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Abstract: The stochastic volatility model enjoys great success in modeling the time-

varying volatility of asset returns. There are several specifications for volatility includ-

ing the most popular one which allows logarithmic volatility to follow an autoregressive

Gaussian process, known as log-normal stochastic volatility. However, from an economet-

ric viewpoint, we lack a procedure to choose an appropriate functional form for volatility.

Instead of the log-normal specification, Yu, Yang and Zhang (2002) assumed Box-Cox

transformed volatility follows an autoregressive Gaussian process. However, the empirical

evidence they found from currency markets is not strong enough to support the Box-Cox

transformation against the alternatives, and it is necessary to seek further empirical evi-

dence from the equity market. This paper develops a sampling algorithm for the Box-Cox

stochastic volatility model with a leverage effect incorporated. When the model and the

sampling algorithm are applied to the equity market, we find strong empirical evidence to

support the Box-Cox transformation of volatility. In addition, the empirical study shows

that it is important to incorporate the leverage effect into stochastic volatility models

when the volatility of returns on a stock index is under investigation.
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1 Introduction

The volatility of asset returns often exhibits a time-varying feature. One way of modeling

volatility is to let it be a function of previous squared returns and lagged volatilities.

This leads to the autoregressive conditional heteroskedasticity (ARCH) model developed

by Engle (1982) and the generalized ARCH (GARCH) model by Bollerslev (1986). An

alternative is the stochastic volatility (SV) model in which the volatility follows a latent

stochastic process. The SV model has received more and more attention in the finance

literature, because it provides an alternative approach to the Black-Scholes option pric-

ing formula (Hull and White (1987)), and pricing an option based on the SV model is

more accurate than that based on the Black-Scholes model (see, for example, Melino and

Turnbull (1990)). Taylor (1982, 1986) showed that the SV model is often formulated in

terms of stochastic differential equations,
d(ln pt) = α dt+ σt dw1t

d(lnσ2t ) = λ(ξ − lnσ2t ) dt+ σw dw2t

, (1)

where pt is the price of an asset at time t and (w1t, w2t) is a bivariate standard Brownian

motion. The correlation between dw1t and dw2t, denoted by ρ = corr(dw1t, dw2t), captures

the leverage effect 2. The parameter ξ represents the long-run mean of the log-volatility, λ

represents the adjustment rate and σw captures the variation in the log-volatility. Model

(1) is the continuous-time log-normal stochastic volatility model. The empirical version

of the SV model is typically formulated in discrete time as
yt = σt εt

lnσ2t+1 = µ+ φ (lnσ2t − µ) + σηηt+1

, (2)

2The leverage effect refers to the phenomenon that price movements are negatively correlated with
volatility. This kind of asymmetric behaviour is often observed in stock price movements. Empirical
evidence on leverage effects can be found in Nelson (1991), Gallant, Rossi and Tauchen (1992, 1993),
Campbell and Kyle (1993) and Engle and Ng (1993) among others.
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where yt is the observed continuously compounded return, εt ∼ N(0, 1), ηt ∼ N(0, 1),

lnσ21 ∼ N(0, σ2η/(1 − φ2)) and the correlation between εt and ηt+1, denoted by ρ =

corr(εt, ηt+1), captures the leverage effect
3. To reflect the asymmetric feature of the error

terms in the mean and volatility equations, this model is often termed the asymmetric

log-normal SV model, which was set up based on models of Clark (1973) and Tauchen

and Pitts (1983) and was first documented by Taylor (1982).

A notable feature of (1) is that the logarithmic volatility is assumed to follow an

Ornstein-Uhlenbeck (OU) process (while in the discrete-time context, the logarithmic

volatility forms an autoregressive process with Gaussian errors as specified in (2)). Actu-

ally, there are some other specifications for the volatility process. In terms of continuous-

time SV models, Johnson and Shanno (1987) assumed that the square root of the volatility

follows a geometric Brownian motion, Stein and Stein (1991) specified the square root

of the volatility as an OU process, Hull and White (1987) formulated the volatility as a

geometric Brownian motion process, and Heston (1993) assumed that the volatility fol-

lows a square-root process which is similar to that of Cox, Ingersoll and Ross (1985). In

terms of discrete-time SV models, Andersen (1994) introduced a class of polynomial SV

models which encompasses most of the discrete-time SV models in the literature, and

Barndorff-Nielsen and Shephard (2001) presented non-Gaussian OU based SV models.

From an econometric viewpoint, given all these specifications for the volatility process,

we lack a procedure to select an appropriate functional form for the volatility process.

3Taylor (1994) suggested that the correlation between εt and ηt+1 captures the leverage effect, and
empirical evidence can be found in Ghysels, Harvey and Renault (1996), Harvey and Shephard (1996)
and Meyer and Yu (2000) among others. Jacquier, Polson and Rossi (2002) and Eraker, Johannes and
Polson (2002) allowed the correlation between εt and ηt to capture the leverage effect. Though the
difference is marginal in empirical studies when the time interval between two successive observations
is very small, strictly speaking, the correlation between εt and ηt+1 is more accurate in capturing the
asymmetric feedback between error terms in mean and volatility equations. See, for example, Yu (2002)
for a discussion on the leverage effect.
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The correct specification for stochastic volatility is very important, because different func-

tional forms lead to different formulae for option pricing, and any misspecification of the

functional form may result in incorrect option prices.

