
         ISSN 1440-771X 
          

 
 

 
AUSTRALIA 

 
 
 

DEPARTMENT  OF  ECONOMETRICS 
AND  BUSINESS  STATISTICS 

 
 
 
 
 
 
 
 

Implicit Bayesian Inference Using Option Prices 
 

Gael M Martin, Catherine S Forbes and Vance L Martin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Working Paper  5/2003 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6342067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Implicit Bayesian Inference Using Option Prices

Gael M. Martina, Catherine S. Forbesa and Vance L. Martinb∗

a. Department of Econometrics and Business Statistics, PO Box 11E

Monash University, Vic., 3800, Australia; Email: Gael.Martin@BusEco.monash.edu.au.

Phone: 61 3 9905 1189; Fax: 61 3 9905 5474.

b. Department of Economics, University of Melbourne.

First Draft, July, 2000
(Monash University Working Paper 5/2000)

This Version, February, 2003

Abstract

A Bayesian approach to option pricing is presented, in which posterior inference
about the underlying returns process is conducted implicitly via observed option prices.
A range of models allowing for conditional leptokurtosis, skewness and time-varying
volatility in returns are considered, with posterior parameter distributions and model
probabilities backed out from the option prices. Models are ranked according to several
criteria, including out-of-sample Þt, predictive and hedging performance. The method-
ology accommodates heteroscedasticity and autocorrelation in the option pricing errors,
as well as regime shifts across contract groups. The method is applied to intraday op-
tion price data on the S&P500 stock index for 1995. Whilst the results provide support
for models which accommodate leptokurtosis, no one model dominates according to all
criteria considered.
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1 Introduction

An option is a contingent claim whose theoretical price is dependent upon the process as-

sumed for returns on the underlying asset on which the option is written. Observed market

option prices thus contain information on this process which is potentially different from

and more complete than, information contained in an historical time series on returns; see,

for example, Pastorello, Renault and Touzi (2000). In this paper, a methodology is pre-

sented for conducting implicit inference about a range of models for the underlying returns

process, using option price data. The methodology is based on the Bayesian paradigm and

involves the production of both posterior densities for the parameters of the alternative mod-

els and posterior model probabilities. The models considered allow for both time-varying

conditional volatility, using the Generalized Autoregressive Conditional Heteroscedasticity

(GARCH) framework of Engle (1982) and Bollerslev (1986), and leptokurtosis and skew-

ness in the conditional distribution of returns, using the frameworks of Lye and Martin

(1993, 1994) and Fernandez and Steel (1998). The generalized local risk-neutral valuation

method of Duan (1999) is used as the basis for deÞning the pertinent risk-neutral process

in the estimation of all models which assume a nonnormal conditional distribution. An

important feature of the proposed framework is that it nests the option pricing model of

Black and Scholes (1973), in which returns are assumed to be normally distributed with

constant volatility.

To assess the out-of-sample performance of the different parametric models, Þt and

predictive densities are produced. The hedging performance of the different models is also

gauged via the construction of posterior densities for the hedging errors. The posterior

densities for the model parameters and the posterior model probabilities are based on the

prices of option contracts on the S&P500 stock index recorded during the Þrst 239 trading

days of 1995. The out-of-sample Þt, predictive and hedging error assessments are based on

data recorded during the week immediately succeeding the end of the estimation period.1

Most of the existing statistical work on option prices is based on either the classical par-

adigm or on a simple application of statistical Þt. Engle and Mustafa (1992), Sabbatini and

Linton (1998) and Heston and Nandi (2000) minimize the sum of squared deviations between

observed and theoretical option prices to estimate the parameters of GARCH processes.

Dumas, Fleming and Whaley (1998) adopt a similar approach using deterministic volatility

models, whilst Jackwerth and Rubenstein (2001) use measures of Þt to infer a variety of

deterministic and stochastic volatility models. Bates (2000), Chernov and Ghysels (2000),
1The data has been obtained from the Berkeley Options Database.
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and Pan (2002) use more formal classical methods to produce implicit estimates of the para-

meters of stochastic volatility models, based on the assumption of conditional normality for

the returns process. In Lim et al (1998), Bollerslev and Mikkelsen (1999), Duan (1999) and

Hafner and Herwartz (2001), GARCH models are augmented with nonnormal conditional

errors and the implications of such models for option pricing investigated, again within a

classical inferential framework. In Corrado and Su (1997), Dutta and Babbel (2002) and

Lim, Martin and Martin (2002a), option prices are used to conduct classical implicit estima-

tion of returns models which accommodate skewness and leptokurtosis, with a time-varying

volatility component also speciÞed in the case of Lim, Martin and Martin (2002a). SigniÞ-

cant option-implied skewness and excess kurtosis is found in all cases, with the link between

these features and implied volatility smiles highlighted in Lim, Martin and Martin (2002a).

Backus, Foresis, Li and Wu (1997) also focus on the connection between volatility smiles

and departures from lognormality in the underlying spot price process. Lim, Martin and

Martin (2002b) extend this type of modelling approach to the less usual case of volatility

frowns, linking this feature to the presence of thin-tailed underlying returns processes.

Some Bayesian analyses have been performed. Boyle and Ananthanarayanan (1977) and

Korolyi (1993) conduct Bayesian inference in an option pricing framework using returns

data, with attention restricted to the Black-Scholes (BS) model. Bauwens and Lubrano

(2002) also use returns data to conduct Bayesian inference, but allow for deviations from

the BS assumptions. In line with the present paper, Jacquier and Jarrow (2000) conduct

Bayesian inference using observed option prices. Unlike our approach, however, in which

the option price data is used to estimate and rank a full set of parametric returns models,

Jacquier and Jarrow focus on the BS model, catering for the misspeciÞcation of that model

nonparametrically. We also use a richer speciÞcation for the option pricing errors than do

the latter authors. Jones (2000), Eraker (2001), Forbes, Martin and Wright (2002) and

Polson and Stroud (2002) use option prices to estimate stochastic volatility models for

returns, applying Bayesian inferential methods. In all cases, however, the assumption of

conditional normality is maintained.

The paper is organized as follows. Section 2 discusses the application of the Bayesian

statistical paradigm to option pricing. Alternative option price models that allow for time-

varying volatility and nonnormality in the conditional distribution of returns are formulated

in Section 3, along with the appropriate risk-neutral adjustments. In Section 4, implicit

Bayesian inference based on option price data on the S&P500 index is illustrated. Posterior

quantities are reported, together with summary measures of the Þt, predictive and hedging
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distributions for the different models. The empirical results provide evidence which favours

a fat-tailed model, with both point and interval estimates indicating that the option prices

have factored in the assumption of a returns distribution with excess kurtosis. The model

which allows for excess kurtosis has the largest posterior probability and the best out-of-

sample performance according to most criteria considered. There is evidence of a small

amount of negative skewness being factored into the option prices, more than would be

warranted by consideration of the skewness properties of returns on the index during the

relevant time period. However, little posterior weight is assigned to the model which departs

from normality only in the sense of being skewed. The GARCH models are also assigned

little posterior weight in comparison with the constant volatility models, although within

the GARCH class there is a clear hierarchy, with the models which allow for conditional

nonnormality performing better overall than the model which adopts a normal conditional

distribution for returns. The hedging results suggest that the hedging errors for all models

are insubstantial. Some conclusions are drawn in Section 5.

2 Bayesian Inference in an Option Pricing Framework

The price of an option written on a non-dividend paying asset is the expected value of the

discounted payoff of the option. For a European call option, the price is

q = Et
£
e−rτ max (ST −K, 0)

¤
, (1)

where Et is the conditional expectation, based on information at time t = T −τ , taken with
respect to the risk-neutral probability measure; see Hull (2000). The notation used in (1)

is deÞned as follows:

T = the time at which the option is to be exercised;

τ = the length of the option contract;

K = the exercise price;

ST = the spot price of the underlying asset at the time of maturity;

r = the risk-free interest rate assumed to hold over the life of the option.

The option price is thus a function of certain observable quantities, namely r, K and τ . As

the expectation is evaluated at time t, it is also a function of the observable level of the

spot price prevailing at that time, St. Since the option price involves the evaluation of the

expected payoff at the time of maturity, the price depends on (i) the assumed stochastic
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process for St, or alternatively, on the assumed distribution for returns on the asset; and (ii)

the values assigned to the unknown parameters of that underlying process. In this paper,

we explicitly allow for the uncertainty associated with both (i) and (ii), by producing re-

spectively posterior probabilities for a range of alternative models and posterior probability

distributions for the model speciÞc parameters.

