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Abstract 
 
 This paper shows a detail-free idea of multi-object large double auction design in 
general trading environments, where the auctioneer randomly divides agents into two 
groups, and agents in each group trade at the market-clearing price vector in the other group. 
With private values, any dominant strategy profile mimics price-taking behavior, and the 
auctioneer achieves approximate efficiency. With interdependent values, any twice 
iteratively undominated strategy profile mimics fully revealing rational expectations 
equilibrium, and the auctioneer approximately achieves ex post efficiency. We need only a 
very weak common knowledge assumption on rationality. 
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1. Introduction 
 

The hypothesis of perfect competition assumes that traders, or agents, are non-
strategic, and adopt price-taking behavior. In order to provide its strategic foundation, 
several works after Wilson (1977) investigated naïve models of large private value double 
auction with a single object, where many sellers and buyers announce their supply and 
demand functions, and trade at the market-clearing price. With the continuum of agents, 
every agent has a dominant strategy to behave as a price taker, because her demand or 
supply never influences the market-clearing price. As long as the number of agents is finite, 
however, each agent may be able to manipulate the market-clearing price on behalf of her 
benefit. In fact, each agent has no dominant strategy, and is involved in complicated 
strategic interaction. Hence, most of these works replaced dominant strategy with Bayesian 
Nash equilibrium. Rustichini, Satterthwaite, and Williams (1994) showed that in the 
independent private signal case with single-unit demands and supplies, any symmetric 
Bayesian Nash equilibrium, if exists, approximates price-taking behavior. Fudenberg, 
Mobius, and Szeidl (2003) investigated the correlated private signal case with single-unit 
demands and supplies, and showed the existence of approximately efficient symmetric 
Bayesian Nash equilibrium. Jackson and Swinkels (2004) investigated a variety of multi-
unit double auctions with private values, and showed the existence of non-trivial mixed 
strategy Bayesian Nash equilibrium. The analyses of Bayesian Nash equilibrium typically 
assume that, not only the model specification such as payoff and information structures, but 
also agents’ rational behavior, is common knowledge among all agents. This assumption is 
quite restrictive, especially in large economies. Hence, the strategic foundation without 
such common knowledge assumptions is very important to consider. 
 Based on the above observations, the present paper investigates alternative models of 
double auction instead of the naïve models, and shows the possibility that, in a very wide 
class of multi-object and multi-unit trading environments, each agent has a dominant 
strategy that mimics price-taking behavior, and the auctioneer can achieve efficiency in the 
limit as the number of agents grows. We introduce a new idea of auction design, whose 
intuition is as follows. The auctioneer randomly divides sellers and buyers into two groups. 
Each seller (buyer) announces a supply function (demand function, respectively). The 
auctioneer deals with each group as being separate, and calculates the price vector that 
equalizes the total demand and supply in every commodity markets that are announced by 
the agents who belong to this group. And then, agents in each group trade at the market-
clearing price vector in the other group. Hence, each agent’s announcement never 
influences the price vector at which she trades. By specifying a rationing rule appropriately, 
the auctioneer succeeds to induce agents to announce honest competitive demands and 
supplies in every commodity market as their dominant strategies. The law of large numbers 
guarantees that the market-clearing price vector in each group converges in probability to 
the market-clearing price vector in the whole commodity markets that combine both groups. 
Hence, the auctioneer achieves efficiency in the limit as the number of agents grows, and 
our double auctions can be regarded as stochastic approximation of perfect competition. 
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 Of particular importance, our double auctions are detail-free in that the auctioneer 
needs no information about the model specification. This point is in contrast with the 
mechanism design literature, where the central planner possesses full knowledge on the 
model specification, and the designed mechanisms depend crucially on its fine detail. As 
Wilson (1987) has admonished, the restriction to detail-free mechanisms is very important 
to consider from the practical viewpoint. 
 Barberà and Jackson (1995) showed that in economic environments, any social choice 
function that is strategy-proof in terms of dominant strategy is inefficient, even in the limit 
as the number of agents grows. This impossibility relies on the restriction that excludes 
stochastic social choice functions that map preference profiles to lotteries over pure 
allocations. Gibbard (1977) and Benoit (2002) showed that in general social choice 
environments, no non-trivial stochastic social choice function is strategy-proof. In contrast 
to these works, this paper shows that stochastic decision does play a powerful role, 
particularly in economic environments. 
 This paper assumes that agents’ preferences are quasi-linear and risk neutral. With this 
assumption, Vickery (1961), Clarke (1971), and Groves (1973) designed so-called VCG 
mechanisms, where truth-telling is a dominant strategy and achieves efficiency. The 
drawback of their works is that the VCG mechanisms do not satisfy budget-balancing. 
McAfee (1992) showed an alternative idea of double auction design, where the budget is 
not balanced, but the budgetary deficit never occurs. McAfee’s analysis relies crucially on 
the assumption that each buyer (seller) has only single-unit demand (supply, respectively). 
In contrast to these works, our double auctions satisfy budget-balancing, and can be applied 
to the very general private value cases with multi-object and multi-unit demands and 
supplies, where we allow any mixture of complements and substitutes for each trader. 
 The basic idea of random grouping can be applied to the interdependent value case 
also, where each agent’s payoff depends, not only on her private signal, but also on the 
other traders’ private signals. The auctioneer randomly divides sellers and buyers into two 
groups. Each buyer (seller) announces a triplicate of messages, where the first message is a 
demand (supply) function, and the latter two messages are demand (supply, respectively) 
functions contingent on the other agents’ first messages. The auctioneer calculates the 
market-clearing price vector in each group according to the second messages announced in 
this group. Agents in the other group, almost certainly, trade at this price vector, where the 
auctioneer uses their third messages as their demands and supplies. With small but positive 
probability, all agents trade at a randomly chosen price vector, where the auctioneer uses 
their first messages as their demands and supplies. This will provide agents with the 
incentive to announce competitive demand and supply functions honestly as their first 
messages. Hence, with a minor informational condition, agents’ first messages will fully 
reveal their private signals. Based on this intuition, the present paper designs detail-free 
double auctions in the Bayesian framework, where any iteratively undominated strategy 
profile describes price-taking behavior, is fully revealing, and achieves ex post efficiency in 
the limit as the number of traders grows. 

This possibility result is closely related to rational expectations equilibrium in 
competitive economies. Since the seminal work by Lucas (1972), the notion of rational 
expectations equilibrium has been pervasive in many fields of economics. The rational 
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expectations equilibrium hypothesis assumes that agents act rationally with respect to 
information, while they adopt price-taking behavior in a non-strategic way. In order to 
provide its strategic foundation, Reny and Perry (2003) investigated naïve models of single-
object and single-unit double auction with interdependent values and with finite agents. 
Reny and Perry showed that when agents’ private signals are strictly affiliated and the 
number of agents is sufficiently large, there exists a fully-revealing and approximately 
efficient pure strategy Bayesian Nash equilibrium that mimics price-taking behavior. 

The rational expectations hypothesis presumes that all agents’ rational behavior is 
common knowledge among them. In fact, even with the continuum of agents, price-taking 
behavior is never described by dominant strategy. In contrast to rational expectations 
equilibrium, this paper needs to assume only a very weak common knowledge assumption 
on rationality, i.e., assume only that it is common knowledge among all agents that any 
agent never plays dominated strategies. Hence, all we need to do for derivation of 
iteratively undominated strategies is to check only two rounds of iterative removal of 
dominated strategies. Moreover, the set of iteratively undominated strategy profiles satisfies 
interchangeability, i.e., any combination of strategies that survive after two rounds of 
iterative removal is a Bayesian Nash equilibrium. 

This paper covers a very wide class of trading environments even with interdependent 
values. We do not require the private signals to be affiliated. We allow multiple objects to 
be traded. We allow any mixture of complements and substitutes for every agent. 
 The organization of this paper is as follows. Section 2 considers the private value case. 
Subsection 2.1 shows the model. Subsection 2.2 designs double auction mechanisms. 
Subsections 2.3 and 2.4 show that price-taking behavior is described by dominant strategies 
and the auctioneer can achieve efficiency in the limit as the number of agents grows. 
 Section 3 considers the interdependent value case. Subsection 3.1 shows the model. 
Subsection 3.2 designs double auction mechanisms. Subsections 3.3 and 3.4 show that 
price-taking behavior is described by twice iteratively undominated strategy profiles and 
the auctioneer can achieve ex post efficiency in the limit as the number of agents grows, 
where it is assumed that only buyers have interdependent values. Subsection 3.5 extends 
our analysis to the general interdependent case, where the auctioneer randomly divides 
agents into three or more groups. 
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2. Private Values 
 

 This section assumes private values in that each agent receives no information about 
the other agents’ payoffs that they do not know. 
 

