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Abstract
This paper studies the implications of internal consumption habit for new Keynesian dynamic
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1. Introduction

It is a folk theorem of macroeconomics that dynamic stochastic general equilibrium

(DSGE) models are refuted by a sufficiently rich description of aggregate fluctuations. This

widely held belief stands in contrast to evaluation strategies that rely on the entire predictive

density of a DSGE model. The tension between econometric evaluation of DSGE models and

the folk theorem is that the latter implies the former is bound to fail. The issue remains that

progress on DSGE models requires methods that evaluate fit on actual data.

This paper contributes to DSGE model research by evaluating the impact of consump-

tion habit on propagation and monetary transmission in new Keynesian (NK)DSGE model using

Bayesian Monte Carlo tools. Consumption habit is known to be successful at closing the dis-

tance between real business cycle models and aggregate quantity and asset price moments

since Boldrin, Christiano, and Fisher (2001). Analysis by Eichenbaum and Hansen (1990) and

Heaton (1995) suggest that habit achieves this success because it imposes costs on house-

hold utility that induces intertemporal complementarity in consumption. Given intertemporal

complementarity and a positive consumption shock, households respond by substituting from

current to future consumption. The stronger is habit the further consumption is pushed into

the future and spread across more future dates given the shock.

We quantify this intuition by linearizing a one-period bond Euler equation in which con-

sumption habit drives marginal utility. Solving the linearized Euler equation yields a first-order

stochastic difference equation that generates a hump-shaped consumption growth response to

a real rate shock that has a higher peak and is more persistent the stronger is habit.

A goal of this paper is to assess the extent to which this consumption habit mechanism

affects propagation and monetary transmission in and the fit of NKDSGE models. The role of

consumption habit in NKDSGE model propagation and monetary transmission is not settled.

For example, Del Negro, Schorfheide, Smets, and Wouters (2007) find that consumption habit

contributes to a NKDSGE model matching the hump-shaped output response to an interest
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rate rule shock, but Christiano, Eichenbaum, and Evans (2005) do not using a money growth

shock. Christiano, Eichenbaum, and Evans (CEE) also report that their monetary policy shock is

transmitted by sticky wages, but is not by sticky prices. In contrast, Del Negro and Schorfheide

(2008) argue that Bayesian methods and aggregate data cannot discern whether sticky prices

or sticky wages matter more for the fit of a NKDSGE model with consumption habit. How-

ever Dupor, Han, and Tsai (2009) obtain results that point to flexible prices and durability in

consumption, instead of habit, by applying the CEE impulse response matching estimator to a

NKDSGE model identified by productivity shocks in place of monetary policy shocks. Finally,

little attention is paid to the disparate effects money growth and interest rate rules have on

monetary transmission and the fit of NKDSGE models.

This paper reports that consumption habit matters for the fit of NKDSGE models. The

evidence is garnered by evaluating 12 NKDSGE models with a Bayesian approach, advocated by

Geweke (2010), that shuns estimation. He builds on methods pioneered by DeJong, Ingram, and

Whiteman (1996) that employ Bayesian Monte Carlo simulations to gauge the fit of DSGE models

to population moments.1 This approach is labeled the minimal econometric interpretation (MEI)

by Geweke to indicate neither an explicit dependence on likelihood-based estimators nor on

estimators that focus on a subset of the potential universe of sample moments. A problem for

these estimators is that confronting the predictive density of a DSGE model with a sufficiently

large vector of sample moments, negates the model according to the folk theorem.2 The MEI

acknowledges that because a NKDSGE model is a partial depiction of economic behavior it has

no predictive implications for sample moments.3 Rather a NKDSGE model can only be judged on

its population moments. The tie between prior distributions of population moments generated

1Kano (2009) and Nason and Rogers (2006) use Bayesian Monte Carlo simulation methods to examine the fit
of small open economy-DSGE models on current account moments.

2The MEI differs from the limited information approach of CEE and the Smets and Wouters (2007) application of
Bayesian likelihood methods. These estimators are proven useful, but do not guarantee problem free evaluation
of NKDSGE models as noted by Del Negro and Schorfheide (2008), Schorfheide (2008), Canova and Sala (2009),
Dupor, Han, and Tsai (2009), Iskrev (2010), and Guerron-Quintana (2010) among others.

3Geweke (2010) also distinguishes the MEI from prior predictive analysis. Prior predictive analysis relies on
economic models having testable implications for sample moments.
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by a NKDSGE model and observable data are econometric models that are also partial depictions

of economic behavior and yield posterior distributions of population moments.4

We adapt the MEI and Bayesian Monte Carlo tools to gauge the fit of NKDSGE models

with and without consumption habit on permanent and transitory output and consumption

growth spectral densities. Our choice of these moments is guided by the permanent income

hypothesis (PIH) and previous business cycle studies. The PIH predicts consumption growth

has a flat spectral density, which Galí (1991) notes is at odds with U.S. data. Cogley and Nason

(1995b) observe that DSGE models often cannot reproduce the spectral density of U.S. output

growth because it peaks in the business cycle frequencies. Also they find, along with Nason

and Cogley (1994), that many DSGE models fail to duplicate output’s response to permanent

and transitory shocks. Thus this paper confronts NKDSGE models with moments other DSGE

models have problems replicating, but are necessary for NKDSGE models to match to be counted

empirically relevant.

This paper addresses these issues by evaluating the fit of 12 NKDSGE models. We start

with a baseline NKDSGE model that has sticky prices and wages similar to those studied by CEE

and Smets and Wouters (2007). From this baseline, two NKDSGE models are created by stripping

out one or the other nominal rigidity. Baseline, sticky price, and sticky wage NKDSGE models

are endowed with household preferences that have either no consumption habit or internal

consumption habit. These six NKDSGE models are doubled by defining monetary policy with

either a money growth or an interest rate rule.

Judging fit on population permanent and transitory output and consumption growth

spectral densities generates evidence about propagation and monetary transmission in NKDSGE

models. We gather this evidence by studying the interplay of consumption habit with sticky

prices, sticky wages, permanent total factor productivity (TFP) shocks, and transitory money

4Although a virtue of the MEI is that it avoids the problems Guerron-Quintana (2010) encounters about choosing
the observables on which a NKDSGE model is estimated, intrinsic to Bayesian estimation is a step to update model
parameters that is absent from and is a weakness of the MEI. The lack of parameter updating can bias MEI measures
of model fit if priors are badly constructed, but poorly formed priors are also an issue when posteriors are used
to compare the fit of models.
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growth or interest rate rule shocks. These structural shocks meet the requirements of long-

run monetary neutrality (LRMN) and the Blanchard and Quah (1989) decomposition. We in-

voke LRMN and the Blanchard and Quah (BQ) decomposition to map from a VAR of output

growth-inflation or consumption growth-inflation to a structural vector moving average (SVMA)

in actual and synthetic data. Under LRMN, an output growth-inflation (consumption growth-

inflation) SVMA predicts a vertical long-run supply curve (PIH-consumption function). Accord-

ing to the BQ decomposition, these mappings also impose orthogonal shock innovations on

the SVMAs that the NKDSGE models identify as TFP and monetary policy shocks. Thus, we

assign to the SVMAs the task of computing permanent and transitory output and consumption

growth spectral densities because the MEI recognizes that these econometric models connect

observed data to population versions of these moments predicted by the NKDSGE models.

The Bayesian Monte Carlo experiments show that the fit of NKDSGE models to permanent

and transitory output and consumption growth spectral densities is improved by including

consumption habit. Thus, propagation and monetary transmission in NKDSGE models is more

empirically relevant when consumption habit is combined with nominal rigidities. However,

we find that NKDSGE model fit is sensitive to: (1) changes in the mix of nominal rigidities, (2)

switching from a money growth rule to an interest rate rule, (3) identifying spectral densities

on permanent TFP shocks instead of transitory monetary policy shocks, and (4) conducting

evaluation on the entire spectrum rather than limiting it to the business cycle frequencies.

The rest of the paper is constructed as follows. Section 2 discusses internal consumption

habit and NKDSGE models. Our application of the MEI to NKDSGE model evaluation is outlined

in section 3. Results appear in section 4. Section 5 concludes.

