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Fractals and Self-Similarity in Economics: the Case of a
Stochastic Two-Sector Growth Model

Davide La Torre Simone Marsigli6 Fabio Privileggi

Abstract

We study a stochastic, discrete-time, two-sector optimal growth model in whdghrdlaluction
of the homogeneous consumption good uses a Cobb-Douglas technalagyinig physical
capital and an endogenously determined share of human capital. Edusatitamsive in human
capital as in Lucas (1988), but the marginal returns of the share of thgatal employed in
education are decreasing, as suggested by Rebelo (1991). Assuatitigetexogenous shocks
are i.i.d. and affect both physical and human capital, we build specificqroafions for the
primitives of the model so that the optimal dynamics for the state variables caarverted,
through an appropriate log-transformation, into an Iterated Function iByst@verging to an
invariant distribution supported on a generalized Sierpinski gasket.

Keywords: fractals, iterated function system, self-similarity, Sierpinski gasket, ssticha
growth
JEL classification; C61, 041

1 Introduction

Mandelbrot (1982) in his seminal work presented the firstdpson of self-similar sets, namely
sets that may be expressed as unions of rescaled copiesyddives. He called these sétsctals
because their (fractional) Hausdorff-Besicovitch dimensiexceeded their (integer-valued) topolog-
ical dimensions. Th€antor set thevon Koch snowflake cunend theSierpinski gaskeare some
of the most famous examples of such sets. Hutchinson (1981 )shortly thereafter, Barnsley and
Demko (1985) and Barnsley (1989) showed how systems of adivigeamaps with associated prob-
abilities, referred to akerated Function Systen{#=S), can be used to construct fractal, self-similar
sets and measures supported on such sets. These sets anesassattractive fixed points of fractal
transform operators.

After these pioneering papers, applications of IFS theoryeveral fields have been widely de-
veloped, eventually landing, at the end of the last centlsg into Economics. As a matter of fact,
economists are intrinsically reluctant to accept the idied €conomic dynamics may generate frac-
tals. A first breakthrough has been introduced by Boldrin amehixicchio (1986), who showed that
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complicated (chaotic) optimal dynamics can occur in deteigtic concave intertemporal optimiza-
tion models when the discount factor is small enough. ThEslt@pened a new chapter in mainstream
Economics, starting a huge literature aimed at studyingptexity and chaos in almost all economic
fields. Prominent, but by no means exhaustiveferences are Montrucchio (1994), Nishimura and
Yano (1995), Brock and Hommes (1997) and, more recently, iGiagtlal. (2009), who exploited the
IFS framework to construct a deterministic OLG-model cogirg to a fractal attractor.

A decade later complex behavior started to be investigatstbchastic concave intertemporal op-
timization models as well. Montrucchio and Privileggi (89®orrowed from the literature on fractal
Images generation (specifically, from the ‘Collage TheorbspnHutchinson, 1981; Barnsley, 1989;
Vrscay, 1991) to show that standard stochastic concavenapgrowth models may exhibit optimal
trajectories which are random processes converging taksingwariant distributions supported on
fractal sets regardless of the discount factor. Such ecm®nave optimal dynamics defined by IFS
with linear maps Mitra et al. (2004) investigated a simple one-sector growth model trtthrandom
shocks whose optimal path is defined by a linear IFS whichsdane values of parameters, converges
to a singular distribution supported on a Cantor set. They elfaracterized singularity versus ab-
solute continuity of the invariant probability in terms @fifhost) all parameters’ values. Mitra and
Privileggi (2004, 2006) further generalized that model amdntually (2009) provided an estimate
of the Lipschitz constant for the (nonlinear) maps of the t4€fining the optimal policy in a class
of stochastic one-sector optimal growth models in the Brouk ldlirman (1972) tradition. This re-
sult yields sufficient conditions for the model to convergeatsingular distribution supported on a
generalized Cantor set directly in terms of the parametaisies.

