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1 Introduction

This paper addresses lag selection in the modelling of the conditional mean of a nonlinear

time series process. There are large literatures on testing for nonlinearity (see e.g.

Ramsey (1969), Keenan (1985), Lee et al (1993), Teräsvirta et al (1994) and Brock et

al (1996)), testing for neglected nonlinearity in an estimated model with prespeciÞed

alternatives (see, e.g. Tsay (1989), Hansen (1992) or Teräsvirta (1994)), and consistent

tests of correct speciÞcation without specifying alternative models (see, e.g. Bierens

(1990) and Hong and White (1995)). However, when the objective is to model a time

series that is believed (perhaps by pre-testing) to be nonlinear, these tests do not suggest

how many lags should enter the speciÞcation. Even though the modeller may have only

one class of nonlinear models in mind, it would be impractical to suggest selecting the lag

length using a usual likelihood based model selection criterion or a �general to simple�

methodology, because estimating entire sets of nonlinear models is both time consuming

and cumbersome.

The purpose here, is to suggest easy to compute modelling aids for the nonlinear

speciÞcation of the conditional mean of a time series, given its past. These aids are

similar to the autocorrelogram and the partial autocorrelogram that are used in linear

contexts, but they are designed to detect lag structures that standard correlograms

cannot Þnd. They detect linear correlations as well, and therefore complement the

information provided by standard correlograms, in both linear and nonlinear contexts.

Our nonlinear autocorrelograms and partial autocorrelograms are based on conditional

moment test statistics, and for the variable yt we ask what is the longest lag p such

that E(yt|yt−p) is a non-constant function of yt−p. We also ask what is the longest lag
p such that E(yt|yt−1, . . . , yt−p+1) 6= E(yt|yt−1, . . . , yt−p). In developing our correlation

measures, we use results on using neural networks to approximate functions, and recent

results on forecast combinations and common factors.

There is a small, but growing literature on lag dependencies in nonlinear contexts.

This includes contributions by Auestad and Tjøstheim (1990), Tjøstheim and Auestad

(1994) and Granger and Lin (1994). More recent developments include the Hong and

White (2000) entropy measures of serial dependence, work by Gourieroux and Jasiak

(2002), who have deÞned nonlinear canonical correlations between yt and yt−p as the

maximal correlation between g (yt) and E (g (yt) |yt−p) over all g, and work by Hong and
Lee (2003), who develop tests of independence of yt and yt−p based on the generalized

spectrum. Granger et al. (2003) have suggested a new measure of dependence between

yt and yt−p based on the distance between the joint and product of marginal densities.
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All of these new statistics are sometimes used as �nonlinear correlograms�, but they

focus on the dependence between yt and yt−p, rather than on whether yt−p can be used

to predict yt. Obviously if yt and yt−p are independent, then yt is not predictable from

yt−p. However, a lack of independence between yt and yt−p does not necessarily imply

that yt is predictable from yt−p. The Þrst moment of yt can be independent of yt−p while

higher moments depend on yt−p. Also, establishing that yt and yt−p are dependent does

not by itself imply that E (yt | It−1) should include yt−p1. These considerations lead to

the conclusion that for lag selection, a nonlinear analogue of a partial autocorrelogram is

needed in addition to dependence measures, and in our opinion none of the dependence

measures reviewed above lend themselves easily to such a generalization.

When modelling nonlinear processes, it is common practice to use information cri-

teria such as those proposed by Akaike (1974), Hannan and Quinn (1979) or Schwartz

(1978) to select the lag length of a linear speciÞcation, and then to develop a nonlinear

speciÞcation conditional on the chosen lag length. However, it is easy to imagine that

such criteria might favour short lag structures when applied to some nonlinear data

generating processes, especially if the nonlinear structure comes into play at relatively

distant lags. In such cases, tests for nonlinearity based on the chosen linear null model

might fail to Þnd evidence of nonlinearity. At the other extreme and perhaps more im-

portantly, the choice of too many lags for a linear approximation of a nonlinear DGP can

imply many additional parameters in the estimated nonlinear model, leading to a highly

overparameterized model that delivers poor forecasts. Anderson (2002) Þnds that all of

the criteria cited above (i.e. AIC, HQ and BIC) tend to overpredict lag length when

applied to nonlinear DGPs. She also Þnds that the selection of lag length by applying

AIC, HQ and/or BIC to approximating quadratic models of the data ameliorates this

overprediction, although the beneÞts of doing this are not substantial when samples are

small.

Neural network models are very common in the nonlinearity literature, because they

are relatively simple to use and can approximate most forms of nonlinearity well. Section

2 describes how we adapt and use these models to deÞne measures of predictability of yt

from yt−p.We use these measures to form nonlinear autocorrelograms, and then discuss

the testing of whether or these �correlations� are statistically different from zero. In

Section 3, we use similar techniques to measure the predictability of yt from yt−p after

accounting for yt−1, yt−2, . . . , yt−p+1. We use these measures to form nonlinear partial

1A nonlinear autoregressive process of order one can imply that yt and yt−p are dependent for p > 1,

but in this case the correct speciÞcation for yt does not include yt−p.