2. Internal Consumption Habit and NKDSGE Models

This section describes household preferences with internal consumption habit, studies

internal consumption habit propagation, connects it to intertemporal complementarity in fu-

ture near-dated consumption, and sketches the baseline NKDSGE model.
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2.1 Internal consumption habit

Consumption habit is often superinduced in DSGE models to improve fit.5 This paper

adopts additive internal consumption habit. Internal habit operates on lagged household con-

sumption, unlike external habit which assume lags of aggregate consumption appear in utility,

of which the (multiplicative) ‘catching-up-with-the-Joneses’ specification of Abel (1990) is typ-

ical. The model assumes that household preferences are intertemporally separable as well as

separable across (net) consumption flow, labor disutility, and real balances

U
(
ct, ct−1, nt,

Ht
Pt

)
= ln[ct − hct−1] −

γ
1+ γn

1+ 1
γ

t + ln
[
Ht
Pt

]
, (1)

where ct , nt , γ, Ht , and Pt are household consumption, household labor supply, the strictly

positive Frisch labor supply elasticity, household cash at the end of date t−1, and the aggre-

gate price level, respectively. Since internal habit ties current consumption choice to date t−1

consumption for a household, the marginal utility of consumption is forward-looking,

λt =
1

ct − hct−1
− Et

{
βh

ct+1 − hct

}
,

assuming 0 < ct−hct−1 for all t, where the habit parameter h ∈ (0, 1), the household discount

factor β ∈ (0, 1), and Et{·} is the mathematical expectation operator given date t information.6

2.2 The internal consumption habit propagation mechanism

Forward-looking marginal utility suggests internal habit acts as propagation mechanism

for consumption. We study this mechanism with a log linear approximation of the Euler equa-

5Consumption habit is first grafted into a growth model by Ryder and Heal (1973). Nason (1988), Sundaresan
(1989), and Constantinides (1990) are early attempts at solving risk-free rate and equity premium puzzles with
consumption habit. Pollak (1976) shows that long-run utility with linear habit describes long-run behavior rather
than long-run preferences. Rozen (2010) gives an axiomatic treatment of linear intrinsic habit. An excellent
survey of habit in macro and finance is Schmitt-Grohé and Uribe (2007); also see Nason (1997).

6Eichenbaum and Hansen (1990) and Heaton (1995) estimate consumption-based asset pricing models with
habit and local substitution through service flows. The adjustment cost hypothesis is rejected in favor of services
flows according to their estimates. However, the data support habit if local substitutability operates at lower
frequencies than the sampling frequency of consumption.
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tion λt = βEt
{
λt+1Rt+1/(1 + πt+1)

}
, where Rt is the nominal rate and 1 + πt+1 (= Pt+1/Pt) is

date t + 1 inflation. The log linear approximation gives a second order stochastic difference

equation for demeaned consumption growth, ∆̃ct , whose solution is

∆̃ct = ϕ1∆̃ct−1 +
Ψ
ϕ2

∞∑
j=0

ϕ−j2 Etq̃t+j , (2)

where the stable and unstable roots are ϕ1 = hα∗−1 and ϕ2 = α∗(βh)−1, α∗ is the steady

state growth rate of the economy, the demeaned real rate is q̃t = R̃t − π∗
1+π∗ π̃t , π

∗ is mean

inflation, and Ψ is a constant that is nonlinear in model parameters.7

We analyze internal consumption habit propagation using the solved linearized Euler

equation (2). This is depicted in figure 1 with impulse response functions (IRFs) generated by

equation (2) and a one percent shock to q̃t . The calibration sets [β α∗]′ = [0.993 exp(0.004)]′

and q̃t to a quarterly first-order autoregression, AR(1), with a AR1 coefficient of 0.87.8 We

compute IRFs on the grid h = [0.15 0.35 0.50 0.65 0.85]. The IRFs drive ∆̃ct higher at impact

as shown in Figure 1. However, its response falls from about one to 0.11 percent as h rises

from 0.15 to 0.85. Figure 1 also displays IRFs that are shifted to the right with higher peaks

and slower decay rates as h increases. Thus, as internal habit becomes stronger, it dictates

greater intertemporal complimentarity that persuades the household to move in tandem long

and longer sequences of future near-dated consumption.

The internal consumption habit propagation mechanism is also discussed by CEE. They

note that in their NKDSGE model, in whichh is estimated to be about 0.65, internal consumption

habit generates a hump-shaped consumption response to a nominal shock. Figure 1 reveals a

similar internal consumption habit propagation mechanism for equation (2). When h ≥ 0.5,

equation (2) produces a humped-shaped IRF with a peak at or beyond two quarters. This

7The appendix constructs equation (2), which assumes a unit root TFP shock drives trend consumption.
8The real demeaned federal funds rate q̃t equals the quarterly nominal federal funds rate net of implicit GDP

deflator inflation multiplied by the ratio of its mean to one plus its mean. The SIC selects a AR(1) for q̃t over any
lag length up to ten on a 1954Q1–2002Q4 sample. The appendix has details.
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mechanism contrasts with h ∈ (0, 0.5) or the non-habit model, h = 0, in which a linear approx-

imation of the Euler equation sets Et
{∆̃ct+1 − q̃t+1

}
= 0. Given h ≤ 0.5, figure 1 indicates that

consumption growth dynamics are dominated by the time series properties of q̃t .

Greater risk aversion is often cited as the reason that consumption habit is a useful real

rigidity to improve model fit. This explanation is bound up with consumption habit lowering

the (local) elasticity of substitution. An equivalent notion is that consumption habit imposes

costs on utility when consumption is substituted intertemporally. Ash rises, a household views

changes in current consumption as costly for future utility. These costs induce the household

to treat near-dated consumption as complements rather than substitutes. According to figure

1, habit switches consumption from an intertemporal substitute to complement which creates

an economically important propagation mechanism given h ∈ (0.5, 1).

This paper studies the implications of internal consumption habit for NKDSGE models.

Nonetheless, the results of this paper should extend beyond internal consumption habit to

external habit. In the appendix, we show that internal and external habit produce equivalent

consumption growth IRFs after impact given q̃t is a AR(1).9 This indicates little generality is

lost by focusing on internal consumption habit.

2.3 A new Keynesian DSGE model

The baseline NKDSGE model contains (a) internal consumption habit, (b) capital adjust-

ment costs, (c) variable capital utilization, (d) fully indexed Calvo-staggered price setting by

monopolistic final goods firms, and (e) fully indexed Calvo-staggered wage setting by monop-

olistic households with heterogeneous labor supply. Households reside on the unit circle with

addresses ` ∈ [0, 1]. The budget constraint of household ` is

Ht+1

Pt
+ Bt+1

Pt
+ ct + xt + a(ut)kt + τt = rtutkt +

Wt(`)
Pt

nt(`)+
Ht
Pt
+ Rt

Bt
Pt
+ Dt
Pt
, (3)

where Bt+1 is the stock of government bonds the household carries from date t into date t+1,

9The observational equivalence extends to multiplicative internal and external consumption habit using the
onto mapping from additive to multiplicative consumption habit parameters that Dennis (2009) constructs.

7



xt is investment, kt is capital owned by the household at the end of date t − 1, τt is a lump

sum government transfer, rt is the real rental rate of kt , Wt(`) is the nominal wage paid to

household `, Rt is the nominal return on Bt , Dt is dividends received from firms, ut ∈ (0, 1)

is the capital utilization rate, and a(ut) is its cost function. At the steady state, u∗ = 1, a(1)

= 0. To achieve determinate solutions, we set a
′′(1)
a′(1) = 1.174. Note that ut forces household

` to forgo a(·) units of consumption per unit of capital. The adjustment costs specification is

adapted from CEE, which places it into the law of motion of household capital

kt+1 = (1 − δ)kt +
[

1− S
(

1
α
xt
xt−1

)]
xt, δ ∈ (0, 1), 0 < α, (4)

where δ is the capital depreciation rate and α (= lnα∗) is deterministic TFP growth. The cost

function S(·) is strictly convex, where S(1) = S′(1) = 0 and S′′(1) ≡ $ > 0. In this case, the

steady state is independent of the adjustment cost function S(·).

Given k0, B0, and c−1, the expected discounted lifetime utility function of household `

Et


∞∑
i=0

βiU
(
ct+i, ct+i−1, nt+i(`),

Ht
Pt

) (5)

is maximized by choosing ct , kt+1, Ht+1, Bt+1, and Wt(`) subject to period utility (1), budget

constraint (3), the law of motion of capital (4), and downward sloping labor demand.