2.1. The Model 
 

There exist n4  agents, where the first n2  agents are called sellers, and the latter n2  
agents are called buyers. There are k  different commodities to be traded. Seller 

}2,...,1{ ni∈  can supply each commodity up to l  units. Buyer }4,...,12{ nni +∈  will 
demand each commodity up to l  units. Fix a positive integer T  arbitrarily, which may be 

sufficiently large. Let k

TT
P }1,...,2,1,0{=  denote the finite set of price vectors. An 

allocation is defined as a combination ),( qxa =  where 
),...,( 41 nxxx = , k

iii lkxxx },...,0{))(),...,1(( ∈=  for all }4,...,1{ ni∈ , 
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Seller }2,...,1{ ni∈  sells the amount },...,0{)( lhxi ∈  of commodity },...,1{ kh∈  at the unit 
price Phqi ∈)( . Buyer }4,...,12{ nni +∈  buys the amount )(hxi  of commodity h  at the 
unit price )(hqi . Equalities (1) imply that the total buying and selling amounts are balanced. 
Equality (2) implies budget balancing in that buyers’ payments and sellers’ revenues are 
balanced. Let A  denote the set of allocations. Let ∆  denote the set of simple lotteries over 
allocations. Agent si'  payoff function with expected utility hypothesis is given by 

RAui →: . For every ∆∈α , let ∑
Γ∈

=
a

ii aauu )()()( αα , where Γ  is the support of α . 

A mechanism is defined by ),( gMG = , where iM  is the set of messages for agent 

}4,...,1{ ni∈ , ∏
=

=
n

i
iMM

4

1
, and ∆→Mg : . When agents announce a message profile 

Mmm n
ii ∈= =
4

1)( , the mechanism G  chooses any allocation Γ∈),( qx  with probability 
]1,0(),)(( ∈qxmg , where Γ  is the support of the lottery )(mg , and 1))(( =∑

Γ∈a
amg . A 

combination ))(,( 4
1

n
iiuG =  defines a game. A message ii Mm ∈   for agent }4,...,1{ ni∈  is said 

to be dominant in the game ))(,( 4
1

n
iiuG =  if 

))(()),(( mgummgu iiii ′≥′−  for all Mm ∈′ . 
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A message profile Mm∈  is said to be ex post individually rational in ))(,( 4
1
n

iiuG =  if for 
every Aa∈ , 

0)( ≥aui  for all }4,...,1{ ni∈  whenever 0))(( >amq . 
 

2.2. Auction Design 
 

We consider the following mechanism denoted by *G , where sellers and buyers are 
randomly divided into groups 1 and 2. Each seller announces a supply function, whereas 
each buyer announces a demand function. Almost certainly, sellers in group 1 (group 2) 
trade with buyers in group 1 (group 2) at the price vector that approximates the market-
clearing price vector in group 2 (group 1, respectively). 

We construct ),(* gMG =  as follows. Let D  denote the set of functions 
klPd },...,0{: → . Let 

DM i =  for all }4,...,1{ ni∈ , 
where we denote k

i lPm },...,0{: →  and k
hii hpmpm 1)))((()( == . Let Φ  denote the set of 

one-to-one mappings }4,...,1{}4,...,1{: nn →φ  where 
}2,...,1{)( ni ∈φ  for all }2,...,1{ ni∈ , 

and 
}4,...,12{)( nni +∈φ  for all }4,...,12{ nni +∈ . 

A function Φ∈φ  implies permutations on the set of sellers }2,...,1{ n  and on the set of 
buyers }4,...,12{ nn + . Sellers )(),...,1( nφφ  and buyers )3(),...,12( nn φφ +  belong to group 1. 
Sellers )2(),...,1( nn φφ +  and buyers )4(),...,13( nn φφ +  belong to group 2. For every 

Mm ×Φ∈),(φ , we define 

),(ˆ * mp φ ])})(())(({max[minarg
1

)2()(},...,1{ ∑
=

+∈∈
−∈

n

i
inikhPp

hpmhpm φφ , 
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),(~* mp φ ])})(())(({max[minarg
2

1
)2()(},...,1{ ∑

+=
+∈∈

−∈
n

ni
inikhPp

hpmhpm φφ , 

where we assume that ),(ˆ * mp φ  ( ),(~* mp φ ) does not depend on the messages announced in 
group 2, i.e., n

niini mmm 2
)2()( ),(~

=+= φφ
φ  (the messages announced in group 1, i.e., 

n
iini mmm 1)2()( ),(ˆ =+= φφ

φ , respectively). Hence, ),(ˆ * mp φ  and ),(~* mp φ  approximate the 
market-clearing price vectors in group 1 and group 2, respectively. 

Fix Mm ×Φ∈),(φ  arbitrarily. With probability 2)!2(
1
n

, the mechanism *G  chooses 

the allocation ),(),(* qxma =φ , which is defined as follows. Let 
   ),(~*

)2()( mpqq ini φφφ == +  for all },...,1{ ni∈ , 
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and 
   ),(ˆ *

)2()( mpqq ini φφφ == +  for all }2,...,1{ nni +∈ . 
Hence, in each group, sellers and buyers trade at the approximate market-clearing price 
vector in the other group. 

We specify the selling and buying amounts n
niini xx 2

1)2()( ),( +=+φφ  in group 1 in the 
following way. Fix any commodity },...,1{ kh∈  arbitrarily. If there exists excessive supply 
in group 1, i.e., 

(3)   0)}))(,(~()))(,(~({
1

*
)2(

*
)( ≥−∑
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i
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   )))(,(~( *
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and 
   0)( =ixφ  for all },...,1ˆ{ nii +∈ . 
Each buyer buys the same amount of commodity h  as what she intends to demand. Each 
seller before )ˆ(iφ  sells the same amount of commodity h  as what she intends to supply, 
whereas each seller after )ˆ(iφ  cannot sell commodity h . If there exists excessive demand 
in group 1, i.e., inequality (3) does not hold, then 

)))(,(~( *
)()( hmpmx ii φφφ =  for all },...,1{ ni∈ , 

and there exists },...,1{ˆ ni ∈  such that 
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and 
   0)2( =+inxφ  for all },...,1ˆ{ nii +∈ . 
Each seller sells the same amount of commodity h  as what she intends to supply. Each 
buyer before )ˆ2( in +φ  buys the same amount of commodity h  as what she intends to 
demand, whereas each seller after )ˆ2( in +φ  cannot buy commodity h . We specify the 
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selling and buying amounts n
niini xx 2

1)2()( ),( +=+φφ  in group 2 in the same way. Note that 

),(),(* qxma =φ  satisfies equalities (1) and (2). 
 

2.3. Dominant Strategies 
 

We specify agents’ payoff functions n
iiu 4

1)( =  as follows. Each seller si'  production 
technology is described by a cost function ),0[},....,0{: ∞→k

i lc , where 0)0,...,0( =ic . 
Each seller si'  payoff for allocation ),( qx  is given by a quasi-linear form 

)()()(),(
1

ii

k

h
iii xchxhqqxu −= ∑

=
. 

Each buyer si'  valuation is described by ),0[},...,0{: ∞→k
i lv , where 0)0,...,0( =iv . 

Buyer si'  payoff is given by a quasi-linear form 

∑
=

−=
k

h
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which implies seller si'  payoff-maximizing supply when she is a price taker. For every 
buyer }4,...,12{ nni +∈ , let DDi ⊂  denote the set of functions d  such that for every Pp∈ , 

])()()([maxarg)(
1},...,0{
∑
=∈

−∈
k

h
iii

lx
hxhpxvpd

k
i

, 

which implies buyer si'  payoff-maximizing demand when she is a price taker. 
 
Condition 1: For every }2,...,1{ ni∈ , there exists ),0[},....,1{},...,1{: ∞→× lkci  such that 

∑ ∑
= =
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The former part of Condition 1 implies that each seller’s production technology has no 

externality among different commodities, and the unit cost for each commodity is non-
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decreasing. The latter part of Condition 1 implies that we do not allow any mixture of 
complements and substitutes among different commodities, and the unit valuation for each 
commodity is non-increasing. 
 
Theorem 1: Suppose that Condition 1 holds. Then, for every }4,...,1{ ni∈ , a message 

ii Mm ∈  is dominant in ))(,( 4
1

* n
iiuG =  if and only if 

ii Dm ∈ . 
Any dominant message profile is ex post individually rational in ))(,( 4

1
* n

iiuG = . 
 
