
ISSN: 2038-7296
POLIS Working Papers

[Online]

Dipartimento di Politiche Pubbliche e Scelte Collettive – POLIS
Department of Public Policy and Public Choice – POLIS

POLIS Working Papers n. 185

June 2011

Fractals and self-similarity in economics:
the case of a stochastic

two-sector growth model

Davide La Torre, Simone Marsiglio and Fabio Privileggi

UNIVERSITA’ DEL PIEMONTE ORIENTALE “Amedeo Avogadro”  ALESSANDRIA

Periodico mensile on-line "POLIS Working Papers" - Iscrizione n.591 del 12/05/2006 - Tribunale di Alessandria

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6342047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fractals and Self-Similarity in Economics: the Case of a
Stochastic Two-Sector Growth Model

Davide La Torre∗ Simone Marsiglio† Fabio Privileggi‡

Abstract

We study a stochastic, discrete-time, two-sector optimal growth model in which the production
of the homogeneous consumption good uses a Cobb-Douglas technology, combining physical
capital and an endogenously determined share of human capital. Educationis intensive in human
capital as in Lucas (1988), but the marginal returns of the share of human capital employed in
education are decreasing, as suggested by Rebelo (1991). Assuming that the exogenous shocks
are i.i.d. and affect both physical and human capital, we build specific configurations for the
primitives of the model so that the optimal dynamics for the state variables can beconverted,
through an appropriate log-transformation, into an Iterated Function System converging to an
invariant distribution supported on a generalized Sierpinski gasket.

Keywords: fractals, iterated function system, self-similarity, Sierpinski gasket, stochastic
growth

JEL classification: C61, O41

1 Introduction

Mandelbrot (1982) in his seminal work presented the first description of self-similar sets, namely
sets that may be expressed as unions of rescaled copies of themselves. He called these setsfractals,
because their (fractional) Hausdorff-Besicovitch dimensions exceeded their (integer-valued) topolog-
ical dimensions. TheCantor set, thevon Koch snowflake curveand theSierpinski gasketare some
of the most famous examples of such sets. Hutchinson (1981) and, shortly thereafter, Barnsley and
Demko (1985) and Barnsley (1989) showed how systems of contractive maps with associated prob-
abilities, referred to asIterated Function Systems(IFS), can be used to construct fractal, self-similar
sets and measures supported on such sets. These sets and measures are attractive fixed points of fractal
transform operators.

After these pioneering papers, applications of IFS theory in several fields have been widely de-
veloped, eventually landing, at the end of the last century,also into Economics. As a matter of fact,
economists are intrinsically reluctant to accept the idea that economic dynamics may generate frac-
tals. A first breakthrough has been introduced by Boldrin and Montrucchio (1986), who showed that
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complicated (chaotic) optimal dynamics can occur in deterministic concave intertemporal optimiza-
tion models when the discount factor is small enough. This result opened a new chapter in mainstream
Economics, starting a huge literature aimed at studying complexity and chaos in almost all economic
fields. Prominent, but by no means exhaustive,1 references are Montrucchio (1994), Nishimura and
Yano (1995), Brock and Hommes (1997) and, more recently, Gardini et al. (2009), who exploited the
IFS framework to construct a deterministic OLG-model converging to a fractal attractor.

A decade later complex behavior started to be investigated in stochastic concave intertemporal op-
timization models as well. Montrucchio and Privileggi (1999) borrowed from the literature on fractal
images generation (specifically, from the ‘Collage Theorem’by Hutchinson, 1981; Barnsley, 1989;
Vrscay, 1991) to show that standard stochastic concave optimal growth models may exhibit optimal
trajectories which are random processes converging to singular invariant distributions supported on
fractal sets regardless of the discount factor. Such economies have optimal dynamics defined by IFS
with linear maps. Mitra et al. (2004) investigated a simple one-sector growth model withtwo random
shocks whose optimal path is defined by a linear IFS which, forsome values of parameters, converges
to a singular distribution supported on a Cantor set. They also characterized singularity versus ab-
solute continuity of the invariant probability in terms of (almost) all parameters’ values. Mitra and
Privileggi (2004, 2006) further generalized that model andeventually (2009) provided an estimate
of the Lipschitz constant for the (nonlinear) maps of the IFSdefining the optimal policy in a class
of stochastic one-sector optimal growth models in the Brock and Mirman (1972) tradition. This re-
sult yields sufficient conditions for the model to converge to a singular distribution supported on a
generalized Cantor set directly in terms of the parameters’ values.

