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Takatoshi Tabuchi†
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Abstract

Oligopoly models are usually analyzed in the context of two firms anticipating

that market outcomes would be qualitatively similar in the case of three or more

firms. This is not an exception in the literature on Hotelling’s location-then-price

competition. In this paper, we show that the main findings in Hotelling’s duopoly,

brand bunching and the max-min principle of product differentiation no longer hold

once three or more firms are allowed to enter the market. That is, oligopolists with

three or more firms proliferate brands and neither maximize nor minimize product

differentiation.

1 Introduction

Literature on the oligopoly theory is often confined to two firms for the sake of analytical

convenience in the literature and with the expectation that the number of firms would

not qualitatively affect oligopolistic markets much. However, in Hotelling’s (1929) spatial

competition, the difference in the equilibrium location between duopolies and oligopolies

with three or more firms is commonly known. Hence, with regard to Hotelling’s linear

market, if two firms compete first in terms of location and then price, they will be located

as far as possible; this is interpreted as maximum differentiation in characteristic space.

On the other hand, Neven (1987) and Brenner (2005) demonstrate that if there are more

than two firms in the market, they do not maximize differentiation. Therefore, some of

∗I wish to thank Fu-Chuan Lai and Jacques Thisse for useful comments and suggestions.
†Faculty of Economics, University of Tokyo, Japan. E-mail: ttabuchi@e.u-tokyo.ac.jp
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the established results on Hotelling’s duopoly no longer hold when more than two firms

are allowed to enter the market.

This paper aims to settle the two important debates in industrial organization–brand

proliferation and the max-min principle of product differentiation–by considering an

oligopoly with more than two firms. First, we tackle the established findings of Martinez-

Giralt and Neven (1988) that duopolists do not open multiple outlets even if there are

no fixed costs. The incentives to proliferate brands has long been attracting attention in

the field of industrial organization. Schmalensee (1978) argued that incumbent firms may

deter new entry by brand proliferation, whereas Judd (1985) showed that an incumbent

firm withdraw some brands in order to avoid intense competition. It is true that Judd’s

(1985) framework is general enough, but his conclusions are confined to duopoly. There

is no guarantee that his conclusions hold for an oligopoly with more than two firms.

Second, we address the established findings of Tabuchi (1994), Ansari, Economides

and Steckel (1997), and Irmen and Thisse (1998) that Hotelling was “almost right” be-

cause minimum differentiation (spatial concentration in a geographical space) can arise

in equilibrium along all but one dimension. The question whether product differentiation

is minimal or maximal has also been tackled in the field of industrial organization. We

show that the differentiation is neither minimum nor maximum in the two-dimensional

space once we extend the setting from two to three or more firms.

This paper deals with multi-outlet oligopoly in the context of location-then-price com-

petition. Multi-outlet oligopoly can also be analyzed on the basis of different frameworks.

First, it can be examined under location-then-quantity competition a la Cournot. How-

ever, we do not adopt this approach because equilibrium configurations do not necessarily

fit the reality. Price competition in this paper yields segmented configurations, whereas

the same does not hold for quantity competition according to Pal and Sarkar (2002).

Under quantity competition, each firm opens outlets the way a monopolist would.

Second, rich equilibrium configurations might be obtained by assuming an elastic

demand for the good. However, works such as Economides (1984) indicates that obtaining

analytically meaningful results with elastic demand is too difficult. For example, despite

the identical assumptions of the model with elastic demand, Wang and Yang (1999) and

Rath and Zhao (2001) arrive at different equilibrium configurations when the reservation

price is low.
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Third, rich equilibrium configurations may also emerge by employing random utilities

such as logit models in the consumers’ choice of a firm. However, obtaining analytically

meaningful and interesting results seems impossible when considering multiple outlets

of more than two firms. We, therefore, focus on the traditional approach of Hotelling’s

location-then-price competition due to its mathematically tractability and because it pro-

vides a more accurate description of reality.

The general setting of Hotelling’s location-then-price competition model is explained in

the next section. We examine two kinds of consumer distributions. Section 3 considers the

simplest one, where consumers are uniformly distributed over a circumference of a circle,

and section 4 considers a more realistic but complicated distribution where consumers

are uniformly distributed over a disk. We investigate both duopoly and triopoly with

multiple outlets in these two sections. We then conduct a brief empirical analysis in

section 5. Section 6 concludes the paper.