Proof: For every Mm ×Φ∈),(φ , each seller }2,...,1{ ni∈  receives the payoff given by 

(4)   ∑
=

k

h
ii hqhx

1
)()( )( ii xc− , 

where ),(),( * maqx φ= , 
),(~* mpqi φ=  if seller i  belongs to group 1, 

and 
),(~* mpqi φ=  if seller i  belongs to group 2, 

which implies that iq  does not depend on im , and therefore, seller si'  message never 
influences the price vector at which she trades. Hence, it follows from the specification of 

),(* ma φ  and the former part of Condition 1 that im  always maximizes the value (4) if and 
only if ii Dm ∈ . (Under the former part of Condition 1, seller i  always prefers any selling 
amount of each commodity },...,1{ kh∈  closer to ))(( hqm ii  where ii Dm ∈ . This implies 
that she is willing to announce any message in iD  even if she may sell only less than what 
she intends to supply.) It is clear that any message in iD  provides seller i  with a non-
negative payoff. 

For every Mm ×Φ∈),(φ , each buyer }4,...,12{ nni +∈  receives the payoff given by 

(5)   ∑
=

−
k

h
iiii hxhqxv

1
)()()( , 

where ),(),( * maqx φ= , 
),(~* mpqi φ=  if buyer i  belongs to group 1, 

and 
),(~* mpqi φ=  if buyer i  belongs to group 2, 

which implies that iq  does not depend on im , and therefore, buyer si'  message never 
influences the price vector at which she trades. Hence, it follows from the specification of 

),(* ma φ  and the latter part of Condition 1 that im  always maximizes the value (5) if and 
only if ii Dm ∈ . (Under the latter part of Condition 1, buyer i  always prefers any buying 
amount of each commodity },...,1{ kh∈  closer to ))(( hqm ii , where ii Dm ∈ . This implies 
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that she is willing to announce any message in iD  even if she can buy only less than what 
she intends to demand.) It is clear that any message in iD  provides buyer i  with a non-
negative payoff. Hence, we have proved this theorem. 

Q.E.D. 
 

2.4. Asymptotic Efficiency and Generalization 
 
 For every 0>ε  that is close to zero, a message profile Mm∈  is said to be 
−ε efficient in ))(,( 4
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approximates the maximal total surplus per capita 
n
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. For every 0>ε  that is 

close to zero, a message profile Mm∈  is said to be uniform−ε  pricing in ))(,( 4
1
n

iiuG =  if 
the probability of the mechanism G  choosing any allocation ),( qx  such that 

ε<− )()( hqhq ji  for all },...,1{}4,...,1{),( knhi ×∈  and all }4,...,1{ nj∈  
is more than ε−1 . This implies that it is almost certain that all agents trade at almost the 
same price vector. 

We will show that when the number of agents is sufficiently large, the mechanism *G  
satisfies approximate efficiency and uniform pricing as follows. Denote )(ncc = , )(nvv = , 

)(nTT = , and so on. Fix a non-decreasing and continuous function Rk →]1,0[:*ρ  and 
kp ]1,0[* ∈  arbitrarily, where 

)0,...,0()( ** =pρ . 
Fix an infinite sequence ∞
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then 
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Hence, )(* pρ  approximates the excessive supply when n  is sufficiently large and all 
agents play price-taking behavior. For every 1≥n  and every )()( nn Mmm ∈= , we define 
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which approximates the market-clearing price vector associated with all trades. Assume 
that for every infinite sequence of message profiles ∞

=1
)( )( n

nm , whenever property (6) holds, 
then 
   *)()*( )(lim pmp nn

n
=

∞→
. 

Hence, *p  approximates the market-clearing price vector associated with all trades when n  
is sufficiently large and all agents play price-taking behavior. For every sufficiently large n , 
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Since whether each agent belongs to group 1 or group 2 is determined according to the 
uniform distribution on Φ , it follows that for every sufficiently large n  and every message 
profile )()( nn Mm ∈ , it is almost certain that both ),(ˆ )()*( nn mp φ  and ),(~ )()*( nn mp φ  are 
approximated by )( )()*( nn mp . Hence, whenever property (6) holds, then it is almost certain 
that both ),(ˆ )()*( nn mp φ  and ),(~ )()*( nn mp φ  are approximated by *p . From these 
observations, we have proved the following theorem. 
 
Theorem 2: For every 0>ε , there exists a positive integer *n  such that for every *nn ≥ , 

any message profile ∏
=

∈
n

i

n
i

n Dm
4

1

)()(  is −ε efficient and uniform−ε  pricing in 

))(,( 4
1

)()*( n
i

n
i

n uG = . 
 
 We will show that whenever n  is sufficiently large, then the result of Theorem 1 holds 
even without Condition 1. Assume that for every agent }4,...,1{ ni∈ , )(n

iD  is a singleton, 
where we denote 

}{ )*()( n
i

n
i mD = . 
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Since the number of agents is sufficiently large and agents are randomly divided into 
groups 1 and 2 according to the uniform distribution on Φ , it follows that for each seller 

}2,...,1{ ni∈  (each buyer }4,...,12{ nni +∈ ), it is almost certain that she can sell (buy) the 
same amount of each commodity as what she intends to sell (buy, respectively), i.e., 

)( iii qmx =  almost certainly holds for all agents }4,...,1{ ni∈ . This implies that 
n

i
n

i
n mm 4

1
)*()*( )( ==  is the unique dominant message profile in *G . 

Unfortunately, without Condition 1, )*(nm  does not satisfy ex post individual 
rationality in )*(nG . Note, however, that whenever n  is sufficiently large, then, for every 
agent }4,...,1{ ni∈ , the probability of )()*(

i
n

ii qmx ≠  occurring is very small. This implies 
that whenever n  is sufficiently large, then )*(nm  satisfies participation constraint in 

))(,( 4
1

)()*( n
i

n
i

n uG =  in the sense that 
0))(( )*()( ≥nn

i mgu  for all }4,...,1{ ni∈ . 
Hence, we have proved the following theorem. 
 
Theorem 3: There exists a positive integer *n  such that for every *nn ≥ , )*(nm  is the 
unique dominant message profile in ))(,( 4

1
)()*( n

i
n

i
n uG = , and it satisfies participation constraint. 
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3. Interdependent Values 
 
 This section assumes interdependent values in that each agent’s payoff depends on the 
other agents’ private signals. 
 

3.1. The Model 
 

We modify the model by assuming that each agent receives a private signal iω . Let 

iΩ  denote the finite set of private signals for agent }4,...,1{ ni∈ . The probability of private 

signal profile ∏
=

= Ω=Ω∈=
n

i
i

n
ii

4

1

4
1)(ωω  occurring is given by ]1,0()( ∈ωf . Each agent si'  

payoff function with the expected utility hypothesis is redefined as RAui →Ω×: . For 
every lottery ∆∈α , let ∑

Γ∈

=
a

ii aauu )(),(),( αωωα , where Γ  is the support of α . A 

strategy for agent i  is defined as a function iii Ms →Ω: , where agent i  with private signal 

ii Ω∈ω  announces iii Ms ∈)(ω . Let iS  denote the set of strategies for agent i . 
A combination ),)(,( 4

1 fuG n
ii =  defines a Bayesian game. The expected payoff for agent 

i  with private signal iω  when agents play strategy profile ∏
=

= =∈=
n

i
i

n
ii SSss

4

1

4
1)(  in the 

Bayesian game ),)(,( 4
1 fuG n

ii =  is denoted by ∑
−− Ω∈

−=
ii

iiiiii fsgusu
ω

ωωωωω )|())),(((),( , 

where 
∑

−− Ω∈′
−

− ′
=

ii

ii
iii f

ff

ω

ωω
ωωω

),(
)()|( . Let ii SS =0 . Recursively, for every 1≥r , let i

r
i SS ⊂  

denote the set of strategies 1−∈ r
ii Ss  for agent i  such that there exists no 1−∈′ r

ii Ss  such that 
   ),,(),( iiiiii ssusu ωω −′≥′  for all i

r
iii Ss Ω×∈′ −

−−
1),( ω , 

with strict inequality for some i
r
iii Ss Ω×∈′ −

−−
1),( ω , where we denote ∏

=

=
n

i

r
i

r SS
4

1
 and 

∏
≠

− =
ij

r
j

r
i SS . Let r

iri SS
∞→

∞ = lim  and ∏
=

∞∞ =
n

i
iSS

4

1
. A strategy profile Ss∈  is said to be 

iteratively undominated in ),)(,( 4
1 fuG n

ii =  if ∞∈Ss . The set of iteratively undominated 
message profiles ∞S  in ),)(,( 4

1 fuG n
ii =  is said to be twice dominance solvable if 2SS =∞ . 