In this paper we consider a neoclassic stochastic, discrete-time, two-sector growth model in which
production of a unique homogeneous good depends on both physical and human capital through
a Cobb-Douglas technology, while education requires only human capital, as suggested by Lucas
(1988). However, we modify the Lucas (1988) framework by postulating that the marginal returns of
the human capital employed in education are decreasing, thus embedding Rebelo (1991) assumption.
Production in both sectors is multiplicatively affected byrandom i.i.d. shocks taking on a finite
number of values. Our main contribution is to provide sufficient conditions on the parameters of
the model – namely, on the exponents of the Cobb-Douglas production function and of the human
capital production function, and on the values of random shocks – such that the IFS corresponding to
the optimal policy function converges to a unique invariantdistribution supported on a (generalized)
Sierpinski gasket. Hence, this result can be seen as a further extension of the approach pursued by
Mitra and Privileggi (2004, 2006, 2009) for the one-sector growth model to a multi-sector growth
model under uncertainty.

In Section 2 the main results from the IFS theory are briefly recalled. In Section 3 the model is
stated and the optimal dynamics are explicitly computed. Section 4 contains the central contribution of
this paper: a linear IFS conjugate to the true optimal dynamics is constructed and sufficient conditions
for its attractor to be a Sierpinski gasket supporting the unique invariant distribution of the economy
are provided directly in terms of parameters of the model. Finally, in Section 5 a few examples of
economies converging to differently shaped Sierpinski gaskets are described, while Section 6 reports
some concluding remarks. All proofs are gathered in the Appendix.

1For a recent and quite comprehensive survey on complex dynamics arising in non-competitive economies see Bischi
et al. (2010) and the references listed there.
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2 Iterated Function Systems

Iterated Function Systems allow to formalize the notion of self-similarity or scale invariance of some
mathematical object. Hutchinson (1981) and Barnsley and Demko (1985) showed how systems of
contractive maps with associated probabilities can be usedto construct self-similar sets and mea-
sures. In the IFS literature, these are called IFS with probabilities (IFSP) and are based on the action
of a contractive Markov operator on the complete metric space of all Borel probability measures
endowed with the Monge-Kantorovich metric. Applications of these methods can be found in im-
age compression, approximation theory, signal analysis, denoising, and density estimation (see,e.g.,
Mendivil and Vrscay, 2002a,b; Iacus and La Torre, 2005a,b; La Torreet al., 2006; Kunzeet al., 2007;
La Torre and Mendivil, 2008, 2009; La Torreet al., 2009; La Torre and Vrscay, 2009; Freiberget al.,
2011). In what follows, let(X, d) be a complete metric space andw = {w1, . . . , wN} be a family of
injective contraction mapswi : X → X, to be referred to as anN -map IFS. Letci ∈ (0, 1) denote
the contraction factor ofwi and definec = maxi∈{1,...,N} ci. Note thatc ∈ (0, 1). Associated with the
IFS mappingsw1, . . . , wN there is a set-valued mappinĝw : K (X) → K (X) defined over the space
K (X) of all non-empty compact sets inX as:

ŵ (S) =
N
⋃

i=1

wi (S) , S ∈ K (X) , (1)

wherewi (S) = {wi (x) : x ∈ S} is the image ofS underwi, for i = 1, . . . , N . A setSw ⊂ X is said
to be aninvariant setof w if it is compact and it is invariant under (1), that is, it satisfiesŵ (Sw) = Sw.
If in addition, the contractive mappingswi are assumed to be similitudes,i.e., if we assume that there
exist numbersci ∈ (0, 1) such that

d (wi (x) , wi (y)) = cid (x, y) , x, y ∈ X, i = 1, . . . , N,

the invariant setSw is said to beself–similar. In K (X) it is possible to define the so-called Hausdorff
distancedH between compact sets which reads as:

dH (A,B) = max

{

sup
x∈A

inf
y∈B

d (x, y) , sup
x∈B

inf
y∈A

d (x, y)

}

,

and it can be proved that(K (X) , dH) is a complete metric space (Hutchinson, 1981).

Theorem 1 (Hutchinson, 1981)ŵ is a contraction mapping on(K (X) , dH); specifically:

dH (ŵ (A) , ŵ (B)) ≤ cdH (A,B) , ∀A,B ∈ K (X) .

