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Abstract 
A large number of functional forms have been suggested in the literature for 
estimating Lorenz curves that describe the relationship between income and 
population shares. One way of choosing a particular functional form is to pick the one 
that best fits the data in some sense. Another approach, and the one followed here, is 
to use Bayesian model averaging to average the alternative functional forms. In this 
averaging process, the different Lorenz curves are weighted by their posterior 
probabilities of being correct. Unlike a strategy of picking the best-fitting function, 
Bayesian model averaging gives posterior standard deviations that reflect the 
functional form uncertainty. Building on our earlier work (Chotikapanich and 
Griffiths 2002), we construct likelihood functions using the Dirichlet distribution and 
estimate a number of Lorenz functions for Australian income units. Prior information 
is formulated in terms of the Gini coefficient and the income shares of the poorest 
10% and poorest 90% of the population. Posterior density functions for these 
quantities are derived for each Lorenz function and are averaged over all the Lorenz 
functions. 
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1. Introduction 

The Lorenz curve is an important tool for the measurement of income inequality. For a 

given economy or region, it relates the cumulative proportion of income to the 

cumulative proportion of population, after ordering the population according to 

increasing level of income. The most common measure of income inequality that is based 

on the Lorenz curve is the Gini coefficient. It is equal to twice the area between the 

Lorenz curve and a 45 degree line in a graph that has the cumulative proportions of 

income and population as its axes. When income distribution data are available in 

grouped form, comprising the proportion of population in a number of income categories, 

the Gini coefficient can be estimated by approximating the Lorenz curve by a series of 

linear segments. However, because such an approach ignores inequality within each 

income class, it understates the extent of the inequality. An alternative way to proceed is 

to assume a particular functional form for the Lorenz curve, to estimate it using the 

grouped data, and to estimate the Gini coefficient as twice the area between the estimated 

Lorenz curve and the 45 degree line. With this strategy in mind, several authors have 

suggested possible functional forms for Lorenz curves. See, for example, Kakwani and 

Podder (1973, 1976), Kakwani (1980), Rasche et al (1980), Basmann et al (1990), Ortega 

et al (1991), Chotikapanich (1993) and Sarabia et al (1999). Having available a large 

number of possible functional forms raises questions about how to choose between them 

when carrying out estimation. One possibility is to estimate a number of functions and to 

choose the one that best fits the data in some sense. The best-fitting model could be one 

that maximizes the likelihood function, or minimizes an information criterion, or, it could 

be chosen via a sequence of formal hypothesis tests. In any event, one problem with this 

practice is that, once a particular model has been chosen, the fact that a number of other 

models have been discarded is usually ignored. No allowance is made for the possibility 

of sample statistics yielding an incorrect choice. Also, standard errors used to assess the 

precision of estimation of parameters, and of functions of interest such as the Gini 

coefficient and the income shares of the poorest and wealthiest segments of the 

population, make no provision for the preliminary-test nature of the inference.  

As a strategy for overcoming these difficulties, in this paper we describe and 

illustrate how Bayesian model-averaging can be used to average the results from a 
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number of alternative Lorenz functional forms. Suppose that the main reason for 

estimating a Lorenz curve is to obtain estimates of (1) the Gini coefficient, (2) the income 

share of the poorest 10% of the population, and (3) the income share of the poorest 90% 

of the population. We call these three quantities our ‘economic quantities of interest’. 

Each estimated Lorenz functional form will yield different estimates, and different 

estimates of the precision of estimation, of the economic quantities of interest (EQI). 

Instead of choosing one set of estimates of the EQI, as one might do when proceeding 

with sampling theory inference, we find a weighted average of the estimates from the 

different functional forms, using posterior model probabilities as the weights. Following 

this procedure recognizes that the best fitting model is not necessarily the correct one, 

and the posterior standard deviations of the averaged results provide measures of 

precision that reflect the uncertainty of model choice. 