Posterior inferences are to be produced implicitly from observed market option prices.

For this to occur, option prices need to be assigned a particular distributional model. In

this paper, a very general model is adopted, whereby option pricing errors are allowed to be

serially correlated across days and heterogeneous across both time and moneyness category.

As the empirical application focusses only on short-term options, with less than a month

and a half to expiry, no allowance is made for variation across maturity category.

Let Cijt denote the price of option contract i in moneyness category j, observed at time

t, where moneyness group j, j = 1, 2, . . . , J, is deÞned according to

mj <
St
Kij

< mj+1,

with Kij denoting the exercise price associated with Cijt. The number of groups and the

location of segment boundaries, mj, j = 1, 2, . . . J, are chosen to accord with the main

moneyness groups in the data. More details of this are provided in Section 4. Although

synchronous recording of the spot and option prices is a feature of the empirical data, we

do not attempt to model movements in the underlying spot price process across the day.

Rather, we produce inferences, via observed option prices, on the day-to-day movements

in St, or, in other words, inference on the daily returns process. Hence, we attempt to

minimize the within-day variation in St in the option price sample by selecting a cross

section of option prices observed at (approximately) the same time on each day, t, where

t = 1, 2, . . . , n, and n is the number of trading days used in the estimation sample.2 The

number of observations in each moneyness group at each point in time, njt, varies. Letting

i = 1, 2, . . . , njt, j = 1, 2, . . . , J, t = 1, 2, . . . , n, the total number of observations in the

sample is given by

N =
JX
j=1

nX
t=1

njt. (2)

2More precisely, in the empirical application we select option prices from a small window of time, usually
5 to 10 minutes, prior to 3.00pm on each trading day in the estimation sample. Note that although there
is some limited variation in the synchronously recorded spot prices during this time period, we continue to
use the notation St to denote any spot price recorded during this period on day t.
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The model speciÞed for the N observed option prices is

Cijt = b0j + b1jq(zijt, θ) +
4X
l=1

dljDl +
GX
g=1

ρgjCij(t−g) + σjuijt, (3)

uijt ∼ N(0, 1) for all i = 1, 2, . . . , njt; j = 1, 2, ..., J ; t = 1, 2, . . . , n. (4)

The function q(zijt, θ) in (3) represents the theoretical option price, which is conditional on

the assumed distribution of the returns process. As the pricing of the option involves the

evaluation of an expectation with respect to the risk-neutral distribution of the underlying

asset, q(., .) is a function of the parameters which characterize that distribution, denoted by

θ, in addition to being a function of the vector of observable factors, zijt = (rt,Kij, τ ij, St)0,

with τ ij representing the maturity of the ijth option contract and rt the risk-free rate of

return prevailing on day t.

The model in (3) allows an observed option price to deviate from the theoretical price

in a manner which differs across moneyness group. SpeciÞcally, the intercept b0j, slope b1j

and variance σ2j of the model for Cijt are permitted to vary with j. In particular, allowance

for heteroscedasticity across moneyness groups is necessary as a consequence of the large

variation in the magnitude of prices across the moneyness spectrum, a feature that translates

into variation across j in the magnitude of the variance of pricing errors. Dummy variables

are also included to capture �day-of-the-week� effects in the option market, Dl, l = 1, 2, 3, 4,

where Friday corresponds to Dl = 0 for all l. The coefficients of the dummy variables, dlj ,

are also allowed to vary with j. The symbol Cij(t−g) denotes the option price on day t− g
of the ith contract in moneyness group j, g = 1, 2, . . .G, for a maximum of G lags. The

lagged dependent variables are included in order to capture correlation across time in pricing

errors. With each lagged variable being assigned a group speciÞc coefficient, ρgj, the model

allows for variation across moneyness groups in the degree of serial correlation in the pricing

errors.

The coefficients to be estimated for each moneyness group may be grouped together by

moneyness group, and denoted by βj =
³
b0j,b1j,d1j,d2j,d3j,d4j,ρ1j,..., ρGj

´0
, for j = 1, . . . , J ,

with β = (β01,β
0
2, . . . ,β

0
J)

0
. The variances associated with each moneyness group may also

be grouped as Σ = diag
¡
σ21, ...,σ

2
J

¢
. Further deÞning cj as the (Nj × 1) vector of observed

options prices for moneyness group j, ordered by day within the group, with Nj =
Pn
t=1 njt,

the joint density function for c = (c01, c02, . . . , c0J)
0 is

p(c|Σ,β, θ) = (2π)−N/2
JQ
j=1

σ
−Nj
j exp

Ã
− 1

2σ2j

h
cj −Xj(θ)βj

i0 h
cj −Xj(θ)βj

i!
, (5)
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where Xj(θ) is an (Nj × L) matrix containing the observations on the L = 6+G regressors,
for moneyness group j, again ordered by day within the group. The second column of Xj(θ)

contains the Nj observations on the theoretical option prices of the contracts in group j,

q(zijt, θ). It is via the dependence of q(., .) on θ that each regressor matrix Xj(θ) depends

on θ. The density in (5) is conditional on initial values for the lagged option prices which

appear on the right hand side of (3).3 Assuming a joint prior for β and Σ of the form

p (β,Σ) ∝
JQ
j=1

σ−2j , (6)

and imposing a priori independence between (β,Σ) and θ, the joint posterior for θ can be

derived as

p(θ|c) ∝
JY
j=1

¯̄
Xj(θ)

0Xj(θ)
¯̄−1/2 bσ−(Nj−L)j × p(θ), (7)

where p(θ) denotes the prior on θ, bσ2j = h
cj −Xj(θ)bβji0 hcj −Xj(θ)bβji / (Nj − L) and bβj =

[Xj(θ)0Xj(θ)]−1Xj(θ)0cj .

Given the nonstandard nature of (7), which obtains even for the simplest case of the

BS model, numerical procedures are required in order to produce all posterior quantities

of interest. Details of these procedures are provided in Section 4.4

3 Alternative Option Pricing Models

The evaluation of the option price in (1) and hence the speciÞcation of the theoretical

option price, q(zijt, θ), in (3), requires knowledge of the generating process of the spot price

St. The assumption underlying the BS option pricing model is that returns are normally

distributed, with the volatility of returns being constant over the life of the option contract.

As is now an established empirical fact, these assumptions do not tally with the observed

distributional features of returns, with conditional skewness, leptokurtosis and time-varying

volatility being stylized features of most returns data; see Bollerslev, Chou and Kroner

(1992) for a review of the relevant literature. As has also been widely documented, BS
3For notational convenience we do not make explicit the dependence of the joint density for c on the

values of all observable components on the right hand side of equation (3). We also omit these components
in the description of all posterior densities.

4To rule out arbitrage, the distribution of Cijt should be truncated from below at lbijt = max{0, St −
e−rtτijKij}; see Hull (2000). However, the incorporation of this truncation in the likelihood function means
that (β,Σ) cannot be integrated out analytically. As we wish to minimize the numerical burden associated
with the methodology, we choose to omit the truncation at the estimation stage. Note however that in the
empirical application we do Þlter the data according to the lower bound, as well as truncate the predictive
densities appropriately in the out-of-sample analysis.
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implied volatilities are not constant across strike prices or maturity. SpeciÞcally, implied

volatility �smiles� or �smirks� across strike prices which, in turn, vary in intensity depending

on the time to expiration, have become a stylized fact in empirical work on option prices.

Such patterns have been shown to be evidence of implied returns models which deviate from

the speciÞcations of the BS model; see, for example, Corrado and Su (1997), Hafner and

Herwartz (2001) and Lim, Martin and Martin (2002a).

In this section the assumptions which underlie the BS model are relaxed, with the

distributional frameworks of Lye and Martin (1993, 1994) and Fernandez and Steel (1998)

being combined to produce a general model for returns which accommodates both con-

ditional leptokurtosis and skewness. To allow for time-varying volatility over the life of

the option, the distributional framework is augmented with a GARCH(1, 1) model.5 To

price options under this more general speciÞcation the risk-neutralization approach of Duan

(1995, 1999) is adopted.