2 General Setting

Consumers are uniformly distributed over a convex set in R orR2, which is a circumference

of a circle or a disk. Each consumer purchases one unit of an identical good. There are

n firms with 2 outlets at the most, which are located on the convex set. We ignore the

cost of establishing outlets for analytical simplicity.1 They produce a good without cost

and sell it at the mill price. Consumers bear the transport cost for shopping, which is

quadratic in distance x as given by tx2.

The game in this paper is as follows. Each firm simultaneously determines the number

and location of outlets in the first stage, and then they simultaneously select each mill

price in the second stage. We know from Caplin and Nalebuff (1991) that there always

exists a unique Nash price equilibrium in the second-stage price subgame under this

setting, whereas there may be multiple equilibria in the first-stage location subgame. In

this paper, we seek a sub-game perfect Nash equilibrium (SPNE).

1Firms may establish more than two outlets when the additional costs of outlets are low. This may

be likely in the case of a characteristic space such as the colors of clothes. We restrict our analysis to

the case of two outlets because the overall results do not qualitatively differ much even if the firms are

allowed to produce many varieties (i.e., establish many outlets).
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Before examining the SPNE, define a Nash equilibrium in each stage. Because the

maximum number of outlets is two, each firm has two strategies in each stage.

Nash price equilibrium in the second stage is a price system where no firm wants to

change prices of its two outlets. More formerly, it is defined by

Πi
¡
p∗i , p

∗
−i
¢ ≥ Πi

¡
pi, p

∗
−i
¢ ∀i = 1, . . . , n (1)

where pi ≡ (pi1, pi2) is the price vector of firm i, p−i is the set of all price vectors except

i, and pi1 and pi2 are the prices of firm i’s outlets 1 and 2.

The Nash location equilibrium in the first stage is a configuration where no firm wants

either to relocate its outlets or to change their number. This is defined by

Πi
¡
x∗i , x

∗
−i
¢ ≥ Πi

¡
xi, x

∗
−i
¢ ∀xi1 and i = 1, . . . , n (2)

where xi ≡ (xi1, xi2) is the location vector of firm i, x−i is the set of all location vectors

except i, and xi1 and xi2 are the locations of firm i’s outlets 1 and 2. The number of

outlets of firm i is one if xi1 = xi2, and two if xi1 6= xi2.

3 Consumer distribution over a circumference of a

circle

In this section, consumers are uniformly distributed over the circumference of a circle

with a unit length, and in the next section, they are uniformly distributed over a disk.

3.1 Duopoly

We first consider the benchmark case of two firms. Martinez-Giralt and Neven (1988)

show that firms do not open multiple outlets in a duopoly and, further, that both firms

establish one outlet at opposite ends of a diameter of a circle, which is unique up to

rotation.2

Firms locate as far as possible from each other and do not open multiple outlets in

order to mitigate the intense price competition. This implies that relaxing product dif-

ferentiation is maximized in the characteristic space in the case of duopoly. In other
2If consumers are uniformly distributed over a line segment, then firms locate at the opposite ends of

the line segment (Neven, 1985).
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words, under duopolistic location-then-price competition, price competition takes prece-

dence over increasing the market reach.

3.2 Triopoly

There are three firms rather than two firms in the market. They can establish one or two

outlets on the circumference of a circle. The location space is denoted by x ∈ [0, 1).
If only one outlet is allowed in the case of triopoly, there exists a unique SPNE up

to rotation given by (xa, xb, xc) = (1/3, 2/3, 3/3).3 This is because the best locational

reply of each firm in the first stage is shown to be a midpoint of the neighboring firms.

Therefore, in the case of a single outlet, the principle of maximum differentiation holds

both in a duopoly and triopoly.

However, in contrast to the case of a duopoly, we can show that firms have an incentive

to open multiple outlets in the case of a triopoly. In order to see this, consider that firm

a opens the second outlet. Then, we can easily show that establishing the second outlet

at xa2 ∈ (1/3 − 0.041, 1/3 + 0.041) raises a’s profit. Insofar as a firm has an incentive

to open multiple outlets, the single outlet triopoly (xa, xb, xc) = (1/3, 2/3, 3/3) is not an

SPNE.