Yu, Yang and Zhang (2002) presented a generalization to the specification of log-

normal volatility which allows the Box-Cox transformed volatility to follow an autore-

gressive Gaussian process,
yt = σt εt

h (σ2t , δ) = µ+ φ h σ2t−1, δ − µ + σuut

, (3)

where εt ∼ N(0, 1), ut ∼ N(0, 1), the correlation between εt and ut+1 is ρ and h (σ2t , δ) is
the Box-Cox transformation of σ2t (Box and Cox, 1964), with h (·, δ) being defined by,

h (x, δ) =


(xδ − 1)/δ if δ = 0

lnx if δ = 0
. (4)

This model is called the Box-Cox transformed stochastic volatility (BCSV) model. In

the case of ρ = 0, Yu, Yang and Zhang (2002) developed a Markov chain Monte Carlo

(MCMC) algorithm to sample parameters and latent volatilities. When applying the

BCSV model to daily returns of the dollar/pound exchange rate, they found that the

90% Bayesian confidence interval does not cover 0 or 0.5, which represents the logarithmic

and square-root transformations of volatility, respectively. They concluded that the Box-

Cox transformation is more appropriate than the alternatives of the logarithmic and the

square-root transformation. When the BCSV model was applied to daily returns of the

other exchange rates, which are, respectively, the Canadian dollar, French franc, Deutsche

mark and Japanese yen, the estimated δ was not statistically different from zero, because

the Bayesian confidence intervals always cover zero. Hence the empirical evidence obtained

from these currency markets is not strong enough to support the Box-Cox transformation

3



to the volatility. While the BCSV model is meaningful in theory, it is necessary to seek

strong empirical evidence from the equity market to support this kind of specification.

In the equity market, returns on equity prices often exhibit a strong leverage effect (see,

for example, Eraker, Johannes and Polson (2002) for an empirical evidence). Jacquier,

Polson and Rossi (2002) pointed out that the leverage effect often induces skewness in the

marginal distribution of returns on asset prices. Their finding is consistent with the non-

parametric evidence found by Gallant, Hsieh and Tauchen (1997). Yu, Yang and Zhang

(2002) did not incorporate the leverage effect into the BCSV model in their empirical

study, because leverage effects seem to be relatively unimportant in currency markets. If

the BCSV model is employed to model returns on equity prices, leverage effects cannot be

ignored and should be incorporated into the BCSV model. Hence it is very important to

develop a relevant sampling algorithm to estimate the BCSV model with leverage effects

being incorporated, or equivalently the asymmetric BCSV model.

This paper develops a MCMC algorithm for the BCSV model based on the fully

specified posterior density of parameters and latent volatilities. The paper is organized

as follows. Section 2 presents the description of the asymmetric BCSV model, the fully

specified posterior density, conditional densities, and sampling algorithm designed to sam-

ple parameters and volatilities. In Section 3, we apply the asymmetric BCSV model and

the sampling algorithm to a generated dataset so that the performance of the sampling

algorithm can be examined. Section 4 presents an application of the asymmetric BCSV

model and the sampling algorithm to daily returns on six major stock indexes. We find

strong empirical evidence to support the Box-Cox transformation against the alternatives

of the logarithmic and square-root transformations of volatility. Section 5 concludes the

paper.
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2 MCMC in the BCSV Model

2.1 BCSV Model with Leverage Effects

The discrete-time BCSV model can be expressed as,
yt = σt εt

h σ2t+1, δ = µ+ φ [h (σ2t , δ)− µ] + σuut+1

, (5)

where h(·, δ) is defined in (4), (εt, ut+1) follows a bivariate normal distribution with mean
zero and covariance matrix

Σ =
1 ρ
ρ 1

, (6)

for t = 1, 2, · · · , n − 1, h(σ21, δ) ∼ N (µ, (1− ρ2)σ2u/(1− φ2)) and yn ∼ N(0, σ2n). This

model can be equivalently represented by
yt = g(αt, δ) εt

αt+1 = µ+ φ(αt − µ) + σuut+1

, (7)

where αt = h (σ
2
t , δ) and

g(αt, δ) =
(1 + δαt)

1/δ if δ = 0
exp(αt) if δ = 0

,

which is denoted hereafter by gt. Define
4

ut+1 = ρεt + 1− ρ2ηt+1, (8)

for t = 1, 2, · · · , n − 1, where ηt+1 is assumed to follow N(0, 1) and to be uncorrelated
with εt. Equation (8) shows that var(ut+1) = 1 and cov(ut+1, εt) = ρ which satisfies the

model specification in (5) and (7). Substituting (8) into (7), we obtain

αt+1 = µ+ φ(αt − µ) + ρσug
−1/2
t yt + 1− ρ2σuηt+1.