We have the following corollary from the Banach fixed point theorem.

Corollary 1 There exists a unique compact setA ∈ K (X), such thatŵ (A) = A, which is called the
attractorof the IFSw. Moreover, for anyS ∈ K (X), dH (ŵn (S) , A) → 0 asn → ∞.

The latter property provides a construction method of approximating a fractal. The equation
ŵ (A) = A obviously implies thatA is self-tiling, i.e., A is the union of (distorted) copies of itself.

Let M (X) be the space of probability measures defined on theσ-algebraB (X) of Borel mea-
surable subsets ofX and define for somea ∈ X the set:

M1 (X) =

{

µ ∈ M (X) :

∫

X

d (a, x) dµ (x) < ∞

}

.
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Note that the definition ofM1 (X) does not depend on the choice ofa (if the integral is finite for a
certaina ∈ X then it is finite for alla ∈ X). Forµ, ν ∈ M1 (X), we define the Monge-Kantorovich
distance as follows:

dM (µ, ν) = sup

{
∫

X

fd (µ− ν) : f ∈ Lip1 (X)

}

,

whereLip1 is the set of all Lipschitz functions with Lipschitz constant equal to1. It can be proved
that(M1 (X) , dM) is a complete metric space under the Monge-Kantorovich metric provided thatX
is a separable complete metric space. Furthermore, ifX is compact, thenM (X) = M1 (X) and
both are compact metric spaces under the Monge-Kantorovichdistance (Barnsleyet al., 2008).

Let p = (p1, p2, . . . , pN), 0 < pi < 1, 1 ≤ i ≤ N , be a partition of unity associated with the IFS
mappingswi, so that

∑N

i=1 pi = 1. Associated with this IFS with probabilities (IFSP)(w, p) is the
so-called Markov operator,M : M1 (X) → M1 (X), defined as:

(Mµ) (S) =
N
∑

i=1

piµ
(

w−1
i (S)

)

, ∀S ∈ B (X) ,

wherew−1
i (S) = {y ∈ X : wi (y) ∈ S}.

Theorem 2 (Barnsleyet al., 2008) M is a contraction mapping on(M1 (X) , dM); specifically:

dM (Mµ,Mν) ≤

(

∑

i

pici

)

dM (µ, ν) , ∀µ, ν ∈ M1 (X) .

Corollary 2 There exists a unique probability measureµ̄ ∈ M1 (X), called invariant measureof the
IFSP(w, p), such thatMµ̄ = µ̄. Moreover, for anyµ ∈ M1 (X), dM (Mnµ, µ̄) → 0 asn → ∞.

Note that for anyµ-integrable functionu : X → R, it holds that:

∫

X

u (x) dµ (x) =
N
∑

i=1

pi

∫

X

u [wi (x)] dµ (x) .

LetC0 (X) denote the Banach space of continuous functions onX endowed with the uniform metric
d∞. Associated with the IFSP(w, p) define the following operatorT : C0 (X) → C0 (X):

Tu =
N
∑

i=1

pi (u ◦ wi) , ∀u ∈ C0 (X) .

For a givenν ∈ M1 (X) define the linear functionalFν : C0 (X) → R as:

Fν (u) = 〈u, ν〉 =

∫

X

u (x) dν (x) .

Then〈Tf, ν〉 = 〈f,Mν〉, i.e., T is the adjoint operator ofM . The operatorT is a contraction on the
complete metric space(C0 (X) , d∞) with contraction factorp = maxi∈{1,...,N} pi < 1. Thus we have:

∫

X

u (x) dµ (x) = lim
n→+∞

∫

X

T nf (x) dµn (x)

whereµn = Mnλ → µ in the Monge-Kantorovich distance andλ is the Lebesgue measure onX.
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It is worth mentioning the concept ofV -variable fractalsrecently introduced by Barnsleyet al.
(2008) allowing for the description of new families of random fractals, which are intermediate be-
tween deterministic and random fractals, including recursive as well as homogeneous random frac-
tals. More precisely, given a (not necessarily finite) family of IFSP’s, such fractals are the result of
random applications of the related set valued mappings and measure valued Markov operators. The
parameterV describes the degree of “variability” of the realizations.Roughly speaking, this means
that at each construction step we have at mostV different fundamental shapes.