Our framework for estimation is that suggested in Chotikapanich and Griffiths 

(2002) where the parameters of a Dirichlet distribution are related to Lorenz curve 

differences to allow for the cumulative proportional nature of the Lorenz curve data. 

Most earlier studies used linear or nonlinear least squares, ignoring the proportional 

nature of the data. We extend the maximum likelihood approach adopted by 

Chotikapanich and Griffiths (2002) to Bayesian estimation, and then show how to 

average the results from the different Lorenz functional forms.  

The methodology for Bayesian estimation and model averaging for the Lorenz 

curves is described in Section 2. In Section 3 we describe the application and the results. 

Some concluding remarks are made in Section 4. 

2. Bayesian Estimation of Lorenz Curves 

Suppose we have available observations on cumulative proportions of population 

( Mπππ ,,, 21 …  with 1=πM ) and corresponding cumulative proportions of income 

( Mηηη ,,, 21 …  with 1=ηM ) obtained after ordering population units according to 

increasing income. We wish to use these observations to estimate a parametric version of 

a Lorenz curve that we write as );( βπ=η L  where β  is an )1( ×n  vector of unknown 

parameters. Following Chotikapanich and Griffiths (2002), we assume that, conditional 
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on the population proportions iπ , the income shares 1i i iq −= η −η  follow a Dirichlet 

distribution with probability density function (pdf) 

[ ]

( )
1( ; ) ( ; ) 1

1 1

( | ) ( )
[ ( ; ) ( ; )]

i iL LM
i

i i i

qf q
L L

−λ π β − π β −

= −

θ = Γ λ
Γ λ π β − π β∏            (1) 

where ( ), ′′θ = β λ  and ( )Γ ⋅  is the gamma function. This pdf is such that 

  );();()()()( 11 βπ−βπ=η−η= −− iiiii LLEEqE    (2) 

Thus, the income shares have means that are consistent with the Lorenz curve 

specification ( ; )Lη = π β . Also, the Dirichlet distribution assumption is consistent with 

the proportional share nature of the data, unlike the normal distributional assumption that 

was implicit in earlier work that used nonlinear least squares to estimate Lorenz curves. 

The additional parameter λ  that appears in equation (1) can be viewed as a measure of 

the precision of the fitted relationship; the variances and covariances of the iq  are given 

by 

   
1

)](1)[()var(
+λ
−

= ii
i

qEqEq  

  
1

)()(
),cov(

+λ
−= ji

ji
qEqE

qq       (3) 

After specifying the likelihood function in equation (1), Chotikapanich and Griffiths 

(2002) use it to obtain maximum likelihood estimates of several Lorenz curve 

specifications that have been popular in the literature. In this paper, instead of proceeding 

with maximum likelihood estimation, we use Bayesian inference to obtain posterior pdfs 

for the parameters of a number of curves as well as for the three economic quantities of 

interest (EQI) described in the introduction. Also, instead of starting with prior pdfs on 

the parameters of each of the Lorenz curves, we begin with prior pdfs on the three EQI 

and transform them to obtain prior pdfs on the parameters of the Lorenz curves. Given 

our objective is to obtain an ‘average’ Lorenz curve and averaged EQI, it is important 

that similar prior information is used for each Lorenz curve at the starting point of our 

investigation. 
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As mentioned in the introduction, the three EQI that we consider are the Gini 

coefficient ( )G , and the income shares for the poorest 10% and poorest 90% of the 

population 0.1 0.9(  and )η η . Beta prior pdfs were specified for each of these three 

quantities. Specifically, 

    1 1( ) (1 )v wf G G G− −∝ −    0 1G< <    (4) 

( )
1 11 1

0.1 0.1
0.1 1

0.1 0.1

v w

f
− −η η   η ∝ −   

   
  0.10 0.1< η <    (5) 

( )
9 91 1

0.9 0.9
0.9 1

0.9 0.9

v w

f
− −η η   η ∝ −   

   
  0.1 0.9 0.9η < η <   (6) 