4The transformation made here is a common practice in the finance literature to deal with the leverage
effect in a SV model. See Section 2.3.1 in Fouque, Papanicolaou and Sircar (2000) for more details.
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When incorporating the leverage effect into log-normal SV models, Jacquier, Polson and

Rossi (2002) re-parameterized ρ and σ as ϕ = ρσu and τ
2 = (1− ρ2)σ2u, respectively. We

follow this re-parameterization and obtain
yt =

√
gt εt

αt+1 = µ+ φ(αt − µ) + ϕg
−1/2
t yt + τηt+1

, (9)

where α1 ∼ N(µ, τ2/(1−φ2)) and yn ∼ N(0, gn). As εt and ηt+1 are uncorrelated, we can
easily obtain the joint likelihood of yt given parameters and latent volatilities. Hereafter

we refer to (9) as the asymmetric BCSV model.

2.2 MCMC

Bayesian inference concerning a parameter vector θ conditional on data y is made through

the posterior density π(θ|y) which takes the form

π(θ|y) = cL(y|θ) π(θ),

where c is a normalizing constant, L(y|θ) is the likelihood of y conditional upon θ, and
π(θ) is the prior density of θ. The Bayesian approach requires that statistical inference

be based on the posterior. However, dealing with the posterior is often analytically

intractable, because the normalizing constant is typically unknown. The MCMC method

aims to provide a general mechanism to sample the parameter vector from its posterior

density. While simulating directly from the posterior distribution is typically very difficult,

the MCMC method sets up a Markov chain so that its stationary distribution is the same

as the posterior density. When the Markov chain converges, the simulated values may be

regarded as a posterior sample of the parameter vector.

The MCMC approach to inference in SV models requires a number of components:

the likelihood, the latent volatility dynamics and prior parameter distributions. Let y
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denote the vector of observed returns, α denote the vector of the Box-Cox transformed

volatilities and θ the parameter vector. By the Bayes theorem, the posterior of (θ,α) is

π(θ,α|y) ∝ p(y|θ,α)p(α|θ)p(θ), (10)

where p(y|θ,α) is the likelihood, p(α|θ) is the distribution of the transformed volatility,
arising from the parametric model specification, and p(θ) is the prior distribution of the

parameter vector. As discussed in Kim, Shephard and Chib (1998), the key issue in

estimating a log-normal SV model is that the likelihood, which is expressed as

f(y|θ) = p(y|θ,α)p(α|θ)dα, (11)

is intractable. This problem can be overcome by focusing instead on π(θ,α|y), and MCMC
algorithms can be developed to sample θ and α from π(θ,α|y) without directly computing
the likelihood function f(θ|y). One characteristic of the SV model is that latent volatilities
are highly correlated, and they can be sampled as a vector. However, the highly correlated

nature of latent volatilities adds many difficulties in developing a MCMC algorithm to

sample parameters and latent volatilities. MCMC algorithms for log-normal SV models

can be found in Shephard (1993), Jacquier, Polson and Rossi (1994), Shephard and Pitt

(1997), Kim, Shephard and Chib (1998), Chib, Nardari and Shephard (2002), Eraker,

Johannes and Polson (2002), and Jacquier, Polson and Rossi (2002) among many others.

Chib (2001) provided a recent survey.

2.3 Joint Posterior of Parameters and Latent Volatilities

Assume that (φ + 1)/2 ∼ Beta(ω, γ) and τ 2 ∼ IG(ν/2, Sσ/2), which are, respectively,

expressed explicitly as

p(φ) ∝ φ+ 1

2

ω−1
1− φ+ 1

2

γ−1
,
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p(τ 2) ∼ 1

τ2

ν/2+1

exp −Sτ/2
τ 2

,

where ω, γ, ν and Sτ are hyperparameters to be defined by the investigator. The priors

of the other parameters are, respectively, ϕ|τ2 ∼ N(ϕ0, τ 2/p0), µ|τ 2 ∼ N(µ0, τ 2/q0) and
δ ∼ N(µδ,σ2δ ) with ϕ0, µ0, p0 and q0 being hyperparameters. The joint prior of θ is

p(φ, δ, µ, ρ,σ) = p(δ)× (1 + φ)(ω−1/2)(1− φ)(γ−1/2) × 1

τ 2

ν/2+1

exp −Sτ/2
τ2

×

1

τ2/p0

1/2

exp −(ϕ− ϕ0)
2

2τ2/p0
× 1

τ2/q0

1/2

exp −(µ− µ0)
2

2τ2/q0
.

According to (9) and (10), the posterior of (θ,α) is

π(θ,α|y) ∝
n−1

t=1

p(yt|αt, θ)× p(yn|θ)× p(α1|θ)×
n−1

t=1

p(αt+1|αt, θ)× p(φ, δ, µ, ρ, σ)

=
n

t=1

g
−1/2
t exp −1

2

n

t=1

y2t
gt

× 1

τ2

(n+ν+2)/2+1

exp − κ

2τ 2

×p(δ)(1 + φ)ω−1/2(1− φ)γ−1/2 (12)

where

κ = (1− φ2)(α1 − µ)2 +
n−1

t=1

αt+1 − µ− φ(αt − µ)− ϕg
−1/2
t yt

2

+p0(ϕ− ϕ0)
2 + q0(µ− µ0)2 + Sτ .