3 The Model

We study an optimal growth model under uncertainty in which the social planner seeks to maximize
the representative household’s infinite discounted sum of instantaneous utility functions – which are
assumed to be logarithmic – subject to the laws of motion of physical, kt, and human,ht, capital.
At each timet, the planner chooses consumption,ct, and the share of human capital,ut, to allocate
into production of a unique homogeneous consumption good which uses a Cobb-Douglas technology
that combines physical and human capital. Education is assumed to be intensive in human capital,
as in Lucas (1988), but the marginal returns of the share of human capital employed in education are
decreasing, in accordance with Rebelo (1991).

The final good and the education sectors are affected by exogenous perturbations,zt andηt respec-
tively, which enter multiplicatively both production functions; they are independent and identically
distributed, and take on finite values:z ∈ {q1, q2, 1} andη ∈ {r, 1}, with 0 < q1 < q2 < 1 and
0 < r < 1. We assume that only three pairs of shock values can occur with positive probability,
(z, η) ∈ {(q1, r) , (q2, 1) , (1, 1)}, each with (constant) probabilityp1, p2 andp3 respectively, where
pi ∈ (0, 1), i = 1, 2, 3, and

∑3
i=1 pi = 1. Such three shock configurations may be interpreted as 1)

a deep financial crisis typically having wide effects on the economy as a whole and thus involving
both production and education sectors,2 corresponding to(z, η) = (q1, r), 2) a sudden surge in raw
materials’ (e.g., oil) prices affecting only the production sector but not education, corresponding to
(z, η) = (q2, 1), and 3) a scenario with no shocks in which the whole economy evolves along its full
capacity, corresponding to(z, η) = (1, 1).

The social planner problem can thus be summarized as:

V (k0, h0, z0, η0) = max
{ct,ut}

E0

∞
∑

t=0

βt ln ct (2)

s.t.







kt+1 = ztk
α
t (utht)

1−α − ct
ht+1 = ηt [(1− ut)ht]

φ

k0 > 0, h0 > 0, z0 ∈ {q1, q2, 1} , η0 ∈ {r, 1} are given,
(3)

whereE0 denotes expectation at timet = 0, 0 < β < 1 is the discount factor,kt andht denote
physical and human capital at timet, 0 < α < 1 and0 < φ < 1.

The Bellman equation associated to (2) reads as:

V (kt, ht, zt, ηt) = max
ct,ut

[ln ct + βEtV (kt+1, ht+1, zt+1, ηt+1)] . (4)

Thanks to the log-Cobb-Douglas specification of the model, both the value functionV (·, ·, ·, ·) and
the optimal policy of (2) can be explicitly computed by applying the “guess and verify” method3 to
the Bellman equation (4).

2Consider, for example, the global financial crisis triggered in 2009: both the productive and education sector have
been strongly damaged by the falling prices in the stock market.

3A similar approach has been pursued by Bethmann (2007) in a Lucas-Uzawa model of endogenous growth.
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Proposition 1

i) The solutionV (k, h, z, η) of the Bellman equation in (4) is given by:

V (k, h, z, η) = θ + θk ln k + θh lnh+ θz ln z + θη ln η, (5)

where the constantsθk, θh, θz andθη are defined as follows:

θk =
α

1− αβ
, θh =

1− α

(1− αβ) (1− βφ)
, θz =

1

1− αβ
, θη =

(1− α) β

(1− αβ) (1− βφ)
,

and the constant termθ is given by:

θ =
1

1− β

[

ln (1− αβ) +
αβ

1− αβ
ln (αβ) +

1− α

1− αβ
ln (1− βφ) (6)

+
(1− α) βφ

(1− αβ) (1− βφ)
ln (βφ) +

β

(1− αβ)
E ln z +

(1− α) β2

(1− αβ) (1− βφ)
E ln η

]

.

ii) The optimal policy rules for consumption and share of human capital allocated to physical pro-
duction are respectively given by:

ct = (1− αβ) (1− βφ)1−α ztk
α
t h

1−α
t (7)

ut = 1− βφ, (8)

while physical and human capital follow the (optimal) dynamics defined by:

{

kt+1 = αβ (1− βφ)1−α ztk
α
t h

1−α
t

ht+1 = (βφ)φηth
φ
t .

(9)

The proof is reported in the Appendix.
An argument parallel to that described on pp. 273-277 in Stokey and Lucas (1989) establishes

that the functionV (k, h, z, η) defined in (5) is actually the value function of problem (2).