The set of iteratively undominated message profiles ∞S  in ),)(,( 4
1 fuG n

ii =  is said to be 
interchangeable if every iteratively undominated strategy profile is a Bayesian Nash 
equilibrium in ),)(,( 4

1 fuG n
ii = , i.e., for every ∞∈Ss , every }4,...,1{ ni∈ , and every ii Ω∈ω , 

   ),,(),( iiiiii ssusu ωω −′≥  for all ii Ss ∈ . 
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3.2. Auction Design 
 

We consider the following mechanism ),(** gMG =  where sellers and buyers are 
randomly divided into groups 1 and 2. Each seller announces a supply function, whereas 
each buyer announces a triplicate of messages, i.e., messages 1, 2, and 3. As message 1, she 
announces a demand function. As message 2, she announces a demand function conditional 
on the first messages of buyers in the same group as her. As message 3, she announces a 
demand function conditional on the first messages of all buyers. Almost certainly, the 
members of each group trade at the approximate market-clearing price vector based on the 
second messages of buyers in the other group. 

Let Ξ  denote the set of functions DDn →:θ . Let W  denote the set of functions 
DDw n →2: . For every seller }2,...,1{ ni∈ , let 

   DM i = . 
For every buyer }4,...,12{ nni +∈ , let 
   321

iiii MMMM ××= , 
DM i =

1 , Ξ=2
iM , and WM i =

3 . 
We denote 321321 ),,( iiiiiii MMMmmmm ××∈= , and denote any strategy for each buyer 

}4,...,12{ nni +∈  by Sssss iiii ∈= ),,( 321 , where Ds ii →Ω:1 , Ξ→Ωiis :1 , and Ws ii →Ω:1 . 
For every Mm∈ , let nn

iin
b Dmm 22

1
1
2

1, )( ∈= =+  denote the first message profile of all buyers. 
For every Mm ×Φ∈),(φ , let nn

iin
b Dmm ∈= =+ 1

1
)2(

,1, )(ˆ φ
φ  denote the first message profile of 

buyers in group 1. For every Mm ×Φ∈),(φ , let nn
niin

b Dmm ∈= +=+
2

1
1

)2(
,1, )(~

φ
φ  denote the first 

message profile of buyers in group 2. Based on buyers’ second messages, for every 
Mm ×Φ∈),(φ , we define 

])})()(ˆ())(({max[minarg),(ˆ
1

,12
)2()(},...,1{

** ∑
=

+∈∈
−∈

n

i
inikhPp

hpmmhpmmp φ
φφφ , 

and 

   ])})()(~())(({max[minarg),(~ 2

1

,12
)2()(},...,1{

** ∑
+=

+∈∈
−∈

n

ni
inikhPp

hpmmhpmmp φ
φφφ , 

where we assume that ),(ˆ ** mp φ  ( ),(~ ** mp φ ) does not depend on the messages announced 
in group 2 (group 1, respectively). 

Fix )
2
1,0(∈η  arbitrarily, which is close to zero. Fix Φ∈φ , Pp∈ , and Mm∈  arbitrarily. 

With probability 
Tn 2)!2(

η , the mechanism **G  chooses ),()1,,,(** qxmpa =φ  where for 

every }2,...,1{ ni∈ , 
pqq ini == + )2()( φφ  and )( )2(

1
)2()2( ininin qmx +++ = φφφ . 
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Each buyer buys the same amounts as what she intends to demand according to her first 

message. With probability 
Tn 2)!2(

η , **G  chooses ),()2,,,(** qxmpa =φ  where for every 

}2,...,1{ ni∈ , 
pqq ini == + )2()( φφ , 

))(ˆ( )2(
,1,2

)2()2( in
b

inin qmmx +++ = φ
φ

φφ  if ni ≤ , 
and 

))(~( )2(
,1,2

)2()2( in
b

inin qmmx +++ = φ
φ

φφ  if 1+≥ ni . 
Each buyer buys the same amounts as what she intends to demand according to her second 
message conditional on the first messages of buyers in the same group as her. With 

probability 
Tn 2)!2(

η , **G  chooses ),()3,,,(** qxmpa =φ  where for every }2,...,1{ ni∈ , 

pqq ini == + )2()( φφ  and ))(( )2(
1,3

)2()2( in
b

inin qmmx +++ = φφφ . 
Each buyer buys the same amounts as what she intends to demand according to her third 

message conditional on the first messages by all buyers. With probability 
Tn 2)!2(

31 η− , **G  

chooses ),()4,,,(** qxmpa =φ  where for every, 
   ),(~ **

)2()( mpqq ini φφφ == +  for all },...,1{ ni∈ , 

   ),(ˆ **
)2()( mpqq ini φφφ == +  for all }2,...,1{ nni +∈ , 

and 
))(( )2(

1,3
)2()2( in

b
inin qmmx +++ = φφφ  for all }2,...,1{ ni∈ . 

Agents in group 1 (group 2) trade at the approximate market-clearing price vector in group 
2 (group 1, respectively). Each buyer buys the same amounts as what she intends to 
demand according to her third message conditional on the first messages of all buyers. 

We specify the selling amount )(ixφ  of each seller )(iφ  in group 1 as follows, where 

),,,(),( ** bmpaqx φ= , }4,...,1{∈b , and },...,1{ ni∈ . Fix any commodity },...,1{ kh∈  
arbitrarily. There exists },...,1{ˆ ni ∈  satisfying the following properties. Suppose that there 
exists excess supply in group 1, i.e.,  

(7)   ∑∑
=

+
=

≥
n

j
jn

n

j
jj hxhqm

1
)2(

1
)()( )())(( φφφ . 

Then, 
   ))(()( )()()( hqmhx iii φφφ =  if ii ˆ< , 

∑∑
−

==
+ −=

1

1
)(

1
)2()( )()()(

i

j
j

n

j
jni hxhxhx φφφ ))(( )()( hqm ii φφ≤  if ii ˆ= , 

and 
0)()( =hx iφ  if ii ˆ> . 
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Suppose that inequality (7) does not hold. Then, 
lhx i =)()(φ  if ii ˆ< , 

∑∑
+==

+ −−−=
n

ij
j

n

j
jni hxlihxhx

1
)(

1
)2()( )()1()()( φφφ ))(( )()( hqm ii φφ≥  if ii ˆ= , 

and 
   ))(()( )()()( hqmhx iii φφφ =  if ii ˆ> . 

If there exists excess supply in group 1, then, each seller before )ˆ(iφ  can sell the same 
amount as what she intends to supply, whereas each seller after )ˆ(iφ  sells zero amount. If 
there exists excess demand in group 1, then, each seller after )ˆ(iφ  can sell the same amount 
as what she intends to supply, whereas each seller after )ˆ(iφ  has to sell the maximal 
amount l . In the same way, we specify the selling amounts in group 2. 
 

3.3. Iterative Dominance 
 

We specify the model as follows. Each seller si'  production technology is described 
by ),0[},....,1{},...,1{: ∞→Ω×× lkci , where 

),,(),1,( ωω lhchc ii ≤⋅⋅⋅≤  for all Ω∈ω  and all },...,1{ kh∈ . 
Hence, each seller’s production technology has no externality among different commodities, 

and the unit cost for each commodity is non-decreasing. Let ∑∑
= =

=
k

h

hx

t
iii

i

thcxc
1

)(

1
),,(),( ωω . 

Each seller si'  payoff for allocation ),( qx  is described by 

),()()(),,(
1

ωω ii

k

h
iii xchxhqqxu −=∑

=

. 

Each buyer si'  valuation is described by ),0[},...,0{: ∞→Ω×k
i lv , where 0),0,...,0( =ωiv . 

We allow any mixture of complements and substitutes among different commodities. Buyer 
si'  payoff is given by 

∑
=

−=
k

h
iiiii hxhqxvqxu

1

)()(),(),,( ωω . 