The inequalities in equations (5) and (6) must hold given the ordering of the population 

from poorest to richest. The restriction 0.1 0.9η < η  means that 0.1 0.9and η η  are not a prior 

independent even though we specify the joint prior pdf for the parameters as 

( ) ( ) ( ) ( )0.1 0.9 0.1 0.9, ,f G f G f fη η = η η      (7) 

It also implies that the conventional normalising constant from the product of the two 

beta densities ( ) ( )0.1 0.9f fη η  must be adjusted to allow for the area where they would 

overlap if no restriction was imposed. This adjustment was made by generating 20,000 

observations from independent beta pdfs specified by equations (5) and (6) and counting 

the proportion where 0.1 0.9η < η . For our prior parameter settings this proportion was 

0.99395, and so only a minor adjustment was necessary. The prior parameter settings 

chosen were 1.1v = , 2w = , 1 1 91.4, 1.6, 1.8611v w v= = =  and 9 1.13889w = . These 

settings yield priors that are proper, but with relatively large spreads, motivated by a 

desire to let the data dominate the prior, and to avoid setting a prior that tends to favour 

one Lorenz curve over another. A trial-and-error procedure was used to find the prior 

parameter settings. Cumulative distribution functions were computed for several values 

of the prior parameters; the chosen values were those that led to suitable prior distribution 

functions. 
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The prior pdfs defined by equations (4) to (7) are used to derive a prior pdf for the 

Lorenz curve parameters β . When a Lorenz curve has a single parameter, only the prior 

pdf on the Gini coefficient ( )f G  is used and we have  

  ( ) ( ) dGf f G
d

β =
β

      (8) 

For Lorenz curves where β  is of dimension 2, the prior pdf for β  is derived from those 

for the Gini coefficient G  and the 10% share 0.1η  

   ( ) ( ) 0.1
0.1, ddGf f G

d d
η

β = η
β β

           (9) 

Finally, when a Lorenz curve has 3 unknown parameters, the prior pdfs on all three EQI 

are used to obtain the pdf 

   ( ) ( ) 0.1 0.9
0.1 0.9, , d ddGf f G

d d d
η η

β = η η
β β β

         (10) 

The remaining parameter for which a prior pdf is required is λ . We chose the gamma pdf 

   1( ) exp{ / }gf p−λ ∝ λ −λ           (11) 

with 0.4g =  and 7,000p = . Also, β  and λ  were taken to be priori independent. The 

pdf in (11) has a relatively large spread with Pr( 200) 0.27λ ≤ =  and Pr( 3500) 0.25λ > = . 

 The posterior pdf for ( , )′θ = β λ  is given by  

   ( | ) ( | ) ( ) ( )f q f q f fθ ∝ θ β λ           (12) 

with the components on the right side of this equation given by equation (1) and 

equations (4) through (11). To complete the specification we need to define the Lorenz 

curves that are being considered, and the functions of the parameters of these Lorenz 

curves that define the economic quantities of interest G , 0.1η  and 0.9η . The derivatives in 

the Jacobian terms in equations (8), (9) and (10) are also required. Five Lorenz curves are 

estimated. Their equations are: 
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Exponential  1
1( ; )
1

a

a

eL a
e

π −
π =

−
   0a >         (13) 

Ortega   2 ( ; , ) [1 (1 ) ]L α βπ α β = π − − π   0, 0 1α ≥ < β ≤       (14) 

RGKO   3( ; , ) [1 (1 ) ]L α βπ α β = − − π   1, 0 1β ≥ < α ≤       (15) 

General Pareto  4 ( ; , , ) [1 (1 ) ]L γα δπ α δ γ = π − −π  10,1,0 ≤δ<≥γ≥α       (16) 

Beta   bdadbaL )1(),,;(5 π−π−π=π  10,10,0 ≤<≤<> bda  

        (17) 