3



autocorrelograms, and then discuss the testing of whether or these �partial correlations�

are statistically different from zero. Section 4 studies the empirical performance of

these measures for a selection of linear and nonlinear DGPs. Our sample DGPs are

relatively small (100 to 200) observations, so that our conclusions relate to the sorts of

samples that econometricians typically encounter. After establishing that our nonlinear

autocorrelograms and partial autocorrelograms work quite well for known DGPs, we

then analyze some actual data that is known to exhibit nonlinear behaviour. Section 5

summarizes and concludes.

2 Nonlinear Autocorrelograms

Our nonlinear autocorrelograms are based on the fact that if E (yt | yt−p) = 02, then

Corr (yt, f (yt−p)) = 0 for all measurable functions f, and if E (yt | yt−p) = Ψ(yt−p)

whereΨ is a non-trivial function, then we can Þnd sufficiently many measurable functions

f such that Corr (yt, f (yt−p)) 6= 0. Hornik et al (1989) show that we can approximate
any nonlinear function Ψ of yt−p arbitrarily well, by using a linear combination of q

elementary functions of yt−p for q sufficiently large. The approximating model of Ψ(yt−p)

is given by

E (yt | yt−p) ≡ Ψ(yt−p) ' α0 +

qX
j=1

αjφ
¡
γ0j(1, yt−p)

¢
(1)

where φ is a permissible elementary function3, and the γj are randomly chosen by the

econometrician, independently of yt−p. A large q allows yt−p to inßuence Ψ(yt−p) in

many different directions, and the αj weight these inßuences so that the aggregated

sum of the αjφ
³
γ0j(1, yt−p)

´
can approximate the nonlinearity very well.4

Equation (1) requires q to be �large� (i.e. approaching inÞnity) if the approxima-

tion is to work well, and this requirement can be prohibitive when working with small

samples. Here, we obtain a set of m very crude approximations to Ψ(yt−p) by setting
2Strictly speaking, we need E (yt | yt−p) to be constant, but from now on we assume that yt has been

demeaned without loss of generality.
3The elementary function, which is called the �activation function� or the �squashing function� in the

neural network literature, can be any function that satisÞes some continuity and denseness conditions

discussed in Hornik et al (1989). We use the logistic function φ(z) = [1 + exp (z)]−1in this paper.
4For neural network modelling, one chooses the number of nodes judiciously and estimates the pa-

rameter of the q activation functions using a nonlinear optimization algorithm. Here, our goal is not to

provide a neural network model for the time series (as in, say, Perez-Amaral et al (2003)), but rather

to use neural network approximations of Ψ(yt−p) to provide easy-to-calculate measures of nonlinear

predictability.
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q = 1 for each of m versions of (1) (each based on a single draw of γ0j) and then average

the information obtained from this set of m predictions to obtain a �combined predic-

tion� of Ψ(yt−p). The rationale for this is based on the well known observation (see

e.g. Granger (1989)) that forecast combinations based on many different predictor sets

often work better than a single prediction based on a forecasting model that includes

all predictors, so that an average taken over many simple network approximations of

a given nonlinear model can account for complicated nonlinearities that might not be

well captured by a single highly parameterized network. Recent work (see, e.g. Stock

and Watson (2000), Elliott and Timmerman (2002), Hendry and Clements (2002) and

Granger and Jeon (2002)) has studied various forecast combinations (such as simple or

weighted averages of the forecasts) in a variety of settings, and has shown that forecast

combinations can deliver very good predictions, even if none of the individual forecasting

equations perform very well.

The Þrst measure of non-linear autocorrelation at lag p that we propose is

nlac01 (p) =
1

m

mX
j=1

r2
¡
yt, φ

¡
γ0j(1, yt−p)

¢¢
(2)

where each φ is based on just one random draw of γj and r
2 (., .) is the square of

sample correlation coefficient of its arguments. When yt is unpredictable from yt−p,

then E
³
ytφ

³
γ0j(1, yt−p)

´´
= 0 for all γj and therefore nlac

0
1 (p) → 0 in probability as

T goes to inÞnity for any m. When E (yt | yt−p) is a non-trivial function of yt−p, then
nlac01 (p) converges to a positive limit as m and T go to inÞnity. Moreover, when yt is

white noise, then Tr2(yt, φ
³
γ0j(1, yt−p)

´
is asymptotically χ2

1 for each j and any p > 0,

so that the average over all j will be close to E
¡
χ2

1

¢
= 1. Therefore, as a rough guide, if

nlac01 (p) >
1
T +(2×

√
2
T ) then there is strong evidence that lag p has predictive ability

5.

Our simulations provide better critical values than this conservative bound. In the case

where yt is unpredictable from yt−p, but there is some non-trivial linear correlation

between yt and yt−s for s < p, then Tr2(yt, φ
³
γ0j(1, yt−p)

´
is only a χ2

1 after it has been

readjusted by the product of the ratios of the variance to the long-run variance of yt and

φ
³
γ0j(1, yt−p)

´
. However, as is usual practice with linear autocorrelograms, we ignore

this subtlety and use 1
T + (2×

√
2
T ) as the critical bound.