4 Conjugate Linear IFSP

The optimal dynamics for the physical and human capital in (9) have the form of products of powers,
suggesting that a logarithmic transformation of both variables kt andht may yield an equivalent
conjugate system which is linear in the transformed variables. Specifically, a suitable transformation
of (9) may lead to a contractive IFSP converging to a unique invariant distribution supported on some
fractal attractor in accordance with Corollaries 1 and 2 of Section 2. The following proposition shows
that, for specific sets of values for parametersα, φ, q1, q2 anr, a linear system conjugate to (9) exists
defining a IFSP that converges to an invariant distribution supported on a (generalized) Sierpinski
gasket with vertices(0, 0), (1/2, 1) and(1, 0).

Proposition 2 Assume thatα 6= φ and let

r = exp

[

α− φ

1− α
(2 ln q2 − ln q1)

]

. (10)
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Then the one-to-one logarithmic transformation(kt, ht) → (xt, yt) defined by:

{

xt = ρa ln kt + ρb lnht + ρc
yt = ρd lnht + ρe,

(11)

with

ρa = −
1− α

2 ln q2
, ρb =

(1− α)2

2 (φ− α) ln q2
, (12)

ρc = 1 +
1

2 ln q2

{

ln
[

αβ (1− βφ)1−α
]

+
1− α

α− φ
ln
[

(βφ)φ
]

}

, (13)

ρd =
(1− α) (1− φ)

(φ− α) (2 ln q2 − ln q1)
, ρe = 1 +

(1− α) ln
[

(βφ)φ
]

(α− φ) (2 ln q2 − ln q1)
, (14)

defines a contractive linear IFSP which is equivalent to the nonlinear dynamics in (9) and is composed
of the three mapsw1, w2, w3 : R

2 → R
2 given by:







(xt+1, yt+1) = w1 (xt, yt) = (αxt, φyt) with probabilityp1
(xt+1, yt+1) = w2 (xt, yt) = (αxt + (1− α) /2, φyt + (1− φ)) with probabilityp2
(xt+1, yt+1) = w2 (xt, yt) = (αxt + (1− α) , φyt) with probabilityp2.

(15)

The IFSP defined by (15) converges to an invariant distribution supported on a (generalized) Sierpin-
ski gasket with vertices(0, 0), (1/2, 1) and(1, 0).

The proof is reported in the Appendix.
Rewriting the IFSP in (15) as

{

xt+1 = αxt + γt
yt+1 = φyt + ϑt,

(16)

it is immediately seen that the three values(0, 0), ((1− α) /2, (1− φ)) and((1− α) , 0) taken on by
the (conjugate) random vector(γt, ϑt) correspond respectively to the three scenarios(q1, r), (q2, 1)
and(1, 1) for the original random values(z, η) discussed in Section 3.

The mild restrictionα 6= φ required in Proposition 2 precludes the possibility of generating the
standard Sierpinski gasket with vertices(0, 0), (1/2, 1) and (1, 0) through (15), as its construction
postulates thatα = φ = 1/2 must hold. In this sense, we say that the attractor of (15) is ageneralized
Sierpinski gasket. As it is clear from the proof, condition (10) turns out to be the key restriction
needed to construct the dynamics (15) equivalent to (9).

5 Examples of Sierpinski Gasket-like Attractors

We consider four different parametrizations of the physical production and human capital production
parameters,α andφ. Note that any triple0 < q1 < q2 < 1 and0 < r < 1 satisfying condition (10)
in Proposition 2 does the job; thus we do not set values for these parameters. Similarly, probabilities
p1, p2 andp3 can be any numbers between0 and1 summing up to1. In the first two scenarios, we
tackle a framework very close to the benchmark caseα = φ = 1/2, corresponding to the standard
Sierpinski gasket with vertices(0, 0), (1/2, 1), (1, 0) as the unique attractor of the IFSP (15). As
Proposition 2 requiresα 6= φ, we setα = 0.5 andφ = 0.49. Figure 1(a) shows the first 8 iterations4

4The Maple 13 code for approximating the attractor of our economy under repeated iterations of the map (1) is available
from the authors upon request.
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of the map (1) when the mapsw1, w2, w3 are given by (15) starting from the triangle of vertices(0, 0),
(1/2, 1), (1, 0) as initial setS0. Whileα = 1/2 implies that the two lower triangles of each prefractal5

have one vertex in common [e.g., point (1/2, 0) after one iteration], the assumption thatφ < 1/2
implies that the top vertices of the two lower triangles are disjoint from the bottom vertices of the top
triangle. Clearly, wheneverα ≥ 1/2 andφ ≥ 1/2 with at least one strict inequality, all triangles in
each prefractal overlap, as shown in Figure 1(b) forα = 0.5 andφ = 0.52.
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FIGURE 1: first 8 iterations of the map (1) for (a)α = 0.5, φ = 0.49, and (b)α = 0.5, φ = 0.52.

