ̇ = −Lψ +
2

σ2
Lφ

Proof: The only thing to recall is that s2 = σ2

4η
.

Now, we are going to use the properties of the operator L we have just
introduced. To do that we need to use some properties of the Hermite
polynomials associated to the space L2(m∗(x)dx).

Definition 1 (Hermite polynomials). We defined the nth Hermite
polynomial of L2(m∗(x)dx) by:

Hn(x) = sn
1√
n!

(−1)n exp(
x2

2s2
)
dn

dxn
exp(− x2

2s2
)

Proposition 10 (Hermite polynomials as a basis). The polynomials
(Hn)n form an orthonormal basis of the Hilbert space L2(m∗(x)dx).

Proposition 11 (Hermite polynomials as eigenvectors of L). The
Hermite polynomials Hn are eigenvectors of L and:

LHn = 2ηnHn

5It’s in fact really important to consider the relative variation in the case of the probability
distribution function m.



Now that we have recalled some basics about the Hermite polynomials
we can use them to solve the linearized PDEs of Proposition 12. Let’s start
first with the matrices (An)n that are going to be involved to solve the
problem:

An =

(
ρ+ 2ηn −1

n
s2

−2ηn

)
Lemma 1 (Eigenvalues of An). Let’s consider n ≥ 2.

The eigenvalues of An are of opposite signs, λ1
n < 0 < λ2

n with:

λ1,2
n =

1

2

[
ρ±

√
ρ2 + 16η2n(n− 1)

]
It’s interesting to notice that for a system of two linear PDEs like

this we are working on, one equation being forward and the other being
backward, the stability result will arise from the opposite signs of the
eigenvalues.

Proposition 12. Let’s suppose that the perturbations ψ and φ are in the

Hilbert space H = L2(m∗(x)dx).

Let’s consider for n ≥ 2 the functions

(
φn
ψn

)
that verify:(

φ̇n
ψ̇n

)
= An

(
φn
ψn

)
with φn(T ) equal to φn and ψn(0) equal to ψ

n
.

We have:

φn(t) = On(
ψ
n

4ηn
eλ

1
nt) +On(φne

−λ2
n(T−t))

ψn(t) = On(ψ
n
eλ

1
nt) +On(φne

−λ2
n(T−t))

In particular,

∀t ∈ (0, T ),∀k ∈ N, (nkφn(t))n ∈ l1(⊂ l2), (nkψn(t))n ∈ l1(⊂ l2)

The estimates we established in the preceding proposition are the basis
of the regularization property we will obtain in the following proposition.
What we will show is indeed that whatever the regularity of the pertur-
bations in the Hilbert space H = L2(m∗(x)dx), the solutions are going to
be in C∞ on (0, T )× R.

Proposition 13 (Resolution of the PDEs). Suppose that:

• The perturbations ψ and φ are in the Hilbert space H = L2(m∗(x)dx).

•
∫
ψ(x)m∗(x)dx = 0 (mass preservation condition)

•
∫
xψ(x)m∗(x)dx = 0 (mean preservation condition)

•
∫
xφ(x)m∗(x)dx = 0 (this is guaranteed if the perturbation is even)

Let’s define (φn)n and (ψn)n by:

• φ0(t) = φe−ρ(T−t) and ψ0(t) = 0.



• φ1(t) = ψ1(t) = 0.

• ∀n ≥ 2, φn and ψn defined as in the preceding proposition.

Then φ(t, x) =
∑∞
n=0 φn(t)Hn(x) and ψ(t, x) =

∑∞
n=0 ψn(t)Hn(x) are

well defined in H, are in C∞ and are solutions of the PDEs with the
boundary conditions associated to φ and ψ.

Now what we want to demonstrate is a stability result. We want
to show that, as T goes to infinity (the initial and final perturbations
remaining unchanged), the influence of the perturbation vanish. This is
the purpose of the following proposition:

Proposition 14 (Stability I). Suppose that:

• The perturbations ψ and φ are in the Hilbert space H = L2(m∗(x)dx).