Some may be concerned that our proposed measure of non-linear squared autocor-

relation does not return a value of 1 when p = 0, i.e. when the non-linear correlation of

yt with itself is considered. This can be easily accommodated by considering a slightly
5Note that we have not divided the standard deviation by m. This is because the r2s are not inde-

pendent.
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modiÞed version of nlac01 (p) given by

nlac1 (p) =
1

m

mX
j=1

R2(yt on 1, yt−p, φ
¡
γ0j(1, yt−p)

¢
, (3)

in which R2 is the usual regression R-squared. In this case, for a white noise process,

TR2 will have an asymptotic χ2
2 distribution, and therefore the guideline critical bound

is 2
T + (2× 2

T ).

Both nlac01 and nlac1 are based on averages of predictability measures along random

nonlinear directions. Another approach would be to attempt to Þnd a �best� non-

linear direction Þrst, and then to measure predictability along that dimension only.

The requirement for the Þrst stage is that it must be achieved through an algorithm

that is guaranteed to work (in Þnite time) without human intervention. This excludes

estimating the best neural network model using maximum likelihood, but it allows one

to consider many �single-draw� networks. Based on this idea, we propose the following,

nlac2 (p) = r
2(yt,weighted average of projections of yt onto Sj (yt−p)), (4)

where Sj (yt−p) is the span of 1, yt−p, φ
³
γ0j(1, yt−p)

´
for a randomly chosen γj. Again, we

include 1, yt−p to make sure that nlac2 (0) = 1, and we consider approximating models of

the form of equation (1) with q = 1.6 It is reasonable to expect that model averaging will

give a better prediction than any of the individual models, and we weight each prediction

by its respective R-squared. Using the direction with maximum Þt would be dangerous,

because this might simply Þt the noise in yt. Also, using a simple average of predictions

would not be entirely satisfactory, because giving the same weight to directions with

poor predictability as those with good predictability would introduce unnecessary noise.

Since all of these predictions are predictions of yt, this weighting scheme is the same as

weighting by the variance of the predictions.

Our weighting scheme is also justiÞed by thinking about the �best� predictor of yt

as the common factor of projections of yt on many random directions parameterized by

γj. A legitimate estimator of the common factor is the average of projections. However,

if some of the projections carry only faint signals about the common factor, it is best to

exclude them or weight them less than others (see Boivin and Ng 2002). This justiÞes

a weighting scheme that reßects the strength of the signal.

The nlac2 (p) measure is asymptotically justiÞed if the number of nonlinear func-

tions that span Sj (yt−p) is allowed to grow to inÞnity at an appropriate rate7 that is
6We could also deÞne nlac0

2 (p) = r
2(yt,weighted average of projections of yt onto Sj (yt−p)), where

Sj (yt−p) is the span of {1, φ
!
γ0j(1, yt−p)

"} for randomly chosen γj .
7 See for example Chen and White (1999).
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slower than T . Under this condition, each of the projections converge to the condi-

tional expectation function, and so does the weighted average of them. However, the

asymptotic justiÞcation provides no direction for how many nonlinear functions to in-

clude for a particular Þnite sample size T . Here, we have deÞned Sj (yt−p) with only
one nonlinear function of yt−p, but of course it is desirable to use more than one if we

are working with large samples. It is difficult to determine a rough critical value for this

measure even when yt is white noise because the weighting scheme biases the average

towards directions with higher predictability. The critical value is therefore determined

by simulation. The empirical performance of nlac01(p), nlac1(p), nlac
0
2 (p) and nlac2 (p)

is studied in Section 4.

3 Nonlinear Partial Autocorrelograms

As mentioned in the introduction, none of the measures of dependence suggested in the

literature lend themselves easily to a partial measure of predictability. Our objective is to

suggest measures of nonlinear partial autocorrelation that can be used for order selection

in linear or nonlinear autoregressive models. Nonlinear partial autocorrelation of order

p is a measure of predictability of yt−E (yt|yt−1, ..., yt−p+1) from (yt−1, ..., yt−p+1, yt−p).

The partial autocorrelation must be zero when

E [(yt −E (yt | yt−1, ..., yt−p+1)) | (yt−1, ..., yt−p+1, yt−p)] = 0 (5)

which implies that

E [ψ (yt−p) (yt −E (yt | yt−1, ..., yt−p+1))] = 0 (6)

for all measurable functions ψ, and also that

E (yt | yt−1, ..., yt−p+1, yt−p) = E (yt | yt−1, ..., yt−p+1) . (7)

We base our measures of partial autocorrelation on equations (6) and (7).