The function 1L  is the relatively simple one-parameter function suggested by 

Chotikapanich (1993); 2L  coincides with the proposal of Ortega et al (1991). 3L  is a 

well-known form of Lorenz curve suggested by Rasche et al (1980) and 4L  is an 

extension of 3L  and 2L  introduced by Sarabia et al (1999). Note that 4L  nests both 2L  

and 3L , with 2L  being 4L  with 1=γ  and 3L  being 4L  with 0=α . Setting both 1=γ  

and 0=α  yields the Lorenz curve δπ−−= )1(1L  which originates from the classical 

Pareto distribution. The function 5L  is the “beta function” proposed by Kakwani (1980). 

It is considered one of the best performers among a number of different functional forms 

for Lorenz curves. See, for example, Datt (1998).  

 For each of the Lorenz functions the Gini coefficient is defined as 

1

0

1 2 ( ; )G L d= − π β π∫       (18) 

Alternative expressions for G  can be found for some of the Lorenz curves. However, 

with the exception of 1L , they still generally involve a numerical integral. When 

evaluation of (18) was necessary, it was computed via numerical integration. The other 

EQI are defined as 

  0.1 (0.1; )Lη = β    0.9 (0.9; )Lη = β        (19) 

The partial derivatives of G , 0.1η  and 0.9η  with respect to β , for each of the Lorenz 

curves, are given in an appendix.  
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For model averaging we need to recognize that the definition of θ , and the 

posterior and prior pdfs for θ , depend on the Lorenz curve being considered. To do so, 

we condition on iL  and rewrite the pdfs that appear in Bayes theorem in equation (12) as  

   ( | , ) ( | , ) ( | ) ( )i i i i i if q L f q L f L fθ ∝ θ β λ         (20) 

 Given the analytical intractability of the posterior pdfs for the iθ , either numerical 

integration or a Markov chain Monte Carlo (MCMC) algorithm is needed to obtain 

posterior pdfs and their means and standard deviations for the individual Lorenz curve 

parameters and the corresponding EQI. In the application that follows we used a random 

walk Metropolis-Hastings algorithm. See, for example, Koop (2003, Ch.5). Once 

Bayesian estimation of each Lorenz curve is complete, posterior model probabilities are 

needed to obtain the averaged results. These probabilities are given by 

   5

1

( | ) ( )( | )
( | ) ( )

i i
i

j j
j

f q L P LP L q
f q L P L

=

=
∑

          (21) 

where the ( )iP L  are the prior model probabilities and the ( | )if q L  are the marginal 

likelihoods defined by 

   ( | ) ( | , ) ( | )i i i i i if q L f q L f L d= θ θ θ∫          (22) 

where ( | ) ( | ) ( )i i i if L f L fθ = β λ . In the application, we made all Lorenz curves equally 

likely a priori. That is ( ) 0.2iP L =  for 1, 2,...,5i = . The marginal likelihoods were 

estimated using a version of the Gelfand and Dey (1994) procedure recommended by 

Geweke (1999). Specifically, an estimate of the inverse of the marginal likelihood is 

given by 

  ( ) ( )
( ) ( )

( )
1

( ) ( )
1

1ˆ |
| , |

nN
i

i n n
n i i i i

h
f q L

N f q L f L

−

=

θ
  =  θ θ

∑    (23) 

where (1) (2) ( ), ,..., N
i i iθ θ θ  are MCMC-generated draws from the posterior pdf ( | , )i if q Lθ , 

and the pdf ( )ih θ  is a truncated normal distribution 
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  ( ) ( ) ( ) ( )1 221 11ˆ ˆ2 exp
2

k
i i i i i i ih p

−−− − ′θ = π Σ − θ − θ Σ θ − θ 
 

       (24) 

truncated such that ( ) ( )1ˆ
i i i i i pK−′θ − θ Σ θ − θ ≤ . The value pK  is a critical value from a 

2 ( )kχ  distribution such that ( )2Pr ( ) pk K pχ ≤ = , where k is the degrees of freedom (the 

dimension of )iθ . The quantities ˆand i iθ Σ  are the sample mean and covariance matrix 

from the MCMC-generated draws. 