It can be verified that there are five equilibrium candidates for spatial arrangements

up to rotation ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

interlacing a1b1c1a2b2c2

partial segmentation a1a2c1b1b2c2

segmentation a1a2b1b2c1c2

quasi-interlacing a1b1c1a2c2b2

quasi-partial segmentation a1a2b1c1b2c2

Each spatial arrangement seems to yield the unique location of two outlets of each firm,

obtained by using the damped Newton’s method in Mathematica calculations with several

initial values of locations. However, it can be shown that the last two arrangements are

not Nash equilibria. quasi-interlacing is unstable because withdrawing one outlet of firm

a raises its profit. Quasi-partial segmentation is unstable because relocating an outlet of

3Brenner (2005) shows that the SPNE configuration of firms is given by (x∗a, x
∗
b , x
∗
c) = (1/8, 4/8, 7/8)

in the case of a unit line segment.
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firm a to location, say, (c1 + b2) /2 raises its profit. The remaining first three candidates

are shown to be SPNE from the Appendix. Hence, we establish the following.

Proposition 1 The following configurations are SPNE:4

(i) interlacing: (x∗a1, x
∗
b1, x

∗
c1, x

∗
a2, x

∗
b2, x

∗
c2) =

¡
1
6
, 2
6
, 3
6
, 4
6
, 5
6
, 6
6

¢
and Π∗i = t/108 for i =

a, b, c.

(ii) partial segmentation: (x∗a1, x
∗
a2, x

∗
c1, x

∗
b1, x

∗
b2, x

∗
c2) =

¡
3
16
, 5
16
, 8
16
, 11
16
, 13
16
, 16
16

¢
and Π∗a =

Π∗b = 169t/12288 < 242t/12288 = Π∗c.

(iii) segmentation: (x∗a1, x
∗
a2, x

∗
b1, x

∗
b2, x

∗
c1, x

∗
c2) =

¡
1
6
, 1
6
+ r, 3

6
, 3
6
+ r, 5

6
, 5
6
+ r
¢
and Π∗i =

(2− 3r)t/54 for i = a, b, c, where r = (11−√73)/18 ' 0.136.

The proof of Proposition 1 is contained in the Appendix. This proposition shows mul-

tiple equilibria in the first-stage location subgame, whereas there is a unique equilibrium

in the second-stage price subgame. The interlacing configuration is socially optimum and

the distances are maximized. However, this is not true for the other two configurations:

firms neither maximize nor minimize product differentiation in characteristic competition.

Presume that the fourth firm enters and opens one outlet when the multi-outlet in-

cumbents are located as in Proposition 1. Then, this profit maximizing firm would locate

its outlet at x = 1/12, 1/6 + r/2 and 3/32 in cases (i), (ii), and (iii), respectively. It can

be shown that the profit of the entrant is the smallest (0.0014t) in case (i) of interlacing

configuration and largest (0.0031t) in case (iii) of the segmentation. This is parallel to

the profits of the incumbents, which are the smallest (0.0093t) in the interlacing case and

largest (0.0295t) in the segmentation case. We may therefore state that keen competition

reduces the profits of incumbents but prevents the entry of new firms.

If there exists a fixed cost for entry, which is slightly larger than 0.0014t, then both

the segmentation and the partial segmentation are vulnerable to the entry of the fourth

firm, whereas the interlacing is not. In other words, the interlacing configuration with

keener competition is more likely to appear than the others.

The results of Proposition 1 may be extended to a larger number of outlets. If each firm

is allowed to open a maximum of three outlets, then we can verify that both interlacing

4In the case of a line segment, we numerically confirm that interlacing (a1b1c1a2b2c2) and partial

segmentation (a1a2c1b1b2c2) are SPNE, whereas other configurations are not.

6



(x∗a1, x
∗
b1, x

∗
c1, x

∗
a2, x

∗
b2, x

∗
c2, x

∗
a3, x

∗
b3, x

∗
c3) and segmentation (x

∗
a1, x

∗
a2, x

∗
a3, x

∗
b1, x

∗
b2, x

∗
b3, x

∗
c1, x

∗
c2, x

∗
c3)

are SPNE.

4 Consumer distribution over a disk

4.1 Duopoly

Geographical space is two-dimensional rather than one-dimensional, and the characteristic

space is also multi-dimensional in reality. Therefore, it is of interest to consider a unit

disk {(x, y) : x2 + y2 ≤ 1} over which consumers are uniformly distributed keeping the
other assumptions the same as those in the benchmark case.

Tabuchi (1994) shows that in the SPNE, two firms with one outlet each locate at

the opposite sides of the circumference of a disk (x∗a, y
∗
a) = (−1, 0), (x∗b , y∗b ) = (1, 0) up

to rotation. This implies that firms maximize differentiation in one dimension (x axis),

whereas they minimize differentiation in another dimension (y axis). This is the so-called

max-min principle of product differentiation: firms maximize differentiation only in one

dimension (x axis) while minimize differentiation in all other dimensions. This is also

shown to hold for three dimensions by Ansari, Economides, and Steckel (1997) and for an

arbitrary number of dimensions by Irmen and Thisse (1998).