The Þrst measure quantiÞes the importance of adding random functions of yt−p in re-

gressions with yt as the dependent variable and random functions of yt−1, ..., yt−p+1 as in-

dependent variables. SpeciÞcally, we draw p random numbers from appropriate distribu-

tions8, arrange them into a vector γj and form φ
³
γ0j(1, yt−1, ..., yt−p+1)

´
, where φ is a lo-

gistic function. We run a regression of yt on 1, yt−1, ..., yt−p+1, φ
³
γ0j(1, yt−1, ..., yt−p+1)

´
8We discuss �appropriate� distributions in Section 4.
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and we save the residuals and the R-squared (which we denote by R2
j,1) of this regres-

sion. Of course, if the sample size is large, it would be desirable to add more than one

non-linear direction into this regression. We then run a regression of these residuals on

the same regressors in addition to yt−p, and φ
¡
δ0j(1, yt−p)

¢
where δ0j is also randomly

chosen. We save the R2 of this second regression which we denote by R2
j,2. The Þrst

measure of nonlinear partial autocorrelation that we propose is

nlpac1 (p) = weighted average of R2
j,2 (8)

where the weights are proportional to R2
j,1. If (5) was true and if the random one node

neural network model was an adequate model of E (yt | yt−1, ..., yt−p+1) , then TR2
j,2

would be an LM test statistic of the null hypothesis that, once we have the regressor set

given by
n
1, yt−1, ..., yt−p+1, φ

³
γ0j(1, yt−1, ..., yt−p+1)

´o
, then the additional regressors

yt−p, φ
¡
δ0j(1, yt−p)

¢
are not signiÞcant in explaining yt. This LM statistic would have

an asymptotic χ2
2 distribution. However, even if (5) is true, some of the one node neural

network models might carry only a faint signal about the conditional expectation of yt

given yt−1, ..., yt−p+1, and the test of the null that in those models {yt−p, φ
¡
δ0j(1, yt−p)

¢}
adds no additional explanatory power might reject (5). This justiÞes weighting the

second stage R2
j,2 by the Þrst stage R

2
j,1. Our simulations show that the critical values

for this measure are similar to those based on 1
T χ

2
2.

The second measure of nonlinear partial autocorrelation that we propose is based on

comparison of estimates of E (yt | yt−1, ..., yt−p+1) and E (yt | yt−1, ..., yt−p+1, yt−p) . We

use a weighted average of projections onto random nonlinear directions as our estimate

of these expectation. SpeciÞcally, we Þrst compute

�yt|t−1,...,t−p+1 = weighted average of projections of yt onto Sj(yt−1, ..., yt−p+1)

where Sj(yt−1, ..., yt−p+1) is the span of
n
1, yt−1, ..., yt−p+1, φ

³
γ0j(1, yt−1, ..., yt−p+1)

´o
and the weights are proportional to the variance of each projection. Again, if the

sample size is large, it would be desirable to add more than one φ in the construction

of Sj to minimize the effect of the approximation error. We compute �yt|t−1,...,t−p+1,t−p
analogously, and measure the importance of additional lag p by looking at

nlpac2 (p) = r
2

¡
yt, �yt|t−1,...,t−p+1,t−p

¢− r2
¡
yt, �yt|t−1,...,t−p+1

¢
. (9)

This measure compares two approximate predictions for yt based on the same procedure

but with different number of lags. This measure is almost9 equivalent to a comparison
9This equivalence is not exact because the average of orthogonal projections may not be a projection.
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of the sum of squared prediction errors when using t − p + 1 lags versus t − p lags in
predicting yt, and hence it is similar to an unconditional test for forecast equivalence.

4 Empirical Performance of the Correlation Measures

Our simulation study is based on twelve data generating processes considered by Granger

and Lin (1994) and Granger et al (2003). These processes are listed in Table 1, and they

provide an interesting collection of processes to study because some are nonlinear MA

processes, others are nonlinear AR processes, and many of them have lag structures that

linear correlograms and partial correlograms are unable to detect. All simulations were

performed using Gauss, and we based our study on samples of 100 and 200 observations.

Each element of γj and δj was drawn independently from appropriately chosen uni-

form distributions, with the total number of draws (i.e. m) set equal to 500. The range

of the uniform distributions had to be chosen so that they were wide enough to give a

reasonable coverage of the rectangle of height 1 over the range of yt−p, but narrow enough

to stay within the precision range of the computer�s math coprocessor. SpeciÞcally, for

φ
¡
γ0j(1, yt−p)

¢ ≡ 1

1 + exp
©−aj ¡

ycnt−p − bj
¢ª

where ycnt−p is the centered and standardized yt−p, then reasonable ranges for aj and bj
are [0, 9] and [−2, 2].10 Note that there is no need to consider negative values for aj

because
1

1 + exp
©
aj

¡
ycnt−p − bj

¢ª = 1− 1

1 + exp
©−aj ¡

ycnt−p − bj
¢ª .