 Having obtained: 

1) MCMC generated observations for each Lorenz function, (1) (2) ( ), ,..., N
i i iθ θ θ ; 

2) The corresponding draws from the posterior pdfs of the EQI, 
( ) ( ) ( )

0.1 0.9( , , )n n n
i i iG η η , 1, 2,...n N= ; 

3) Estimates of the posterior pdfs, means and standard deviations for iθ  and 

for 0.1 0.9( , , )i i iG η η ; and  

4) The posterior model probabilities for each iL , 

we are in a position to proceed with model averaging. We use the result 

  ( ) ( ) ( )
5

1
| | , |i i

i
E g q E g L q P L q

=

θ = θ      ∑     (25) 

where (.)g  is a function of interest. Using suitable choices for (.)g , we can average the 

posterior means for each iθ  and each to get Bayesian point estimates from the averaged 

pdfs for these quantities. Similarly, posterior variances and standard deviations from the 

averaged posterior pdfs can be obtained by defining (.)g  to give the second moment and 

then computing the variance in the usual way. To estimate the averaged pdfs we take 

(.)g  as a series of indicator functions, equal to unity when an observation falls into a 

histogram class, and zero otherwise. In this case equation (25) can be viewed as an 

averaging of the numbers in each histogram class over the five Lorenz functions. With 

suitable scaling, the average histogram is an estimate of the average posterior pdf. 
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3. The Application 

The methods are applied to a 1997-98 sample of gross weekly income for one-parent 

income units in Australia (Australian Bureau of Statistics 1999). The data are grouped 

into 14 classes.  They take the form of the number of sampled income units in each of 14 

income classes, as depicted in Table 1. The income classes refer to weekly gross income, 

measured in dollars, of one-parent income units. The techniques described in Section 2 

were applied to these data, with 85,000 observations being drawn using a random-walk 

Metropolis-Hastings algorithm, and 10,000 of these being discarded as a burn-in. Plots of 

the observations were taken to confirm the convergence of the Markov chain. Posterior 

means and standard deviations of the iθ  are presented in Table 2, along with the 

corresponding maximum likelihood estimates and their standard errors. Also given in this 

table are the maximum values of the log-likelihood functions and the logs of the marginal 

likelihoods defined by equation (23). Table 3 contains the posterior means and standard 

deviations for the 0.1 0.9( , , )i i iG η η , the posterior probabilities for each of the models and 

the means and standard deviations for 0.1 0.9( , , )G η η  from their averaged posterior pdf. 

Plots of the posterior pdfs for the 0.1 0.9( , , )i i iG η η  appear in Figures 1 through 6. 

 From Table 2, we see that the Bayesian point estimates are similar to those from 

maximum likelihood with the exception of the estimates for λ . This outcome suggests 

the prior information has been relatively mild. For λ  the Bayesian point estimates are 

always lower, possibly reflecting stronger prior information in this case, or a skewed 

marginal posterior pdf for λ . Bayesian posterior standard deviations are always larger 

than the maximum likelihood standard errors (again λ  is an exception); maximum 

likelihood standard errors may be understating the finite sample uncertainty.  