•
∫
ψ(x)m∗(x)dx = 0 (mass preservation condition)

•
∫
xψ(x)m∗(x)dx = 0 (mean preservation condition)

•
∫
xφ(x)m∗(x)dx = 0 (this is guaranteed if the perturbation is even)

Then, ∀n,∀α ∈ (0, 1
2
):

lim
T→∞

||φn||L∞([αT,(1−α)T ]) = 0, lim
T→∞

||ψn||L∞([αT,(1−α)T ]) = 0

It’s noticeable that the three conditions on the perturbations are nat-
ural to obtain a stability result. First of all, the mass preservation is
natural since the total measure must remain the same. Then, the two
other conditions are necessary because of the invariance by translation of
the problem.

The result we have just obtained is a weak form of stability but
stronger stability results can be obtained by using more precise estima-
tions. An example of such an improvement is:

Proposition 15 (Stability II). Suppose that:

• The perturbations ψ and φ are in the Hilbert space H = L2(m∗(x)dx).

•
∫
ψ(x)m∗(x)dx (mass preservation condition)

•
∫
xψ(x)m∗(x)dx (mean preservation condition)

•
∫
xφ(x)m∗(x)dx (this is guaranteed if the perturbation is even)

Then:
lim
T→∞

supt∈[αT,(1−α)T ]||φ(t, ·)||L2(m∗(x)dx) = 0

lim
T→∞

supt∈[αT,(1−α)T ]||ψ(t, ·)||L2(m∗(x)dx) = 0

Proof: It’s a simple application of the Lebesgue’s dominated convergence
theorem.



5.2 Local eductive stability

Now, we are going to consider another notion of stability that has more
to do with the justification of rational expectation hypothesis or with the
process through which agents will mentally understand what will be the
stationary equilibrium.
The goal in the next paragraphs is in fact to consider an initial guess for
the stationary equilibrium (in the neighborhood of the actual equilibrium)
and to exhibit a “mental process” (this process is actually a continuous
process based on two PDEs involving what we call virtual time) that goes
from the initial guess to the true equilibrium.

Let’s consider the two equations of Proposition 3:

σ2

2
u′′ +

1

2
u′2 − ρu+ ln(m) = 0

σ2

2
m′′ − (mu′)′ = 0

We are going to introduce a variable θ called virtual time and consider,
given an initial guess (u(θ = 0, x),m(θ = 0, x)) for the equilibrium, the
mental process associated with the following system of PDEs:

∂θu =
σ2

2
u′′ +

1

2
u′2 − ρu+ ln(m)

∂θm =
σ2

2
m′′ − (mu′)′

Since we only want to consider a local eductive stability, we are going
to work with the linearized version of these equations that is given by the
following proposition:

Proposition 16 (Linearized mental process). The linearized mental
process around (u∗,m∗) is given by:

∂θφ =
σ2

2
φ′′ − 2ηxφ′ − ρφ+ ψ

∂θψ =
σ2

2
ψ′′ + 2ηxψ′ − φ′′ + x

s2
φ′

where φ and ψ are defined as before and where φ(0, ·) and ψ(0, ·) are
given.

Proof: The proof is identical to the proof of Proposition 8.

We can write these equations using the L operator introduced earlier:

Proposition 17. The above equations can be written as:

∂θφ = −Lφ− ρφ+ ψ

∂θψ = −Lψ +
2

σ2
Lφ



To solve these equations, we need to introduce the matrices (Bn)n:

Bn =

(
−(ρ+ 2ηn) 1

n
s2

−2ηn

)
Lemma 2 (Eigenvalues of Bn). Let’s consider n ≥ 2.

The eigenvalues ξ1n < ξ2n of Bn are both negative with:

ξ1,2n =
1

2

[
−ρ− 4ηn±

√
ρ2 +

4n

s2

]
Proposition 18. Let’s suppose that the initial conditions φ(0, ·) and
ψ(0, ·) are in the Hilbert space H = L2(m∗(x)dx).

Let’s consider for n ≥ 2 the functions

(
φn
ψn

)
that verify:(

∂θφn
∂θψn

)
= Bn

(
φn
ψn

)
with φn(0) equal to φ(0, ·)n and ψn(0) equal to ψ(0, ·)n.
We have:

φn(θ) = On(|φn(0)|eξ
2
nθ)

ψn(θ) = On(
√
n|φn(0)|eξ

2
nθ)

In particular,

∀θ > 0,∀k ∈ N, (nkφn(θ))n ∈ l1(⊂ l2), (nkψn(θ))n ∈ l1(⊂ l2)

As before these estimations show that the solutions will be far more
regular than the initial conditions.