For every subset }4,...,1{ nN ⊂ , we denote NjjN ∈= )(ωω , NnN \}4,...,1{=− , 

NjjN ∉− = )(ωω , 
∑

−− Ω∈′
−

− ′
=

NN

NN
NN

N

f
ff

ω

ωω
ωωω

),(
)()|( , ∑

−

−=
N

NN
N

iiNii fxcxc
ω

ωωωω )|(),(),( , 

and ∑
−

−=
N

NN
N

iiNii fxvxv
ω

ωωωω )|(),(),( . We denote }{ii ωω = . For every seller 

}2,...,1{ ni∈ , we define DD ii ⊂)(ω  as the set of functions klPd },...,0{: →  such that for 
every Pp∈ , 
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   )],()()([maxarg)(
1},...,0{

iii

k

h
i

lx
xchxhppd

k
i

ω−∈ ∑
=∈

, 

which implies seller si'  profit-maximizing supply when she is a price taker and receives 
private signal iω . For every buyer }4,...,12{ nni +∈ , we define DD ii ⊂)(ω  as the set of 
functions klPd },...,0{: →  such that for every Pp∈ , 

   ])()(),([maxarg)(
1},...,0{
∑
=∈

−∈
k

h
iiii

lx
hxhpxvpd

k
i

ω , 

which implies buyer si'  payoff-maximizing demand when she is a price taker and receives 
private signal iω . 

The private signal structure satisfies symmetry in that there exist sΩ  and bΩ  such that 
   si Ω=Ω  for all }2,...,1{ ni∈ , 
   bi Ω=Ω  for all }4,...,12{ nni +∈ , 
and that for every Ω∈ω  and every Ω∈′ω , 

)()( ωω ′= ff  if there exists Φ∈φ  such that )(ii φωω =′  for all 
}4,...,12{ nni +∈ . 

We assume that for every buyer }4,...,12{ nni +∈ , every ii Ω∈ω , and every }{\ iii ωω Ω∈′ , 
(8)   φωω =′)()( iiii DD I . 
This implies that no buyer has the same payoff-maximizing demand function between 
different private signals. Based on this assumption, for every buyer }4,...,12{ nni +∈  and 
every ii Ω∈ω , we define Ξ⊂Ξ )( ii ω  as the set of functions DDn →:θ  such that for 
every Mm ×Φ∈),(φ  and every ii −− Ω∈ω , if )12( += ni φ , and 

)( )2()2(
1

)2( jnjnjn Dm +++ ∈ φφφ ω  for all },...,1{ nj∈ , 
then 

])()()ˆ,([maxarg))(ˆ(
1

,

},...,0{

,1, ∑
=∈

−∈
k

h
i

b
ii

lx

b hxhpxvpm
k

i

φφ ωθ , 

where n
b

n
jjn

b Ω∈= =+ 1)2(
, )(ˆ φ
φ ωω  denote the private signal profile of buyers in group 1. Let 

n
b

n
jjn

b Ω∈= =+ 1)3(
, )(~

φ
φ ωω  denote the private signal profile of buyers in group 2. Because of 

symmetry, we can replace },...,1{ nj∈  and φω ,ˆ b  with }2,...,1{ nnj +∈  and φω ,~b , 
respectively. Any element of )( ii ωΞ  implies buyer si'  payoff-maximizing demand 
function when she is a price taker and receives full information about the private signals for 
all buyers in the same group as her. For every buyer }4,...,12{ nni +∈  and every ii Ω∈ω , 
we define WW ii ⊂)(ω  as the set of functions DDw n →2:  such that for every Mm∈  and 
every ii −− Ω∈ω , if 
   )(1

jjj Dm ω∈  for all }4,...,12{ nnj +∈ , 
then 
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])()(),([maxarg))((
1},...,0{

1 ∑
=∈

−∈
k

h
i

b
ii

lx
hxhpxvpmw

k
i

ω , 

where n
b

n
jjn

b 22
1)2( )( Ω∈= =+φωω  denotes the private signal profile of all buyers. Any element 

of )( iiW ω  implies buyer si'  payoff-maximizing demand function when she is a price taker 
and receives full information about the private signals for all buyers. 
 
Condition 2: For every }2,...,1{ ni∈ , ),( ωii xc  is independent of ii −− Ω∈ω . For every 

}2,...,1{ ni∈  and every }4,...,12{ nnj +∈ , ),( ωjj xv  is independent of jj Ω∈ω . 
 

The former part of Condition 2 implies that all sellers have only private values. The 
latter part implies that we allow interdependent values only in the buyers’ side. 
 
Theorem 4: Suppose that Condition 2 holds. Then, a strategy profile Ss∈  is iteratively 
undominated in ),)(,( 4

1
** fuG n

ii =  if and only if for every seller }2,...,1{ ni∈  and every 

ii Ω∈ω , 
(9)   )()( iiii Ds ωω ∈  
and for every buyer }4,...,12{ nni +∈  and every ii Ω∈ω , 
(10)   )()(1

iiii Ds ωω ∈ , )()(2
iiiis ωω Ξ∈ , and )()(3

iiii Ws ωω ∈ . 
The set of iteratively undominated message profiles in ),)(,( 4

1
** fuG n

ii =  is twice dominance 
solvable and interchangeable. 
 
Proof: For every }4,...,1{),,( ××Φ∈ Pbpφ , each seller }2,...,1{ ni∈  receives the payoff 

given by ),()()(
1

iii

k

h
ii xchxhq ω−∑

=

, where )(ωsm =  and ),,,(),( * bmpaqx φ= . Note that 

im  never influences iq . Note from the former part of Condition 2 that iq  includes no 
information relevant to seller si'  cost condition. Without loss of generality, we assume that 
seller i  belongs to group 1, i.e., )( ji φ=  for some },...,1{ nj∈ . (We can apply the same 
argument when she belongs to group 2.) Fix any commodity },...,1{ kh∈  arbitrarily. 

Suppose that there exists excess supply in group 1, i.e., inequality (7) holds. If ij ˆ> , 
then 0)( =hxi , and seller i  cannot change the selling amount by changing her message. If 

ij ˆ≤ , then 

)](),)((min[)( hrhqmhx iii = , where ∑∑
−

=′
′

=′
′+ −=

1

1
)(

1
)2( )()()(

j

i
i

n

i
in hxhxhr φφ , 

and she can change the selling amount into )](),)((min[ hrhqm ii′  by announcing any im′  
instead of im . 
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Next, suppose that inequality (7) does not hold. If ij ˆ< , then lhxi =)( , and she 

cannot change the selling amount by changing her message. If ij ˆ≥ , then 
)]()],(),)((max[min[)( hrhrhqmhx iii = , 

where 

∑∑
+=′

′
=′

′+ −−−=
n

ji
i

n

i
in hxljhxhr

1
)(

1
)2( )()1()()( φφ , 

   ∑∑
−

=′
′

=′
′+ −=

1

1
)(

1
)2( )()()(

j

i
i

n

i
in hxhxhr φφ , 

and she can change the selling amount into )]()],(),)((max[min[ hrhrhqm ii′  by announcing 
any im′  instead of im . Since seller si'  production technology satisfies no production 
externality and non-decreasingness, it follows from the above observations that a strategy 

is  for seller i  is dominant, i.e., 
)),(()),),((( iiiiiii mgumsgu ωωω ≥−  for all ii Ω∈ω  and all Mm∈ , 

if and only if )( iii Dm ω∈  for all ii Ω∈ω . 
 Consider the case of 1=b . For every Pp ×Φ∈),(φ , each buyer }4,...,12{ nni +∈  
receives the payoff given by 

(11)   ∑
=

−
k

h
iiii hxhqxv

1

)()(),( ω , 

where )(ωsm =  and )1,,,(),( * mpaqx φ= . Note that im  never influences iq , )(1
iii qmx = , 

and buyer i  can change the buying amount into )(1
iii qmx ′=  by announcing any im′  instead 

of im . Hence, buyer i  can always maximize the expected value of (11) conditional on iω  
by announcing )()(1

iiii Ds ωω ∈  for any ii Ω∈ω . Since the first message for buyer i  is 
relevant to buyer si'  allocation only in the case of 1=b , it follows that if a strategy is  for 
buyer i  is included in 1

iS , then it must hold that )()(1
iiii Ds ωω ∈  for all ii Ω∈ω . 

Suppose that a strategy profile Ss∈  satisfies that )()( iiii Ds ωω ∈  for all sellers 
}2,...,1{ ni∈ , and )()(1

iiii Ds ωω ∈  for all buyers }4,...,12{ nni +∈ . Fix Pp ×Φ∈),(φ  and a 
buyer }4,...,12{ nni +∈  arbitrarily, where, without loss of generality, assume that buyer i  
belongs to group 1, i.e., )2( jni += φ  for some },...,1{ nj∈ . 

Consider the case of 2=b . Buyer i  receives the payoff given by (11) where 
)(ωsm =  and )2,,,(),( * mpaqx φ= . Note that im  never influences iq , and 

))(ˆ( ,1,2
i

b
ii qmsx φ= . Equality (8) implies that φ,1,ˆ bm  includes full information about φω ,1,ˆ b . 