3.1 Risk-Neutral Specifications

Consider the following empirical model for the continuously compounded return over the

small time interval ∆t,

lnSt+∆t − lnSt = (µt+∆t − 0.5σ2t+∆t)∆t+ σt+∆t
√
∆tet+∆t, (8)

where µt+∆t is the conditional mean of the return, et+∆t is a standardized error term

and σt+∆t is the annualized conditional volatility of returns. The conditional variance is

assumed to follow a GARCH(1, 1) process,

σ2t+∆t = α/∆t+ δσ
2
t e
2
t + ωσ

2
t , (9)

with

α > 0; δ, ω ≥ 0; δ + ω < 1.

Given the discrete time nature of the model in (8) and (9), the Duan (1995, 1999) approach

of using an equilibrium model to specify a local risk-neutral valuation measure, is adopted.

In the case where et in (8) is conditionally normal, the (local) risk-neutral process for returns

is deÞned as

lnS
t+∆t

− lnSt = (µt+∆t − 0.5σ2t+∆t)∆t+ σt+∆t
√
∆t(zt+∆t − λNt+∆t), (10)

5The GARCH (1, 1) model represents an omnibus model of volatility. More general volatility mod-
els which contain asymmetries and longer memory characteristics could be entertained; see, for example,
Bauwens and Lubrano (2001) and Bollerslev and Mikkelsen (1999). However, use of these models would
increase the number of parameters to be estimated, thereby raising the computational complexity of the
Bayesian approach adopted in this paper. Computational issues are discussed in Section 4.
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where zt+∆t is the risk-neutral standard normal innovation and λNt+∆t is a risk premium

given by

λNt+∆t =
√
∆t(µt+∆t − rt+∆t)/σt+∆t, (11)

where rt+∆t is the risk-free rate of return. The superscript �N � in (11) is used to highlight

the fact that the risk premium in (11) relates speciÞcally to a normal innovation term.

Substitution of (11) in (10) produces the following representation of the risk-neutral process,

lnS
t+∆t

− lnSt = (rt+∆t − 0.5σ2t+∆t)∆t+ σt+∆t
√
∆tzt+∆t. (12)

The form of the GARCH(1, 1) process under local risk-neutralization is then

σ2t+∆t = α/∆t+ δσ
2
t

³
zt − λNt

´2
+ ωσ2t , (13)

which produces an unconditional (annualized) variance equal to

α/∆t+ δ∆t(µt − rt)2
1− (δ + ω) . (14)

That is, local risk-neutralization implies that given δ > 0, options are priced under a distri-

bution with a higher unconditional variance than that associated with the objective process

in (9). The extent to which the unconditional variance in (14) exceeds that associated with

the objective process depends on the deviation between the actual rate of return on the

underlying asset, µt, and the risk free rate of return, rt; see Duan (1995).

In order to allow for an innovation term in (8) which accommodates skewness and

leptokurtosis, the appropriate risk-neutral distribution becomes

lnS
t+∆t − lnSt = (µt+∆t − 0.5σ2t+∆t)∆t+ σt+∆t

√
∆tΨ−1(zt+∆t − λt+∆t), (15)

whereΨ−1 denotes the function which transforms the normal variate, zt+∆t, into the relevant

nonnormal variate and the risk premium λt, is now the solution to

E[Ψ−1(zt+∆t − λt+∆t)|Ft] = −λNt+∆t, (16)

with Ft the set of all information up to time t; see Duan (1999) and Hafner and Herwartz
(2001). The process for σ2t under this so-called generalized local risk-neutral valuation, in

turn, becomes

σ2t+∆t = α/∆t+ δσ
2
t [Ψ

−1(zt − λt)]2 + ωσ2t . (17)

To implement the risk-neutral adjustments in (15) to (17) requires several steps, each of

which needs to occur at each point in the support of the joint posterior density and at each
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point in time in the life of the option over which the process is being simulated. The steps

are as follows: 1) repeated numerical simulation of the normal variate, zt; 2) transformation

to the relevant nonnormal variate; 3) estimation of the expectation in (16) as a sample mean;

and 4) numerical solution to (16) over a grid of values for λt. A further transformation from

normal to nonnormal random variates, as based on the solution for λt, is then required in

implementing both (15) and (17), again at each point in the parameter space and at each

point in (simulated) time. All of these steps are computationally intensive, especially in the

context of conducting implicit Bayesian inference.6

To circumvent these computational problems rewrite (15) as

lnS
t+∆t − lnSt = (rt+∆t − 0.5σ2t+∆t)∆t+ σt+∆t

√
∆t

h
Ψ−1(zt+∆t − λt+∆t) + λNt+∆t

i
= (rt+∆t − 0.5σ2t+∆t)∆t+ σt+∆t

√
∆tvt+∆t, (18)

where

vt+∆t =
h
Ψ−1(zt+∆t − λt+∆t) + λNt+∆t

i
(19)

is the nonnormal risk-neutral random error term, with conditional mean of zero, given (16).

This representation of vt+∆t in (18) and (19) suggests that it can be parameterized directly

using a standardized nonnormal density. By deÞnition, the parameters of this distribution,

which characterize the higher order moments of the conditional distribution of returns,

are the risk-neutralized parameters. These parameters, by construction, differ from the

empirical analogues. The risk-neutral process for σ2t is, in turn, given by

σ2t+∆t = α/∆t+ δσ
2
t (vt − λNt )2 + ωσ2t . (20)

For consistency, the nonnormal distributional speciÞcation adopted for vt should nest the

normal distribution, in which case λt+∆t = λNt+∆t,Ψ
−1 = I, vt+∆t = zt+∆t, and the processes

in (18) and (20) collapse respectively to those in (12) and (13).

In the special case when the volatility is restricted to be constant, σt = σ, but the

assumption of nonnormality is maintained for vt, the risk-neutral returns process in (18)

reduces to

lnS
t+∆t − lnSt = (rt+∆t − 0.5σ2)∆t+ σ

√
∆tvt+∆t. (21)

Further, with normality and constant volatility, (18) collapses to

lnS
t+∆t − lnSt = (rt+∆t − 0.5σ2)∆t+ σ

√
∆tzt+∆t, (22)

6Note that this same point applies to any estimation method in which the option prices themselves are
used as the basis for inference. In Duan (1999), Hafner and Herwartz (2001) and Bauwens and Lubrano
(2002), in which GARCH option models are estimated using these risk adjustments, the computational
burden is much less signiÞcant as the parameter estimates are extracted from historical returns data.
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which is the discrete version of the risk-neutral distribution which underlies the BS option

price.

3.2 Distributional Specifications

The general speciÞcation adopted for the distribution of vt in (18) combines elements of

the nonnormal distributions formulated in Lye and Martin (1993, 1994) and Fernandez

and Steel (1998). Denoting by wt a random variable with mean µw and variance σ
2
w, and

deÞning vt via

wt = σwvt + µw,

the approach of Fernandez and Steel is used to deÞne the density function of vt as

pf (vt) =
2

γ + 1
γ

σw

½
f

µ
wt
γ

¶
I[0,∞) (wt) + f (γwt) I(−∞,0) (wt)

¾
, (23)

where f (.) is deÞned as a symmetric density function with a single mode at zero and IA (w)

denotes the indicator function for the set A. The mean and variance of wt are deÞned

respectively as

µw =

Ã
γ2 − 1/γ2
γ + 1/γ

! Z ∞

0
2xf(x)dx

and

σ2w =

Ã
γ3 + 1/γ3

γ + 1/γ

! µZ ∞

0
2x2f(x)dx

¶
− µ2w.

The parameter γ denotes the degree of skewness in the distribution, with γ > 1 correspond-

ing to positive skewness, γ < 1 corresponding to negative skewness and γ = 1 corresponding

to symmetry. The density pf (vt) has a mean of zero, with the sign and magnitude of γ − 1
determining the sign and magnitude of the mode. The Pearson skewness coefficient associ-

ated with the standardized variate vt,

skew = E(vt), (24)

can be computed numerically for any given value of γ.

The density in (23) can be used to produce a standardized skewed normal distribution for

vt when f(.) deÞnes the normal density function. Alternatively, deÞning f(.) as a density

function with excess kurtosis, produces a distribution for vt with both leptokurtosis and

skewness. By setting γ = 1, symmetric normal and leptokurtic distributions for vt are

retrieved.