Proposition 19 (Resolution of the PDEs associated to the mental
process). Suppose that:

• The initial conditions φ(0, ·) and ψ(0, ·) are in the Hilbert space H =
L2(m∗(x)dx).

•
∫
ψ(0, x)m∗(x)dx = 0 (this is guaranteed if the initial guess for m is

a probability distribution function)

•
∫
xφ(0, x)m∗(x)dx = 0 (this is guaranteed if the initial guess is even)

•
∫
xψ(0, x)m∗(x)dx = 0 (this is guaranteed if the initial guess is even)

Let’s define (φn)n and (ψn)n by:

• φ0(θ) = φ0(0)e−ρθ and ψ0(θ) = 0.

• φ1(θ) = ψ1(θ) = 0.

• ∀n ≥ 2, φn and ψn defined as in the preceding proposition.

Then φ(θ, x) =
∑∞
n=0 φn(θ)Hn(x) and ψ(θ, x) =

∑∞
n=0 ψn(θ)Hn(x)

are well defined in H, are in C∞, are solutions of the PDEs and verify
the initial conditions.

Proposition 20 (Local eductive stability). Suppose that:



• The initial guesses φ(0, ·) and ψ(0, ·) are in the Hilbert space H =
L2(m∗(x)dx).

•
∫
ψ(0, x)m∗(x)dx = 0 (this is guaranteed if the initial guess for m is

a probability distribution function)

•
∫
xφ(0, x)m∗(x)dx = 0 (this is guaranteed if the initial guess is even)

•
∫
xψ(0, x)m∗(x)dx = 0 (this is guaranteed if the initial guess is even)

Then the solution (φ, ψ) of the mental process converges in the sense
that:

lim
θ→∞

||φ(θ, ·)||L2(m∗(x)dx) = 0 lim
θ→∞

||ψ(θ, ·)||L2(m∗(x)dx) = 0

This proposition proves that given an initial guess in the neighborhood
of a stationary solution, if the initial guess is symmetric around the sta-
tionary solution, then, the mental process associated to the PDEs allows
agents to find the solution. This is what we called local eductive stability.

5.3 Remarks on the conditions to have stability
results

In both the proof of the physical stability and the proof of the educ-
tive stability, there was a need to impose symmetry conditions on the
perturbations or on the initial guesses. These conditions were necessary
to ensure stability because both A1 and B1 were singular. If one wants
to have stability results for more general initial perturbations or initial
guesses, the intuitive idea is to break the translation invariance of the
problem.
Interestingly, we have done that before in the paragraphs dedicated to
localization. This localization idea can be used once again, to have more
general stability results. If we center the problem around 0 as before, we
know that the only relevant difference between the original problem and
the problem with an additional term −δx2, that localizes the problem
around 0, is the positive constant η that depends on δ according to the
equation:

2η2 − η
(

2

σ2
− ρ

)
= δ

Now, in this context we can prove that the eigenvalues of An are of
opposite signs for n ≥ 1 and that the eigenvalues of Bn are both negative
for n ≥ 1 (remember that we needed n to be larger than 2 to have these
properties in the case where δ = 0).

Lemma 3 (Eigenvalues of An and Bn for δ > 0). Suppose that δ > 0
and n ≥ 1.

Then, the eigenvalues λ1,2
n of An =

(
ρ+ 2ηn −1

n
s2

−2ηn

)
are of opposite

signs.

Similarly, the eigenvalues ξ1,2n of Bn =

(
−(ρ+ 2ηn) 1

n
s2

−2ηn

)
are both

negative.



This lemma can be used to prove general stability results when δ > 0.
It is indeed straightforward that all our stability results can be rewritten
exactly the same if one replaces the conditions{ ∫

xψ(x)m∗(x)dx = 0∫
xφ(x)m∗(x)dx = 0

by δ > 0 (physical stability)

or{ ∫
xψ(0, x)m∗(x)dx = 0∫
xφ(0, x)m∗(x)dx = 0

by δ > 0 (eductive stability)

These ideas will be used extensively to study stability in multi-population
frameworks.