Households offer differentiated labor services to firms in a monopolistic market in which

a Calvo staggered nominal wage mechanism operates. We assume the labor supply aggregator

is Nt =
[∫ 1

0 nt(`)(θ−1)/θd`
]θ/(θ−1)

, where θ is the wage elasticity. Labor market monopoly

imposes downward sloping labor demand schedules for differentiated labor services, nt(`) =[
Wt/Wt(`)

]θ
Nt , on firms, where the nominal wage index is Wt =

[∫ 1
0 Wt(`)1−θd`

]1/(1−θ)
. The

nominal wage aggregator is Wt =
[
(1− µW )W1−θ

c,t + µW (α∗πt−1Wt−1)1−θ
]1/(1−θ)

, which has

households updating their desired nominal wage Wc,t at probability 1 − µW . With probability

µW , households receive the date t−1 nominal wage indexed by steady state TFP growth, α∗,
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and πt−1. In this case, the optimal nominal wage condition is

[Wc,t
Pt−1

]1+θ/γ
=

(
θ

θ − 1

) Et

∞∑
i=0

[
βµWα∗−θ(1+1/γ)

]i [[ Wt+i
Pt+i−1

]θ
Nt+i

]1+1/γ

Et

∞∑
i=0

[
βµWα∗(1−θ)

]i
λt+i

[
Wt+i
Pt+i−1

]θ [ Pt+i
Pt+i−1

]−1

Nt+i

, (6)

because household ` solves a fully indexed Calvo-pricing problem. Equation (6) smooths nom-

inal wage growth which forces labor supply to absorb TFP and monetary policy shocks condi-

tional on the Frisch elasticity γ. Output and consumption respond because changes in labor

supply alter production and the intra- and intertemporal margins of NKDSGE models.

Monopolistically competitive firms produce final goods that households consume. The

consumption aggregator is ct =
[∫ 1

0 yD,t(j)(ξ−1)/ξdj
]ξ/(ξ−1)

, where yD,t(j) is household final

good demand for the output of a firm with address j on the unit interval. Final good firm j

maximizes its profits by setting its price Pt(j), subject to yD,t(j) =
[
Pt/Pt(j)

]ξ YD,t , where ξ is

the price elasticity, YD,t is aggregate demand, and the price index is Pt =
[∫ 1

0 Pt(j)1−ξ
]1/(1−ξ)

.

The jth final good firm mixes capital, Kt(j), rented and labor, Nt(j), hired from house-

holds net of fixed cost N0 given labor-augmenting TFP, At , in the constant returns to scale

technology,
[
utKt(j)

]ψ[[
Nt(j)−N0

]
At
]1−ψ

, ψ ∈ (0, 1), to create output, yt(j). Fixed labor

cost N0 is included to satisfy the needs of monopolistic competition in the final goods mar-

ket. TFP is a random walk with drift, At = At−1 exp{α + εt}, with its Gaussian innovation,

εt ∼N (0, σ2
ε ), for the NKDSGE models to have a permanent shock.

Calvo-staggered price setting restricts a firm to update to optimal price Pc,t at probability

1− µP . Or with probability µP , firms are stuck with date t − 1 prices scaled by inflation of the

same date, πt−1. This fixes the price aggregator Pt =
[
(1− µP)P1−ξ

c,t + µP (πt−1Pt−1)1−ξ
]1/(1−ξ)

.

Under full price indexation, Calvo-pricing yields the optimal forward-looking price
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Pc,t
Pt−1

=
(
ξ

ξ − 1

) Et

∞∑
i=0

(
βµP

)i
λt+iφt+iYD,t+iπ

ξ
t+i

Et

∞∑
i=0

(
βµP

)i
λt+iYD,t+iπ

ξ−1
t+i

(7)

of a firm able to update its price. Under full price indexation, equation (7) implies restrictions

that smooth inflation. Inflation smoothing forces the economy’s response to shocks onto out-

put and consumption, among other quantity variables. Along with habit inducing intertemporal

complementarity in consumption, inflation and nominal wage growth smoothing are potential

sources of propagation and monetary transmission in NKDSGE models.

We close the NKDSGE model with one of two monetary policy rules. CEE identify monetary

policy with a money growth process that is a MA(∞). As they note, this MA(∞) is equivalent

to the AR(1) money growth
(
lnMt+1/Mt =mt+1

)
supply rule

mt+1 = (1− ρm)m∗ + ρmmt + µt,
∣∣∣ρm∣∣∣ < 1, µt ∼N

(
0, σ2

µ

)
, (8)

wherem∗ is mean money growth and µt is the money growth innovation. We use NKDSGE-MG

to label models with the money growth rule (8). The mnemonic NKDSGE-TR refers to models

in which monetary policy is described with the Taylor rule

(1− ρRL)Rt = (1− ρR)
(
R∗ + aπEtπt+1 + aỸ Ỹt

)
+ υt,

∣∣∣ρR∣∣∣ < 1, υt ∼N
(
0, σ2

υ

)
, (9)

where R∗ = π∗/β and π∗ = exp(m∗ − α). Under the interest rate rule (9), the monetary

authority obeys the ‘Taylor’ principle, 1 < aπ , and sets aỸ ∈ (0, 1). This policy regime assumes

the monetary authority computes private sector inflationary expectations, Etπt+1, and mean

zero transitory output, Ỹt , without inducing measurement errors.
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The government finances Bt , interest on Bt , and a lump-sum transfer τt with new bond

issuance Bt+1−Bt , lump-sum taxes τt , and money creation, Mt+1−Mt . Under either monetary

policy rule, the government budget constraint is Ptτt = [Mt+1 −Mt]+ [Bt+1 − (1+ Rt)Bt]. We

assume government debt is in zero net supply, Bt+1 = 0 and the nominal lump-sum transfer

equals the monetary transfer, Ptτt = Mt+1 −Mt , along the equilibrium path at all dates t.

Equilibrium requires goods, labor, and money markets to clear in the decentralized econ-

omy. This occurs when Kt = kt given 0 < rt , Nt = nt given 0 < Wt , Mt = Ht , and also requires

Pt , and Rt are strictly positive and finite. This leads to the aggregate resource constraint, Yt =

Ct + It + a(ut)Kt , where aggregate consumption Ct = ct and aggregate investment It = xt . A

rational expectations equilibrium equates, on average, firm and household subjective forecasts

of rt and At to the objective outcomes generated by the decentralized economy. We add to

this list µt and Rt , υt , Pt , or Wt under the money growth rule (8), the interest rate rule (9), a

flexible price regime, or a competitive labor market, respectively.

3. Bayesian Monte Carlo Strategy

This section outlines the Bayesian Monte Carlo methods of DeJong, Ingram, and White-

man (1996) and Geweke (2010). We adapt their procedures to assess the fit of 12 NKDGSE

models on permanent and transitory output and consumption growth spectral densities. De-

Jong, Ingram, and Whiteman (DIW) and Geweke eschew standard calibration and estimation

tools because, in their view, a DSGE model lacks predictions except for population moments.

Geweke calls this the minimal econometric interpretation (MEI). We engage the MEI to eval-

uate NKDSGE models on population spectral densities generated from Bayesian Monte Carlo

experiments. One set of experiments apply sample data, a structural vector moving average

(SVMA), its priors, and a Markov chain Monte Carlo (MCMC) simulator to create posterior dis-

tributions of population spectral densities. Prior distributions of population spectral densities

are approximated using a SVMA estimated on synthetic data that are simulated from a cali-
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brated NKDSGE model whose parameters are drawn from independent priors.10 The SVMAs

are the econometric models that connect posterior and prior population moments to sample

data. Posterior and prior population spectral densities are labeled empirical and theoretical

spectral densities, SDE and SDT , in the rest of the paper. The MEI gauges NKDSGE model fit

on the overlap of distributions of permanent and transitory output and consumption growth

SDE and SDT .11 Kolmogorov-Smirnov goodness of fit statistics give a concise measure of this

overlap. Table 1 summarizes our implementation of the MEI to evaluate 12 NKDSGE models.

3.1 Output and consumption moments

We evaluate NKDSGE model fit with a vector of moments consisting of permanent and

transitory output and consumption growth spectral densities. The spectral densities are calcu-

lated from SVMAs that are just-identified by the orthogonality of shock innovations along with

a LRMN restriction embedded in the NKDSGE model of section 2. In this model, LRMN ties the

TFP innovation εt to the permanent shock. The transitory shock is identified with the money

growth innovation µt or Taylor rule innovation υt . Under LRMN, we recover SVMAs from unre-

stricted second-order VARs, VAR(2)s, of [∆ lnYt ∆ lnPt]′ and [∆ lnCt ∆ lnPt]′ subsequent to

applying the Blanchard and Quah (1989) decomposition.12 A vertical long-run aggregate sup-

ply curve results from applying LRMN to the ∆ lnYt–∆ lnPt system. The ∆ lnCt–∆ lnPt system

represents a serially correlated demand-consumption function system giving rise to a vertical

long-run PIH-consumption function assuming LRMN.