Whilst an obvious choice for the leptokurtic f(.) density is the Student t density, as

pointed out by Duan (1999), such a distribution is problematic when the underlying random
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variable is a continuously compounded return. SpeciÞcally, the assumption of a Student t

distribution for the log-differenced spot price implies that neither the simple return nor the

spot price at a given point in time, conditional on the previous spot price, has moments. As

the numerical approach adopted in this paper involves simulating returns over successive

periods,∆t, then estimating the expectation of a function of the spot price at expiry, it is not

feasible to deÞne returns as a Student t variate.7 Instead, we use a subordinate distribution

from the generalized exponential family deÞned in Lye and Martin (1993, 1994) which has

excess kurtosis relative to the normal distribution, but with tail behaviour that ensures the

existence of all moments for the spot price process. DeÞning a random variable ηt with

mean and variance µη and σ
2
η respectively, this density is deÞned as

f(ηt) = k
∗(1 +

η2t
ν
)−0.5(ν+1)/2 exp(−0.5η2t ), (25)

where

k∗ =
"Z
(1 +

η2t
ν
)−0.5(ν+1)/2 exp(−0.5η2t )dηt

#−1
is the normalizing constant. The density in (25) is proportional to a product of Student t

and normal kernels. Whilst the Þrst term in the product allows for the excess kurtosis for

any Þnite value of ν, the second term ensures that the moments of ηt exist for any value

of ν. It also ensures that the moments of St taken with respect to the density in (25) also

exist for any value of ν.

We refer to the density in (25) as the Generalized Student t (GST ) density. In order to

deÞne a GST density for the standardized variate vt, deÞned by,

ηt = σηvt + µη,

the variance of ηt, σ
2
η, needs to be computed numerically, along with the integrating constant

k∗ in (25). The mean of ηt, µη, is equal to zero. Whilst there is no closed form expression

for the kurtosis in the GST distribution, an estimate of the kurtosis coefficient,

kurt = E(vt), (26)

can be computed numerically for any given value of ν.
7On the other hand, if one were to deÞne the return over the full life of the option as Student t, transform

this distribution to the implied distribution of the spot price at maturity, then take the expectation with
respect to the latter distribution, the expectation is well-deÞned, at least for sufficient degrees of freedom;
see Lim, Martin and Martin (2002a).
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4 Implicit Bayesian Inference Using S&P500 Option Prices

4.1 Detailed Model Specifications

In this section, S&P500 option price data are used to conduct implicit Bayesian inference

on a range of alternative models which are nested in the above distributional framework.

Associated with the assumption of constant volatility in (18) are four alternative models

for returns, corresponding to the alternative speciÞcations for f(.) and γ in (23): normal,

GST , skewed normal (SN) and skewed GST (SGST ), denoted respectively by M1, M2,

M3 and M4 :

M1 : f(.) normal; γ = 1; σt = σ vt ∼ N(0, 1)
M2 : f(.)GST ; γ = 1; σt = σ µη + σηvt ∼ GST (µη,σ2η, ν)
M3 : f(.) normal; γ 6= 1; σt = σ µw + σwvt ∼ SN(µw,σ2w, γ)
M4 : f(.)GST ; γ 6= 1; σt = σ µw + σw[µη + σηvt] ∼ SGST (µw,σ2w, γ, ν).

(27)

As model M1 corresponds to the discrete time version of the returns model which underlies

the BS option price, we subsequently refer to M1 as the BS model. Model M2 speciÞes vt

as GST (0, 1, ν), thereby accommodating excess kurtosis. Model M3 allows for skewness in

returns, whilst model M4 allows for both leptokurtosis and skewness.

Augmentation of the returns model to cater for the variance structure in (20) leads to

additional alternative models, in which the conditional variance is time-varying and the

conditional distribution for returns is assumed respectively to be normal, GST , skewed

normal and SGST . In order to retain parsimony, certain restrictions are placed on the

parameterization of the GARCH models. First, the intercept parameter α in (20) is set to

the value required to equate the risk-neutral unconditional mean of the variance with an

average of the estimates of σ2 in the constant volatility models. Secondly, the GARCH-

based models with nonnormal conditional distributions are estimated with the distributional

parameters fixed at certain values. SpeciÞcally, the models which accommodate excess

kurtosis in the distribution of vt are estimated with ν set to 1.0 and 5.0 respectively. The

values of ν are chosen so as to produce a continuum of kurtosis behaviour in the conditional

distribution of vt, ranging from kurtosis of 3 associated with conditional normality, followed

by kurtosis of 3.233 associated with ν = 5.0, through to kurtosis of 3.624 associated with ν =

1.0. In addition, the maximum degree of kurtosis allowed in the conditional distributions of

the GARCH models is deliberately set to be lower than that estimated in the corresponding

constant volatility models, as the GARCH process itself models some of the kurtosis in the

unconditional distribution. The model which speciÞes GARCH with conditional skewness

(M8) is estimated with γ set to 0.85. This value of γ corresponds to a skewness coefficient of

13



−0.341 and is chosen to reßect the degree of skewness estimated for the corresponding model
with constant volatility (M3). The degree of skewness speciÞed for the GARCH models

with the SGST conditional distributions also matches that estimated for the corresponding

constant volatility models (M9 and M10) respectively.8 In total then, six GARCH models

are estimated, denoted respectively by M5, M6, M7, M8, M9 and M10 :

M5 : f(.) normal; γ = 1; σt vt ∼ N(0, 1)
M6 : f(.)GST ; ν = 5 γ = 1; σt µη + σηvt ∼ GST (µη,σ2η, ν)
M7 f(.)GST ; ν = 1 γ = 1; σt µη + σηvt ∼ GST (µη,σ2η, ν)
M8 : f(.) normal; γ = 0.85; σt µw + σwvt ∼ SN(µw,σ2w, γ)
M9 : f(.)GST ; ν = 5 γ = 0.80; σt µw + σw[µη + σηvt] ∼ SGST (µw,σ2w, γ, ν).
M10 : f(.)GST ; ν = 1 γ = 0.80; σt µw + σw[µη + σηvt] ∼ SGST (µw,σ2w, γ, ν).

(28)

Models M1 to M10 all imply a different functional form for the theoretical option price,

q(zijt, θ), in (3), as well as a different speciÞcation for the parameter vector, θ. As noted

earlier, for all models other than M1, q(zijt, θ) does not have a closed-form solution. For

the models M2 to M4 the approach adopted is to simulate (21) over the life of the contract,

with the innovations drawn from the relevant nonnormal distribution in (27). For each

of these models, simulation of the relevant process for returns is repeated h times, pro-

ducing S(l)T , l = 1, 2, . . . , h, and the expectation in (1) approximated by the sample mean

of e−rtτ ij max
³
S
(l)
T −Kij, 0

´
. Both antithetic and control variates are used to reduce the

simulation error, with the analytical BS option price used as the control variate. For the

six time-varying volatility models, M5 to M10, the processes in (18) and (20) are simulated

over the life of the option. For a general discussion of this simulation-based approach to the

pricing of options see Gourieroux and Monfort (1994) and for some recent applications, see

Bollerslev and Mikkelsen (1999), Duan (1999), Hafner and Herwartz (2001) and Bauwens

and Lubrano (2002).

In the simulation of all relevant processes, ∆t = 1/365, thereby representing one day. As

such, all estimated parameters can be interpreted as the option-implied estimates associated

with daily returns. The exception to this is the volatility parameter in the constant volatility

models which, following convention, is reported as an annualized Þgure.
8Since the GARCH model does not accommodate asymmetry in returns, it is legitimate to specify a

degree of skewness in the associated conditional distribution which is equivalent to that in the unconditional
distribution of the corresponding constant volatility model.
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4.2 Data Description

The data are based on bid-ask quotes on call options written on the S&P500 stock index,

obtained from the Berkeley Options Database. The quotes relate to options traded during

the Þrst 239 trading days of 1995, 3/1/1995 to 15/12/1995, during a period of approximately

ten minutes immediately prior to 3.00pm on each day. As noted earlier, this form of data

selection was aimed at minimizing the amount of intraday variation in the spot prices

recorded synchronously with the option prices. A cross section of approximately 60 prices

is selected on each day, with the prices deliberately chosen so as to span the full moneyness

spectrum. DeÞning St−Kij as the intrinsic value of the ith call option in moneyness group
j priced at time t, options for which St/Kij ∈ (0.98, 1.04) are categorized as at-the-money

(ATM), those for which St/Kij ≤ 0.98, as out-of-the-money (OTM), and those for which

St/Kij ≥ 1.04, as in-the-money (ITM); see Bakshi, Cao and Chen (1997). The options in

the sample can be classiÞed as short-term as maturity lengths range from approximately

one week to approximately one and a half months. Each record in the dataset comprises

the bid-ask quote, the synchronously recorded spot price of the index, the time at which

the quote was recorded, and the strike price. As dividends are paid on the S&P500 index,

in the option price formulae the current spot price, St, is replaced by the dividend-exclusive

spot price, Ste−Dτ ij , where D = 0.026 is the average annualized dividend rate paid over the

life of the option, with D estimated from dividend data for 1995 and 1996 obtained from

Standard and Poors. The risk-free rate rt is set at the average annualized three month bond

rate for 1995, r = 0.057. A constant value of r, rather than a time series of daily values, is

adopted for computational convenience and is justiÞed by the minimal amount of variation

in the three month bond rate over 1995. Filtering the data according to the no-arbitrage

lower bound of lb = max{0, Ste−Dτ ij −ertτ ijKij} leaves 8968 observations in the estimation
sample, for which the main characteristics are summarized in Panel A in Table 1.