For calculations relating to partial correlations, we needed to control the range of

exp
n
−[aj 0(ycnt−1, . . . , y

cn
t−p)− a∗jbj ]

o
, which we did by taking the Þrst element of a from

the U [0, 9] distribution, and the remainder from the U [−9, 9] distribution (so that the
contributions from other lags were equally likely to increase or decrease the overall to-

tal of a0jycn relative to aj1ycnt−1). Next, we drew bj from the U [−2, 2] distribution and
multiplied it by a∗j , the standard deviation of aj 0(ycnt−1, . . . , y

cn
t−p). We then multiplied all

terms in the exponent by a factor of 1√
p , so that the variance of the sum of the p terms

was approximately the same, regardless of the value of p.

10Since for a given value of bj, large values of aj produce functions that are very similar (i.e. highly

correlated), one might want to give less probability to drawing larger values of aj . For example, one

could let aj = −9 ln !U #
e−1, 1

$"
, which amounts to drawing randomly from a truncated exponential

distribution on [0, 9] . Our simulations are based on aj = U [0, 9] .
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Full details of all simulated distributions for all correlation measures are available

upon request, and we just report summary results for a few DGPs here. In order to give

readers an idea of the distribution of each measure, we provide box and whisker plots,

with the box outlining the 25th to 75th percentile ranges, and the whiskers stretching

out from the 5th to 95th percentiles. For any given measure, each diagram contains two

box and whisker plots for each lag, with the Þrst plot showing the measured correlation

for the DGP under consideration, and the second plots showing the same correlation

measure for a white noise process.

4.1 Nonlinear Autocorrelograms

Figure 1 shows the performance of our second nonlinear autocorrelation measure (from

equation 3), that is based on an unweighted average of the R2s between yt and predic-

tions formed from regressing yt on a constant, yt−p and a squashed function of yt−p.We

provide four diagrams that relate to Models 2, 4, 6 and 9. The dominant feature of the

top left hand diagram is the distribution relating to lag 2. This distribution is clearly

centred well above zero, and well above the corresponding distribution for white noise.

None of the other distributions on this diagram are different from distributions derived

from white noise, so it is quite clear that the mean of this process has a dependency at

lag 2, and no other lag dependencies.

Turning to the top right hand diagram that corresponds to Model 4, we see very

good power in detecting nonlinear correlation up to lag 2, with lag 3 detected 25% of the

time. The third diagram corresponds to Model 6, which is a nonlinear AR(1) process.

Here nlac1(p) detects signiÞcant correlation for the Þrst three or four lags and also shows

a pattern of decay that is typical of autoregressive processes. The Þnal diagram relates

to a bilinear DGP, and here we see that the distributions for the Þrst two correlation

measures are a little higher and more variable that those for white noise, but nlac1(p) has

little power in distinguishing this process from a white noise. Non-parametric measures

of dependence, e.g. Granger et al (2003), also have difficulty in detecting dependence in

this model.

The results for Model 2 are particularly encouraging, especially since standard cor-

relograms do not indicate any lag structure for this DGP. Although we have not provided

the relevant diagrams, our nonlinear correlograms also show lag structure (at lag 1, and

then at lag 3) when applied to Models 1 and 3 respectively, and very pronounced lag

1 structure for Model 10 (see Figure 5), even though standard autocorrelation analysis

fails to Þnd any structure in any of these cases. The nonlinear autocorrelations for model
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5 are very similar to those illustrated for Model 6, and those for Models 7 and 8 look

very similar to their linear counterparts. Finally, our nonlinear correlograms Þnd no lag

structure for the conditional mean of the GARCH(1,1) process (Model 11), leading to

the correct conclusion that one can not use lagged innovations to predict the mean of a

GARCH(1,1) process.

The effect of excluding yt−p in the prediction equation (i.e. using nlac01 rather

than nlac1) is to lower the mean and standard deviation of all of the distributions

of correlation measures. These changes are often quite substantial, (i.e. typically the

removal of yt−p from the regressor set reduces the measured correlation by about a

half), but since the corresponding benchmark distributions based on white noise also

experience the same sorts of change (as we move from a χ2
2 to a χ

2
1), there is little change

in what the diagrams tell us. The effect of increasing the sample size from 100 to 200

tightens the distributions, as expected.

Figure 2 illustrates the performance of our third correlation measure (i.e. nlac2), in

which we weight predictions by their R2s, and then measure the correlation between yt

and its weighted predictions. The patterns in Figure 2 mimic those in Figure 1, although

now the elevated distributions (e.g. the second lag measure for Model 2) differ more

clearly from their counterparts based on white noise. Note that the scales on Figure

2 are bigger than those on Figure 1. As for the nlac1 measures considered above, the

omission of yt−p in the prediction equation (i.e. using nlac02 rather than nlac2) lowers the

mean and standard deviation of all of the distributions of correlation measures, but in

this case, the changes are not substantial. As above, the effect of increasing the sample

size from 100 to 200 is as expected.

We also experimented with two other measures nlac03 and nlac3, which were based

on Þnding the correlation between yt and a composite byt formed by taking a simple
average of all neural network functions of yt−p. These results were all in between the

results illustrated in Figures 1 and 2. Table 2 provides our estimated 5% critical values

for all six correlation measures, for samples of size 100 and 200.