After integrating out τ2 from the joint posterior (12), we obtain the log-posterior

log p(φ, δ, µ,ϕ,α|y) = log p(δ) + (ω − 1/2) log(1 + φ) + (γ − 1/2) log(1− φ)

−1
2

n

t=1

log(gt)− 1
2

n

t=1

y2t
gt
− n+ ν + 2

2
log (κ/2) . (13)

Hence we obtain the posterior density of (φ, δ, µ,ϕ,α ) , while the conditional posterior

of τ 2 is the inverted gamma density. In the appendix, we present a different method to

obtain the joint posterior of (θ ,α ) given y. These two approaches result in exactly the

same posterior density.

8



2.4 Conditional Posteriors

Once we obtain the joint posterior of (θ ,α ) , we can use the Gibbs sampler to sample each

component of (θ ,α ) conditional on the other components. However, the mixing speed

will generally be slow. If conditional posteriors of some parameters can be obtained, these

parameters can be sampled, respectively, from their conditional posteriors independently.

As a consequence, the overall mixing performance will be greatly improved 5.

2.4.1 Conditional Posterior of τ 2

As τ2 can be integrated out of the joint posterior (12), the conditional posterior of τ 2 is,

τ2 ∼ IG n+ ν + 2

2
,
κ

2
. (14)

Hence τ2 can be sampled directly from its conditional posterior, given the other parame-

ters and latent volatilities.

2.4.2 Sampling ϕ

When ϕ is to be sampled based on the joint posterior (12), the relevant part for ϕ in the

joint posterior is

p(ϕ|τ 2,φ, δ, µ,α,y)

∝ exp − 1

2τ 2

n−1

t=1

(αt+1 − µ)− φ(αt − µ)− ϕg
−1/2
t yt

2
+ p0(ϕ− ϕ0)

2

= exp − 1

2τ2
a11ϕ

2 − 2a12ϕ+ a22 + p0(ϕ2 − 2ϕ0ϕ+ ϕ20)

∝ exp − 1

2τ 2/(a11 + p0)
ϕ2 − 2a12 + ϕ0p0

a11 + p0
ϕ ,

where

a11 =
n−1

t=1

y2t /gt, a12 =
n−1

t=1

[αt+1 − µ− φ(αt − µ)]yt/√gt,
5See, for example, Johannes and Polson (2003) for a discussion on sampling techniques based on

conditional posteriors.

9



a22 =
n−1

t=1

[αt+1 − µ− φ(αt − µ)]2.

Hence the conditional posterior of ϕ is the Gaussian distribution,

ϕ ∼ N a12 + ϕ0p0
a11 + p0

,
τ2

a11 + p0
,

based on which ϕ can be sampled directly, given the other parameters and latent volatil-

ities. Once τ2 and ϕ are sampled, respectively, from their conditional posteriors, we can

calculate ρ and σu through σ
2
u = ϕ2 + τ 2 and ρ = ϕ/σu.

2.4.3 Conditional Posterior of µ

The Gibbs sampler allows us to update µ according to the joint posterior (12), given the

other parameters and vector of transformed latent volatilities. As far as µ is concerned,

the relevant part in the joint posterior is

p(µ|τ2,φ, δ,ϕ,α,y)

∝ exp − 1

2τ 2
(1− φ2)(α1 − µ)2 +

n−1

t=1

(bt+1 − (1− φ)µ)2 + q0(µ− µ0)2

∝ exp −(n− 1)(1− φ)2 + (1− φ2) + q0
2τ2

µ2 − 2(1− φ2)α1 + (1− φ) bt+1 + q0µ0
(n− 1)(1− φ)2 + (1− φ2) + q0

µ ,

where bt+1 = αt+1− φαt−ϕg−1/2t yt for t = 1, 2, · · · , n− 1. Then the conditional posterior
of µ is the Gaussian distribution with mean and variance being defined, respectively, by

µ∗ =
(1− φ2)α1 + (1− φ) n−1

t=1 bt+1 + q0µ0
(n− 1)(1− φ)2 + (1− φ2) + q0

,

σ2∗ =
τ 2

(n− 1)(1− φ)2 + (1− φ2) + q0
.

Hence µ can be sampled directly from N(µ∗, σ2∗), given the other parameters and latent

volatilities.
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2.4.4 Sampling φ and δ

When sampling φ and δ, we use the random-walk Metropolis algorithm. We can update

(φ, δ) simultaneously on an elliptical contour and accept or reject the updated values

according to the Metropolis-Hastings rule, while the acceptance probability is calculated

based on the joint posterior (12) or (13). As the other parameters and latent volatilities

are given, it does not matter which form of the joint posterior is used.