The out-of-sample performance of the alternative models is based on option price quote

data recorded in the few minutes before 3.00pm on each day from 18/12/1995 to 22/12/1995,

with the same dividend adjustment and lower bound Þltering as is applied to the estimation

dataset, having been applied to the hold-out sample. A total of 984 option prices are used

to assess the out-of-sample performance of the models. The characteristics of this dataset

are summarized in Table 1, Panel B. The most important difference between the estimation

and hold-out sample is the lack of any OTM options in the latter. In addition, even in

the ATM range, the out-of-sample options tend toward the higher end of that range, with

the average price and bid-ask spread being larger as a consequence, than the corresponding
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Table 1:

S&P500 Option Price Dataset

Moneyness Average Average No. of
(St/Kij) Market Price Bid-Ask Spread Prices

Panel A: Estimation Dataset: 3/1/1995 to 15/12/1995

OTM : < 0.98 $0.72 $0.12 440

ATM : 0.98− 1.04 $10.90 $0.50 2209

ITM : ≥ 1.04 $68.99 $0.97 6319

Total 8968

Panel B: Out of Sample Dataset: 18/12/1995 to 22/12/1995

OTM : < 0.98 n.a.(a) n.a.(a) 0

ATM : 0.98− 1.04 $20.61 $0.87 166

ITM : ≥ 1.03 $70.38 $1.00 818

Total 984

(a) Not applicable.
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Þgures in the estimation sample. The average prices and bid-ask spreads for both sets of

ITM options are very similar.

4.3 Priors

The Bayesian analysis is based on a noninformative prior for the constant volatility para-

meter, σ, and informative priors for the degrees of freedom and skewness parameters, ν and

γ respectively. A-priori independence between all parameters is imposed. The standard

noninformative prior is used for σ, p(σ) ∝ 1/σ, despite the fact that its rationale as a Jef-
freys prior no longer holds, given the form of the likelihood function in (5). By specifying

the same prior for σ in all of M1 to M4, the Bayes factors used for all pairs of these models

are unaffected by the fact that this prior is improper. An inverted gamma prior is speci-

Þed for ν, with E(ν) = 1.76 and var(ν) = 197.89. The prior is calibrated so as to match

approximately the location of the posterior density for ν based on Bayesian estimation of a

GST model for 1995 daily returns data, but with the variance of the prior being several-fold

larger than the variance of the returns posterior. A normal prior is speciÞed for γ, with

E(γ) = 1.0 and var(γ) = 1.0. Again, the prior is calibrated to match the location of the

posterior density for γ estimated from the 1995 daily returns data, but with the variance of

the prior speciÞed to be much larger.9 For the GARCH models, a uniform prior is placed

on the joint space of δ and ω, bounded by δ ≥ 0, ω ≥ 0 and δ + ω < 1.

4.4 Implicit Posterior Density Estimates

The Þrst step in the implicit analysis is to produce estimates of the marginal posterior

distributions for the parameters of the alternative models. DeÞning θk as the parameter

vector associated with modelMk, k = 1, 2 . . . 10, the joint posterior for θk, p(θk|c), is given by
(7), with c denoting the vector of 9864 option prices observed during the estimation sample

period. For all ten models, p(θk|c) is normalized and marginal posteriors produced via
deterministic numerical integration. Independent samples from each p(θk|c) are produced
using the inverse cumulative distribution function technique. This approach is feasible due

to the highly parsimonious nature of the distributional models, in conjunction with the

restrictions placed on the parameters of the GARCH models, M5 to M10.
10 The advantage

9Note that the Bayes factors related to the models in which ν and γ feature are well-deÞned only when
proper priors are speciÞed for these parameters. One way of avoiding the usual arbitrariness associated with
the prior speciÞcation is to use the returns data to determine their essential form; see also Jacquier and
Jarrow (2000).
10 In evaluating λNt in (11), a constant mean is assumed for the empirical returns distribution, whereby µt

is replaced by the sample mean of returns for 1995.
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of this numerical approach is that the results produced are essentially exact, with none of

the convergence issues which would be associated with a Markov Chain sampling algorithm.

This is particularly important in the present context in which the theoretical option prices

themselves, for all models other than M1, need to be computed using computationally

intensive numerical simulation. That is, it would not be computationally feasible to produce

the number of Markov Chain iterates required to establish convergence, in combination with

the Monte Carlo-based estimation of the theoretical option prices.

In Table 2, the mean, mode and approximate 95% Highest Posterior Density (HPD)

intervals are reported for each parameter in the ten models estimated11. The Þrst thing

to note is the similarity across the four constant volatility models, M1 to M4, of the point

estimates of volatility. The modal estimate of σ varies only between 0.115 for M1, M3 and

M4 and 0.125 for M2. As the densities are essentially symmetric, the mean estimates are

equivalent to the modal estimates, with the degree of dispersion in the densities also equal

across models.

The modal point estimates of the degrees of freedom parameter, ν, in both M2 and M4,

are equal to 0.85, with the mean values only slightly higher, at 0.934 and 0.919 respectively.

These three point estimates of ν imply (estimates of) the kurtosis coefficient in (26) of

3.674, 3.645 and 3.650 respectively. Remembering that, by construction, both ν and γ

are interpreted as distributional parameters for implicit daily returns distributions, these

kurtosis values are representative of returns distributions with a moderate degree of excess

kurtosis. The 95% interval estimates cover values for ν which translate into kurtosis values

which all exceed the value of 3 associated with normality. The modal estimates of the

skewness parameter, γ, in M3 and M4, are 0.85 and 0.80 respectively, thereby indicating

negative skewness in the implicit daily returns distribution, with (estimates of) the skewness

coefficient in (24) of −0.253 and −0.341 respectively. For M3 in particular, however, the

distribution of γ is positively skewed, with a mean estimate close to unity. Moreover, the

95% intervals for γ in both models are very wide, easily covering values for γ which imply

either symmetry (γ = 1) or positive skewness (γ > 1), in addition to values implying

negative skewness (γ < 1) . Some of these numerical results are illustrated graphically in

Figure 1, in which the marginal densities for the distributional parameters in models M2

and M3 are reproduced. For M2 the posterior density of the estimated kurtosis coefficient

is also presented, providing clear evidence of option-implied excess kurtosis. For M3 the
11An HPD interval is an interval with the speciÞed probability coverage, whose inner density ordinates

are not exceeded by any density ordinates outside the interval. The reported intervals have a coverage which
is as close to the nominal coverage as possible given the discrete grid deÞned for each parameter.
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Figure 1: Implicit Marginal Posteriors for Selected Parameters.

posterior density of the estimated Pearson skewness coefficient is presented in addition to

the posterior density for the skewness parameter γ, making clear the fact that all forms of

skewness are given high posterior weight, despite the negative mode for γ.

For all six time-varying volatility models, M5 to M10, the option-implied persistence in

daily volatility, bδ + bω, is low in comparison with typical returns-based estimates, ranging
from 0.8 to 0.84 in terms of point estimates. In addition, the small values estimated for δ

indicate that the volatility process evolves relatively smoothly over the life of the option.12

By construction, the long-run volatility is held Þxed at an annualized value of 0.12 in all

cases.