4.2 Partial Autocorrelograms

Figures 3 and 4 illustrate the distribution of our two partial correlation measures, for

the same DGPs as in Figures 1 and 2. Both measures exhibit similar behaviour in

measuring the partial correlations of the nonlinear MA processes, and these resemble

the behaviour of correlations. This may seem surprising, but there is no reason to expect

a slowly decaying partial autocorrelation in quadratic moving average processes such as

11



those studied here. We focus our discussion in the rest of this section on nonlinear

autoregressive processes, for which partial autocorrelation measures are likely to be

most useful.

Figure 3 illustrates nlpac1, the Þrst of our partial autocorrelation measures, in which

the R2 from our second stage LM regression is weighted by the R2 from the Þrst stage.

Interesting results from the diagrams are that for the nonlinear AR(1) process (Model

6), we see that the lag 1 distribution for our measure is well above its white noise

counterpart, while none of the measures for any of the other lags show any evidence

of statistical signiÞcance. Thus the partial correlogram has correctly identiÞed that we

need only the Þrst lag of yt (i.e. yt−1) to predict this process. We have not illustrated the

nonlinear partial correlograms for the other AR(1) processes (i.e. Models 5, 7, and 8),

but these partial correlograms exhibit exactly the same behaviour. Our nlpac1 measure

shows no signiÞcant partial correlation for the bilinear process (see the fourth panel in

Figure 3). Finally, as we might hope, our nonlinear partial correlogram Þnds no lag

structure for the conditional mean of the GARCH(1,1) process (Model 11).

Critical values for nlpac1 coefficients increase very slightly with lag length, as the

Þrst stage R2 becomes more variable. However, these changes are likely to be negligible

in practical situations, and simulations based on 5000 DGPs with m = 500 lead to 5%

critical values of 0.054 for samples of 100 and 0.027 for samples of 200.

We illustrate our other partial correlation measure (nlpac2) in Figure 4. This mea-

sure is based on the difference between the R2 of the nonlinear prediction of yt based on

yt−1, ..., yt−p and the R2 of the nonlinear prediction of yt based on yt−1, ..., yt−p+1. Unlike

nlpac1 this partial autocorrelation measure can be negative, if the addition of the lag p

variables causes a deterioration in forecastability (see the conclusion for a discussion).

Also, critical values decline very rapidly with lag length, which complicates the use of

this measure and makes it impractical once long lag lengths are considered. However,

this measures performs well for the DGPs studied here. In particular, as is evident in the

fourth panel of Figure 4, this measure identiÞes predictability at lag 2 for the bilinear

model. This second lag effect is clearly statistically signiÞcant, and shows that nlpac2

is able to correctly identify subtle nonlinear structures that traditional correlation tools

cannot Þnd.

Finally, in Figure 5 we present the performance of all four measures when applied

to a sample of 100 observations from a chaotic process (Model 10, the �tent map�).

This is a deterministic nonlinear process which cannot be distinguished from white

noise by linear autocorrelogram and partial autocorrelogram. The two measures of
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nonlinear autocorrelation Þnd signiÞcant correlation at lags 1 and 2, and in particular,

the distribution of autocorrelation at the Þrst lag is concentrated so close to 1 (it has

a mean of 0.9968 and a standard deviation of 0.001) that its box and whisker plot is a

point on the graph. While nlpac1 still shows a signiÞcant partial correlation at lag 2,

nlpac2 correctly identiÞes this as an autoregressive process of order 1.

4.3 Applications

In order to determine the usefulness of our measures, we Þrstly check their performance

with respect to some nonlinear DGPs that have been used in the applied econometrics

literature to model unemployment and industrial production, and then we analyse the

data that was actually used to estimate these models.

Nonlinear autoregressive models are very popular in the applied literature, and here

we focus on Rothman�s (1998) threshold (TAR) model of US unemployment, and the

smooth transition autoregressive (STAR) models of industrial production for Belgium

and Japan, taken from Teräsvirta and Anderson (1992). The lag lengths associated with

these models are 2, 5 and 9 respectively. Full descriptions of the models are provided in

Table 3, and Figures 6 to 8 show how well our nonlinear autocorrelograms and partial

autocorrelograms would perform, given samples of size 100, generated from each of these

three models.

These Þgures are very reassuring, since the distributions of the partial autocorrela-

tion coefficients are clearly above the corresponding white noise distributions for up to

two lags for the TAR(2) model, for up to Þve lags for the logistic L-STAR(5) model,

and for up to nine lags for the exponential E-STAR(9) model. Thus, it appears that our

nonlinear partial autocorrelation functions can pick the lag length in quite complicated

nonlinear autoregressive processes, even if the lag length is quite long. The distributions

of the nonlinear autocorrelation coefficients are well above their white noise analogues,

even for quite large lag lengths, in line with what we would expect given the autoregres-

sive structure of the data.