4.2 Triopoly

What if there are three firms with one outlet each on the disk in section 4.1? Because

the two-dimensional analysis with more than two firms is mathematically complicated,

we seek a symmetric equilibrium. For this purpose, assume that the locations of firms a,

b and c are restricted to

(xa, ya) = (0, za) , (xb, yb) = (−
√
3zb/2,−zb/2), (xc, yc) = (

√
3zc/2,−zc/2) (3)

where zi ∈ [0, 1] for i = a, b, c as depicted in Figure 1. Let pi be the mill price of a good
by firm i. Then, there are three market boundary lines

pa + (x− xa)2 + (y − ya)2 = pb + (x− xb)2 + (y − yb)2 (4)

pb + (x− xb)2 + (y − yb)2 = pc + (x− xc)2 + (y − yc)2 (5)

pc + (x− xc)2 + (y − yc)2 = pa + (x− xa)2 + (y − ya)2 (6)
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with a common intersection point (x0, y0) given by simultaneously solving two of the

above three equations. Let (x1, y1) be the upper intersection point between (4) and

the circumference of the unit circle, (x2, y2) is the lower intersection point between (5)

and the circumference, and (x3, y3) is the upper intersection point between (6) and the

circumference. Then, firm a’s demand Da is determined by the area of the circular sector

with vertices (x0, y0), (x1, y1), and (x3, y3); firm b’s demand Db by that with (x0, y0),

(x1, y1), and (x2, y2); and firm c’s demand Dc by that with (x0, y0), (x2, y2), and (x3, y3).

Hence, the profit of firm i = a, b, c is given by

Πi(pa, pb, pc, za, zb, zc) = piDi

Each firm i maximizes its profit with respect to its price pi. Unlike the one-dimensional

case, one cannot obtain a closed form solution of pi from the first-order conditions:

∂Πi
∂pi

= 0 for i = a, b, c (7)

However, we know from Caplin and Nalebuff (1991) that there always exists a unique Nash

price equilibrium p∗i in the second-stage price subgame because the demand is convex.

In the first-stage location subgame, firm i maximizes its profit with respect to zi given

the unique equilibrium prices p∗i (za, zb, zc). The first-order condition is

dΠi
dzi

=
∂Πi
∂zi

+
X
j=a,b,c

∂Πi
∂pj

∂pj
∂zi

=
∂Πi
∂zi

+
X
j 6=i

∂Πi
∂pj

∂pj
∂zi

= 0 for i = a, b, c (8)

where the second equality is due to (7). The partial derivatives ∂pj/∂zi can be obtained

by applying the implicit function theorem to (7) as follows:⎛⎜⎜⎜⎝
∂pa
∂zi

∂pb
∂zi

∂pc
∂zi

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
∂fa
∂pa

∂fa
∂pb

∂fa
∂pc

∂fb
∂pa

∂fb
∂pb

∂fb
∂pc

∂fc
∂pa

∂fc
∂pb

∂fc
∂pc

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎜⎝

∂fa
∂zi

∂fb
∂zi

∂fc
∂zi

⎞⎟⎟⎟⎠
where fi ≡ ∂Πi/∂pi is defined by (7).

The symmetric equilibrium candidate can be computed by solving (7) and (8) si-

multaneously and evaluating a symmetric solution zi = z and pi = p for i = a, b, c.
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Straightforward but tedious calculations yield a candidate for symmetric equilibrium as

follows:
z∗i =

2592+612
√
3−27π2−2√3π3

24(432−π2) ≈ 0.548
p∗i =

864
√
3+612π−9√3π2−2π3
24(432−π2) πt ≈ 0.993t

Π∗i =
864
√
3+612π−9√3π2−2π3
72(432−π2) π2t ≈ 1.040t

(9)

The sufficient conditions for Nash location equilibrium can be ascertained locally by check-

ing the second-order conditions at zi = z∗i and pi = p∗i . However, one can check the

sufficient conditions globally by numerical analysis in the following two steps. First, cal-

culate pa and pb(= pc) by numerically solving ∂Πa/∂pa = 0 and ∂Πb/∂pb = 0 in (7) for

za = 0, 0.01, 0.02, ..., 1 given the values of zb = zc = z∗i . Note that the unique price equi-

librium is always guaranteed. Second, by plugging the equilibrium prices into Πa, we can

express Πa as a function of za as drawn in Figure 2. Because the profit Πa is obviously

single-peaked at za = z∗i , one can confirm that (9) is the unique SPNE under the location

constraints (3).