5.4 Concluding remarks on the two stability no-
tions

Even though the two kinds of stability look like each other, the two notions
of stability we used are completely orthogonal. The physical stability is
indeed linked to a perturbation of the system. The system is physically
stable because, after an initial perturbation of m∗ and a final perturba-
tion of u∗, under some conditions, the solution of the game is stable in the
sense that agents go back to the equilibrium. Hence, the physical stability
involves forward/backward reasoning. This is not the case of the eductive
stability because the mental process is purely forward (in virtual time).
We start from a guess not too far from an equilibrium (the equilibrium
being a priori unknown) and the mental process converges toward this
equilibrium.
The fact that our solutions are stable for both the physical stability and
the eductive stability backs up the mean field game approach to find rel-
evant solutions.

Conclusion

The model we presented in this paper is the archetype of a dynamical
mean field game model in continuous time with a continuous state space.
Even though the specification is simple, examples can be built with differ-
ent specification and several populations that interact with one another.
Numerical methods will be the topic of a forthcoming article by Jean-
Michel Lasry and Pierre-Louis Lions.

Appendix: Proofs

Proof of proposition 3:

The only thing to prove is thatm(x) = K exp( 2u(x)

σ2 ) is a solution of the

Kolmogorov equation. Taking logs and deriving we have ∇m = 2∇u
σ2 m.

Hence, if we apply the divergence operator to each side we obtain the



Kolmogorov equation.

Proof of proposition 4:

Let’s consider (K,ψ) solution of the preceding equations and let’s in-
troduce m = ψ2 and u = σ2 ln

(
ψ
K

)
.

We have the following derivatives:

∇m
m

= 2
∇ψ
ψ

∇u = σ2∇ψ
ψ

=
σ2

2

∇m
m

Hence, (u,m) verifies the Kolmogorov equation.

Now,

∆u = σ2

[
∆ψ

ψ
− |∇ψ|2

ψ2

]
= σ2 ∆ψ

ψ
− 1

σ2
|∇u|2

⇒ σ2

2
∆u(x) +

1

2
|∇u(x)|2 =

σ4

2

∆ψ(x)

ψ(x)
= ρσ2 ln(

ψ(x)

K
)− g(ψ2(x))

⇒ σ2

2
∆u(x) +

1

2
|∇u(x)|2 − ρu(x) = −g(m(x))

Hence, (u,m) verifies the Hamilton-Jacobi equation.

Proof of proposition 5:

We are going to use Proposition 3 and the PDE in u.

We are looking for a solution for u of the form:

u(x) = −η|x− µ|2 + ω

If we put this form in the Hamilton-Jacobi equation of Proposition 3
we get:

2η2|x− µ|2 + ρη|x− µ|2 − ρω − ηnσ2 = − ln(K) +
2η|x− µ|2

σ2
− 2ω

σ2

A first condition for this to be true is:

2η2 + ρη =
2η

σ2

⇐⇒ η =
1

σ2
− ρ

2
A second condition, to find ω, is related to the fact that m is a prob-

ability distribution function (equation (1′)). This clearly requires η to
be positive but this is guaranteed by the hypothesis ρσ2 < 2. This also
implies:

K exp

(
2ω

σ2

) ∫
Rn

exp

(
−2η

σ2
|x− µ|2

)
= K exp

(
2ω

σ2

) (
πσ2

2η

) n
2

= 1



⇒ ρω + ηnσ2 =
n

2
ln

(
2η

πσ2

)
and this last equation gives ω.

From this solution for u we can find a solution for m. We indeed know
that m is a probability distribution function and that m is given by

m(x) = K exp(
2u(x)

σ2
)

As a consequence, m is the probability distribution function of an n-
dimensional gaussian random variable with variance equal to s2In where

s2 = σ2

4η
i.e. s2 = σ4

4−2ρσ2 .