2.4.5 Sampling α

The Gibbs sampler allows us to update each component of α at a time and accept or

reject the updated value according to the Metropolis-Hastings rule, where the acceptance

probability is calculated based on the joint posterior (12) or (13). A disadvantage of

such an approach is that we need to compute the full joint posterior when updating each

component of α. The extensive computation usually results in a relatively low mixing rate.

The relevant part in the joint posterior (12) for computing the acceptance probability is

log π(α|θ,y) ∝ 1

2

n

t=1

log gt − 1
2

n

t=1

y2t
gt
− 1

2τ 2

(1− φ2)(α1 − µ)2 +
n−1

t=1

αt+1 − µ− φ(αt − µ)− ϕg
−1/2
t yt

2
.(15)

Moreover, when updating a component of α, say αk, we only need to calculate the related

terms, denoted by π(αk), in (15) with the other terms unchanged. We have the following

expressions,

π(α1) = − log g1
2
− y21
2g1
− 1

2τ 2
(1− φ2)(α1 − µ)2 + α2 − µ− φ(α1 − µ)− ϕg

−1/2
1 y1

2
,

π (αk) = − log gk
2
− y2k
2gk
− 1

2τ2

k

t=k−1
αt+1 − µ− φ(αt − µ)− ϕg

−1/2
t yt

2
, for k = 2, · · · , n− 1,

π(αn) = − log gn
2
− y2n
2gn
− 1

2τ 2
αn − µ− φ(αn−1 − µ)− ϕg−1/2n−1 yn−1

2
.
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When updating αk (k = 1, 2, · · · , n), we use π(αk) to calculate the acceptance probability,
with which the updated value is accepted.

It is important to note that the proposed sampling algorithm is very flexible. If we fix

ρ = 0 in the above algorithm during the MCMC simulation, the algorithm is exactly the

same as that of Yu, Yang and Zhang (2002). If we fix δ = 0, the algorithm is similar in

spirit as that of Jacquier, Polson and Rossi (2002). 6

3 Application to Artificially Generated Data

In order to examine the accuracy and reliability of the proposed MCMC algorithm for

sampling parameters and latent volatilities in the asymmetric BCSV model, we apply

the algorithm to a dataset which is generated through the asymmetric BCSV model by

using the following parameters: φ = 0.98, δ = 0.3, µ = 1.0, ρ = −0.25 and σ = 0.2.

These values are chosen to represent typical daily returns of financial assets (see, for

example, Shephard and Pitt (1997) and Yu, Yang and Zhang (2002)). The generated

dataset contains the returns and transformed volatility, which provides an opportunity

to compare the estimated parameters with true parameters, as well as the estimated

volatility and true volatility.

3.1 Data Generation

Instead of making a transformation to ut+1 as expressed in (8), we make a transformation

to εt as

εt = ρ ut+1 + 1− ρ2wt,

6In terms of the log-normal SV model, Kim, Shephard and Chib (1998) presented a single-move
accept/reject algorithm to sample latent volatilities. Jacquier, Polson and Rossi (2002) obtained an
approximate “blanket” for the posterior density of αi (i = 1, 2, · · · , n) and used the accept/reject algorithm
to sample latent volatilities. Both methods are similar in spirit and are efficient for sampling the latent
volatility. However, both methods should be properly modified to meet the specific features of the BCSV
model. The sampling method presented here is easy to implement and is eligible for all SV models.
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where wt ∼ N(0, 1), E(ut+1wt) = 0 and ut+1 is the error term in the volatility equation

defined in (7), which can be expressed as

ut+1 =
αt+1 − µ− φ(αt − µ)

σ
.

Then (7) can be equivalently represented as
yt =

√
gtρ [αt+1 − µ− φ(αt − µ)] /σ + gt(1− ρ2)wt,

αt+1 = µ+ φ(αt − µ) + σut+1,

(16)

for t = 1, 2, · · · , n− 1, where α1 ∼ N(µ, σ2/(1− φ2)) and yn ∼ N(0, gn(1− ρ2)).

Given θ, we can generate α and y through the following equations,

αt+1|(αt, θ) ∼ N µ+ φ(αt − µ), σ2 , (17)

yt|(αt+1,αt, θ) ∼ N
ρ

σ

√
gt [αt+1 − µ− φ(αt − µ)] , gt(1− ρ2) , (18)

where α1 ∼ N(µ, σ2/(1− φ2)) and yn ∼ N(0, gn(1− ρ2)).

3.2 Assessment of Sampling Accuracy

When the MCMC iteration procedure has converged, the recorded draws, denoted by

{(θ(i),α(i)) : i = 1, 2, · · · , N}, form a Markov chain whose stationary transition density is
the posterior π(θ,α|y) defined in (12). The MCMC output is often summarized in terms
of the ergodic average or the posterior mean in the form of

fN =
1

N

N

i=1

f(θ(i)), (19)

where f(·) is a real-valued function to be estimated 7. Roberts (1996) pointed out that

most Markov chains produced in MCMC simulations converge geometrically to the sta-

tionary distribution π(θ,α|y), and one of the consequences of the geometric convergence
7Under the circumstance that the parameter vector itself is of interest, the function f(·) is the identity

function, that is, f(x) = x.
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is that
√
N fN −Eπ[f(θ)]

D→ N(0,σ2f), (20)

where Eπ[·] denotes the expectation operator under π(θ,α|y), and the convergence is in
distribution. In order to assess the accuracy of the ergodic average as an estimate of

Eπ[f(θ)], it is necessary to estimate σ
2
f , and one of the most commonly used methods is

to estimate σ2f using the batch-mean method stated below.