Before interpreting the SPNE outcome, we should determine whether there are any

other equilibria without the location constraints (3). One possible candidate for SPNE is

axisymmetric location:

(xa, ya) = (−bz, 0) , (xb, yb) = (0, 0), (xc, yc) = (bz, 0)
In order to verify this, assume that the locations of the three firms are restricted to the

x-axis, such that

(xa, ya) = (za, 0) , (xb, yb) = (zb, 0), (xc, yc) = (zc, 0)

where −1 ≤ za ≤ zb ≤ zc ≤ 1. The market boundaries are given by lines parallel to the
y-axis. Conducting similar computations with axisymmetric location za = −zc = −bz, we
have a unique candidate for SPNE:

(bza, bzb, bzc) ≈ (−0.322, 0, 0.322)
(bpa, bpb, bpc) ≈ (0.319t, 0.215t, 0.319t)
(bΠa, bΠb, bΠc) ≈ (0.299t, 0.273t, 0.299t)

However, this is not a SPNE because firm b has an incentive to relocate: if it moves

from the center (xb, yb) = (0, 0) to the periphery (xb, yb) = (0, 1), then its profit will

rise from 0.273t to 0.439t. The last possibilities are asymmetric configurations, which
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are unlikely to be equilibria given the uniform distribution of consumers. Hence, the

symmetric configuration (9) seems to be the unique SPNE.

Several remarks are in order here. First, the equilibrium locations of the firms are

inside the disk in the case of triopoly, whereas they are on the edges in the case of

duopoly.5 This suggests that triopolists locate themselves closer in order to gain the

market area at a cost of tough price competition because location competition for market

area is more important for their profits. On the other hand, duopolists locate themselves

apart in order to relax price competition, which is more important for their profits than

location competition.

Second, the optimum locations of firms can be determined by minimizing the sum of

the transport costs. It can be readily shown that the optimal location is zoi =
√
3/π ≈

0.551 > 0.548 = z∗i . That is, firms tend to locate themselves close to each other relative

to the social optimum, implying that the location competition effect given by the first

term in (8) is stronger than the price competition effect given by the second term in

(8), as compared to the case of duopoly. Note, however, that three firms tend to locate

themselves apart as relative to the social optimum in the linear case (xo2−xo1 = 1/3 < 3/8 =
x∗2−x∗1). This implies that price competition is mitigated relative to location competition
in the two-dimensional space. Put differently, location competition is important relative to

price competition in the two-dimensional space because larger demand can be obtained

by locating closer to the center in the two-dimensional space as compared to the one-

dimensional space.

Third, because the equilibrium locations of firms are neither at the edges nor the center,

the max-min principle of product differentiation, which is true in the case of duopoly

(Tabuchi, 1994; Ansari, Economides and Steckel, 1997; Irmen and Thisse, 1998), no longer

holds at all in the case of triopoly. The max-min principle of product differentiation itself

is impossible for more than two firms and is nothing but an artifact for duopoly. Therefore,

one may conclude that contrary to the case of duopoly, Hotelling was not almost right

5Such different outcomes do not arise in the previous section because the space on the circumference

of a circle is homogeneous. On the other hand, the space on a disk or a linear segment is heterogeneous

because access to consumers differ between the center and peripheries. In other words, a closer location

between three or more firms arises owing to the existence of centrality. Note that for the emergence of

multiple outlets, three or more firms are needed, but centrality is not necessary, as we saw in section 3.2.
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once there are three firms in the market.

Fourth, the qualitatively similar outcome can also be numerically confirmed in the

case of quadropoly. The symmetric equilibrium candidate is unique and given by

z∗i =
80+4π−π2
4
√
2(40−3π) ≈ 0.478

p∗i =
80+4π−π2
16(40−3π)πt ≈ 0.531t

Π∗i =
80+4π−π2
64(40−3π)π

2t ≈ 0.417t

for i = a, b, c, d.6 Observe that (i) the firms’ locations are inside the disk: z∗i < 1, (ii)

firms tend to locate close as compared to the social optimum: zoi = 4
√
2/3π ≈ 0.600 >

0.478 ≈ z∗i , and (iii) the max-min principle of product differentiation does not hold.
Finally, consider whether triopolists on a disk have an incentive to open multiple

outlets. In order to simplify the analysis, fix the locations of firms b and c as

(xb, yb) = (−
√
3z∗i /2,−z∗i /2), (xc, yc) = (

√
3z∗i /2,−z∗i /2)

and split the outlet of firm a horizontally as

(xa1, ya1) = (−e, z∗i ) , (xa2, ya2) = (e, z
∗
i )

where z∗i ≈ 0.548 is given by (9).
Then, it can be verified that

dΠa
de

=
∂Πa
∂e

+
X
j=b,c

∂Πa
∂pj

∂pj
∂e
≈ 0.09t > 0

which implies that firm a has an incentive to split its outlet into two. Due to the locational

symmetry, each firm has an incentive to establish multiple outlets.