The last two cases consider a more realistic economy in whichthe capital share parameter is set
to beα = 0.333. In the economic literature the capital share parameter in the output of the physical
sector,α, measuring its marginal returns on capital, has been traditionally considered the to be close
to one third (Mankiwet al.,1992; Barro and Sala-i-Martin, 2004). A clear measure of the marginal
returns of human capital in education has never been found inthe empirical literature, since the
human capital share in education is usually set to1 in order to generate endogenous growth (Lucas,
1988). However, as argued by Rebelo (1991), we can reasonablyassume that marginal returns of
human capital are decreasing too. Probably, the most empirically relevant case is the one in which
the education sector is relatively intensive in human capital, that isφ ≤ 1 − α (Barro and Sala-i-
Martin, 2004); therefore, in these two scenarios we assume areasonableφ = 0.5 and a limiting case
φ = 1− α = 0.667. Figures 2(a) and 2(b) plot the first 7 iterations (which are enough in this case) of
the map (1), again starting from the triangle of vertices(0, 0), (1/2, 1) and(1, 0) as initial setS0, for
α = 0.333, φ = 0.5 and forα = 0.333, φ = 0.667 respectively.

6 Conclusions

In this paper we built a neoclassic, stochastic, discrete-time, two-sector optimal growth model in
which the production of a homogeneous consumption good depends on physical and human capital.
Our model exhibits two peculiar features: 1) the log-Cobb-Douglas structure of preferences plus
production allows for a closed form solution of the Bellman equation, thus allowing for the explicit
computation of the optimal dynamics of the state variables (Proposition 1), and 2) through a simple

5The sets obtained after each iteration of the map (1) are calledprefractals.
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FIGURE 2: first 7 iterations of the map (1) for (a)α = 0.333, φ = 0.5, and (b)α = 0.333, φ = 0.667.

log-transformation of such dynamics we are able to show thatfor a sufficiently rich set of parameters’
configurations this economy converges to an invariant distribution supported on a generalized Sier-
pinski gasket (Proposition 2). The only binding restriction is actually given by condition (10) which
relates the valuer of the shock affecting the education sector to the two valuesq1 andq2 of the shock
affecting the production sector. However, we believe that our approach is sufficiently general as there
is total freedom of choice on the values of two out of three exogenous shock parameters, leaving only
the third dependent to the first two.

After investigating the (approximation of) the attractorsof some economies in Figures 1 and 2,
one may ask how the degree of overlapping among the prefractals may affect singularity properties of
the invariant distribution. More precisely, it would be interesting to establish under what conditions
on the model’s parameters the invariant distribution turnsout to be singular – or absolute continuous
– with respect to Lebesgue measure. This exercise is left forfuture research.

Appendix

Proof of Proposition 1. Assuming the form as in (5) for the value function and dropping the time
subscript, the Bellman equation (4) can be rewritten as:

θ + θk ln k + θh lnh+ θz ln z + θη ln η = max
c,u

{

ln c+ βθ + βθk ln[zk
α (uh)1−α − c] (17)

+βθh ln
[

η (1− u)φ hφ
]

+ βθzE ln z + βθηE ln η
}

.

FOC on the RHS with respect toc andu yield respectively:

1

c
=

βθk

zkα (uh)1−α − c
(18)

βφθh
1− u

=
βθk (1− α) zkα (uh)−α h

zkα (uh)1−α − c
, (19)
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while the envelope conditions read as:

θk
k

=
αβθkzk

α−1(uh)1−α

zkα (uh)1−α − c
(20)

θh
h

=
(1− α) βθkzk

α (uh)−α u

zkα (uh)1−α − c
+

βφθh
h

. (21)

From (18) we get:

c =
1

1 + βθk
zkα (uh)1−α , (22)

which, when plugged into (20), after some algebra leads to:

θk =
α

1− αβ
. (23)

Using (22) and (23) into (21), again after some algebra yields:

θh =
1− α

(1− αβ) (1− βφ)
.