Proof of proposition 8:

A Taylor expansion of the ln is the only thing needed to obtain the
HJB equation.
For the Kolmogorov equation, the linearized PDE first appears as:

ψ̇m∗ − σ2

2
(ψm∗)′′ + (−2ηxψm∗)′ = −(φ′m∗)′

Since (m∗)′ = − x
s2
m∗ and (m∗)′′ =

(
x2

s4
− 1

s2

)
m∗, we obtain:

ψ̇−σ
2

2

(
ψ′′ − 2

x

s2
ψ′ +

(
x2

s4
− 1

s2

)
ψ

)
−2ηψ−2ηxψ′+2η

x2

s2
ψ = −φ′′+ x

s2
φ′

Using now the fact that s2 = σ2

4η
, we obtain the result.

Proof of Lemma 1:

The eigenvalues are the roots of the polynomials X2 − ρX − 2ηn(ρ+
2ηn) + n

s2
. We can compute ∆:

∆ = ρ2 + 8ηn

(
ρ− 2

σ2
+ 2ηn

)
Hence, using the relations between η and ρ we get:

∆ = ρ2 + 16η2n(n− 1)

Since n ≥ 2 we have ∆ > ρ2 and therefore the two roots are real, one is
positive and the other is negative.

Proof of proposition 12:

If we use the preceding lemma, we see that we can write:(
φn(t)
ψn(t)

)
= C1

n,T e
λ1

nt

(
1
v1
n

)
+ C2

n,T e
λ2

nt

(
1
v2
n

)
where the v’s are found using eigenvectors of the matrix An:



v1
n = ρ+ 2ηn− λ1

n, v2
n = ρ+ 2ηn− λ2

n

Now, to find the two constants we need to use the conditions on φn(T )
and ψn(0): {

φn(T ) = φn = C1
n,T e

λ1
nT + C2

n,T e
λ2

nT

ψn(0) = ψ
n

= C1
n,T v

1
n + C2

n,T v
2
n

Hence: 
C1
n,T =

v2nφn−e
λ2

nTψ
n

v2ne
λ1

nT−v1ne
λ2

nT

C2
n,T =

v1nφn−e
λ1

nTψ
n

v1ne
λ2

nT−v2ne
λ1

nT

Using the fact that v1
n ∼ 4ηn and v2

n ∼ ρ
2

+ η we can deduce the

asymptotic behavior6 of C1,2
n,T as n goes to infinity (with T fixed).

C1
n,T ∼n→∞

ψ
n

4ηn
, C2

n,T ∼n→∞ φne
−λ2

nT

Hence:

φn(t) = On(
ψ
n

4ηn
eλ

1
nt) +On(φne

−λ2
n(T−t))

ψn(t) = On(ψ
n
eλ

1
nt) +On(φne

−λ2
n(T−t))

These two estimations prove the results.

Proof of proposition 13:

First of all, the preceding proposition ensure that the two functions φ
and ψ are well defined, in C∞, and that we can differentiate formally the
expressions. Then, the first three conditions can be translated as ψ

0
= 0,

ψ
1

= 0 and φ1 = 0 and so the conditions at time 0 and time T are verified.
The fact that the PDEs are verified is due to the definition of φn and ψn
and also to the fact that we can differentiate under the sum sign because
of the estimates of the preceding proposition.

Proof of proposition 14:

The result is obvious for n = 0 and n = 1. For n ≥ 2, we need to go
back to the expressions of φn(t) and ψn(t).

First of all, let’s go back to the two constants:
C1
n,T =

v2nφn−e
λ2

nTψ
n

v2ne
λ1

nT−v1ne
λ2

nT

C2
n,T =

v1nφn−e
λ1

nTψ
n

v1ne
λ2

nT−v2ne
λ1

nT

6Here we assume that ψ
n
6= 0 and φn 6= 0. If one of these coefficients is equal to 0, the

estimates of the proposition are still true and can even be improved.



Then7,

lim
T→∞

C1
n,T =

ψ
n

v1
n

, C2
n,T ∼T→∞ φne

−λ2
nT

Using now the expressions for the functions,

φn(t) = C1
n,T e

λ1
nt + C2

n,T e
λ2

nt

ψn(t) = C1
n,T v

1
ne
λ1

nt + C2
n,T v

2
ne
λ2

nt

we get:

||φn||L∞([αT,(1−α)T ]) ≤ |C1
n,T |eλ

1
nαT + |C2

n,T |eλ
2
n(1−α)T

||ψn||L∞([αT,(1−α)T ]) ≤ |C1
n,T v

1
n|eλ

1
nαT + |C2

n,T v
2
n|eλ

2
n(1−α)T

and this leads to the result really easily.