 It is interesting that the model that would be selected on the basis of the largest 

value of the log-likelihood function is not the one with the highest posterior model 

probability. See Tables 2 and 3. The three-parameter Lorenz curves (beta and generalized 

Pareto) have the highest log-likelihood values whereas the two-parameter Lorenz curves 

(Ortega and RGKO) have the highest posterior probabilities. For the Ortega model this 

probability is 0.546. For the RGKO model it is 0.213, and for the beta and generalized 
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Pareto the probabilities are 0.208 and 0.033, respectively. It appears that, relative to the 

two-parameter Lorenz curves, the Bayesian procedure has substantially penalized the 

three-parameter curves for the additional uncertainty associated with one more unknown 

parameter. The generalized Pareto has a low posterior probability (0.033) despite the fact 

that the standard errors of ˆ ˆ and γ α  for the generalized Pareto model, and the differences 

in the log-likelihood function values, suggest that the hypotheses 1γ =  and 0α = , that 

yield the Ortega and RGKO functions, respectively, are likely to be rejected. Since 

1 and 0γ = α =  are on the boundary of the parameter space, we cannot say definitely that 

these hypotheses will be rejected; the sampling theory tests require special treatment (see, 

for example, Andrews 1998) that we do not pursue here. Nevertheless, the sampling 

evidence in favour of the 3-parameter generalized Pareto is much stronger than that from 

Bayesian inference. 

The one-parameter exponential curve is not favoured by its log-likelihood 

function value, or its posterior probability, the latter value being 0.000013. Also, the 

posterior pdfs for G , 0.1η  and 0.9η  from the exponential function are vastly different 

from those from the other Lorenz curves. 

 The posterior pdfs for G , 0.1η  and 0.9η  from each Lorenz curve are plotted in 

Figures 1, 3 and 5, respectively, with their means and standard deviations given in Table 

3. Ignoring the exponential curve because of its poor fit and low posterior probability, the 

results suggests the Gini coefficient lies between 0.29 and 0.35, with its most likely value 

being about 0.32. The income share of the poorest 10% of the population is likely to lie 

between 0.025 and 0.045, although this conclusion, and a conclusion about the most 

likely 10% share, are more sensitive to the choice of Lorenz function. The means for the 

10% share from the generalized Pareto and the RGKO functions are 0.032 and 0.036, 

respectively. The income share of the poorest 90% of the population is likely to lie 

between 0.70 and 0.76. The posterior means for this quantity are similar across all models 

other than the exponential, lying between 0.732 and 0.738, although the spreads of the 

posterior pdfs are noticeably different for each model.  
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 The results after model averaging appear in the last row in Table 3 and in Figures 

2, 4 and 6 for G , 0.1η  and 0.9η , respectively. In these figures the averaged pdf is included 

with the pdfs from each of the models, with the exception of those from the exponential 

model. Because of its low posterior probability, the exponential curve did not contribute 

to the averaging process. What we observe is that the results from model averaging are 

very similar to the results from the Ortega curve. This outcome is perhaps surprising. 

Although the Ortega curve has the highest posterior probability, one would not expect a 

probability of 0.546 to be sufficiently large to dominate in the averaging process. A 

closer inspection shows that the pdfs from the Ortega curve tend to lie between the pdfs 

from the beta curve and the RGKO curve. Consequently, averaging the RGKO and beta 

pdfs, and then placing a weight of 0.546 on the Ortega pdf, yields results similar to those 

from the Ortega curve. 

4.  Concluding Remarks 

Many functional forms have been suggested in the literature for estimating Lorenz 

curves. Choosing a particular functional form, either prior to estimation or on the basis of 

goodness-of-fit or the outcome of hypothesis tests, means that inequality measures of 

interest such as the Gini coefficient, or the income shares of certain proportions of the 

population, will be conditional on the chosen curve. We demonstrate how Bayesian 

model averaging can be used to obtain estimates of such quantities of interest without 

conditioning on a particular Lorenz curve. Presenting the results in this way allows for, 

and expresses, uncertainty resulting from an unknown model and unknown parameters in 

each model. Also, as part of our description of Bayesian model averaging procedures, we 

have shown how Bayesian estimation of the parameters of a Lorenz curve can proceed 

within the framework of a Dirichlet distribution and how prior pdfs on inequality 

measures of interest can be used to find prior pdfs of the parameters in a Lorenz curve. 
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Appendix:  Derivatives for Jacobian terms in prior pdfs 