From (19) and (21) we obtainu = 1− βφ, which is the optimal human capital share as in (8), while
joining (22) and (23) one immediately getsc = (1− αβ) (1− βφ)1−α zkαh1−α, which is the optimal
consumption as in (7). The optimal dynamics (9) are obtainedby substituting (7) and (8) into the
dynamic constraints (3).

Finally, in order to calculate the remaining constantsθ, θz andθη we substituteθk, θh, c andu as
computed above into (17), so that the terms inln k andlnh cancel out and we are left with:

θ + θz ln z + θη ln η = ln (1− αβ) + 1−α
1−αβ

ln (1− βφ) + βθ + αβ

1−αβ
ln (αβ) + (1−α)βφ

(1−αβ)(1−βφ)
ln (βφ)

+ 1
1−αβ

ln z + (1−α)β
(1−αβ)(1−βφ)

ln η + βθzE ln z + βθηE ln η.

For this equation to hold both the terms inln z andln η must vanish, which requires:

θz =
1

1− αβ
and θη =

(1− α) β

(1− αβ) (1− βφ)
,

while θ turns out to be given by (6).

Proof of Proposition 2. Using (11), (16) can be rewritten as:
{

ρa ln kt+1 + ρb lnht+1 + ρc = αρa ln kt + αρb lnht + αρc + γt
ρd lnht+1 + ρe = φρd lnht + φρe + ϑt.

(24)

Let us focus on the first equation in (24). Substitutingkt+1 andht+1 as in the first equation of (9),
rearranging terms and after dropping the common termsαρa ln kt such equation becomes:

ρa ln
[

αβ (1− βφ)1−α
]

+ ρb ln
[

(βφ)φ
]

+ (1− α) ρc (25)

+ [(1− α) ρa + (φ− α) ρb] lnht = γt − ρa ln zt − ρb ln ηt.

In order to let the constantρc be independent ofht in the equation above, we need that(1− α) ρa +
(φ− α) ρb = 0, so that the last term in the LHS cancels out and, under the assumption thatα 6= φ,
we have:

ρb =
1− α

α− φ
ρa. (26)
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Using (26), equation (25) boils down to:
{

ln
[

αβ (1− βφ)1−α
]

+
1− α

α− φ
ln
[

(βφ)φ
]

}

ρa + (1− α) ρc = γt −

[

ln zt +
1− α

α− φ
ln ηt

]

ρa. (27)

As the LHS in (27) is constant, we can use the three valuesγt = 0, γt = (1− α) /2 andγt = (1− α),
corresponding respectively to(zt, ηt) = (q1, r), (zt, ηt) = (q2, 1) and(zt, ηt) = (1, 1) for the original
shocks, and write:

−

[

ln q1 +
1− α

α− φ
ln r

]

ρa =
1− α

2
− ρa ln q2 = 1− α.

From the second equation, using (26) we easily getρa andρb as in (12). Note, however, that the
first equation on the left must hold as well, which, consistently with ρa = − (1− α) / (2 ln q2), is
equivalent to condition (10). As a matter of fact, condition(10) is the key assumption to let equation
(27) – or, equivalently, equation (25) – be independent ofht. Substitutingγt = 1− α [corresponding
to (zt, ηt) = (1, 1)] andρa as in (12) into equation (27) easily yieldsρc as in (13).

As far as the second equation in (24) is concerned, substituting ht+1 as in the second equation of
(9), rearranging terms and after dropping the common termsφρd lnht such equation becomes:

ρd ln
[

(βφ)φ
]

+ (1− φ) ρe = ϑt − ρd ln ηt. (28)

As the LHS is constant, we can use the two valuesϑt = 0 andϑt = (1− φ), corresponding respec-
tively to ηt = r andηt = 1 for the original shocks on human capital, and write:

−ρd ln r = 1− φ,

which immediately yieldsρd = − (1− φ) / ln r, while ρe = 1 + ln
[

(βφ)φ
]

/ ln r is obtained by
plugging the expression ofρd into (28). Finally, substitutingln r according to (10) yieldρd andρe as
in (14).

As 0 < α < 1 and0 < φ < 1, the IFSP (15) – or, equivalently, (16) – is a contraction mapping;
hence, Corollaries 1 and 2 apply and this is sufficient to show that the conjugate dynamics of system
(9) describing the optimal evolution of the state variable in our economy have a unique invariant
distribution supported on a generalized Sierpinski gasketto which the economy converges in the long
run.
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