10Geweke (2010) develops the MEI by conditioning prior distributions of moments just on an economic model
and its priors. Since LRMN and the assumptions of the BQ decomposition are built into the NKDSGE models, a
SVMA(∞) can be recovered from the approximate linearized solution of a NKDSGE model. We choose instead to
construct distributions of SDT s from SVMA(∞)s estimated on data simulated from linearized NKDSGE models.
This approach is consistent with the MEI because population SVMA(∞)s are recovered with sufficiently long
synthetic samples.

11The overlap of SDE and SDT distributions expresses the posterior odds, say, of a NKDSGE model with con-
sumption habit against a NKDSGE model that lacks it. The favored NKDSGE model generates a prior distribution
of a SDT that better covers the posterior distribution of the relevant SDE .

12Blanchard and Quah (1989) include an appendix with a theorem that establishes necessary and sufficient
conditions under which bivariate ARs identify the correct responses to a permanent shock and a transitory shock
when truth is there are several permanent and transitory shocks. The theorem states that the BQ decomposition
is satisfied when responses, say, of output growth and inflation to either permanent or transitory shocks are
equivalent up to a scalar lag operator. Since the shocks that often appear in NKDSGE models are AR(1)s, adding
these shocks to a NKDSGE model will not create spurious identification according to the theorem.
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As an example consider the SVMA

 ∆ lnYt

∆ lnPt

 = ∞∑
j=0

Bj

 εt−j
υt−j

 , where Bj =

 B∆Y ,ε,j B∆Y ,υ,j
B∆P,ε,j B∆P,υ,j

 , (10)

that equates the monetary policy shock with the Taylor rule innovation υt . Elements of Bj are

just-identified (i) by the orthogonality of the TFP shock innovation εt and υt and (ii) by the

LRMN restriction B∆Y ,υ(1) = 0 (i.e., output is independent of υt at the infinite horizon); see the

appendix for details. These restrictions permit the SVMA (10) to be decomposed for output

growth into univariate SMA(∞)s, B∆Y ,ε(L)εt and B∆Y ,υ(L)υt . The former (latter) SMA(∞) is the

IRF of output growth with respect to the permanent shock εt (transitory shock υt).

We grab the SMA(∞) of B∆Y ,ε(L)εt and B∆Y ,υ(L)υt from the SVMA (10) to calculate per-

manent and transitory output growth spectral densities. Since the SVMA (10) is also a Wold rep-

resentation of [∆ lnYt ∆ lnPt]′, its spectrum (at frequencyω) is computed as SD[∆Y ∆P](ω) =
(2π)−1Γ[∆Y ∆P] exp(−iω), where Γ[∆Y ∆P](l) = ∑∞

j=0 BjB
′
j−l. The convolution Γ[∆Y ∆P](l) is

expanded at horizon j to obtain

BjB
′
j−l =

 B∆Y ,ε,jB∆Y ,ε,j−l + B∆Y ,υ,jB∆Y ,υ,j−l B∆Y ,ε,jB∆P,ε,j−l + B∆Y ,υ,jB∆P,υ,j−l
B∆P,ε,jB∆Y ,ε,j−l + B∆P,υ,jB∆Y ,υ,j−l B∆P,ε,jB∆P,ε,j−1 + B∆P,υ,jB∆P,υ,j−l

 ,

whose off-diagonal elements imply output growth and employment cross-covariances and,

therefore, co- and quad-spectra, while the upper left diagonal elements contain output growth

autocovariances B∆Y ,ε,jB∆Y ,ε,j−l (B∆Y ,υ,jB∆Y ,υ,j−l) with respect to εt (υt), the identified perma-

nent (transitory) shock.13 We exploit the SMAs B∆Y ,ε(L)εt and B∆Y ,υ(L)υt , that are along the

diagonal, to parameterize permanent and transitory output growth spectral densities, which

extends ideas of Akaike (1969) and Parzen (1974). Given the BQ decomposition assumption

13The appendix constructs SVMAs from structural VARs and also reports that across all Bayesian Monte Carlo
simulation the 12 NKDSGE models satisfy the invertibility condition of Fernández-Villaverde, Rubio-Ramírez,
Sargent, and Watson (2007).
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that the structural shock innovations have unit variances, the output growth spectral density

at frequency ω is

SD∆Y ,ι(ω) = 1
2π

∣∣∣∣∣B∆Y ,ι,0 + B∆Y ,ι,1e−iω + B∆Y ,ι,2e−i2ω + . . .+ B∆Y ,ι,je−ijω + . . .
∣∣∣∣∣

2

, ι = ε, υ.

Before computing SD∆Y ,ι(ω), we truncate its polynomial at j = 40, a ten year horizon.

3.2 Bayesian simulation methods I: Empirical Distributions

We engage MCMC software of Geweke (1999) and McCausland (2004) to create posterior

distributions of SVMAs. These posterior distributions consist of J = 5000 SVMA parameter

vectors that are grounded on unrestricted VAR(2)s, LRMN, the BQ decomposition, priors, and a

1954Q1–2002Q4 sample (T = 196) of U.S. output, consumption, and price growth.14 These J

vectors are used to calculate distributions of posterior or empirical permanent and transitory

output and consumption growth spectral densities, SDE,∆C and SDE,∆C .

3.3 Bayesian simulation methods II: Theoretical Distributions

Several steps are needed to solve and simulate NKDSGE models. The models have a

permanent TFP shock, which requires stochastic detrending of optimality and equilibrium con-

ditions before log-linearizing around deterministic steady states that is described in the ap-

pendix. We engage an algorithm of Sims (2002), sketched in the appendix, to solve for linear

approximate equilibrium laws of motion of a NKDSGE model. Synthetic samples result from

feeding sequences of TFP and monetary policy shock innovations into these equilibrium laws

of motion given initial conditions and draws from priors of NKDSGE model parameters.

Priors embed our uncertainty about NKDSGE model parameters that is reflected in distri-

butions of prior or theoretical population permanent and transitory output and consumption

growth spectral densities, SDT ,∆Y and SDT ,∆C . Table 2 lists these priors. For example, h has

an uninformative prior that is drawn from an uniform distribution with end points 0.05 and

0.95 in table 2. The uninformative prior reflects a belief that any h ∈
[
0.05, 0.95

]
is as likely

14The software is found at http://www2.cirano.qc.ac/∼bacc, while the appendix describes the data.
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as another. Non-habit NKDSGE models are defined by the degenerate prior h = 0.

Priors are also taken from earlier DSGE model studies.15 We place degenerate priors on[
β δ α ψ

]′
=
[
0.9930 0.0200 0.0040 0.3500

]′
that are consistent with the Cogley and Nason

(1995b) calibration. However, the micro estimates of Kimmel and Kniesner (1998) supply the

mean of the prior of the Frisch labor supply elasticity, γ = 1.55. Uncertainty about
[
β γ δ α ψ

]′
is captured by 95 percent coverage intervals, which include values in Nason and Cogley (1994),

Hall (1996), and Chang, Gomes, and Shorfheide (2002). We set the prior of the investment

cost of adjustment parameter $ to estimates reported by Bouakez, Cardia, and Ruge–Murcia

(2005). The standard deviation of TFP shock innovations, σε, is given an uniform prior because

the DSGE literature suggests that any draw of σε from [0.0070, 0.0140] is equally likely.

There are four sticky price and wage parameters to calibrate. The relevant prior means

are [ξ µP θ µw]′ =
[
12.0 0.55 15.0 0.7

]′
. The mean of ξ implies a steady state price markup,

ξ/(ξ−1), of nine percent with a 95 percent coverage interval that runs from five to 33 percent.

This coverage interval blankets estimates found in Basu and Fernald (1997) and CEE. More

uncertainty surrounds the priors of µP , θ, and µw . Sbordone (2002), Nason and Slotsve (2004),

Lindé (2005), and CEE suggest a 95 percent coverage interval for µP of [0.45, 0.65]. Likewise, a

95 percent coverage interval of [0.04, 0.25] suggests substantial uncertainty around the seven

percent prior mean household wage markup, θ/(θ − 1). The degenerate mean of µw and its

95 percent coverage interval reveals stickier nominal wages than prices, as found by CEE and

Rabanal and Rubio-Ramírez (2005), but we imbue it with greater uncertainty.