Exponential with 1 parameter 
 

LC Equation:  1
1

a

a
e
e

π −
η =

−
   0a ≥   

 

   
( )

( )2

1

1 1

a aa

a a

e ee
a e e

ππ −∂η π
= −

∂ − −
 

 

   
( )

( )
1

2
0

1
2

1 1

a aa

a a

e eG e d
a e e

ππ −∂ π = − − π
 ∂ − − 
∫  

 
 Ortega  
 
LC function:  ( )1 1 βα  η = π − − π    0, 0 1α ≥ < β ≤  

 

   ( )1 1 logβ α∂η  = − − π π π ∂α
 

 

   ( ) ( )1 log 1βα∂η  = − π − π − π ∂β
 

 

   ( )
1

0

2 1 1 logG dβ α∂  = − − − π π π π ∂α ∫  

 

   ( ) ( )
1

0

2 1 log 1G dβα∂  = π − π − π π ∂β ∫  

 



 

 

14

RGKO 
 

LC function:  ( )1 1
βα η = − − π    1, 0 1β ≥ < α ≤  

   ( )log log 1 1 α η = β − − π   

 

   ( )log log 1 1 α∂ η  = − − π ∂β
 

 

   ( ) ( )1 1 log 1 1
βα α∂η    = − − π − − π   ∂β

 

 

   ( ) ( )
( )

1 log 1log
1 1

α

α

−β − π − π∂ η
=

∂α  − − π 

 

 

  ( ) ( ) ( )
1

1 log 1 1 1
β−α α∂η  = −β − π − π − − π ∂α

 

 

  ( ) ( )
1

0

2 1 1 log 1 1G d
βα α∂    = − − − π − − π π   ∂β ∫  

 

  ( ) ( ) ( )
1 1

0

2 1 log 1 1 1G d
β−α α∂  = β − π − π − − π π ∂α ∫  

 
Generalized Pareto 
 

LC function:  ( )1 1
γδα  η = π − − π   0, 1, 0 1α ≥ γ ≥ < δ ≤  

( )log log log 1 1 δ η = α π+ γ − − π   

 

   ( )1 1 log
γδα∂η  = π − − π π ∂α

 

 

   ( ) ( )1 1 log 1 1
γδ δα∂η    = π − − π − − π   ∂γ

 

 

   ( ) ( ) ( )
1

1 log 1 1 1
γ−δ δα∂η  = − γ − π − π π − − π ∂δ
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   ( )
1

0

2 1 1 logG d
γδα∂  = − π − − π π π ∂α ∫  

 

   ( ) ( ) ( )
1 1

0

2 1 log 1 1 1G d
γ−δ δα∂  = γ − π − π π − − π π ∂δ ∫  

 

   ( ) ( )
1

0

2 1 1 log 1 1G d
γδ δα∂    = − π − − π − − π π   ∂γ ∫  

Beta 
 
LC function:   ( )1 bdaη = π− π − π   0, 0 1, 0 1a d b> < ≤ < ≤  
 

   ( )1 bd

a
∂η

= − π − π
∂

 

 

   ( )1 logbda
d
∂η

= − π − π π
∂

 

 

   ( ) ( )1 log 1bda
b
∂η

= − π − π − π
∂

 

 

  ( ) ( ) ( ) ( )
( )

1

0

1 1
2 1 2 1, 1 2

2
bd d bG d B d b

a d b
Γ + Γ +∂

= π − π π = + + =
∂ Γ + +∫  

 

  ( )
1

0

2 1 logbdG a d
d

∂
= π − π π π

∂ ∫  

 

  ( ) ( )
1

0

2 1 log 1bdG a d
b

∂
= π − π − π π

∂ ∫  
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Table 1: Data for example 