Table 4 provides the standard and nonlinear correlation and autocorrelation func-

tions for the data that was actually used to estimate the models. The linear and nonlin-

ear measures �agree� in the Þrst two cases, selecting a two lag autoregressive process in

the Þrst and a Þve lag autoregressive process in the second. These results are supported

by both AIC and BIC (applied to linear autoregressions) in the Þrst case, and by BIC in

the second (AIC chooses 8 lags in the second case). One might therefore conclude that

for these DGPs the nonlinear measures provide no additional information to standard
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lag selection techniques.

The story changes, however, once we look at the Japanese Industrial Production

data. AIC and BIC based on linear autoregressions each choose Þve lags, and this

choice is supported by the standard correlation and autocorrelation functions. However,

despite this strong support for Þve lags, Teräsvirta and Anderson (1992) found that they

needed nine lags to build an appropriate nonlinear model of this data. It is interesting

to note, then, that our nlpac1 measure �Þnds� structure at lag 9 for the Japanese

series, as was found necessary by Teräsvirta and Anderson (1992). The statistically

signiÞcant measures for nlac∗2 (at lags nine and ten) are also quite consistent with a

deep lag structure for this series. While we have not reported the details, the story is

the same (but not quite as clear) for the Italian index of industrial production studied by

Teräsvirta and Anderson (1992). Standard techniques used for linear processes �found�

Þve lags, yet nine lags were need to build an appropriate nonlinear model.

We do not know the true lag structure for these series since they were generated

by nature, but we know that attempts to Þt nonlinear models with Þve lags led to

models that were clearly mispeciÞed, while attempts to Þt nonlinear models with nine

lags produced models that passed speciÞcation tests. Also, we know from Teräsvirta

and Anderson (1992) that the nine lag nonlinear models produced slightly better out-

of-sample forecasts than the linear AR(5) models, which offers further support for the

longer lag structure. Our examples demonstrate that our nonlinear autocorrelograms

and partial autocorrelograms can dominate their linear analogues when the data contain

nonlinearities, and this suggests that they might provide useful tools for specifying lag

lengths in nonlinear time series models.

5 Conclusion

This paper studies the problem of lag selection in nonlinear models. We develop a neural

network based method for calculating dependence in conditional mean, and then use this

method to construct nonlinear analogues to autocorrelograms and partial autocorrelo-

grams. While there are several nonlinear autocorrelograms that are currently available,

ours are easier to calculate, and they seem to work well in relatively small samples.

There are very few nonlinear analogues to the partial correlogram that are currently

available11, and we believe that ours are perhaps the Þrst that are practical enough to

be used by applied researchers. Given the importance of nonlinear AR processes in the

11One exception is Kendall�s (1938) partial τ .
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applied econometrics literature, and the fact that for AR processes the partial correlo-

grams are more useful for identifying lag length than correlograms, we believe that our

nonlinear partial autocorrelograms are likely to be useful. Interested researchers may

contact us for our GAUSS programs.

Our Monte Carlo study is an exploratory investigation of whether the crude one

node neural network based measures were of any value. Given the promising results of

this study, there is much room for improving these measures. Possible directions for

improvement are:

1. Increasing the number of nodes: We chose one node to see if the crudest neural

network approximation has any power in detecting lag dependence. We have

no reason to discourage users from using multiple squashing functions, especially

when analyzing large samples. Since random draws of γj may lead to highly cor-

related φj , it is common practice in neural network based tests for nonlinearity

(see Teräsvirta et al 1993) to form many (say 10) φj and choose the Þrst few (say

3) principal components of them. We think that this may improve our measures

further, especially since the Þrst partial correlation measure is only theoretically

justiÞed if the neural network approximation of E (yt | yt−1, ..., yt−p+1) is an accu-

rate one.

2. Increasing m (the number of predictive directions) as p (the number of lags) in-

creases: We averaged over the same number of predictive directions as we increased

p. This often led to a smaller R2 as p increased, and made nlpac2 negative. This

may be disconcerting to some, as the model with p lags nests the model with p−1
lags. We don�t see this apparent anomaly as a major problem, but we think that

it can be avoided by increasing m with p.

We believe that one reason that our measures are successful is that they combine

forecasts that each carry a faint signal about the nonlinear relationship between yt and

its lags. Interpreting this nonlinear relationship as a common factor that characterizes

each set of predictors that is used to obtain our aggregate measure of predictability, then

averages of our predictions provide estimates of this common factor and our aggregate

measures of predictability incorporate this common factor. This interpretation falls in

line with Granger and Jeon (2002), who link the superior ability of combined forecasts

to the presence of common factors.
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Table 1: DGPs used in the simulation studies

Model 0 : yt = εt

Model 1 : yt = εt + 0.8ε2
t−1

Model 2 : yt = εt + 0.8ε2
t−2

Model 3 : yt = εt + 0.8ε2
t−3

Model 4 : yt = εt + 0.8ε2
t−1 + 0.8ε

2
t−2 + 0.8ε

2
t−3

Model 5 : yt = |yt−1|0.8 + εt

Model 6 : yt = sign(yt−1) + εt

Model 7 : yt = 0.8yt−1 + εt

Model 8 : yt = yt−1 + εt

Model 9 : yt = 0.6εt−1yt−2+ εt

Model 10: yt = 4yt−1(1− yt−1)

Model 11: yt =
√
htεt, ht = 0.01 + 0.94ht−1 + 0.05y2

t−1

(In all models εt ∼ N(0, 1)).