In this paper we consider a neoclassic stochastic, distinee two-sector growth model in which
production of a unigue homogeneous good depends on bothcphgsid human capital through
a Cobb-Douglas technology, while education requires onlydmu capital, as suggested by Lucas
(1988). However, we modify the Lucas (1988) framework bytplasing that the marginal returns of
the human capital employed in education are decreasing gimbedding Rebelo (1991) assumption.
Production in both sectors is multiplicatively affected tandom i.i.d. shocks taking on a finite
number of values. Our main contribution is to provide sudinticonditions on the parameters of
the model — namely, on the exponents of the Cobb-Douglas ptiogufunction and of the human
capital production function, and on the values of randontkse- such that the IFS corresponding to
the optimal policy function converges to a unique invaridistribution supported on a (generalized)
Sierpinski gasket. Hence, this result can be seen as a fugxtbension of the approach pursued by
Mitra and Privileggi (2004, 2006, 2009) for the one-sectmvwgh model to a multi-sector growth
model under uncertainty.

In Section 2 the main results from the IFS theory are briefballed. In Section 3 the model is
stated and the optimal dynamics are explicitly computedti@e4 contains the central contribution of
this paper: alinear IFS conjugate to the true optimal dyeansiconstructed and sufficient conditions
for its attractor to be a Sierpinski gasket supporting thigqus invariant distribution of the economy
are provided directly in terms of parameters of the modehaly, in Section 5 a few examples of
economies converging to differently shaped Sierpinskketssare described, while Section 6 reports
some concluding remarks. All proofs are gathered in the Adpe

1For a recent and quite comprehensive survey on complex dgaarising in non-competitive economies see Bischi
et al. (2010) and the references listed there.



2 Iterated Function Systems

Iterated Function Systems allow to formalize the notionesf-similarity or scale invariance of some
mathematical object. Hutchinson (1981) and Barnsley andKoe(f985) showed how systems of
contractive maps with associated probabilities can be tsenstruct self-similar sets and mea-
sures. In the IFS literature, these are called IFS with gribias (IFSP) and are based on the action
of a contractive Markov operator on the complete metric spafcall Borel probability measures
endowed with the Monge-Kantorovich metric. Applicatiorfsttese methods can be found in im-
age compression, approximation theory, signal analysisoiding, and density estimation (seeg,
Mendivil and Vrscay, 2002a,b; lacus and La Torre, 2005agbTdrreet al., 2006; Kunzeet al.,, 2007;
La Torre and Mendivil, 2008, 2009; La Tore al., 2009; La Torre and Vrscay, 2009; Freibeitcl.,
2011). In what follows, let X, d) be a complete metric space amd= {w;, ..., wy} be a family of
injective contraction maps; : X — X, to be referred to as aN-map IFS. Let;; € (0,1) denote
the contraction factor of); and define = max;c(;,. vy ¢;. Note thatc € (0, 1). Associated with the
IFS mappingsu, . . ., wy there is a set-valued mapping: K (X) — K (X) defined over the space
IC (X) of all non-empty compact sets iXi as:

w(*g):Uwi(S)? Sek(X), (1)

wherew; (S) = {w; (z) : x € S} is the image o5 underw;, fori =1,..., N. AsetS, C X is said
to be annvariant setof w if it is compact and it is invariant under (1), that is, it sfigsw (S,,) = S,.

If in addition, the contractive mappings are assumed to be similitudes,, if we assume that there
exist numbers; € (0, 1) such that

d(wl(x),wl(y)):czd(x,y), xayeXa izlv"'aNa

the invariant sef,, is said to beself-similar In IC (X) it is possible to define the so-called Hausdorff
distancel; between compact sets which reads as:

dy (A, B) = max {sup ingd (x,y),sup infld(a:,y)} ,

z€AYE xeB Y€

and it can be proved thakC (X)) , dy ) is a complete metric space (Hutchinson, 1981).
Theorem 1 (Hutchinson, 1981)« is a contraction mapping ofiC (X) , dy ); specifically:
dy (w(A),w (B)) < cdy (A, B), VA, B € K(X).
We have the following corollary from the Banach fixed pointdiem.