4.5 Model Rankings

4.5.1 Implicit Model Probabilities

Implicit model probabilities are derived from the posterior odds ratios, constructed for

each model, M2, M3,. . . , M10, relative to a reference model, M1. DeÞning P (Mk|c) as the
12Using the EVIEWS program to estimate a GARCH(1, 1) models for daily returns on the S&P500 index

for the period 1994 to 1997, estimates similar to those reported in Table 2 are obtained.
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Table 2:

Implicit Marginal Posterior Densities(a)

Model Parameter Mode Mean 95% HPD Interval

M1 σ 0.115 0.115 (0.106, 0.124)

M2 σ 0.125 0.125 (0.116, 0.134)
ν 0.850 0.934 (0.450, 1.650)

M3 σ 0.115 0.115 (0.106, 0.124)
γ 0.850 0.986 (0.400, 1.600)

M4 σ 0.115 0.115 (0.106, 0.124)
ν 0.850 0.919 (0.250, 2.100)
γ 0.800 0.891 (0.650, 1.150)

M5 δ 0.030 0.031 (0.022, 0.038)
ω 0.810 0.810 (0.802, 0.818)

M6 v = 5.0 δ 0.030 0.031 (0.022, 0.038)
ω 0.810 0.810 (0.802, 0.818)

M7 v = 1.0 δ 0.031 0.031 (0.022, 0.038)
ω 0.810 0.810 (0.802, 0.818)

M8 γ = 0.85 δ 0.040 0.040 (0.031, 0.049)
ω 0.760 0.076 (0.751, 0.769)

M9 v = 5.0; γ = 0.80 δ 0.030 0.030 (0.022, 0.038)
ω 0.780 0.780 (0.771, 0.789)

M10 v = 1.0; γ = 0.80 δ 0.030 0.030 (0.022, 0.038)
ω 0.780 0.780 (0.772, 0.788)

(a) By convention σ is reported as an annualized quantity. The distributional parameters ν and γ relate
to daily returns, whilst the sum of the GARCH parameters, δ and ω, measures daily persistence
in volatility.
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posterior probability of Mk, the posterior odds ratio for Mk versus M1 is given by

P (Mk|c)
P (M1|c) =

P (Mk)

P (M1)
× p(c|Mk)

p(c|M1)
(29)

= Prior Odds × Bayes Factor,

for k = 2, 3, . . . 10, where

p(c|Mk) =
Z
Σ

Z
β

Z
θk

L(Σ,β, θk|Mk)p(Σ,β, θk|Mk)dΣdβdθk, (30)

is the marginal likelihood of Mk, with L(Σ,β, θk|Mk) and p(Σ,β, θk|Mk) respectively de-

noting the likelihood and prior underMk. The model probabilities are calculated by solving

the nine ratios in (29) subject to the normalization

10X
k=1

P (Mk|c) = 1. (31)

The models are then ranked as a posteriori most probable to least probable according to

the size of the probabilities. As Σ and β can be integrated out analytically, the marginal

likelihood for model Mk reduces to

p(c|Mk) = h
Z
θk

L(θk|Mk)p(θk|Mk)dθk, (32)

where h is a constant which is independent of the speciÞcation of Mk. The integral in (32)

is that which is computed in the numerical normalization of the posterior density for θk in

(7). Hence, the marginal likelihood for each model arises as a natural by-product of the

numerical approach adopted, rather than requiring additional computation. Computation

of the Bayes factors and implicit probabilities then follows.

Table 3 provides the estimated Bayes factors for the ten models M1 to M10, with M1

used as the reference model. The Þnal row gives the associated model probabilities, based

on equal prior probabilities in (29) for all ten models. There are three notable aspects of

the results in Table 3. First, the GST model with constant volatility (M2) is assigned all

posterior probability (to two decimal places) in the set of ten alternative models. This is

completely consistent with the fact that the option prices have factored in distributional

estimates which imply excess kurtosis, as indicated by the results reported in Table 2.

Secondly, despite the dominance of the GST model, there is a clear hierarchy amongst the

other three constant volatility models, namely M1 is favoured over M4, which is, in turn,

favoured over M3. That is, amongst the four constant volatility models, the BS model is

ranked second according to posterior probability weight. Thirdly, all six GARCH-based
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Table 3:

Implicit Bayes Factors and Model Probabilities.
Entry (i, j) Indicates the Bayes Factor

in Favour of Mj Versus Mi

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 1.00 31400 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M3 1.00 1200 0.00 0.00 0.00 0.00 0.00 0.00
M4 1.00 0.00 0.00 0.00 0.00 0.00 0.00
M5 1.00 2050 8.3E07 31.30 8.8E09 9.2E25
M6 1.00 40260 0.00 4.3E06 4.5E22
M7 1.00 0.00 106 1.1E18
M8 1.00 2.8E08 3.0E24
M9 1.00 1.1E16
M10 1.00

P (Mk|c) 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

models are assigned essentially zero probability when ranked against any of the constant

volatility models. The dominance of the constant volatility models reßects the low values

in the support of the marginal density for δ in the GARCH speciÞcation in (20), which are,

in turn, associated with a smoothly evolving volatility process over the life of the option.

This results in modelsM5 toM10 being effectively overparameterized and, hence, penalized

in comparison with the constant volatility models. However, when considered as a separate

set, there is a clear ranking across the time-varying volatility models, with the models which

impose both excess kurtosis and some negative skewness in the conditional distribution (M9

and M10) favoured most highly, followed by the models with conditional kurtosis only (M6

and M7), followed in turn by the conditional skewness model (M8), then by the conditional

normal model (M5).

4.5.2 Out-of-Sample Fit Performance

For model Mk with parameter vector θk, the residual associated with Þtting the ith option

price Cijf , for moneyness group j, observed on some day f during the hold-out sample is
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deÞned as

resijf = Cijf − b0j − b1jq(zijf , θk)−
4X
l=1

dljDl −
GX
g=1

ρgjCij(f−g)

= Cijf − xijf (θk)0βj, (33)

where zijf denotes the option contract speciÞcations associated with Cijf , xijf (θk)0 is a

(1× L) vector of observations at time period f on the L = 6+G regressors associated with
Cijf , and βj is the (L× 1) regression vector associated with moneyness group j. Standard
Bayesian distribution theory for a normal linear model yields a multivariate Student t

posterior distribution for βj , conditional on θk, with

E(βj|θk, c) = bβj
and

var(βj |θk, c) = bσ2j h
Xj(θk)

0
Xj(θk)

i−1
,

where bβj and bσ2j are as deÞned previously in the text. Hence, the posterior distribution for
resijf , conditional on θk, is univariate Student t, with

E(resijf |θk, c) = Cijf − xijf (θk)0bβj (34)

and

var(resijf |θk, c) = bσ2jxijf (θk)0 hXj(θk)0Xj(θk)i−1 xijf (θk). (35)

The marginal posterior for resijf is thus deÞned as

p(resijf |c) =
Z
θk

p(resijf |θk, c)p(θk|c)dθk. (36)

As p(θk|c) is speciÞed numerically over the grid of values for θk used in the numerical
normalization of p(θk|c), the integral in (36) can be estimated by taking a weighted sum of

Student t densities, with the weights determined by p(θk|c).Given an estimate of p(resijf |c),
a 95% HPD interval for resijf can be calculated. For any given modelMk there is a residual

interval for each option price in the hold-out sample of 984 prices. The proportion of

intervals which cover zero is a measure of how well the model Þts out-of-sample, with the

best Þtting model deÞned as the model for which this proportion is the highest.

Results are reported in Table 4 both for the two moneyness groups which are represented

out-of-sample: ATM and ITM, and for the full out-of-sample dataset. The number of

options in these three groups are respectively 166, 818 and 984. Also included in the lower

portion of the table, for all three categories of option, are the average sizes of the bid-ask
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Table 4:

Proportion of 95% Fit Intervals Which Cover Zero;
All Figures are Proportions of the Total Number of Options in Each Contract Group

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

ATM 0.035 0.078 0.101 0.094 0.022 0.022 0.022 0.032 0.040 0.040

ITM 0.004 0.004 0.004 0.004 0.004 0.007 0.007 0.002 0.002 0.006

All 0.010 0.018 0.024 0.022 0.008 0.010 0.010 0.009 0.010 0.012

Average
Bid-Ask Average Width of
Spread 95% Fit Intervals

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

ATM $0.87 $0.14 $0.13 $0.14 $0.14 $0.14 $0.14 $0.14 $0.14 $0.14 $0.14

ITM $1.00 $0.06 $0.06 $0.06 $0.06 $0.06 $0.06 $0.06 $0.06 $0.06 $0.06

All $0.98 $0.07 $0.07 $0.07 $0.08 $0.07 $0.07 $0.07 $0.07 $0.07 $0.07

spreads and the average sizes of the 95% intervals, the latter intervals being model-speciÞc.