5 Average distance

Figure 3 illustrates the locations of convenience stores for 2009 inside the red circle with

radius one kilometer around Shinjuku station in Tokyo. There are five firms–Seven-

Eleven, Lawson, FamilyMart, am/pm, and CircleKSunkus–with 14, 13, 12, 19, and 15

6There is another location equilibrium candidate: firms a, b, and c locate symmetrically about the

center, and firm d locates at the center; distances from the location of firm d and the remaining firms are

z ≈ 0.465. However, this is not an SPNE because firm d can raise its profit by relocating to an edge that

is farther away from the competitors.
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stores, respectively. Similar location configurations are observed around Shibuya station

in Tokyo, Sakae station in Nagoya, and Nanba station in Osaka.

There is no doubt that convenience stores are typically multi-outlet spatial oligopolists.

Although convenience stores sell a wide variety of products, their selections of varieties

are quite similar. Therefore, goods are more or less homogeneous, which suggests that

Hotelling’s spatial competition may apply. Convenience stores compete in the number

and location of outlets. They normally sell goods at regular prices. However, they often

compete in price in terms of, for example, discounts on plastic bottles of water.

In order to see whether the locations of convenience stores are interlaced or segmented,

we compute the ratio of the average distance between outlets belonging to the same firm,

ds, to that belonging to different firms, dd. We refer to ds/dd as the degree of mixing.

By measuring the distances between convenience stores around Shinjuku, Shibuya, Sakae,

and Nanba, we obtain the degree of mixing ds/dd = 0.99, 0.98, 1.04, and 1.03, respectively.

Whether the values close to 1 imply interlacing or segmentation can be determined

by computing the degree of mixing in each configuration in Proposition 1 in section 3.2.

It can be readily shown that the degree of mixing is the largest (ds/dd = 2) in the case

of interlacing configuration because ds = 1/2 and dd = 1/4. It is an intermediate value

(ds/dd = 0.8) in the case of partial segmentation and the smallest value (ds/dd = 0.2) in

the case of segmentation.

Because the values of the degree of mixing are intermediate, the spatial configurations

of convenience stores around the four big stations in Japan are neither interlaced nor

segmented. They are mid-way between the two configurations.

6 Conclusion

We revisited Hotelling’s location-then-price competition by considering uniform distribu-

tions of consumers over a circumference of a circle and a disk in order to settle the debates

on brand proliferation and max-min principle of product differentiation.

Comparing the market outcomes between duopoly and oligopoly with three or more

firms, we have shown that firms proliferate brands in the latter but not in the former, and

that firms neither maximize nor minimize product differentiation in the latter but not in

the former. We may therefore conclude that duopoly substantially differs from oligopoly
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with three or more firms.

We also conducted a brief empirical analysis in order to find the difference between

theory and reality. Computing the degree of mixing, we have shown that the spatial

configurations of convenience stores near big stations in Japan are partially segmented.

However, much work remains to be done in order to fully settle the above two debates.

Our analysis has dismissed the sequential entry of firms. If firm entry is sequential under

perfect foresight (Prescott and Visscher, 1977) in the setting of section 3.2, then market

segmentation is an SPNE, which ensures higher profits for all firms according to pre-

liminary simulations. We have also dismissed endogenizing the number of outlets, which

depends on the fixed costs of entry. These market outcomes are perhaps more complicated

but, nevertheless, richer and may better fit the reality.