Corollary 1 There exists a unique compact set K (X), such thato (A) = A, which is called the
attractorof the IFSw. Moreover, for anys € K (X), dg (w™ (S),A) — 0 asn — oo.

The latter property provides a construction method of axprating a fractal. The equation
w (A) = A obviously implies thatd is self-tiling, i.e., A is the union of (distorted) copies of itself.

Let M (X) be the space of probability measures defined onstiadgebrass (X') of Borel mea-
surable subsets of and define for some € X the set:

M, (X) = {ue/\/l(X) ; /Xd(a,x)du(x) <oo}.
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Note that the definition oM, (X') does not depend on the choiceaofif the integral is finite for a
certaina € X thenitis finite for alla € X). Foru,v € M, (X), we define the Monge-Kantorovich
distance as follows:

) =sup{ [ fau=v): 1 e Lin (0},
whereLip, is the set of all Lipschitz functions with Lipschitz constagual tol. It can be proved
that(M; (X),dy) is a complete metric space under the Monge-Kantorovichioyatovided thatX
is a separable complete metric space. Furthermot¥, ig compact, themM (X) = M; (X) and
both are compact metric spaces under the Monge-Kantorostaince (Barnslegt al., 2008).
Letp = (p1,p2,-..,on), 0 < p; < 1,1 < i < N, be a partition of unity associated with the IFS

mappingsw;, SO thatzijilpi = 1. Associated with this IFS with probabilities (IFSR), p) is the
so-called Markov operatof/ : M; (X) — M, (X), defined as:

=Y (W), ¥SeBX),
wherew; ' (5) = {y € X : w; (y) € S}.

Theorem 2 (Barnsleyet al., 2008) M is a contraction mapping oo, (X) , dy); specifically:

dy (Mp, Mv) < (Zp@) dy (p, v Y, v e My (X).

Corollary 2 There exists a unique probability measyre M, (X), calledinvariant measuref the
IFSP (w, p), such thatM i = ji. Moreover, for anyu € M, (X), dpy (M™ i, i) — 0 @asn — oo.

Note that for any:-integrable function: : X — R, it holds that:

/X Zp,/ o) dp ().

Let C° (X)) denote the Banach space of continuous function&¥ @ndowed with the uniform metric
d. Associated with the IFSPv, p) define the following operatdf : C° (X) — C° (X):

N
Tu:Zpi(uowi), Vu e CY(X).
For a giverv € M, (X) define the linear functiondl, : C° (X) — R as:

F,(u) = (u,v) = /Xu(a:) dv (x).

Then(T f,v) = (f, Mv),i.e, T is the adjoint operator af/. The operatof” is a contraction on the

[ dn) = i [ 17 ) di ()
X X
whereu,, = M"\ — p in the Monge-Kantorovich distance ands the Lebesgue measure an
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It is worth mentioning the concept df-variable fractalsrecently introduced by Barnslest al.
(2008) allowing for the description of new families of ramaddractals, which are intermediate be-
tween deterministic and random fractals, including regaras well as homogeneous random frac-
tals. More precisely, given a (not necessarily finite) fgnaf IFSP’s, such fractals are the result of
random applications of the related set valued mappings aasune valued Markov operators. The
parametel/ describes the degree of “variability” of the realizatiofughly speaking, this means
that at each construction step we have at modifferent fundamental shapes.

3 The Model

We study an optimal growth model under uncertainty in whiud ¢ocial planner seeks to maximize
the representative household’s infinite discounted sumsiantaneous utility functions — which are
assumed to be logarithmic — subject to the laws of motion gkmal, k;, and humanf,, capital.
At each timet, the planner chooses consumption,and the share of human capital, to allocate
into production of a unique homogeneous consumption goadhwtses a Cobb-Douglas technology
that combines physical and human capital. Education isnasguo be intensive in human capital,
as in Lucas (1988), but the marginal returns of the share widmucapital employed in education are
decreasing, in accordance with Rebelo (1991).