Table 2: 5% Critical values for nonlinear correlation coefficients

Sample Measure

Size nlac01 nlac02 nlac03 nlac1 nlac2 nlac3

100 0.028 0.064 0.059 0.052 0.080 0.072

200 0.014 0.034 0.031 0.026 0.041 0.036

Critical values are based on 5000 DGPs, with m = 500.
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Table 3: Nonlinear autoregressive models

TAR(2) yt = 0.0529 + 1.349yt−1 − 1.665yt−2 + ft × (1.646yt−1 − 0.733yt−2) + εt with

ft = (1)(yt−1 < 0.062) and εt ∼ N(0, 0.0632)

LS(5) yt = −0.030 + 0.64yt−1 − 0.29yt−2 − 0.64yt−4+

ft × (0.044 + 0.49yt−2 + 0.45yt−5) + εt

with ft = (1 + exp{−7.3× 21.6(yt−1 + 0.015)})−1 and εt ∼ N(0, 0.02312).

ES(9) yt = 0.0075 + 3.03yt−1 − 1.31yt−2 −∆0.49yt−4+

ft × (−1.68yt−1 + 0.87yt−2 −∆0.30yt−8) + εt with

ft = (1− exp{−1.54× 196(yt−1 + 0.082)
2}) and εt ∼ N(0, 0.01852).
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Table 4: Performance of linear and nonlinear measures of

autocorrelation and partial autocorrelation

Detrended employment for the United States (sample of 128)

Correlation Critical Lag Length

Measure Value (5%) 1 2 3 4 5 6 7 8 9 10

ac ±.18 .94∗ .79∗ .62∗ .45∗ .31∗ .22∗ .15 .10 .06 .03

pac ±.18 .94∗ -.67∗ .09 .06 .13 -.09 -.10 .04 .09 -.19∗

nlac1 .05 .88∗ .65∗ .42∗ .25∗ .14∗ .08∗ .05 .02 .01 .00

nlac2 .08 .88∗ .65∗ .43∗ .27∗ .17∗ .11∗ .07∗ .05∗ .05 .05

nlpac1 .05 .88∗ .43∗ .02 .01 .02 .01 .01 .01 .01 .04

nlpac2 Varies .88∗ .05∗ .00 .00 .00 .00 .00 .00 .00 .00

Annual Growth Rate of Belgian Industrial Production (sample of 104)

Correlation Critical Lag Length

Measure Value (5%) 1 2 3 4 5 6 7 8 9 10

ac ±.21 .75∗ .49∗ .18 -.12 -.15 -.16 -.06 .02 .02 .05

pac ±.21 .75∗ -.15 -.30∗ -.25∗ .42∗ -.10 .03 -.17 .09 .02

nlac1 .05 .59∗ .25∗ .04 .03 .04 .06∗ .03 .03 .04 .02

nlac2 .08 .59∗ .25∗ .06 .04 .04 .07 .07 .08 .07 .04

nlpac1 .05 .59∗ .10∗ .13∗ .07∗ .18∗ .05 .01 .04 .03 .01

nlpac2 Varies .59∗ .03 .04 .02 .06∗ .00 .00 .00 .00 .00

Annual Growth Rate of Japanese Industrial Production (sample of 104)

Correlation Critical Lag Length

Measure Value (5%) 1 2 3 4 5 6 7 8 9 10

ac ±.21 .91∗ .71∗ .45∗ .19 .00 -.11 -.13 -.07 .05 .17

pac ±.21 .91∗ -.63∗ -.16 -.06 .28∗ .15 -.04 .03 .19 -.07

nlac1 .05 .83∗ .51∗ .21∗ .05∗ .01 .02 .02 .02 .02 .04

nlac2 .08 .83∗ .51∗ .22∗ .06 .04 .04 .04 .06 .10∗ .16∗

nlpac1 .05 .83∗ .47∗ .04 .01 .14∗ .02 .02 .02 .08∗ .02

nlpac2 Varies .83∗ .08∗ .00 .00 .00 .00 .00 .00 .00 .00
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Figure 1: The measure of non-linear autocorrelation nlac1 for selected DGPs
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Figure 2: The measure of non-linear autocorrelation nlac2 for selected DGPs

23



Figure 3: The measure of non-linear partial autocorrelation nlpac1 for selected DGPs
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Figure 4: The measure of non-linear partial autocorrelation nlpac2 for selected DGPs
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Figure 5: The measure of non-linear correlation and partial autocorrelation for the

tent map

26



Figure 6: The measures of non-linear correlation and partial autocorrelation for the

TAR(2) DGP
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Figure 7: The measures of non-linear correlation and partial autocorrelation for the

LSTAR(5) DGP
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Figure 8: The measures of non-linear correlation and partial autocorrelation for the

ESTAR(9) DGP
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