Appendix: Proof of Proposition 1

Firm i = a, b, and c establishes outlets i1 and i2 at x = xi1, xi2. The number of outlets of

firm i is 1 if xi1 = xi2 and 2 if xi1 6= xi2. Suppose outlets of firm i are located such that

xj < xi1 < xk and xl < xi2 < xm, where j, k, l,m could be i1 or i2. Then, the full prices of

the good in the visiting outlets i and j are equal at location bxab of marginal consumers:
pi1 + (bxij − xi1)2 = pj + (xj − bxij)2

which leads to the market boundary between outlets i and j

bxij = pj − pi1
2 (xj − xi1) +

xj + xi1
2

Marginal consumers at bxij are indifferent between visiting outlets i and j. The other
market boundaries are similarly computed. Then, the profit of firm i is defined as

Πi = pi1(bxik − bxij) + pi2(bxil − bxim)
Because Πi is quadratic and concave in pi1 and pi2, the first-order condition is linear in

pi1 and pi2, ensuring that the unique equilibrium prices are explicitly obtained. Plugging

the equilibrium prices into the profits, they can be expressed as functions of locations

xa1, xa2, xb1, xb2, xc1 and xc2. Solving the first-order conditions with respect to locations

yields the necessary conditions for SPNE.
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There are five SPNE candidates up to rotation and permutation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

interlacing (xa1, xb1, xc1, xa2, xb2, xc2) =
¡
1
6
, 2
6
, 3
6
, 4
6
, 5
6
, 6
6

¢
segmentation (xa1, xa2, xb1, xb2, xc1, xc2) =

¡
1
6
, 1
6
+ r, 3

6
, 3
6
+ r, 5

6
, 5
6
+ r
¢

partial segmentation (xa1, xa2, xc1, xb1, xb2, xc2) =
¡
3
16
, 5
16
, 8
16
, 11
16
, 13
16
, 16
16

¢
quasi-partial segmentation (xa1, xb1, xc1, xc2, xa2, xb2) = (r1, r2, r3, 1− r3, 1− r2, 1− r1)
quasi-interlacing (xa1, xb1, xc1, xb2, xa2, xc2) =

¡
r4, r5,

1
2
, 1
2
+ r4,

1
2
+ r5, 1

¢
where r = (11 − √73)/18 ' 0.136, r1 ' 0.120, r2 ' 0.313, r3 ' 0.462, r4 ' 0.182, and
r5 ' 0.318. In the following sections, the first three candidates are shown to be SPNE,
whereas the last two are not.

A.1 Interlacing

Because this is a perfectly symmetric configuration, it is obvious that the first-order

conditions of the location competition are met. For indicating SPNE, we show that

(xa1, xa2) = (1/6, 4/6) is the maximizer of eΠa(xa1, xa2) in the intervals of xa1 ∈ [0, 2/6]
and xa2 ∈ [3/6, 5/6] given (xb1, xc1, xb2, xc2) = (2/6, 3/6, 5/6, 6/6).
Let eΠi be the profit of firm i after plugging the equilibrium prices solved in the second

stage. Because the Nash location equilibrium conditions in the first stage are deΠi/dxi1 =
deΠi/dxi2 = 0 for i = a, b, c, we have

deΠa
dxa1

− d
eΠa
dxa2

=
g (xa1, xa2) (2xa2 − 2xa1 − 1)

h (xa1, xa2)
= 0 (1)

where

g (xa1, xa2) ≡ 108241920x3a2x7a1 − 216483840x2a2x7a1 + 136525824xa2x7a1 − 26873856x7a1 + 36870930432x6a2x6a1
−147483721728x5a2x6a1 + 235828537344x4a2x6a1 − 192013576704x3a2x6a1 + 83907332352x2a2x6a1 − 18819385344xa2x6a1
+1715452416x6a1 − 36870930432x6a2x5a1 + 149258889216x5a2x5a1 − 241745762304x4a2x5a1 + 199335002112x3a2x5a1
−88030672128x2a2x5a1 + 19878916032xa2x5a1 − 1823454336x5a1 + 5385222144x6a2x4a1 − 23020194816x5a2x4a1
+39280267008x4a2x

4
a1 − 33944479488x3a2x4a1 + 15571376640x2a2x4a1 − 3624103200xa2x4a1 + 347479024x4a1

+108241920x7a2x
3
a1 + 2732673024x

6
a2x

3
a1 − 11952914688x5a2x3a1 + 19689827328x4a2x3a1 − 16320934080x3a2x3a1

+7224779904x2a2x
3
a1 − 1625057936xa2x3a1 + 144034880x3a1 − 54120960x7a2x2a1 + 31041792x6a2x2a1 + 551311488x5a2x2a1