Hence, buyer i  can always maximize the expected value of (11) conditional on φω ,1,ˆ b  by 
announcing )()(2

iiiis ωω Ξ∈  for any ii Ω∈ω . Since the second message for buyer i  is 
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relevant to buyer si'  allocation only in the case of 2=b , it follows that if a strategy is  for 
buyer i  is included in 2

iS , then it must hold that )()(2
iiiis ωω Ξ∈  for all ii Ω∈ω . 

Consider the case of either 3=b  or 4=b . Buyer i  receives the payoff given by (11) 
where )(ωsm =  and either )3,,,(),( * mpaqx φ=  or )4,,,(),( * mpaqx φ=  . Note that im  
never influences iq , and ))(( ,1,2

i
b

ii qmsx φ= . Equalities (8) imply that φ,1,bm  includes full 
information about all buyers’ private signals φω ,b . Note from the latter part of Condition 2 
that iq  includes no additional information relevant to buyer si'  valuation, whenever she 
knows φω ,b . Hence, buyer i  can always maximize the expected value of (11) conditional 
on φω ,b  by announcing )()(3

iiii Ws ωω ∈  for any ii Ω∈ω . Since the third message for buyer 
i  is relevant to buyer si'  allocation only in the cases of }4,3{∈b , it follows that if a 
strategy is  for buyer i  is included in 2

iS , then it must hold that )()(3
iiii Ws ωω ∈  for all 

ii Ω∈ω . 
The above arguments imply that for every agent }2,...,1{ ni∈  and every ii Ω∈ω , any 

strategy included in 2
iS  is a best reply to every strategy profile for the other agents that is 

included in 2
iS− . This implies 2SS =∞ , and every strategy profile in 2S  is a Bayesian Nash 

equilibrium. 
Q.E.D. 
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3.4. Asymptotic Efficiency 
 

We further specify the model as follows. We introduces an unobservable macro shock 
0ω . Let 0Ω  denote the finite set of macro shocks. The probability of macro shock 0ω  

and private signal profile ω  occurring is given by ]1,0[),( 0 ∈ωωf , where 

∑
Ω∈

=
00

),()( 0
ω

ωωω ff . Agents’ private signals are conditionally independent in that 

∏
=

=
n

i
iifff

4

1
0000 )|()(),( ωωωωω  for all Ω×Ω∈ 00 ),( ωω , where ∑

Ω∈
=

ω
ωωω ),()( 000 ff  

and 
)(

),(
)|(

00

0

0 ω

ωω
ωω ω

f

f
f ii

ii

∑
−− Ω∈= . There exist ]1,0[:)|( 0 →Ω⋅ ssf ω  and 

]1,0[:)|( 0 →Ω⋅ bbf ω  such that 
   )|()|( 00 ωω ⋅=⋅ si ff  for all }2,...,1{ ni∈ , 
and 
   )|()|( 00 ωω ⋅=⋅ bi ff  for all }4,...,12{ nni +∈ . 
There exist ),0[},...,0{},...,1{: 0 ∞→Ω×Ω×× slkc  and ),0[},...,0{: 0 ∞→Ω×Ω× b

klv  
such that 

∑
Ω∈

=
00

)|(),,,(),,( 00
ω

ωωωωω fthcthc ii  for all }2,...,1{ ni∈ , 

and 
∑

Ω∈

=
00

)|(),,(),( 00
ω

ωωωωω fxvxv iiii  for all }4,...,12{ nni +∈ , 

where 
)(

),()|( 0
0 ω

ωωωω
f

ff = . Hence, each agent’s payoff depends on the other agent’s 

private signals only through the macro shock. For every seller }2,...,1{ ni∈ , let 
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k

h
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t
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i

thchxhqqxu
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1
00 }),,,()()({),,,( ωωωω . 

For every buyer }4,...,12{ nni +∈ , let 
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−=
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h
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t
iiiii

i

hxhqthvqxu
1

)(

1
00 })()(),,,({),,,( ωωωω  

We will show that when the number of agents is sufficiently large, the mechanism 
**G  satisfies approximate efficiency with full information about the macro shock and 

approximate uniform pricing. For every 0>ε  that is close to zero, a strategy profile 
Ss∈  is said to be −ε efficient in ),)(,( 4

1 fuG n
ii =  if for every 00 Ω∈ω , the probability 

conditional on macro shock 0ω  of the mechanism G  choosing any allocation Aa∈  
according to Ms ∈)(ω  such that 
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0

 

is more than ε−1 . For every 0>ε  that is close to zero, a strategy profile Ss∈  is said 
to be −ε uniform pricing in ),)(,( 4

1 fuG n
ii =  if for every Ω∈ω , the probability of the 

mechanism G  choosing any allocation ),( qx  according to Ms ∈)(ω  such that for 
every },...,1{}4,...,1{),( knhi ×∈  and every }4,...,1{ nj∈ , 

ε≤− )()( hqhq ji  
is more than ε−1 . 

The intuition of our arguments is as follows. For every 0>ε , whenever n  is 
sufficiently large, then the probability conditional on any macro shock 00 Ω∈ω  that all 
buyers’ private signal profile n

b
n

nii
b 24

12)( Ω∈= +=ωω  satisfies 

   εωω
ωω

<−
=+∈

)|(
2

}|}4,...,12{{
0bb

bi f
n

nni
 for all bb Ω∈ω  

is larger than ε−1 . This holds true even if we replace bω  with either φω ,ˆ b  or φω ,~b . We 
assume that for every 00 Ω∈ω  and every }/{ 000 ωω Ω∈′ , 
(12)   )|()|( 00 ωω ′⋅≠⋅ bb ff . 
This implies that the probability distribution of each buyer’s private signal occurring is 
different between distinct macro shocks. Hence, whenever n  is sufficiently large, then, by 
observing either φω ,ˆ b  or φω ,~b , each buyer can receive almost full information about the 
unobservable macro shock 0ω . Note that whether each agent belongs to group 1 or group 2 
is determined according to the uniform distribution on Φ . Remember equalities (8) 
implying that the first message announced by any buyer according to price-taking behavior 
includes full information about her private signal. Hence, it follows from inequalities (12) 
that whenever n  is sufficiently large, then it is almost certain that both ),(ˆ ** mp φ  and 

),(~ ** mp φ  are approximated by the market-clearing price vector associated with all trades 
under full information about the macro shock. 
 Based on the above intuition, for every 00 Ω∈ω , fix a continuous function 

Rk →]1,0[:)( 0
** ωρ  and kp ]1,0[)( 0

** ∈ω  arbitrarily, where )0,...,0())()(( 0
**

0 =ωωρ p . 
Fix an infinite sequence ∞

=Ω 1
)()()()()()( ),,,,,( n

nnnnnn Tvcf η  arbitrarily, where 
∞=

∞→

)(lim n

n
T  and 0lim )( =

∞→

n

n
η . 

Hence, for sufficiently large n , the set of price vectors )(nP  is approximated by k]1,0[ , 
and it is almost certain that agents trades at the price vector ),(ˆ )()(** nn mp φ  or 

),(~ )()(** nn mp φ . Here, the set of macro shocks 0Ω  does not depend on n . 
We assume that inequalities (12) hold for all 1≥n  in the strict sense, i.e., there exists 
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0>ξ  such that for every 00 Ω∈ω , every }/{ 000 ωω Ω∈′ , and every 1≥n , 

(13)   ξωωωω
ω

≥′−∑
Ω∈ bb

b
n

bb
n

b ff )|()|( 0
)(

0
)( . 

We also assume that for every infinite sequence of price vectors ∞
=1

)( )( n
np , every kp ]1,0[∈ , 

and every infinite sequence of strategy profiles ∞
=1

)( )( n
ns , whenever )(ns  satisfies 

properties (9) and (10), implying price-taking behavior for all 1≥n , and 
   pp n

n
=

∞→

)(lim , 

then, for every 0>ε , there exists n  such that for every nn ≥ , the probability 
conditional on any macro shock 00 Ω∈ω  that the realized private signal profile 

)()( nn Ω∈ω  satisfies 

   εωρ
ωω
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−∑

=
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))((
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is larger than ε−1 , where n
iinmm 2

1
1
2

1 )( =+=  and )( )(
2

)(1
2

1
2

n
in

n
inin sm +++ = ω . Hence, ))(( 0

** pωρ  
almost surely approximates the excessive supply based on all buyers’ third messages when 
n  is sufficiently large. 