The final good and the education sectors are affected by apogeerturbations, andr, respec-
tively, which enter multiplicatively both production futians; they are independent and identically
distributed, and take on finite values: € {qi, ¢, 1} andn € {r, 1}, with0 < ¢; < ¢ < 1 and
0 < r < 1. We assume that only three pairs of shock values can occhrpeitive probability,
(z,m) € {(q1,7),(q2,1),(1,1)}, each with (constant) probability;, p» andp; respectively, where

€ (0,1),7=1,2,3, andzlepi = 1. Such three shock configurations may be interpreted as 1)
a deep financial crisis typically having wide effects on tkeremy as a whole and thus involving
both production and education sectérsprresponding tdz,n) = (¢1,7), 2) a sudden surge in raw
materials’ €.g, oil) prices affecting only the production sector but notieation, corresponding to
(z,m) = (g2, 1), and 3) a scenario with no shocks in which the whole econorives along its full
capacity, corresponding {a, ) = (1,1).

The social planner problem can thus be summarized as:

V(k07h07207770 = IgiﬁEoZﬂ In¢ (2
]{ft+1 = Ztk (Utht) — C

St S Dy = [(1— ) by)? (3)
ko > O, ho > O, 20 € {ql,QQ, 1}, Mo € {7", 1} are given,

wherelE, denotes expectation at time= 0, 0 < S < 1 is the discount factork; andh; denote
physical and human capital at timg) < o < 1 and0 < ¢ < 1.
The Bellman equation associated to (2) reads as:

V (ke, by 2, me) = max Inc; + BEV (Kega, hey, Zeg1, M) - 4)

Thanks to the log-Cobb-Douglas specification of the modeh liee value functiord” (-, -, -, -) and
the optimal policy of (2) can be explicitly computed by apply the “guess and verify” methddo
the Bellman equation (4).

2Consider, for example, the global financial crisis triggeire 2009: both the productive and education sector have
been strongly damaged by the falling prices in the stock etark
3A similar approach has been pursued by Bethmann (2007) ircad-Wzawa model of endogenous growth.
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Proposition 1
i) The solutionV (k, h, z,n) of the Bellman equation in (4) is given by:
V(k,h,z,n) =040, Ink+6,Inh+6,Inz+6,lnn, (5)
where the constant, 6, 6, and, are defined as follows:

o« 9. — 1—a 0 — 1 o — (1—a)p
T1-af " (1-af)(1-B¢) T 1-af " (1-aB)(1-5¢)

and the constant teritis given by:

O

ezﬁ In(1—af) + 156@ In (a) + 11—_55 In (1— A¢) (6)
1-wss I h) .
Taoap o) T e T e e

i) The optimal policy rules for consumption and share of hunegpital allocated to physical pro-
duction are respectively given by:

c=(1—af)(1—B¢) " zkih ™ (7
Uy = 1— B¢7 (8)
while physical and human capital follow the (optimal) dynesriefined by:
{ b = af (1= 50)" " ki~ ©)
hiyr = (Béb)%th?-

The proof is reported in the Appendix.
An argument parallel to that described on pp. 273-277 in §tand Lucas (1989) establishes
that the functiorV/ (k, h, z, n) defined in (5) is actually the value function of problem (2).

4 Conjugate Linear IFSP

The optimal dynamics for the physical and human capital Jrhé&e the form of products of powers,
suggesting that a logarithmic transformation of both \@ea k; and h; may yield an equivalent
conjugate system which is linear in the transformed vagsbSpecifically, a suitable transformation
of (9) may lead to a contractive IFSP converging to a uniquariant distribution supported on some
fractal attractor in accordance with Corollaries 1 and 2 ati®a 2. The following proposition shows
that, for specific sets of values for parameters®, ¢;, g2 anr, a linear system conjugate to (9) exists
defining a IFSP that converges to an invariant distributiopperted on a (generalized) Sierpinski
gasket with vertice$0, 0), (1/2,1) and(1,0).