The money growth rule (8) is calibrated to estimates from a 1954Q1–2002Q4 sample of

the monetary base. The point estimates are degenerate priors for
[
m∗ ρm σµ

]′
=
[
0.011 0.628

0.006
]′

. We give these prior means less precision than found in sample. For example, the lower

end of the 95 percent coverage interval of ρm is near 0.46. CEE note that ρm ≈ 0.5 implies the

money growth rule (8) mimics the persistence of their MA(∞) monetary policy shock process.

15The means of several priors match sample means of the consumption-output ratio, labor input, federal funds
rate, and inflation on a 1955Q1–2002Q4 sample. We also fix N0 = 0.1678 and r∗ = 1.0050.
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The calibration of the interest rate rule (9) obeys the Taylor principle and ay ∈ (0,1).

The degenerate prior of aπ is 1.80. We assign a small role to movements in transitory output,

Ỹ , with a prior mean of 0.05 for ay . The 95 percent coverage intervals of aπ and ay rely on

estimates reported by Smets and Wouters (2007). The interest rate rule (9) is also calibrated

to smooth Rt given a prior mean of 0.65 and a 95 percent coverage interval of [0.55, 0.74] that

incorporates estimates found in Guerron-Quintana (2010). Ireland (2001) is the source of the

prior mean of the standard deviation of the monetary policy shock, συ = 0.0051, and its 95

percent coverage interval, [0.0031, 0.0072]. We assume all shock innovations are uncorrelated

at leads and lags (i.e., E{εt+i υt+q} = 0, for all i, q).

Draws from the priors of the parameters of a NKDSGE model are applied to its linearized

approximation to generate a synthetic sample of length M = W × T . On the J synthetic

samples of length M, SVMAs are estimated subsequent to estimating unrestricted VAR(2)s,

invoking LRMN and the assumptions of the BQ decomposition. We setW = 5 to compute prior

population permanent and transitory SDT ,∆Y and SDT ,∆C .

3.4 Measures of fit

The fit of NKDSGE models is gauged with a tool that updates one Cogley and Nason

(1995a) exploit. They measure the fit of DSGE models to the spectral density of U.S. output

growth with the Kolmogorov-Smirnov (KS ) goodness of fit statistic. The KS statistic is useful

because it maps a multidimensional SD into a scalar statistic that summarizes model fit.

This paper employs the KS statistic to gauge NKDSGE model fit, but in the context of

Bayesian Monte Carlo experiments. The experiments produce (posterior) empirical and (prior)

theoretical distributions of KS statistics, KSE and KST , that are normalized on sample output or

consumption growth spectral densities, ŜDT , which is constructed from a SVMA estimated on

actual data of length T . DefineRD,j(ω) = ŜDT (ω)/SDD,j(ω) at replication j and frequencyω,

whereD=E, T . Next, compute the partial sumVD,j
(
2πq/H

)
= 2πH−1

∑q
`=1RD,j

(
2π`/H

)
,

whereH = T when D = E andH =M otherwise. The partial sums are used to construct the
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partial difference BD,j(κ) = 0.5π−1
√

2H
[
VD,j(κπ)− κVD,j(π)

]
, κ ∈ [0, 1]. The restriction

placing κ on [0, 1] requires that the partial difference BD,j(κ) is evaluated on the entire spec-

trum. The KSD statistic at replication j is calculated as the maximal absolute value of BD,j(κ),

KSD,j = Maxκ∈[0,1]
∣∣∣BD,j(κ)∣∣∣. The KSE,js and KST ,js statistics are collected into vectors of

length J to form distributions of KSE and KST statistics. Substantial overlap of these distribu-

tions indicate a good fit for a NKDSGE model. This constitutes a ‘joint test’ of NKDSGE model

fit because the distribution of SDT must match the distribution of SDE at several frequencies

for distributions of KSE and KST statistics to display significant area in common.

DIW advocate using the confidence interval criterion (CIC) to quantify the intersection of

KSE and KST distributions. The CIC measures the fraction of J elements of a KST distribution

that occupies an interval defined by lower and upper quantiles of the associated KSE distribu-

tion given a 1−p percent confidence level.16 We set p = 0.05. If a habit NKDSGE model yields a

CIC > 0.3 (as DIW imply in their analysis of RBC models), say, for the transitory output growth

spectral density and the non-habit model’s CIC ≤ 0.3 on this moment, the former model is

viewed as providing a more plausible match in this case.

We calculate KSE,j and KST ,j statistics on the entire spectrum and on business cycle

horizons from eight to two years per cycle. By isolating the business cycle fluctuations, we

build on an insight of Diebold, Ohanian, and Berkowitz (1998). Their insight is that a focus on

the business cycle frequencies matters for NKDSGE model evaluation when model misspecifi-

cation corrupts measurement of short- and long-run fluctuations. We address these problems

by compiling KSE and KST distributions in which κ is limited to frequencies between eight

and two years per cycle, or KSD,j = Maxκ∈[0.064,0.25]

∣∣∣BT ,D,j(κ)∣∣∣. This mitigates problems of

discounting NKDSGE models that perform well at business cycle horizons, but poorly on the

lower growth and higher short-run frequencies.

16Following DIW, the CIC of a KST statistic distribution is set to 1
1− p

∫ b
a

KST ,jdj for a 1−p percent confidence

level, where a(b) is the lower 0.5p (upper 1−0.5p) quantile. The CIC is normalized by 1−p to equal
∫ b
a

KSE,jdj.
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4. Habit and Non-Habit NKDSGE Model Evaluation

This section judges the fit of 12 NKDGSE models to distributions of permanent and tran-

sitory SDE,∆Y and SDE,∆C . The evaluation is based on the overlap of KSE and KST statistic

densities that are plotted in the second and third columns of figures 3–8 and quantified by

CIC reported in table 3. Along with mean permanent and transitory SDE,∆Y and SDE,∆C , mean

permanent and transitory SDT ,∆Y and SDT ,∆C are presented in the first column of figures 3–8

to give information about propagation and monetary transmission in NKDSGE models.

4.1 Summary of moments to match: Mean SDE,∆Y and SDE,∆C
Figure 2 plots mean permanent and transitory SDE,∆Y and SDE,∆C . These SDs decom-

pose the average variation frequency by frequency of the response of output and consumption

growth to permanent and transitory shocks.17 The top (bottom) panel of figure 2 contains

mean permanent (transitory) SDE,∆Y and SDE,∆C . Mean SDE,∆Y appear as solid (blue) lines in

figure 2, while mean SDE,∆C plots are thicker with (blue) ‘	’ symbols.

Mean permanent SDE,∆Y and SDE,∆C display greatest variation or power at frequency

zero (i.e., long-run) in the top panel of figure 2. This is followed by immediate decay across

the remaining frequencies. However, the mean permanent SDE,∆Y has about five times the

amplitude (i.e., volatility) at the long-run that is found in the mean permanent SDE,∆C .

The lower panel of figure 2 presents mean transitory SDE,∆Y and SDE,∆C with disparate

shapes. The latter SD peaks around six years per cycle. Rather than a peak, mean transitory

SDE,∆C plateaus from the growth frequencies (i.e., more than eight years per cycle) to four

years per cycle before decaying in the high frequencies. At the business cycle frequencies, this

plateau exhibits about 20 percent of the volatility of mean transitory SDE,∆Y .

Mean permanent and transitory SDE,∆Y and SDE,∆C suggest the underlying empirical

distributions pose challenges for NKDSGE models. Sufficient periodicity is displayed by mean

SDE,∆Cs in figure 2 at low and business cycle frequencies to reject the PIH. Thus, NKDSGE

17A mean SD is computed across an ensemble of SDj , j = 1, . . . , J pointwise or frequency by frequency.
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models must violate the PIH to generate distributions of permanent and transitory SDT ,∆C that

match distributions of SDE,∆Cs. Economically meaningful propagation and monetary transmis-

sion mechanisms are also needed by NKDSGE models to produce distributions of permanent

and transitory SDT ,∆Y that achieve a good fit to distributions of SDE,∆Y .

4.2 Quantify NKDSGE model fit: CIC

Table 3 presents CIC that measure the overlap of KSE and KST statistic distributions.