For every 1≥n , every )()( nn Ss ∈ , and every )()( nn Ω∈ω , we define 

),( )()()(** nnn sp ω ])})()()(())()(({max[infarg
2

1

1)(
2

)(3
2

)()(

},...,1{)(
∑
=

++∈∈
−∈

n

i

n
in

n
in

n
i

n
ikhPp

hpmshps
n

ωω , 

where n
iinmm 2

1
1
2

1 )( =+=  and )( )(
2

)(1
2

1
2

n
in

n
inin sm +++ = ω . Hence, ),( )()()(** nnn sp ω  approximates the 

market-clearing price vector associated with all trades based on all buyers’ third messages. 
We assume that for every infinite sequence of strategy profiles ∞

=1
)( )( n

ns , whenever )(ns  
satisfies properties (9) and (10) for all 1≥n , then, for every 0>ε , there exists n  such 
that for every nn ≥ , the probability conditional on any macro shock 00 Ω∈ω  that the 
realized private signal profile )()( nn Ω∈ω  satisfies 

εωω ≤− )(),( 0
**)()()( psp nnn  

is larger than ε−1 . Hence, )( 0
** ωp  almost surely approximates the market-clearing price 

vector associated with all trades based on all buyers’ third messages when n  is 
sufficiently large. From inequalities (13), it follows that )( 0

** ωp  almost surely 
approximates the market-clearing price vector associated with all trades under full 
information about the macro shock when n  is sufficiently large. For every sufficiently 
large n  and for every strategy profile )(ns  satisfying properties (9) and (10), it is almost 

certain that the maximal total surplus per capita 
n

au
n

i

n
i

nn
i

Aa nn

4

),,(max
4

1

)(
0

)()(
)()( ∑

=∈
ωω

 conditional 
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on ),( )(
0

nωω  approximates the average payoff when all agents trade at the uniform price 
vector )( 0

** ωp  as price takers with full information about the macro shock. Since whether 
each agent belongs to group 1 or group 2 is determined according to the uniform 
distribution on Φ , it follows that for every sufficiently large n  and every strategy profile 

)(ns , it is almost certain that both ))(,(ˆ )()()(** nnn sp ωφ  and ))(,(~ )()()(** nnn sp ωφ  are 
approximated by ))(( )()()(** nnn sp ω . Hence, whenever )(ns  satisfies properties (9) and (10), 
then both ))(,(ˆ )()()(** nnn sp ωφ  and ))(,(~ )()()(** nnn sp ωφ  are almost surely approximated by 

)( 0
** ωp . From the above arguments, we have proved the following theorem. 

 
Theorem 5: For every 0>ε , there exists a positive integer **n  such that for every 

**nn ≥ , any strategy profile )(ns  satisfying properties (9) and (10) is −ε efficient and 
uniform−ε  pricing in ),)(,( )(4

1
)()(** nn

i
n

i
n fuG = . 

  
We can show that any strategy profile with properties (9) and (10) satisfies 

participation constraints as follows. Suppose that for every n  and every )()( n
s

n
s Ω∈ω , 

there exist 00 Ω∈ω  and },...,1{ kh∈  such that )(),,( 0
**)()( ωω plhc n

s
n < . Then, every 

seller can earn a positive interim expected payoff whenever she trades at the market 
clearing price vector )( 0

** ωp . When n  is sufficiently large, it is almost certain that every 
seller trades at almost the same price vector as )( 0

** ωp  and can sell the same amounts as 
what she intends to supply. (Note that any buyer always buys the same amounts as what she 
intends to demand.) Hence, it follows that for every sufficiently large n , any strategy 
profile )(nss =  with properties (9) and (10) satisfies participation constraints in the 
Bayesian game ),)(,(),)(,( )(4

1
)()(**4

1
nn

i
n

i
nn

ii fuGfuG == =  in the sense that for every 
}4,...,1{ ni∈  and every ii Ω∈ω , 

   0)|())),((( ≥∑
−− Ω∈

−
ii

iii fsgu
ω

ωωωω . 

 
3.5. Generalization 

 
This subsection investigates the case where Condition 2 does not hold, and therefore, 

all sellers and buyers have interdependent values in the general sense. We modify the 
model by assuming that there exist rn2  agents, where 3≥r  is an integer, the first rn  
agents are sellers, and the latter rn  agents are buyers. We construct the following 
mechanism denoted by ),( gMG =+ , where sellers and buyers are randomly divided into 
r  distinct groups. We redefine Φ  as the set of one-to-one mappings 

}2,...,1{}2,...,1{: rnrn →φ  where },...,1{)( rni ∈φ  for all },...,1{ rni∈ , and 
}2,...,1{)( rnrni +∈φ  for all }2,...,1{ rnrni +∈ . For every },...,1{ r∈β , n  sellers 
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)(),...,1)1(( nn βφβφ +−  and n  buyers ))((),...,1)1(( nrnr βφβφ ++−+  belong to 
group β . For every agent }2,...,1{ rni∈ , let 
   321

iiii MMMM ××= , 
   DM i =

1 , 
   2

iM  is the set of functions DDm n
i →22 : , 

and 
   3

iM  is the set of functions DDm nr
i →− )1(23 : . 

In contrast with **G , not only buyers but also sellers announce triplicates of messages. We 
denote any strategy for each agent }2,...,1{ rni∈  by Sssss iiii ∈= ),,( 321 , where 

11 : iii Ms →Ω , 22 : iii Ms →Ω , and 33 : iii Ms →Ω . Let rnrn
ii Dmm 22

1
11 )( ∈= =  denote the 

first message profile of all agents. Let n
iinrin mmm 1))1(())1((

, ),( =+−++−= βθβθ
θβ  denote the 

message profile of all agents in group },...,1{ r∈β . Let n
iinrin mmm 1

1
))1((

1
))1((

,1, ),( =+−++−= βφβφ
φβ  

denote the first message profile of all agents in group β . Let }{\},...,1{
,1,,1, )( ββ
φβφβ

rmm ∈′
′− =  

denote the first message profile of all agents who do not belong to group β . 
For every Mm ×Φ∈),(φ  and every },...,1{ r∈β , we define 

])})()(())()(({max[infarg),,(
1)1(

,1,12
)(

,1,12
)(},...,1{ ∑

+−=

+
+

+
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+ −∈
n

ni
irnikhPp

hpmmhpmmmp
β

β

φβ
φ

φβ
φβφ , 

where ),,( mp βφ+  does not depend on the messages φβ ,1−m  announced in the precedent 
group 1−β . (Here, we denote r=−11  and 11 =+r .) Hence, ),,( mp βφ+  
approximates the market-clearing price vector based on the second messages announced by 
all agents in group β , where they are informed of the first messages announced in the 
subsequent group 1+β . 

Let )
2
1,0(∈η  denote an arbitrary positive real number that is close to zero. Fix 

Mm ×Φ∈),(φ  and Pp∈  arbitrarily. With probability 
Trn 2)!(

η , +G  chooses 

),()1,,,( qxmpa =+ φ  such that for every },...,1{ rni∈ , 
pqq irni == + )()( φφ  and )(1

)()()( pmxx iirni φφφ == + . 
Each seller sells the same amount of each commodity as what she intends to supply 
according to her first message, whereas each buyer )( irn +φ  has to buy the same amount 

of each commodity as what seller )(iφ  intends to supply. With probability 
Trn 2)!(

η , +G  

chooses ),()2,,,( qxmpa =+ φ  such that for every },...,1{ rni∈ , 
pqq irni == + )()( φφ  and )(1

)()()( pmxx irnirni ++ == φφφ . 
Each buyer buys the same amount of each commodity as what she intends to demand 
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according to her first message, whereas each seller )(iφ  has to sell the same amount of 
each commodity as what buyer )( irn +φ  intends to demand according to her first message. 

With probability 
Trn 2)!(

η , +G  chooses ),()3,,,( qxmpa =+ φ  such that for every 

},...,1{ r∈β  and every },...,1)1{( nni ββ +−∈ , 
pqq irni == + )()( φφ  and ))(( ,1,12

)()()( pmmxx iirni
φβ

φφφ
+

+ == . 
Each seller sells the same amount of each commodity as what she intends to supply 
according to her second message conditional on the first messages of the agents in the 
subsequent group 1+β , whereas each buyer )( irn +φ  has to buy the same amount of 

each commodity as what seller )(iφ  intends to supply. With probability 
Trn 2)!(

η , +G  

chooses ),()4,,,( qxmpa =+ φ  such that for every },...,1{ r∈β  and every 
},...,1)1{( nni ββ +−∈ , 

pqq irni == + )()( φφ  and ))(( ,1,12
)()()( pmmxx irnirni

φβ
φφφ

+
++ == . 