Let the number of recorded draws be N = m× n, where n is sufficiently large so that

yk =
1

n

kn

i=(k−1)n+1
f(θ(i)), (21)

for k = 1, 2, · · · ,m, are approximately independently distributed as N(Eπ[f(θ)],σ2f/n).
Therefore σ2f can be estimated by

σ̂2f =
n

m− 1
m

k=1

(yk − fN)2, (22)

where fN is defined in equation (19). Thus, the standard error of fN can be estimated

by σ̂2f/N , which is called the batch-mean standard error (BMSE) and is commonly used

for checking the mixing performance.

In addition to the BMSE, one may also compute the standard deviation σ̃f directly

based on the sampled path using the formula

σ̃f =
1

N − 1
N

i=1

f(θ(i))− fN
2

1/2

. (23)

It is important to note that the computation of standard deviation via (23) should be

based on an independent posterior sample. As the draws from a MCMC procedure form

a Markov chain, one simple procedure for obtaining independent draws is to retain one

draw for every draws where is typically between 5 and 100. In this paper, we report

both the BMSE and standard deviation defined, respectively, by (22) and (23).
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3.3 MCMC Results

The hyperparameters are, respectively, ω = 20.0, γ = 1.5, ν = 10.0, Sτ = 0.1, ϕ0 =

0.0, µ0 = 1.0, p0 = 2.0, q0 = 2.0, and the prior of δ is assumed to be N(−0.25, 2).
These values indicate that the prior of each parameter is very flat. Also our experience

shows that the outcome of a MCMC simulation does not rely on different chioces of

these hyperparameters. The burn-in period of the sampling algorithm consists of 50,000

iterations, and the posterior sample of the parameter vector consists of N = 500, 000

iterations.

We apply the asymmetric BCSV model and the proposed sampling algorithm to the

generated data. In order to remove the effect of possible serial correlation in the posterior

sample (as the posterior sample forms a Markov chain), we retain one draw for every 50

draws during MCMC iterations. Table 1 summarizes the MCMC output, including the

posterior mean, the 95% confidence interval, the BMSE and the standard deviation. The

retained draws for each parameter are plotted in the left-hand panel of Figure 1, where

the right-hand panel is a column of histograms obtained through the retained posterior

samples of parameters. Figure 2 plots the generated volatility and the sampled volatility.

We can obtain the following evidence from the MCMC simulation. First, both the

BMSE and Figure 1 indicate that the MCMC simulation has been mixing very well.

Second, the posterior means of parameters are very close to their corresponding true

values, and the posterior mean of the volatility approximates the true volatility very well.

Third, the 95% confidence interval of δ does not cover either 0 or 0.5, indicating strong

evidence to support the Box-Cox transformation of volatility against the alternative of

the logarithmic or square-root transformation.
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4 Application to the Equity Market

4.1 Data

This section will explore the application of the asymmetric BCSV model to daily returns

of major stock indexes, which are the Dow Jones Industrial Average (DJIA), S&P 500,

New York Stock Exchange (NYSE) composite, Nasdaq 100, Nikkei 225 and Hang Seng

indexes. The historical data on these indexes were downloaded from Data Stream. Let

pt denote the asset price at time t and xt = ln pt − ln pt−1 represent the continuously
compounded return. As required by the construction of SV models, the return series

should be mean-corrected and variance-scaled which is defined by

yt =
xt − x

(n− 1)−1 n
i=1(xi − x)2

,

where x is the mean of observed return series {xt : t = 1, 2, · · · , n}. The observed returns of
Nasdaq 100 index are adopted for the period from the 1st January 1983 to 31st December

2002, while the other datasets are from the 1st January 1988 to 31st December 1998.

All datasets exclude weekends and holidays. The purpose of the empirical study in this

section is to seek empirical evidence to support the Box-Cox transformation of volatility

in preference to the logarithmic or the square-root transformations, as well as to address

the importance of the incorporation of leverage effects into the BCSV model.

4.2 Empirical Results

The hyperparameters required in the joint prior density are set, respectively, to ω = 20.0,

γ = 1.5, ν = 2.0, Sτ = 0.01, ϕ0 = 0.0, µ0 = −0.7, p0 = 2.0, q0 = 2.0, and the prior

of δ is assumed to be N(−0.25, 2). We apply the asymmetric BCSV model and the

sampling algorithm to daily returns of the DJIA index. During the implementation of

MCMC iterations, we retain one draw for every 40 draws so as to remove the effect of
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possible serial correlation in the posterior sample. The retained draws for each parameter

are plotted in the left-hand panel of Figure 2, while its right-hand panel is a column

of histograms obtained based on the retained posterior samples, respectively. Table 2

summarizes the empirical output, including the posterior mean and the 95% confidence

interval, the BMSE and the standard deviation.