Proposition 2 Assume thatr # ¢ and let

r = exp (f—_gb(anqg—lnql) ) (20)
-«



Then the one-to-one logarithmic transformatidn, 7;) — (x, y;) defined by:

xt:palnkt+pblnht+pc
{ Ye = palnhy + pe, (11)
with
11—« B (1—a)’
T g PTGk 42
a 1-—
=1+ g {nfas (1 - 60"~ + =S m (5]} 13)
. (=01 -9) _ (1 - a)ln[(5¢)’]
pd_(qﬁ—a)(anqQ—lnql)’ pe_l+(oz—¢)(21nq2—lnq1)’ (14)

defines a contractive linear IFSP which is equivalent to thdinear dynamics in (9) and is composed
of the three maps),, w,, w3 : R — R? given by:

(Teg1, Yer1) = wr (T4, ) = (g, Pye) with probability p,
(Teg1, Y1) = wa (24, y) = (v + (1 — ) /2,6y + (1 — ¢))  with probability p, (15)
(Teg1, Yer1) = wa (24, ) = (axy + (1 — ), dyy) with probability p,.

The IFSP defined by (15) converges to an invariant distrdsusupported on a (generalized) Sierpin-
ski gasket with vertice@, 0), (1/2,1) and(1,0).

The proof is reported in the Appendix.
Rewriting the IFSP in (15) as
Typ1 = Oy + Y
16
Y1 = QY + U, (16)

it is immediately seen that the three valyesd), ((1 — «) /2, (1 — ¢)) and((1 — «), 0) taken on by
the (conjugate) random vectéy;, ¥;) correspond respectively to the three scenafi@sr), (g2, 1)
and(1, 1) for the original random valugg, n) discussed in Section 3.

The mild restrictionn: # ¢ required in Proposition 2 precludes the possibility of gatiag the
standard Sierpinski gasket with verticgs0), (1/2,1) and(1,0) through (15), as its construction
postulates that = ¢ = 1/2 must hold. In this sense, we say that the attractor of (15)&neralized
Sierpinski gasket As it is clear from the proof, condition (10) turns out to I tkey restriction
needed to construct the dynamics (15) equivalent to (9).

5 Examples of Sierpinski Gasket-like Attractors

We consider four different parametrizations of the phylgscaduction and human capital production
parametersy and¢. Note that any triplé) < ¢; < ¢ < 1 and0 < r < 1 satisfying condition (10)
in Proposition 2 does the job; thus we do not set values faetiparameters. Similarly, probabilities
p1, p2 andps can be any numbers betweemnd1 summing up tal. In the first two scenarios, we
tackle a framework very close to the benchmark case ¢ = 1/2, corresponding to the standard
Sierpinski gasket with vertice®, 0), (1/2,1), (1,0) as the unique attractor of the IFSP (15). As
Proposition 2 requires # ¢, we seto = 0.5 and¢ = 0.49. Figure 1(a) shows the first 8 iteratidns

4The Maple 13 code for approximating the attractor of our ecspunder repeated iterations of the map (1) is available
from the authors upon request.



of the map (1) when the maps, w., w; are given by (15) starting from the triangle of verti¢és0),
(1/2,1), (1,0) as initial setSy. While o = 1/2 implies that the two lower triangles of each prefrattal
have one vertex in commore.g, point (1/2,0) after one iteration], the assumption that< 1/2
implies that the top vertices of the two lower triangles asgoiht from the bottom vertices of the top
triangle. Clearly, whenever > 1/2 and¢ > 1/2 with at least one strict inequality, all triangles in
each prefractal overlap, as shown in Figure 1(b)xfet 0.5 and¢ = 0.52.

1 & 14

(b)

FIGURE 1: first 8 iterations of the map (1) for (@)= 0.5, ¢ = 0.49, and (b)a. = 0.5, ¢ = 0.52.