Income class  Number of income units π  η  

1 - 119 7 0.0123 0.0015 

120 - 159 5 0.0211 0.004 

160 - 199 14 0.0456 0.0131 

200 - 299 154 0.3158 0.1515 

300 – 399 120 0.5263 0.3027 
400 – 499 76 0.6596 0.4258 

500 – 599 54 0.7544 0.5327 

600 – 699 49 0.8404 0.6474 

700 - 799 22 0.8789 0.7068 

800 - 999 43 0.9544 0.8462 

1000 - 1199 12 0.9754 0.8937 

1200 - 1499 10 0.993 0.9423 

1500 - 1999 1 0.9947 0.9487 

≥ 2000  3 1 1 
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Table 2: ML and Bayesian estimates of the parameters of the Lorenz functions a  

 ML Bayes  ML Bayes 
Beta   Gen Pareto   
 a 0.5642 

(0.0272) 
0.5673 

(0.0345) 
 α  0.7948 

(0.1839) 
0.7110 

(0.2319) 
 d 0.9071 

(0.0199) 
0.9139 

(0.0256) 
 δ  0.4816 

(0.0565) 
0.4955 

(0.0657) 
 b 0.4964 

(0.0201) 
0.4989 

(0.0251) 
 γ  0.5476 

(0.1448) 
0.6146 

(0.1888) 
 λ  3452.4 

(1350.3) 
2685.3 

(1174.7) 
 λ  2748.2 

(1073.3) 
2157.9 

(912.21) 
 log 

l’hood 
57.81 63.52  log 

l’hood 
56.13 61.67 

RGKO   Ortega   

 α  0.6506 
(0.0221) 

0.6489 
(0.0263) 

 α  0.2661 
(0.0439) 

0.2590 
(0.0503) 

 β  1.2344 
(0.0444) 

1.2290 
(0.0517) 

 β  0.6083 
(0.0169) 

0.6080 
(0.0198) 

 λ  1628.1 
(631.41) 

1428.6 
(581.25) 

 λ  1958.3 
(730.01) 

1702.0 
(705.50) 

 log 
l’hood 

53.0562 63.55  log 
l’hood 

54.17 64.49 

Exponential      

 a 1.9582 
(0.2566) 

1.9420 
(0.2721) 

    

 λ  233.43 
(81.245) 

231.79 
(86.229) 

    

 log 
l’hood 

39.09 52.48     

a The log l’hood entries in the ML columns are the maximum values of the log-likelihood 
functions. Those in the Bayes columns are the logs of the marginal likelihoods. 
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Table 3: Posterior means and standard deviations for the Gini coefficient and the 
income shares for 10% and 90% of the population  

  
10% Share 

0.1η  

 
90% Share 

0.9η  

 
Gini 
γ  

 
Posterior 

Prob. 
 

 
Beta 

 
0.0344 

(0.0028) 

 
0.7368 

(0.0077) 

 
0.3212 

(0.0122) 

 
0.208 

 
Gen Pareto 

 
0.0319 

(0.0034) 

 
0.7381 

(0.0090) 

 
0.3189 

(0.0128) 

 
0.033 

 
RGKO 

 
0.0357 

(0.0039) 

 
0.7317 

(0.0109) 

 
0.3229 

(0.0154) 

 
0.213 

 
Ortega 

 
0.0343 

(0.0037) 

 
0.7328 

(0.0099) 

 
0.3230 

(0.0144) 

 
0.546 

 
Exponential 

 
0.0363 

(0.0059) 

 
0.7938 

(0.0167) 

 
0.3041 

(0.0379) 

 
0.000 

Average 0.0346 
(0.0036) 

0.7336 
(0.0099) 

0.3225 
(0.0142) 
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Figure1: Posterior pdf's for the Gini Coefficient
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Figure2: Posterior pdf's and Average Posterior pdf for the Gini Coefficient
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Figure 3: Posterior pdf's for the 10% Share
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Figure 4: Posterior pdf's and Average Posterior pdf for the 10% Share
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Figure 5: Posterior pdf's for the 90% Share
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Figure 6: Posterior pdf's and Average Posterior pdf for the 90% Share
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