We obtained the following evidence from the empirical example. First, both the BMSE

and Figure 1 indicate that the proposed sampling algorithm has been mixing very well.

Second, the posterior mean of δ is statistically different from zero, because its 95% confi-

dence interval does not cover zero. The significance of δ is strong evidence to support the

Box-Cox transformation of volatility against the alternative of the logarithmic transfor-

mation. As a consequence, the logarithmic transformation of volatility should be rejected

when modeling the volatility of daily returns of DJIA index. Moreover, the posterior

mean of δ is negative and the 95% confidence interval of δ does not cover 0.5. Therefore,

the square-root transformation for volatility should also be excluded. Third, the 95%

confidence interval of ρ does not cover zero. This is strong empirical evidence to support

the incorporation of leverage effects into the asymmetric BCSV model.

Then we applied the asymmetric BCSV model and the sampling algorithm to the

remaining datasets containing daily return series of Nasdaq 100, NYSE composite, S&P

500, Nikkei 225 and Hang Seng indexes. Table 2 presents a summary of the retained

posterior samples of the parameter vector for each dataset. The sampling algorithm

achieves very good mixing performance for each dataset. To save space, we shall not

present the plot and histogram of the retained posterior sample for each dataset. We found

in each dataset that the posterior mean of δ is statistically different from zero, indicating

that the Box-Cox transformation of volatility is more favorable than the logarithmic
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transformation. Moreover, the 95% confidence interval of δ does not cover 0.5, indicating

that the square-root transformation of volatility should also be excluded. In all these

datasets, the 95% confidence interval of ρ does not cover zero, showing the importance of

incorporating the leverage effect into the asymmetric BCSV model.

5 Conclusion

This paper developed a sampling algorithm for the asymmetric BCSV model where the

leverage effect is incorporated to capture the dynamics of returns of asset prices. The

Box-Cox transformation of volatility encompasses the logarithmic and square-root trans-

formations as special cases by setting δ to 0 and 0.5, respectivly. Hence the specification

of the BCSV model provide a possibility for model selection through a Bayesian approach.

By applying the asymmetric BCSV model and the proposed sampling algorithm to the eq-

uity market, we found strong evidence to support the Box-Cox transformation of volatility

against the alternative of the logarithmic or the square-root transformation. In addition,

the empirical study on major stock indexes showed that the correlation between the errors

in the mean and volatility equations plays an important role in SV models and captures

the leverage effect. Hence it is important to incorporate the leverage effect into the BCSV

model when the volatility of returns on a stock index is under investigation.

Appendix: An Alternative Method to Obtain the Joint Posterior

The Box-Cox stochastic volatility model is described by,

yt = g(αt, δ)εt,

αt+1 = µ+ φ(αt − µ) + ut+1,
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where

gt = g(αt, δ) =
(1 + δαt)

1/δ δ = 0
exp(αt) δ = 0

,

the covariance matrix of (εt, ut+1) is

Σ =
1 ρσu
ρσu σ2u

,

for t = 1, 2, · · · , n − 1, u1 ∼ N(0, (1 − ρ2)σ2u/(1 − φ2)) and εn ∼ N(0, 1). Then we re-
parameterize ρ and σ through ϕ = ρσu and τ 2 = (1 − ρ2)σ2u which is the same as the

re-parameterization presented in Jacquier, Polson and Rossi (2002).

Let θ = (φ, δ, µ, ρ, σu) , ε = (ε1, ε2, · · · , εn−1) and u = (u2, u3, · · · , un) , and let y be
the vector of observed returns and α be the vector of latent volatilities. Given the joint

prior, which is the same as that presented in Section 2, we can obtain the posterior,

p(θ,α|y) ∝ p(φ, δ, µ, ρ, σ)× p(y1, y2, · · · , yn−1;α2,α3, · · · ,αn|θ)× p(yn|θ)× p(α1|θ)

= p(φ, δ, µ, ρ, σ)×
n−1

t=1

g
−1/2
t p(yt g

−1/2
t ,αt+1|αt, θ)× p(yn|θ)× p(α1|θ)

= p(φ, δ, µ, ρ, σ)|Σ|−(n−1)/2 ×
n−1

t=1

g
−1/2
t × exp −1

2
tr(Σ−1A) × p(yn|θ)× p(α1|θ),

where |Σ| = τ2 and

A =
n−1

t=1

(εt ut+1) (εt ut+1).

Jacquier, Polson and Rossi (2002) show that

Σ−1 =
1

τ2
ϕ2 −ϕ
−ϕ 1

+
1 0
0 0

=
C

τ2
+

1 0
0 1

.

Thus,

tr(Σ−1A) =
1

τ 2
tr(CA) + a11.