The last two cases consider a more realistic economy in whigltapital share parameter is set
to bea = 0.333. In the economic literature the capital share parametdraroutput of the physical
sector,c,, measuring its marginal returns on capital, has been ibadily considered the to be close
to one third (Mankiwet al.,1992; Barro and Sala-i-Martin, 2004). A clear measure efrtarginal
returns of human capital in education has never been fourtderempirical literature, since the
human capital share in education is usually set o order to generate endogenous growth (Lucas,
1988). However, as argued by Rebelo (1991), we can reasonablyme that marginal returns of
human capital are decreasing too. Probably, the most eraliyrirelevant case is the one in which
the education sector is relatively intensive in human edpibat isp < 1 — « (Barro and Sala-i-
Martin, 2004); therefore, in these two scenarios we assureasbnable = 0.5 and a limiting case
¢ =1—a = 0.667. Figures 2(a) and 2(b) plot the first 7 iterations (which areugh in this case) of
the map (1), again starting from the triangle of vertit@%), (1/2,1) and(1, 0) as initial setS,, for
a =0.333, ¢ = 0.5 and fora = 0.333, ¢ = 0.667 respectively.

6 Conclusions

In this paper we built a neoclassic, stochastic, discigte;ttwo-sector optimal growth model in
which the production of a homogeneous consumption goodriispen physical and human capital.
Our model exhibits two peculiar features: 1) the log-Cobhflas structure of preferences plus
production allows for a closed form solution of the Bellmam&ipn, thus allowing for the explicit
computation of the optimal dynamics of the state variabdRrsggosition 1), and 2) through a simple

5The sets obtained after each iteration of the map (1) aredyaiéfractals



08 it 1 08
] Lo ]
0.6 Pl 0.6 -
] | TR A —
044 A ) 0.4

o2 b L 0

0 02 04 06 0.8 1 0 02 04 06 08 1
(@) (b)

FIGURE 2: first 7 iterations of the map (1) for (a) = 0.333, ¢ = 0.5, and (b)a: = 0.333, ¢ = 0.667.

log-transformation of such dynamics we are able to showftina sufficiently rich set of parameters’
configurations this economy converges to an invariantidigion supported on a generalized Sier-
pinski gasket (Proposition 2). The only binding restrintise actually given by condition (10) which
relates the value of the shock affecting the education sector to the two vaju@sdg, of the shock
affecting the production sector. However, we believe thatapproach is sufficiently general as there
is total freedom of choice on the values of two out of threegexmus shock parameters, leaving only
the third dependent to the first two.

After investigating the (approximation of) the attractofssome economies in Figures 1 and 2,
one may ask how the degree of overlapping among the prefsanty affect singularity properties of
the invariant distribution. More precisely, it would beengsting to establish under what conditions
on the model’s parameters the invariant distribution tunisto be singular — or absolute continuous
— with respect to Lebesgue measure. This exercise is leftifore research.

Appendix

Proof of Proposition 1. Assuming the form as in (5) for the value function and droggime time
subscript, the Bellman equation (4) can be rewritten as:

0+ 0xInk+0,Inh+0.Inz+6,Inn=max {Inc+ B8 + 6 In[zk" (uh)' ™ — (] 17)
50, In [n (1—u)® hﬂ +B0.Elnz + B0,E hm} .

FOC on the RHS with respect tcandu yield respectively:

I B0,
¢ ke (uh)' ™ — ¢ (18)
Boo, _ B0y (1 — a) zk* (uh) “h

l—-u zke (uh)' ™ — ¢

: (19)



while the envelope conditions read as:

O aBfyzk® ! (uh)' ™"

= 20
k zke (uh)' ™ — ¢ (20)

O, (1 —a)B0pzk™ (uh) “u  [Bob)
L + ) 21
h zke (uh)'™" — ¢ h (21)

From (18) we get:
_ 1 6% 11—«
c=17 56, zk® (uh) ™%, (22)
which, when plugged into (20), after some algebra leads to:
(0%

0 = v (23)

Using (22) and (23) into (21), again after some algebra gield

11—«
(1—ap)(1-Be)

From (19) and (21) we obtain = 1 — S¢, which is the optimal human capital share as in (8), while
joining (22) and (23) one immediately gets= (1 — af) (1 — 8¢)'~* zk*h'~*, which is the optimal
consumption as in (7). The optimal dynamics (9) are obtalmedubstituting (7) and (8) into the
dynamic constraints (3).