As is evident, the proportion of Þt intervals which cover zero is very small for all models.

However, these numbers need to be interpreted with care. The narrow width of the intervals,

in particular in comparison with the average bid-ask spreads, means that this Þt criterion

is extremely strict. Only if the model locates the option prices well, that is, if the mean

residuals in (34) are very close to zero, does the model have a good chance of producing

many Þt intervals which cover zero. According to this criterion, all models are better able to

Þt the ATM options, with the proportions being several fold larger than the corresponding

proportions for the ITM options. This is despite the fact that the average width of the

ATM Þt intervals is only approximately twice as large as the ITM intervals. Overall, the

best Þtting models are the constant volatility models which allow for either leptokurtosis or

skewness or both, followed the BS model. The underperformance of the GARCH models

is consistent with their low posterior probability weights.
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4.5.3 Out-of-Sample Predictive Performance

For model Mk, the predictive density for option price Cijf is given by

p(Cijf |c) =
Z
βj

Z
σj

Z
θk

p(Cijf |βj,σj, θk, c)p(βj ,σj |θk, c)p(θk|c)dβjdσjdθk, (37)

where p(Cijf |βj,σj, c,θk) is a normal density, given the assumption of a normal distribution
for uijf in (3). Again, standard Bayesian results enable analytical integration with respect

to βj and σj such that

p(Cijf |c) =
Z
θk

p(Cijf |θk, c)p(θk|c)dθk, (38)

where p(Cijf |θk, c) is a univariate Student t density with

E(Cijf |θk, c) = xijf (θk)0bβj (39)

and

var(Cijf |θk, c) = bσ2j [1 + xijf (θk)0(Xj(θk)0Xj(θk))−1xijf (θk)]. (40)

The predictive density in (38) can be estimated as a weighted sum of Student t densities,

with weights given by p(θk|c). Truncation of p(Cijf |θk, c) at the no-arbitrage lower bound
is imposed before averaging over the space of θk. A comparison of (40) with (35) reveals

that the Student t densities used in the mixture which deÞnes the predictive in (38) have

a variance which is larger by a factor of bσ2j than the variance of the densities used in
the construction of the residual function. This result reßects the standard linear regression

structure of the model for the option pricing errors in (3) and mimics the classical prediction

results associated with that model.

The estimated predictive density is used to rank the predictive performance of the

models in several different ways. First, it is used to assign a probability to the observed

bid-ask spread associated with the option contract for which Cijf is the market price.13

This calculation is repeated for all option contracts, the predictive probability recorded for

modelMk being the average of all computed probabilities. Second, with the predictive mode

taken as a point predictor of Cijf , the accuracy of each model is assessed in terms of the

proportion of predictive modes which fall within the observed bid-ask spreads.14 The same
13With regard to the S&P500 option price data, there is usually only one bid-ask spread associated with

a particular option contract, where the speciÞcation of that contract includes the current spot price of the
index. For some contracts, however, there are several bid-ask spreads quoted. These spreads are averaged
over before being used in the probability calculation described in the text.
14Note that there is a large literature on the market related factors which inßuence the bid-ask spreads

associated with option prices. In particular, attempts have been made to explain the way in which the
spreads vary across different type of option contracts; see, for example George and Longstaff (1993). On the
assumption that these factors do not relate to the nature of the underlying returns process, the observed
spreads can be treated as given intervals to which the different models assign varying predicitive probabilities.
This assumption may be questionable however; see, for instance, Cho and Engle (1999).
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calculation is performed for the predictive means. Third, the proportion of market prices

which fall within the 95% probability interval associated with the estimated predictive, is

calculated for each model. As with the Þt results, all calculations are performed for ATM

and ITM contracts as well as for all 984 contracts in the hold-out sample, with information

on the average bid-ask-spreads and the average width of the model-speciÞc intervals also

included. The results for the three different contract groupings are reported in Tables 5, 6

and 7 respectively.

As is the case with the Þt results, the predictive results indicate that the constant

volatility models with nonnormal distributional speciÞcations, M2, M3 and M4, have the

best performance out-of-sample. This is the case for both the ATM and ITM options. In

terms of the proportion of times that the point predictors, the predictive mean and mode,

fall in the bid-ask spread, the BS model is the next best performer, whilst the GARCH

models tend to have a slightly better predictive performance than the BS model in terms of

the observed price falling within the 95% predictive interval. It should be noted, however,

that the average width of this interval, in the case of the GARCH models, tends to be larger

than the average width associated with the BS intervals, at least for the ITM options. The

BS and GARCH models ascribe very similar probabilities to the observed bid-ask spreads,

all of which are lower than the corresponding probabilities ascribed by the non-BS constant

volatility models. Focussing on the overall results for all out-of-sample options, as reported

in Table 7, the average probability ascribed to the bid-ask spread ranges from 31.7% for

M8 and M9 to 33.9% for M2. If the predictive mode is used as a point predictor of the

option price, the results in Table 7 show that the probability of predicting an option price

within the observed spread ranges from 20.5% for M8 to 26.9% for M4. The predictive

mean serves as a more accurate point predictor, with the probability of it falling within the

observed spread ranging from 26.6% for M9 to 32.6% for M4. The 95% predictive interval

covers the observed market price approximately 70% of the time for all models, with M4

again having the best performance overall according to this criterion. Note however, that

whilst the coverage of the predictive intervals appears to be reasonable for all models, the

average width of the intervals does exceed the average width of the bid-ask spread, and,

hence, could be viewed as being too broad an interval to be useful from a practical point of

view.
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Table 5:

Predictive Performance of the Different Models (ATM Options)

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Predictive Criterion

Prob(ba)(a) 0.264 0.323 0.326 0.321 0.277 0.278 0.280 0.278 0.276 0.276

Mode in ba(b) 0.300 0.299 0.312 0.314 0.290 0.290 0.288 0.284 0.278 0.283
Mean in ba(b) 0.312 0.333 0.340 0.346 0.308 0.312 0.312 0.312 0.308 0.312

Price in 95% I(b),(c) 0.518 0.591 0.613 0.613 0.549 0.549 0.553 0.541 0.541 0.541

Average
Bid-Ask Average Width of
Spread 95% Prediction Intervals

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

$0.87 $1.85 $1.81 $1.81 $1.80 $1.96 $1.96 $1.96 $1.94 $1.93 $1.93

(a) ba = the bid-ask spread. The Þgures reported in this line are the average of the 166 predictive
probabilities calculated for each model.

(b) All Þgures reported are proportions of 166.

(c) The 95% Interval is the interval which excludes 2.5% in the lower and upper tails of the predictive
distribution. This interval equals the 95% HPD interval only for those predictives which are symmetric
around a single mode.
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Table 6:

Predictive Performance of the Different Models (ITM Options)

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Predictive Criterion

Prob(ba)(a) 0.325 0.343 0.340 0.340 0.327 0.328 0.329 0.322 0.323 0.326

Mode in ba(b) 0.225 0.249 0.258 0.260 0.198 0.204 0.211 0.183 0.188 0.198
Mean in ba(b) 0.281 0.321 0.320 0.322 0.265 0.264 0.267 0.255 0.252 0.259

Price in 95% I(b),(c) 0.667 0.696 0.697 0.698 0.687 0.692 0.693 0.676 0.677 0.683

Average
Bid-Ask Average Width of
Spread 95% Prediction Intervals

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

$1.00 $1.71 $1.73 $1.75 $1.75 $1.72 $1.73 $1.73 $1.71 $1.71 $1.71

(a) ba = the bid-ask spread. The Þgures reported in this line are the average of the 818 predictive
probabilities calculated for each model.

(b) All Þgures reported are proportions of 818.

(c) The 95% Interval is the interval which excludes 2.5% in the lower and upper tails of the predictive
distribution. This interval equals the 95% HPD interval only for those predictives which are symmetric
around a single mode.
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Table 7:

Predictive Performance of the Different Models (All Options)

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Predictive Criterion

Prob(ba)(a) 0.317 0.339 0.337 0.337 0.321 0.322 0.323 0.317 0.317 0.320

Mode in ba(b) 0.241 0.256 0.268 0.269 0.218 0.224 0.230 0.205 0.208 0.217
Mean in ba(b) 0.290 0.321 0.324 0.326 0.276 0.276 0.278 0.269 0.266 0.272

Price in 95% I(b),(c) 0.646 0.679 0.684 0.684 0.668 0.673 0.675 0.658 0.659 0.664

Average
Bid-Ask Average Width of
Spread 95% Prediction Intervals

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

$0.98 $1.73 $1.74 $1.76 $1.76 $1.77 $1.77 $1.77 $1.75 $1.75 $1.75

(a) ba = the bid-ask spread. The Þgures reported in this line are the average of the 984 predictive
probabilities calculated for each model.