Each buyer buys the same amount of each commodity as what she intends to demand 
according to her second message conditional on the first messages of the agents in the 
subsequent group 1+β , whereas each seller )(iφ  has to buy the same amount of each 

commodity as what buyer )( irn +φ  intends to demand. With probability 
Trn 2)!(

η , +G  

chooses ),()5,,,( qxmpa =+ φ  such that for every },...,1{ r∈β  and every 
},...,1)1{( nni ββ +−∈ , 

pqq irni == + )()( φφ  and ))(( ,1,3
)()()( pmmxx iirni

φβ
φφφ

−
+ == . 

Each seller sells the same amount of each commodity as what she intends to supply 
according to her third message conditional on the first messages of all agents who no not 
belong to group β , whereas each buyer )( irn +φ  has to buy the same amount of each 

commodity as what seller )(iφ  intends to supply. With probability 
Trn 2)!(

η , +G  

chooses ),()6,,,( qxmpa =+ φ  such that for every },...,1{ r∈β  and every 
},...,1)1{( nni ββ +−∈ , 

pqq irni == + )()( φφ  and ))(( ,1,3
)()()( pmmxx irnirni

φβ
φφφ

−
++ == . 

Each buyer buys the same amount of each commodity as what she intends to demand 
according to her third message conditional on the first messages of all agents who do not 
belong to group β , whereas each seller )(iφ  has to buy the same amount of each 
commodity as what buyer )( irn +φ  intends to demand. 

With probability 
Tn 2)!2(

61 η− , +G  chooses ),()7,,,( qxmpa =+ φ  such that for every 

},...,1{ r∈β  and every },...,1)1{( nni ββ +−∈ , 
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)1,,()()( +== ++
+ βφφφ mpqq irni  and ))1,,()(( ,1,3

)()( += ++−
++ βφφβ

φφ mpmmx irnirn . 
Agents in each group β  trade at the approximate market-clearing price vector 

)1,,( +++ βφ mp  in the subsequent group 1+β . Each buyer buys the same amount of each 
commodity as what she intends to demand according to her third message conditional on 
the first messages of all agents who do not belong to group β . 

In the case of )7,,,(),( mpaqx φ+= , we specify the selling amount )(ixφ  for each 
seller )(iφ  as follows. Fix },...,1{ r∈β  and },...,1{ kh∈  arbitrarily. Suppose that seller 

)(iφ  belongs to group β , i.e., },...,1)1{( nni ββ +−∈ . There exists 
},...,1)1{(),( nnhii βββ +−∈= ++  satisfying the following properties. Suppose that there 

exists excess supply in group β , i.e.,  
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and 
0)()( =hx iφ  if +> ii . 

Suppose that inequality (14) does not hold. Then, 
lhx i =)()(φ  if +< ii , 
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+==
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n
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jnri hxlihxhx
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))1(()( )()1()()(  
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)( hqmm ii φ
φβ

φ
−≥  if ++= ii , 

and 
   ))()(()( )(

,1,3
)()( hqmmhx iii φ

φβ
φφ

−=  if ++> ii . 

If there exists excess supply in group β , then, each seller before )ˆ(iφ  can sell the same 
amount as what she intends to supply, whereas each seller after )ˆ(iφ  sells zero amount. If 
there exists excess demand in group β , then, each seller after )ˆ(iφ  can sell the same 
amount as what she intends to supply, whereas each seller after )ˆ(iφ  has to sell the 
maximal amount l . 
 We assume that for every }2,...,1{ rni∈ , every ii Ω∈ω , and every }{\ iii ωω Ω∈′ , 
(15)   φωω =′)()( iiii DD I . 
This implies that no buyer has the same payoff-maximizing demand function between 
different private signals, and no seller has the same payoff-maximizing supply function 
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between different private signals. Based on this assumption, for every buyer 
}2,...,1{ rnrni +∈  and every ii Ω∈ω , we define 22 )( iii MM ∈+ ω  as the set of functions 

22
ii Mm ∈  such that for every Ω∈ω  and every ii Mm −− ×Φ∈),(φ , if )1( += rni θ , and 

)( )()(
1

)( jjj Dm φφφ ω∈  for all })2(,...,1)1{(}2,...,1{ nrnrnnj ++++∈ U , 
then 
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i hxhpxvpmm
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φ ω , 

where }2,...,1{),( rnN ⊂φβ  is the set of members in group β , i.e., 
)})2((),...,1)1((),2(),...,1({),( nrnrnnN ++++= φφφφφβ . 

For every seller },...,1{ rni∈  and every ii Ω∈ω , we define 22 )( iii MM ∈+ ω  as the set of 
functions 22

ii Mm ∈  such that for every ii −− Ω∈ω  and every ii Mm −− ×Φ∈),(φ , if 
)1( += rni θ , and 
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)( jjj Dm φφφ ω∈  for all })2(,...,1)1{(}2,...,1{ nrnrnnj ++++∈ U , 
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For every buyer }2,...,1{ rnrni +∈  and every ii Ω∈ω , we define 33 )( iii MM ∈+ ω  as the 
set of functions 33

ii Mm ∈  such that for every ii −− Ω∈ω  and every ii Mm −− ×Φ∈),(φ , if 
)1( += rni θ , and 

)( )()(
1

)( jjj Dm φφφ ω∈  for all })1(,...,1{(},...,1{ nrrnnj ++∉ U , 
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For every seller },...,1{ rni∈  and every ii Ω∈ω , we define 33 )( iii MM ∈+ ω  as the set of 
functions 33

ii Mm ∈  such that for every ii −− Ω∈ω  and every ii Mm −− ×Φ∈),(φ , if 
)1( += rni θ , and 

)( )()(
1

)( jjj Dm φφφ ω∈  for all })1(,...,1{(},...,1{ nrrnnj ++∉ U , 
then 
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Condition 3: For every seller },...,1{ rni∈ , every Ω∈ω , every Ω∈′ω , and every 

Φ∈φ , if ii ωω ′= , i=)1(φ , and ),(),(
11

φβφβ
ββ

ωω BB
≠≠

′= UU , then for every k
i lx },...,0{∈ , every 

k
i lx },...,0{∈′ , and every Pp∈ , 
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 Condition 3 implies that each seller does not need to know what the private signals 
that the other agents in the same group as her possess are whenever she knows the private 
signals of all agents who do not belong to the same group as her. When r  is sufficiently 
large, it might be natural to assume Condition 3. 
 The first message of each seller (buyer) influences her payoff only in the case that the 
mechanism +G  chooses )1,,,( mpa φ+  ( )2,,,( mpa φ+ , respectively). Hence, it follows 
that if a strategy profile s  is undominated, then it must hold that for every agent 

}2,...,1{ rni∈  and every ii Ω∈ω , 
(16)   )()(1

iiii Ds ωω ∈ . 
The second message of each seller (buyer) influences her payoff only in the case that the 
mechanism +G  chooses )3,,,( mpa θ+  ( )4,,,( mpa θ+ , respectively). This, together with 
equalities (15), implies that if a strategy profile s  is included in 2S , then it must hold that 
for every agent }2,...,1{ rni∈  and every ii Ω∈ω , 
(17)   )()( 22

iiii Ms ωω +∈ . 
The third message of each seller (buyer) influences her payoff only in the case that the 
mechanism +G  chooses either )5,,,( mpa φ+  or )7,,,( mpa φ+  (either )6,,,( mpa θ+  or 

)7,,,( mpa φ+ , respectively). In the case of )7,,,( mpa φ+ , the residual total supply 
(demand) available to each buyer (seller, respectively) may include information about the 
private signals of the other agents of the same group as her. However, such information 
does not influence her choice of third message, because Condition 3 guarantees that she can 
maximize her payoff with full information about all agents’ private signals by observing 
only the first messages of the agents who do not belong to the same group as her. This 
observation, together with the assumption of no production externality and decreasingness 
of sellers’ const conditions, implies that if a strategy profile s  is included in 2S , then it 
must hold that for every agent }2,...,1{ rni∈  and every ii Ω∈ω , 
(18)   )()( 33

iiii Ms ωω +∈ . 
From the above arguments, we can prove the following theorem in the same way as 
Theorem 4. 
 
Theorem 6: A strategy profile Ss∈  is iteratively undominated in ),)(,( 4

1 fuG n
ii =

+  if and 
only if for every }2,...,1{ rni∈  and every ii Ω∈ω , properties (16), (17), and (18) hold. 
The set of iteratively undominated strategy profiles in ),)(,( 4

1 fuG n
ii =

+  is twice dominance 
solvable and interchangeable. 
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 Finally, we can apply the same argument as in Subsection 3.4 to the general 
interdependent value case, and show approximate efficiency, approximate uniform pricing, 
and participation constraints when the number of agents is sufficiently large. 
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