The extent of the overlap of these distributions is a gauge of the fit of NKDSGE models to

permanent and transitory SDE,∆Y and SDE,∆C distributions. The top panel of table 3 lists CIC

of sticky price and wage (baseline), sticky price only (SPrice), and sticky wage only (SWage)

habit and non-habit NKDSGE-MG models in which the money growth rule (8) defines monetary

policy.18 The lower panel contains CIC of NKDSGE-TR models that replace equation (8) with

the Taylor rule (9). Columns titled ∞ : 0 (8 : 2) include CIC quantifying the overlap of KSE and

KST statistic distributions on the entire frequency domain (business cycle frequencies that run

from eight to two years per cycle).

Table 3 shows that placing consumption habit in NKDSGE models produces a superior

fit. Of the 27 CIC ≥ 0.3 listed in table 3, 18 are tied to habit NKDSGE models. This is twice

as many as non-habit NKDSGE models produce. The SPrice habit NKDSGE-MG model generates

four of the five CIC ≥ 0.3 in the top panel of table 3. In the bottom panel of table 3, 14 of the

22 CIC ≥ 0.3 are produced by baseline, SPrice, and SWage habit NKDSGE-TR models. SPrice

habit NKDSGE-TR models enjoy six of these 14 CIC. The remaining eight CIC ≥ 0.3 are divided

evenly between baseline and SWage habit NKDSGE-TR models in the bottom panel of table 3.

A striking feature of table 3 is the disparate effects habit, sticky prices, and sticky wages

have on the fit of NKDSGE models to distributions of permanent SDE,∆Y and SDE,∆C . The

Bayesian Monte Carlo experiments reveal that on these distributions only SPrice NKDSGE mod-

els yield CIC ≥ 0.3. In the middle of the top panel of table 3, these matches occur for the

18The SWage NKDSGE model requires the degenerate prior µP = 0 with fixed markup φ = (ξ − 1)/ξ. When the
nominal wage is flexible, households set their optimal wage period by period in SPrice NKDSGE models. In this
case, the markup in the labor market is fixed at (θ − 1)/θ, which equals n−1/γ , given µW = 0.
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SPrice habit NKDSGE-MG model on permanent SDE,∆Y and SDE,∆C distributions exclusively at

the business cycle frequencies. The SPrice habit NKDSGE-TR model obtains similar results in

the middle of the bottom panel of table 3 with four CIC ≥ 0.3 in the columns labeled 8 : 2

(years per cycle). An additional CIC ≥ 0.3 is generated by this model for the permanent SDE,∆Y
distribution when the evaluation is conducted on the entire spectrum. In comparison, SPrice

non-habit NKDSGE-MG and -TR models are responsible for three CIC ≥ 0.3 that measure the

overlap of permanent SDE and SDT distributions. Thus, the most empirically relevant propa-

gation mechanisms are attributed to SPrice habit NKDSGE-MG and -TR models.

Several NKDSGE models have empirically credible monetary transmission mechanisms.

According to table 3, transitory SDE,∆Y and SDE,∆C distributions are replicated by habit NKDSGE

models whether sticky prices and wages are combined or used one at a time. Nonetheless, it is

evident from table 3 that NKDSGE-TR models fit these distributions better than do NKDSGE-MG

models. Baseline and SWage habit NKDSGE-TR models realize transitory SDT ,∆Y and SDT ,∆C
distributions that match transitory SDE,∆Y and SDE,∆C distributions with CIC ≥ 0.44 on the en-

tire spectrum and at the business cycle frequencies in the bottom panel of table 3. SPrice habit

NKDSGE-MG and -TR models are adept at fitting transitory SDE,∆Y and SDE,∆C distributions,

but only on the business cycle frequencies. These successes are not duplicated by baseline and

SWage habit NKDSGE-MG models given CIC in the top panel of table 3.

In summary, the CIC of table 3 show that consumption habit confers a superior fit to

NKDSGE models.19 These results echo the support Del Negro, Schorfheide, Smets, and Wouters

(2007) obtain for consumption habit in their NKDSGE model. However, we find that the fit of

habit NKDSGE models to SDE,∆Y and SDE,∆C distributions is not robust to the mix of nominal

rigidities or choice of monetary policy rule. The frequencies on which the habit NKDSGE models

are evaluated also matter for judgments about fit.

19The appendix presents Bayesian Monte Carlo experiments that estimate VAR(4)s instead of VAR(2)s, substitute
the Cramer-von Mises (CvM ) goodness of fit statistic for the KS statistic to quantify NKDSGE model fit, and replace
the prior h ∼ U(0.05, 0.95) with either the prior h ∼ U(0.05, 0.499), h ∼ U(0.50, 0.95), or h ∼ β(0.65, 0.15).
The latter prior implies a 95 percent coverage interval for h of [0.38, 0.88]. These experiments are reported in
the appendix and reinforce the message table 3 has for the impact of consumption habit on NKDSGE model fit.
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4.3 Visualize NKDSGE model dynamics and fit: Figures 3–8

The content of figures 3–8 is described in this section. Evidence to evaluate the fit of

baseline NKDSGE-MG and -TR models is reported in figures 3 and 4, respectively. Figures 5 and

6 contain results for SPrice NKDSGE-MG and -TR models. The final two figures present plots

generated by SWage NKDSGE-MG and -TR models.

Figures 3–8 summarize evidence about propagation, monetary transmission, and NKDSGE

model fit in 12 windows spread across four rows and three columns. From top to bottom, the

four rows report results for permanent SD∆Y , transitory SD∆Y , permanent SD∆C , and transitory

SD∆Y , respectively. The first column of figures 3–8 plots mean SDs, while the second and third

columns display densities of KS statistics.

Visual testimony about NKDSGE model propagation and monetary transmission appears

in the first column of figures 3–8. This column consists of four windows containing plots of

mean permanent SDT ,∆Y , mean transitory SDT ,∆Y , mean permanent SDT ,∆C , and mean transi-

tory SDT ,∆C . Mean SDT ,∆Y and SDT ,∆C are denoted by (red) dot-dash plots for NKDSGE models

with consumption habit and (green) dashed plots for NKDSGE models without consumption

habit. The solid (blue) plots of these windows are the mean SDE,∆Y and SDE,∆C displayed in

figure 2 and are included in figures 3–8 for comparison.

The second and third columns of figures 3–8 furnish densities that map from distribu-

tions of permanent and transitory SDEs and SDT s to densities of KSE and KST statistics. The

overlap of KSE and KST statistic densities are a visual depiction of CIC and thus of NKDSGE

model fit. Figures 3–8 display this overlap in columns two and three with a scheme similar to

that described for the first column. Solid (blue) lines, (green) dashed lines, and (red) dot-dash

lines denote KSE statistic densities, KST statistic densities generated by non-habit NKDSGE

models, and KST statistic densities produced by habit NKDSGE models, respectively. The sec-

ond (third) column of figures 3–8 evaluates NKDSGE model fit with KSE and KST statistics

computed on the entire spectrum (restricted to the business cycle frequencies).
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4.4 NKDSGE model propagation: Habit and nominal rigidities

This section explores the impact of different combinations of consumption habit, sticky

prices, and sticky wages on the propagation of TFP shocks in NKDSGE models. For example,

the first and third rows of the second and third columns of figures 3, 4, 7, and 8 present

KST densities whose mass are to the right of KSE densities. The lack of overlap explains

the associated CIC < 0.3 for baseline and SWage NKDSGE models in table 3. The inability to

match distributions of permanent SDE,∆Y and SDE,∆C extends to whether consumption habit

is included in or is excluded from baseline and SWage NKDSGE models. Switching from the

money growth rule (8) to the Taylor rule (9) also cannot repair the poor fit of these NKDSGE

models to distributions of permanent SDEs.

The odd numbered rows of the first column of figures 3, 4, 7, and 8 display mean per-

manent SDE,∆Y , SDE,∆C , SDT ,∆Y , and SDT ,∆C consistent with KSE and KST statistic densities

exhibiting little overlap. These mean permanent SDEs decay slowly from the infinite horizon

into the business cycle frequencies. The same charts include mean permanent SDT s that often

peak between eight and four years per cycle besides possessing substantial amplitude at the

growth frequencies. Thus, the poor fit of baseline and SWage NKDSGE models to distributions

of permanent SDE,∆Y and SDE,∆C cannot be attributed to weak propagation of TFP shocks.

Nontheless, baseline and SWage NKDSGE models have powerful propagation mecha-

nisms. Fully indexed sticky wages induce these propagation mechanisms, in part, by smoothing

nominal wages which forces households to adjust labor supply in response to permanent TFP

shocks. This response contributes to an empirically unreasonable propagation mechanism.