Proof of lemma 2:

The eigenvalues are the roots of the polynomials X2 + (ρ + 4ηn)X +
2ηn(ρ+ 2ηn)− n

s2
. We can compute ∆:

∆ = ρ2 +
4n

s2
> 0

Hence, the eigenvalues are real and are of the form given in the proposition.
Since tr(Bn) < 0 and det(Bn) = 2ηn(ρ+ 2ηn)− 4ηn

σ2 = 4η2n(n− 1) > 0,
the two eigenvalues are negative.

Proof of proposition 18:

The proof is similar to the proof of Proposition 12.(
φn(θ)
ψn(θ)

)
= Ane

ξ1nθ

(
1
an

)
+Bne

ξ2nθ

(
1
bn

)
where:

an = ρ+ 2ηn+ ξ1n, bn = ρ+ 2ηn+ ξ2n

Now, to find the two constants we need to use the conditions on φn(0)
and ψn(0): {

φn(0) = An +Bn
ψn(0) = anAn + bnBn

Hence: {
An = bnφn(0)−ψn(0)

bn−an

Bn = anφn(0)−ψn(0)
an−bn

7Here we assume that φn 6= 0. If this coefficient is equal to 0, the result is still true but the
estimate for C2

n,T cannot be written this way and is in fact better than the estimate presented
below.



Using the fact that an ∼ −
√
η

σ

√
n and bn ∼

√
η

σ

√
n we can deduce the

asymptotic behavior of the constants as n goes to infinity.

An ∼n→∞
φn(0)

2
, Bn ∼n→∞

φn(0)

2

Hence, since ξ1n < ξ2n,

φn(θ) = On(|φn(0)|eξ
2
nθ)

ψn(θ) = On(
√
n|φn(0)|eξ

2
nθ)

These two estimations prove the results.

Proof of proposition 19:

First of all, the preceding proposition ensure that the two functions
φ and ψ are well defined, in C∞, and that we can differentiate formally
the expressions. Then, the first three conditions can be translated as
ψ0(0, ·) = 0, φ1(0, ·) = 0 and ψ1(0, ·) = 0 and so the conditions at time 0
is verified.
The fact that the PDEs are verified is due to the definition of φn and ψn
and also to the fact that we can differentiate under the sum sign because
of the estimates of the preceding proposition.

Proof of proposition 20:

We basically want to show that:

+∞∑
n=0

|φn(θ)|2 →θ→+∞ 0,

+∞∑
n=0

|ψn(θ)|2 →θ→+∞ 0

This is actually a pure consequence of the estimates proved in Propo-
sition 21 and of the Lebesgue’s dominated convergence theorem.

Proof of lemma 3:

λ1,2
n are the two roots of the polynomial X2−ρX−2ηn(ρ+2ηn)+ n

s2
.

The associated ∆ is given by

∆ = ρ2 + 8ηn

(
ρ− 2

σ2
+ 2ηn

)
∆ = ρ2 + 16η2n(n− 1) + 8nδ

Hence, the eigenvalues λ1,2
n = 1

2

(
ρ±

√
∆

)
are of opposite signs for

n ≥ 1 since ∆ > ρ2.
Now, ξ1,2n are the two roots of the polynomial X2 + (ρ + 4ηn)X +

2ηn(ρ+ 2ηn)− n
s2

. The associated ∆ is given by

∆ = ρ2 + 4
n

s2



Hence, ξ1,2n = 1
2

[
−ρ− 4ηn±

√
ρ2 + 4n

s2

]
. These two eigenvalues are

negative if and only if:

ρ+ 4ηn >

√
ρ2 +

4n

s2

⇐⇒ 8ρηn+ 16η2n2 >
16ηn

σ2

⇐⇒ 2ηn >
2

σ2
− ρ

and this is true for n ≥ 1.
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