Finally, in order to calculate the remaining constaht8, andd, we substitutey, 0, c andu as
computed above into (17), so that the term&ik andIn /2 cancel out and we are left with:

0, =

0+0.nz+060,Inn=1In(1—af) + =% (1 - 5¢) + 60+ 1225 In (aff) + % n (3¢)

1—a
+ 1—1a5 Inz+ W(I)EW) Inn + 6. Eln z + 56, EInn.
For this equation to hold both the termslinz andln » must vanish, which requires:
! (1-a)f
and 6, = 7
1—af T (1-af)(1-59)

while ¢ turns out to be given by (6l

0, =

Proof of Proposition 2. Using (11), (16) can be rewritten as:

(24)

paln by + ppInhiy + pe = ap, Inky + apyIn hy + ape. + V4
palnhi1 + pe = ¢pglnhy + ¢pe + ;.

Let us focus on the first equation in (24). Substituting, andh,,, as in the first equation of (9),
rearranging terms and after dropping the common termsn &, such equation becomes:

paln [aB (1= B6)' "] + pyIn [(80)°] + (1 — @) pe (25)
+[(1—a) pa + (¢ — ) pp] Inhy = v — paIn 2, — ppIn,.

In order to let the constant. be independent df; in the equation above, we need that- «) p, +
(¢ — a) pp = 0, so that the last term in the LHS cancels out and, under therggon thatw # ¢,

we have: .
—
—_= a- 26
Po =" ¢,0 (26)

10



Using (26), equation (25) boils down to:

11—« 1—-a l—«

{hl [a6<1_5¢) } + a_¢111 [(ﬂgﬁ)ﬂ}pa—i—(l—a)pc:’yt— Inz + a—¢

As the LHS in (27) is constant, we can use the three vajues0, v, = (1 — «) /2 andy, = (1 — «),

corresponding respectively te;, n;) = (q1,7), (z:,m:) = (g2, 1) and(z, m;) = (1, 1) for the original
shocks, and write:

In Nt | Pa- (27)

11—« 11—«

— lnql—i—a_qblnr} Pa=—3 —poIng =1—a.
From the second equation, using (26) we easilygeandp, as in (12). Note, however, that the
first equation on the left must hold as well, which, consiyewith p, = — (1 — «) / (2Ing,), is

equivalent to condition (10). As a matter of fact, condit{@0) is the key assumption to let equation
(27) — or, equivalently, equation (25) — be independerit;oSubstitutingy; = 1 — « [corresponding
to (z;,n:) = (1,1)] andp, as in (12) into equation (27) easily yieldsas in (13).

As far as the second equation in (24) is concerned, sulisgtat, ; as in the second equation of
(9), rearranging terms and after dropping the common temp$n /; such equation becomes:

paln [(B¢)?] + (1 — @) pe =¥ — paInn. (28)

As the LHS is constant, we can use the two valdes- 0 andd, = (1 — ¢), corresponding respec-
tively to , = r» andn, = 1 for the original shocks on human capital, and write:

_pdlnT: 1 _Qb,

which immediately yieldy, = — (1 —¢) /Inr, while p. = 1 + In [(8¢)?] /Inr is obtained by
plugging the expression @f; into (28). Finally, substitutingn » according to (10) yielgh; andp. as
in (14).

AsO < a < land0 < ¢ < 1, the IFSP (15) — or, equivalently, (16) — is a contraction piag;
hence, Corollaries 1 and 2 apply and this is sufficient to sh@awthe conjugate dynamics of system
(9) describing the optimal evolution of the state varialsleour economy have a unique invariant
distribution supported on a generalized Sierpinski gaskethich the economy converges in the long
run. m
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