Stripping out sticky wages conveys an empirically credible propagation mechanism to

habit NKDSGE-MG and -TR models when fit to distributions of permanent SDE,∆Y and SDE,∆C
is limited to the business cycle frequencies. The first and third rows of the third column of

figures 5 and 6 provide this evidence with KSE and KST statistic densities that display con-

siderable overlap. This shows SPrice habit NKDSGE models possess economically meaningful
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propagation mechanisms at the business cycle frequencies marked by combining intertemporal

complementarity in consumption with inflation smoothing.

There are two successes for SPrice habit and non-habit NKDSGE-TR models when asked to

replicate the distribution of permanent SDE,∆Y on the entire spectrum. In the middle window

of the first row of figure 6, these NKDSGE models yield KST statistic densities that overlap

the KSE statistic density. This is further evidence of the difficulties NKDSGE models have at

matching distributions of permanent SDE,∆Y and SDE,∆C , especially on the entire distributions.

SPrice habit NKDSGE-MG and -TR models are responsible for mean permanent SDT ,∆Y
and SDT ,∆C that possess less volatility and periodicity compared to those produced by baseline

and SWage NKDSGE models. The odd numbered rows of figures 5 and 6 show that removing

sticky wages reduces volatility and periodicity in mean permanent SDT s. This moves these SDs

closer to mean permanent SDEs on the business cycle frequencies. The most striking example

of a SPrice habit NKDSGE model generating empirically relevant mean dynamics is found in the

(red) dot-dash plots in the first column of the first and third rows of figure 6. In this figure, plots

of mean permanent SDT ,∆Y and SDT ,∆C decay smoothly from the long-run into the business

cycle frequencies. This mimics the behavior of mean permanent SDE,∆Y and SDE,∆C .

This section reports that consumption habit combines with fully indexed sticky prices to

create empirically relevant and economically meaningful propagation of TFP shocks in NKDSGE

models at the business cycle frequencies. With this mix of real and nominal rigidities, SPrice

habit NKDSGE models tie propagation to intertemporal consumption complementarity and in-

flation smoothing. Thus, the match between NKDSGE models and distributions of SDE,∆Y and

SDE,∆C identified by a permanent TFP shock is sensitive to the mix of nominal rigidities, a result

in line with Dupor, Han, and Tsai (2009), and to the frequencies used to judge fit.

4.5 NKDSGE model monetary transmission: Habit and monetary policy rules

Erceg, Henderson, and Levin (2000) recognize that implementing optimal monetary policy

can be problematic when faced with sticky prices and wages. Nonetheless, their conclusions
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about monetary policy analysis rests on sticky prices and wages transmitting monetary policy

shocks to the real economy in ways that match empirical observation. This section assesses

the empirical relevance of different combinations of sticky prices and wages for monetary

transmission in NKDSGE models with and without consumption habit. The specification of

monetary policy matters for evaluating NKDSGE model fit because monetary transmission is

described with transitory SDT ,∆Y s and SDT ,∆Cs that are identified with respect to either the

money growth rule (8) or Taylor rule (9) shock innovations.

We find that baseline, SPrice, and SWage NKDSGE models achieve greater success in

matching distributions of transitory SDE,∆Y and SDE,∆C given the Taylor rule (9) defines mon-

etary policy. The Taylor rule contributes to a superior fit, especially when the entire spectrum

is used for evaluation, by dampening output and consumption growth fluctuations. These re-

sults are anticipated by Poole (1970). In a sticky price Keynesian macro model, he shows that

an interest rate rule minimizes the variance of output relative to a money growth rule when real

shocks are more volatile than nominal shocks. Since we apply priors to the NKDSGE models

that respect this ordering of the relative volatilities of TFP, money growth rule, and Taylor rule

shocks, our Bayesian Monte Carlo experiments underline the sensitivity of NKDSGE model fit

to the specification of monetary policy rules.

Money growth rule (8) shock innovations are transmitted by baseline and SWage NKDSGE

models into fluctuations in output and consumption growth. However, these monetary trans-

mission mechanisms are unable to produce distributions of transitory SDT ,∆Y and SDT ,∆Y that

cover distributions of transitory SDE,∆C and SDE,∆C . The even numbered rows of the second

and third columns of figures 3 and 7 depict the poor fit of baseline and SWage NKDSGE-MG

models with distributions of transitory SDE and SDT that do not overlap. This lack of fit

is translated into excessive amplitude and periodicity in mean transitory SDT ,∆Y and SDT ,∆C
compared to mean transitory SDE,∆Y and SDE,∆C that are found in the even numbered rows of

the first column of figures 3 and 7.
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An exception to this poor fit is obtained by the SPrice habit NKDSGE-MG model. This

NKDSGE model generates distributions of transitory SDT ,∆Y and SDT ,∆C that intersect distri-

butions of transitory SDE,∆Y and SDE,∆C on the business cycle frequencies in the second and

third rows of the third column of figure 5. The good fit helps explain mean transitory SDT s of

the SPrice habit NKDSGE-MG model that cross mean transitory SDEs (from below) at between

eight to two years per cycle in the even numbered rows of the first column of figure 5. When

the entire spectrum serves to judge fit, the second and fourth rows of the second column of

figure 5 display KST statistic densities far to the right of the associated KSE statistic densities.

Baseline, SPrice, and SWage habit NKDGSE-TR models produce mean transitory SDT ,∆Y
and SDT ,∆C that are more similar to mean transitory SDE,∆Y and SDE,∆C as shown in the second

and fourth rows of the first column of figures 4, 6, and 8. Thus, Taylor rule shock innovations

are transmitted into output and consumption growth fluctuations on average in economically

relevant ways by baseline, SPrice, and SWage habit NKDGSE-TR models using intertemporal

complementarity created by consumption habit and nominal wage growth smoothing engen-

dered by fully indexed sticky wages. Although these NKDSGE-TR models yield mean transitory

SDT that are close to the mean transitory SDE , note that mean transitory SDEs are most nearly

realized by the SWage habit NKDSGE-TR model.

Monetary transmission differs across baseline and SPrice habit NKDSGE-TR models. The

baseline habit NKDSGE-TR model produces periodicity in its mean transitory SDT ,∆Y that is

close to displayed by the mean transitory SDE,∆Y in the second row of the first column of

figure 4, but the former mean spectral density lacks the volatility of the latter. The lack of

volatility is reversed by the SPrice habit NKDSGE-TR model. The second row of the first column

of figure 6 displays mean transitory SDE,∆Y and SDT ,∆Y that have about the same amplitude.

However, the latter SD has much of its power in the high frequency rather than at the business

cycle frequencies.

Mean transitory SDE,∆C and SDT ,∆C expose more disparities in the monetary transmis-
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sion mechanisms of baseline and SPrice habit NKDSGE-TR models. The baseline NKDSGE-TR

model yields a mean transitory SDT ,∆C in the bottom panel of the first column of figure 4 that

is out of phase in the lower frequencies with the mean transitory consumption growth SDE,∆C ,

but captures its amplitude. When the lone nominal rigidity is sticky prices, the fourth row of

the first column of figure 6 shows that the SPrice habit NKDSGE-TR model produces a mean

transitory SDT ,∆C that is out of phase in the high frequencies, but mimics the amplitude of the

mean transitory consumption growth SDE,∆C .

The Bayesian Monte Carlo experiments reveal that the fit of baseline, SPrice, and SWage

NKDSGE-TR models to distributions of transitory SDE,∆Y and SDE,∆C is vulnerable to the fre-

quencies used for evaluation. A good fit for these models is affirmed on the business cycle

frequencies by the overlap of KSE and KST statistic densities in the far right columns of fig-

ures 4, 6, and 8. The NKDSGE-TR models match the transitory SDEs on the business cycle

frequencies whether or not household preferences include consumption habit. However, only

baseline and SWage habit NKDSGE-TR models replicate transitory SDEs on the entire spectrum

given the overlap of KSE and KST statistic densities in the even numbered rows of the middle

columns of figures 4 and 8.

This section shows there are several combinations of consumption habit, sticky prices,

sticky wages, and the money growth rule (8) or Taylor rule (9) that create empirically signif-

icant and economically meaningful monetary transmission in NKDSGE models. When fit is

measured on the business cycle frequencies, the baseline, SPrice, and SWage NKDGSE-TR and

SPrice habit NKDSGE-MG models match transitory output and consumption growth SDEs. These

models face problems when evaluated on these posterior moments using the entire spectrum.