Then the posterior is

p(θ,α|y) = p(φ, δ, µ, ρ, σ)×
n−1

t=1

g
−1/2
t × 1

τ2

(n−1)/2
exp − 1

2τ 2
tr(CA)− 1

2
a11

×p(yn|θ)× p(α1|θ),
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where

p(yn|θ) =
1√
2πgn

exp − y
2
n

2gt
,

p(α1|θ) =
1

2πτ 2/(1− φ2)
exp − (α1 − µ)2

2τ2/(1− φ2)
,

tr(CA) =
n−1

t=1

αt+1 − µ− φ(αt − µ)− ϕg
−1/2
t yt

2
.

Substituting the priors into the above equation, we obtain the joint posterior

p(θ,α|y) = p(δ)× (1 + φ)ω−1/2(1− φ)γ−1/2

×
n

t=1

g−1/2t exp −1
2

n

t=1

y2t
gt

× 1

τ2

(n+v+2)/2+1

× exp − κ

2τ2
,

where

κ = (1− φ2)(α1 − µ)2 + tr(CA) + p0(ϕ− ϕ0)
2 + q0(µ− µ0)2 + Sτ .

Hence the joint posterior obtained here is identical to (12) which is obtained through a

transformation of εt and ut+1.
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Figure 1. Posterior samples of parameters obtained by applying the BCSV model to a

generated dataset. The left-hand panel plots the retained posterior samples of σ, ρ, µ, δ

and φ, respectively, while the right-hand panel plots the corresponding histograms.
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Figure 2. The generated volatilities (dotted line) and sampled volatility (solid line).

Table 1. Summary of the posterior sample obtained from the generated data

true parameter mean 95% confidence interval BMSE s.d.

φ = 0.98 0.97577 ( 0.9621, 0.9868) 0.00016 0.00629
δ = 0.30 0.29277 ( 0.1166, 0.4704) 0.00755 0.09059
µ = 1.00 1.00648 ( 0.7808, 1.2343) 0.00266 0.11438
ρ =-0.25 -0.24995 (-0.4170, -0.0660) 0.00340 0.08937
σu = 0.20 0.20246 ( 0.1614, 0.2553) 0.00141 0.02356
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Figure 3. Posterior samples of parameters obtained by applying the BCSV model to daily

returns of DJIA index. The left-hand panel plots the retained posterior samples of φ, δ,

µ, ρ and σ, respectively, while the right-hand panel plots the corresponding histograms.
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Table 2. Summary of posterior samples obtained from daily returns of stock indexes

data parameter mean 95% confidence interval BMSE s.d.

Dow Jones φ 0.94129 ( 0.9091, 0.9659) 0.00089 0.01462
Industrial δ -0.39339 (-0.5940, -0.1805) 0.00553 0.10635
Average µ -0.51855 (-0.6974, -0.3508) 0.00270 0.08768

ρ -0.33074 (-0.4478, -0.2030) 0.00219 0.06228
σu 0.27368 ( 0.2127, 0.3442) 0.00224 0.03322

Nasdaq φ 0.98337 ( 0.9767, 0.9891) 0.00012 0.00315
100 δ -0.19324 (-0.3124, -0.0678) 0.00547 0.06120

µ -0.67996 (-0.8605, -0.5010) 0.00177 0.09201
ρ -0.36513 (-0.4574, -0.2697) 0.00164 0.04791
σu 0.18075 ( 0.1555, 0.2096) 0.00077 0.01380

NYSE φ 0.93845 ( 0.9014, 0.9621) 0.00075 0.01549
Composite δ -0.25038 (-0.6629, -0.0484) 0.00544 0.10025

µ -0.52076 (-0.7010, -0.3484) 0.00267 0.08986
ρ -0.35607 (-0.4583, -0.2338) 0.00140 0.05681
σu 0.29939 ( 0.2396, 0.3857) 0.00196 0.03679

S&P 500 φ 0.94549 ( 0.9139, 0.9703) 0.00083 0.01431
δ -0.31273 (-0.5147, -0.1108) 0.00566 0.10218
µ -0.60931 (-0.8305, -0.4179) 0.00360 0.10440
ρ -0.35311 (-0.4624, -0.2304) 0.00156 0.05903
σu 0.28813 ( 0.2251, 0.3597) 0.00210 0.03395

Nikkei 225 φ 0.97640 ( 0.9665, 0.9846) 0.00020 0.00460
δ -0.24566 (-0.3888, -0.1021) 0.00677 0.07540
µ -0.83664 (-1.0391, -0.6357) 0.00307 0.10209
ρ -0.63456 (-0.7248, -0.5340) 0.00248 0.04905
σu 0.22521 ( 0.1918, 0.2630) 0.00101 0.01822

Hang Seng φ 0.92644 ( 0.8987, 0.9501) 0.00038 0.01321
δ -0.28059 (-0.3928, -0.1619) 0.00248 0.05832
µ -0.93793 (-1.1619, -0.7191) 0.00253 0.11327
ρ -0.29893 (-0.3972, -0.1995) 0.00119 0.05006
σu 0.42457 ( 0.3583, 0.4995) 0.00121 0.03642

Note: The batch size for computing BMSE is 10,000 and there are 50 batches.
s.d. refers to the standard deviation computed through (23) based on draws by
retaining one draw for every 50 draws.
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