(b) All Þgures reported are proportions of 984.

(c) The 95% Interval is the interval which excludes 2.5% in the lower and upper tails of the predictive
distribution. This interval equals the 95% HPD interval only for those predictives which are symmetric
around a single mode.
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4.5.4 Hedging Performance

Another measure of the performance of alternative option price models is the extent to

which the associated hedging errors deviate from zero. In this paper attention is restricted

to delta hedges. The delta for the ith option price, in moneyness group j, observed at time

t, based on the assumption that Mk describes the returns process, is deÞned as

δk =
∂q(zijt, θk)

∂St
. (41)

In computing the hedging errors, the portfolio consists of going short in the option and long

in the underlying asset by an amount of δk shares in the asset, and investing the residual,

Cijt − δkSt, at the risk free interest rate r. At time t +∆t, the hedging error over a time
interval ∆t, is given by; see Bakshi, Cao and Chen (1997)

Hk = δk
h
St+∆t − Ster∆t

i
−

h
Cij(t+∆t) −Cijter∆t

i
. (42)

The posterior distribution of the hedging error in (42) is derived from the posterior dis-

tribution for the parameters of model Mk, via δk. In fact, the distribution of Hk is a

simple translation of the distribution of δk, obtained by recentering this distribution by

Cij(t+∆t) − Cijter∆t, and rescaling it by St+∆t − Ster∆t. Thus, the hedging error density,
p(Hk|c), can be generated by evaluating Hk, via δk, at values of θk in the support of p(θk|c),
and deÞning p(Hk|c) according to the probability weights given by the numerically normal-
ized p(θk|c). The model with the hedging error density most closely concentrated around
zero is, according to this criterion, the best model.

Two hedge distributions are constructed, based respectively on one-day and Þve-days

ahead. The distributions are based on computing the delta hedge on the 15th of December,

1995, and evaluating the hedge error in (42) associated with the portfolio on the next

trading day, the 18th of December, 1995, and Þve trading days later, the 22nd of December,

1995. That is, ∆t in (42) equals ∆t = 1/365 and 5/365 respectively. The calculations are

performed on the prices of contracts traded in the pre-3.00pm period which are common to

both pairs of trading days. In computing the delta for the BS model, M1, the analytical

solution for δk is used; see Hull (2000, p. 312). For the other models, the derivative in

(41) is computed numerically. To improve the accuracy of the numerical differentiation, a

control variate is used for these models, based on the difference between the BS analytical

and numerical derivatives. For each value of θk, the average hedging error over all common

contracts is calculated and the density of the (average) hedging error generated as described

above.
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The means of the hedging distributions are reported in Table 8, with 95% probability

intervals given in parentheses. For the densities which are not symmetric and unimodal,

these intervals are only approximately equal to 95% HPD intervals. All Þgures are expressed

in cents. It is clear from the results that the location of the hedging distributions is very

similar across models. Only the variability differs across models, with the constant volatility

models tending to have the most variable hedging error densities, in particular for one day

ahead. The exception to this is the M2 one day ahead hedging error density, which is

very tightly concentrated around its mean value. All models produce negative hedging

errors one day out and positive hedging errors of a larger magnitude Þve days out. The

GARCH models tend to out-perform the constant volatility models one day out, at least

in terms of producing hedging errors of a smaller magnitude. However, there is no clear

ranking of the models in terms of the Þve days ahead hedging errors. Most notably, none

of the intervals reported in Table 8 cover zero. This can be interpreted as meaning that

all models considered are misspeciÞed when it comes to hedging; see also Bakshi, Cao and

Chen (1997), who obtain similar qualitative results. However, whether the observed hedging

errors are signiÞcant from an economic point of view is unclear. The hedging errors range

in magnitude from approximately 13 to 52 cents, whilst from Table 1 it can be seen that

the option prices in the out of sample dataset themselves range from an average price of

$20.61 for ATM options to an average price of $70.38 for ITM options. Viewed in relation

to the magnitude of the option prices, these hedging errors do not seem to be substantial.

5 Conclusions

This paper has developed a Bayesian approach to the implicit estimation of returns models

using option-price data. In contrast to existing classical work, the Bayesian method takes

explicit account of both parameter and model uncertainty in option pricing. The paper also

represents a signiÞcant extension of other Bayesian work on option pricing, with a full set

of alternative parametric models for returns estimated and ranked using option-price data.

Risk-neutral valuation under nonnormal distributional speciÞcations is implemented in a

direct and computationally efficient manner.

The results of applying the methodology to 1995 option price data on the S&P500 index

show that no one parametric model is ranked highest according to all criteria. The GST

model clearly dominates all other models, including the BS model, in terms of posterior

probability, this result being consistent with the excess kurtosis which is estimated from the

option prices. The evidence in favour of option-implied skewness is weaker. However, ignor-
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Table 8:

Hedging Performance of the Different Models (cents): One Day and Five Days Ahead
Means of Hedging Error Densities and 95% Intervals

One Day Ahead Five Days Ahead

Mean 95% Interval Mean 95% Interval

M1 -20.195 (-23.500, -16.500) 51.005 (51.001, 51.023)
M2 -14.108 (-14.110, -14.106) 51.677 (51.640, 51.700)
M3 -16.329 (-17.000, -12.500) 52.001 (51.500, 52.080)
M4 -17.308 (-17.900, -16.500) 51.573 (51.000, 52.300)
M5 -13.682 (-13.720, -13.580) 52.056 (52.080, 52.120)
M6 -14.378 (-14.470, -14.370) 51.983 (51.970, 52.020)
M7 -14.454 (-14.500, -14.430) 51.997 (51.960, 51.980)
M8 -13.924 (-13.930, -13.830) 52.310 (52.270, 52.320)
M9 -14.234 (-14.270, -14.230) 51.116 (51.114, 51.118)
M10 -13.501 (-13.499,-13.502) 51.677 (51.610, 51.690)

ing the impact of risk factors on the option-based estimates of the higher order moments,

it can be concluded that the option prices have factored in more negative skewness than is

evident in the symmetric distribution observed for daily S&P500 returns during 1995. This

result is consistent with the idea that, since 1987 in particular, option market participants

have factored in a larger probability of negative returns than would be predicted by a nor-

mal returns distribution; see, for example, Bates (2000). Overall, the constant volatility

models which allow for either excess kurtosis or negative skewness in returns, or both, tend

to have the best out-of-sample Þt and predictive performance, with the BS model being

ranked lowest in the constant volatility model set on nearly all Þt and prediction criteria.

The GARCH models are assigned virtually zero posterior probability when ranked against

the constant volatility models, as well as having an out-of-sample Þt and predictive per-

formance which is usually dominated by that of the constant volatility models, including

the BS model. This inability of the GARCH models to capture the behaviour of S&P500

option prices is somewhat consistent with the poor predictive power reported by Chernov

and Ghysels (2000) for GARCH option pricing models, as based on an earlier sample period

for the same option price series. In terms of hedging, all of the models appear to be equally

misspeciÞed, although the magnitudes of the hedging errors, relative to the magnitude of

the option prices, are very small.
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In summary, option market participants appear to have factored in predictions of lep-

tokurtosis and slight negative skewness when pricing the S&P500 options, a conclusion

which is clear both from the estimation and out-of-sample results. Time-varying condi-

tional volatility, however, does not appear to be a marked feature of the data. In terms

of posterior probability, the model which features symmetry, leptokurtosis and constant

volatility over the life of the option, clearly dominates all other contenders. Note however

that with option prices being produced via the interaction of market participants invok-

ing potentially different distributional assumptions, option data may well often produce a

more even spread of posterior model probabilities than has been observed for this dataset.

In this case, an obvious extension of the methodology outlined in the paper would be to

invoke the concept of Bayesian model averaging. In particular, the model-averaged predic-

tive, constructed as a weighted average of the model-speciÞc predictives with the relevant

model probabilities as weights, may well serve as a more accurate predictive tool than that

associated with any one individual model.
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