This metric limits a satisfactory fit just to the baseline and SWage habit NKDGSE-TR models.

Common to these models is fully indexed Calvo nominal wage setting. This nominal rigidity

contributes to empirically relevant monetary transmission by trading smoother nominal wage

growth for greater variation in labor supply. Nonetheless, our evidence lends support to the
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contention of Del Negro and Schorfheide (2008) that it is difficult to choose among competing

nominal rigidities when evaluating NKDSGE model fit, especially to monetary policy shocks.

5. Conclusion

This paper studies the business cycle implications of internal consumption habit for

new Keynesian dynamic stochastic general equilibrium (NKDSGE) models. We examine the fit

of 12 NKDSGE models that have different combinations of internal consumption habit, Calvo

staggered prices and nominal wages, along with several other real rigidities. The NKDSGE

models are confronted with population output and consumption growth spectral densities

(SDs) identified by permanent productivity and transitory monetary shocks.

The fit of NKDSGE models with and without consumption habit is explored using Bayesian

Monte Carlo methods that avoid estimation. We view this approach as a low cost way to explore

the fit of competing NKDSGE model specifications that complement results obtained from es-

timation. The evidence produced using these techniques favors retaining consumption habit

in NKDSGE models. Nonetheless, the Bayesian Monte Carlo experiments show that the fit of

NKDSGE models with consumption habit is susceptible to (1) changing the mix of nominal

rigidities, (2) identifying SDs on permanent productivity shocks instead of transitory monetary

policy shocks, (3) evaluating SDs on the entire spectrum rather than the business cycle fre-

quencies, and (4) tying monetary policy to a money growth rule instead of a Taylor rule. These

results suggest that there remain ambiguities about the specification of real and nominal rigidi-

ties in NKDSGE models. The resolution of these ambiguities should inspire further research

into the role real and nominal rigidities play in propagation and monetary transmission.
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Table 1: Summary of MEI and Bayesian Monte Carlo Methods

Empirical Theoretical
(Posterior) (Prior)

Sample Actual Synthetic

Sample
Length T = 196 M = T × W ,W = 5

Number of
Replications J = 5000 J = 5000

Priors VAR coefficients NKDSGE model
parameters

Simulator MCMC produce Estimate VARs on
BVAR coefficients synthetic data generated

by NKDSGE Models

BQ Decomposition
under LRMN Invert BVAR to Invert estimated VAR

obtain SVMA(∞) to produce SVMA(∞)

Distributions SDE,∆Y and SDE,∆C SDT ,∆Y and SDT ,∆C
mapped into mapped into
KSE statistics KST statistics

31



Table 2: Bayesian Calibration of NKDSGE Models

Prior Standard 95 Percent

Distribution Mean Deviation Cover Interval

h Internal Consumption Habit Uniform — — [0.0500, 0.9500]

β H’hold Subjective Discount Beta 0.9930 0.0020 [0.9886, 0.9964]

γ Labor Supply Elasticity Normal 1.5500 0.5360 [0.4995, 2.6005]

δ Depreciation Rate Beta 0.0200 0.0045 [0.0122, 0.0297]

α Deterministic Growth Rate Normal 0.0040 0.0015 [0.0011, 0.0064]

$ Capital Adjustment Costs Normal 4.7710 1.0260 [2.7601, 6.7819]

ψ Capital’s Share of Output Beta 0.3500 0.0500 [0.2554, 0.4509]

σε TFP Growth Shock Std. Uniform — — [0.0070, 0.0140]

ξ Final Good Dmd Elasticity Normal 12.0000 4.0820 [3.9994, 20.0006]

µP No Price Change Probability Beta 0.5500 0.0500 [0.4513, 0.6468]

θ Labor Demand Elasticity Normal 15.0000 3.0800 [8.9633, 21.0367]

µW No Wage Change Probability Beta 0.7000 0.0500 [0.5978, 0.7931]

m∗ ∆ lnM Mean Beta 0.0114 0.0030 [0.0063, 0.0180]

ρm ∆ lnM AR1 Coef. Beta 0.6278 0.0800 [0.4653, 0.7767]

σµ ∆ lnM Shock Std. Beta 0.0064 0.0012 [0.0043, 0.0090]

aπ Taylor Rule Etπt+1 Coef. Normal 1.8250 0.2300 [1.3742, 2.2758]

aŶ Taylor Rule Ŷt Coef. Normal 0.1000 0.0243 [0.0524, 0.1476]

ρR Taylor Rule AR1 Coef. Beta 0.6490 0.0579 [0.5317, 0.7578]

συ Taylor Rule Shock Std. Beta 0.0051 0.0016 [0.0025, 0.0087]

The calibration relies on existing DSGE model literature; see the text for details. For a non-informative prior, the
right most column contains the lower and upper end points of the uniform distribution. When the prior is based
on the beta distribution, its two parameters are a = Γ i,n [(1− Γ i,n)Γ i,n/STD(Γi,n)2 − 1

]
and b = a(1 − Γ i,n)/Γ i,n,

where Γ i,n is the degenerate prior of the ith element of the parameter vector of model n = 1, . . . ,4, and its
standard deviation is STD(Γi,n).
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Table 3: CIC of Kolmogorov-Smirnov Statistics

∆Y w/r/t ∆Y w/r/t ∆C w/r/t ∆C w/r/t
Trend Sh’k Transitory Sh’k Trend Sh’k Transitory Sh’k

Model ∞ : 0 8 : 2 ∞ : 0 8 : 2 ∞ : 0 8 : 2 ∞ : 0 8 : 2

NKDSGE-MG

Baseline
Non-Habit 0.02 0.03 0.00 0.01 0.00 0.00 0.00 0.00
Habit 0.00 0.04 0.16 0.18 0.02 0.16 0.13 0.18

SPrice
Non-Habit 0.03 0.47 0.00 0.23 0.01 0.17 0.00 0.04
Habit 0.14 0.64 0.11 0.59 0.09 0.44 0.29 0.49

SWage
Non-Habit 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06
Habit 0.00 0.01 0.18 0.23 0.01 0.10 0.13 0.23

NKDSGE-TR

Baseline
Non-Habit 0.01 0.00 0.12 0.71 0.00 0.00 0.08 0.68
Habit 0.00 0.03 0.64 0.52 0.03 0.14 0.53 0.85

SPrice
Non-Habit 0.40 0.57 0.00 0.76 0.01 0.16 0.00 0.49
Habit 0.43 0.74 0.29 0.65 0.15 0.46 0.33 0.76

SWage
Non-Habit 0.00 0.00 0.21 0.37 0.00 0.00 0.02 0.81
Habit 0.00 0.05 0.55 0.45 0.03 0.13 0.44 0.77

NKDSGE-MG and NKDSGE-TR denote the NKDSGE model with the AR(1) money supply rule (8) and the Taylor
rule (9), respectively. Baseline NKDSGE models include sticky prices and sticky wages. The acronyms SPrice
and SWage represent NKDSGE models with only sticky prices or sticky nominal wages, respectively. The column
heading ∞ : 0 (8 : 2) indicates that CIC quantify the intersection of E and T KS statistic distributions computed
from permanent and transitory output and consumption growth SDs with domains on the entire spectrum (from
eight to two years per cycle).
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Figure 1: ∆C Response to Real Interest Rate Shock
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The plots are the impulse response functions (IRFs) of consumption growth (∆C) generated from the solved linearized Euler
(2) given a one percent shock to the forecast innovation of the AR(1) of the real rate, qt .



Figure 2: Mean Structural E Spectra of ∆Y and ∆C
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Figure 3: Mean Structural E and T SDs and KS Densities

for Baseline NKDSGE Models with AR(1) Money Growth Rule
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Figure 4: Mean Structural E and T SDs and KS Densities

for Baseline NKDSGE Models with Taylor Rule
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Figure 5: Mean Structural E and T SDs and KS Densities

for NKDSGE Models with AR(1) Money Growth Rule and Only Sticky Prices
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Figure 6: Mean Structural E and T SDs and KS Densities

for NKDSGE Models with Taylor Rule and only Sticky Prices
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Figure 7: Mean Structural E and T SDs and KS Densities

for NKDSGE Models with AR(1) Money Growth Rule and Only Sticky Wages
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Figure 8: Mean Structural E and T SDs and KS Densities

for NKDSGE Models with Taylor Rule and only Sticky Wages
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