−1409446080x4a2x2a1 + 1451289696x3a2x2a1 − 727687440x2a2x2a1 + 173715240xa2x2a1 − 15964948x2a1 + 1223424x7a2xa1
−187612416x6a2xa1 + 763132032x5a2xa1 − 1264670400x4a2xa1 + 1080729904x3a2xa1 − 500962800x2a2xa1
+119644672xa2xa1 − 11463652xa1 + 798336x7a2 − 15372864x6a2 + 46260096x5a2 − 56503376x4a2 + 32255720x3a2
−7983148x2a2 + 475172xa2 + 69217
h (xa1, xa2) ≡ 18

¡
3024x2a2x

2
a1 − 4032xa2x2a1 + 1056x2a1 − 1008x2a2xa1 + 1368xa2xa1 − 368xa1 − 204x2a2 + 268xa2 − 71

¢3
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Because h (xa1, xa2) is always positive, the numerator of (1) should be zero for Nash

location equilibrium. We show g (xa1, xa2) 6= 0 below and conclude that 2xa2−2xa1−1 = 0
holds.

Because g (xa1, xa2) is the 7th order polynomial with respect to xa1, the sign of

∂6g/∂x6a1 does not change. Because ∂6g (0, xa2) /∂x
6
a1 < 0 and ∂6g (2/6, xa2) /∂x

6
a1 < 0,

we have ∂6g/∂x6a1 < 0 for all xa1 ∈ [0, 2/6]. Hence, the sign of ∂3g/∂x3a1 changes a maxi-
mum of three times. However, because ∂3g (0, xa2) /∂x3a1 < 0 and ∂

3g (2/6, xa2) /∂x
3
a1 > 0,

the sign of ∂3g/∂x3a1 changes exactly once from negative to positive. Hence, the sign of

∂g/∂xa1 changes a maximum of three times. Nevertheless, because ∂g (0, xa2) /∂xa1 > 0

and ∂g (2/6, xa2) /∂xa1 < 0, the sign of ∂g/∂xa1 changes exactly once from positive to

negative. However, because g (0, xa2) > 0 and g (2/6, xa2) > 0, g (xa1, xa2) > 0 holds for

all xa1 ∈ [0, 2/6].
Therefore, (1) implies xa2 = xa1 + 1/2. Substituting this into deΠa/dxa1 = 0, we can

show that (xa1, xa2) = (1/6, 4/6) is the unique solution of deΠa/dxa1 = deΠa/dxa2 = 0.

Furthermore, we can verify the second-order conditions for local maximum. Putting

these results together, we arrive at (xa1, xa2) = (1/6, 4/6) as the global maximizer of

Π∗a(xa1, xa2). Finally, we can verify that withdrawing one of the two outlets decreases the

profit of firm a.

Moreover, because the same can be applicable for i = b, c, (xa1, xb1, xc1, xa2, xb2, xc2) =

(1/6, 2/6, 3/6, 4/6, 5/6, 6/6) is the unique interlacing configuration that is an SPNE up to

permutation. By plugging these values, into prices and profits, we have the equilibrium

prices and profits given in Proposition 1.

A.2 Partial segmentation

The first-order conditions of the location competition are readily confirmed. Similar to

the interlacing case, we show that (xa1, xa2) = (3/16, 5/16) is the maximizer of eΠa for
all 0 ≤ xa1 ≤ xa2 ≤ 8/16 given (xc1, xb1, xb2, xc2) = (8/16, 11/16, 13/16, 16/16) and that
(xc1, xc2) = (8/16, 16/16) is the maximizer of eΠc in the intervals of xc1 ∈ [0, 3/16] and
xc2 ∈ [5/16, 11/16] given (xa1, xa2, xb1, xb2) = (3/16, 5/16, 11/16, 13/16)
Computing deΠa/dxa1+deΠa/dxa2 = 0, we get an expression similar to (1). Further, by

identifying the derivatives up to the 4th order, we can show that (xa1, xa2) = (3/16, 5/16)
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is the unique solution of deΠa/dxa1 = deΠa/dxa2 = 0, and that the second-order conditions
for local maximum are satisfied.

Likewise, (xc1, xc2) = (8/16, 16/16) is shown to be the unique solution of deΠc/dxc1 =
deΠc/dxc2 = 0, and that the second-order conditions for local maximum are satisfied. We

can also verify that dropping one of the two outlets decreases the profit of firm c.

Hence, (xa1, xa2, xc1, xb1, xb2, xc2) = (3/16, 5/16, 8/16, 11/16, 13/16, 16/16) is the unique

partial segmentation configuration that is an SPNE up to permutation. The equilibrium

prices and profits given in Proposition 1 are also shown.

A.3 Segmentation

The first-order conditions of the location competition can be easily shown. We show that

(xa1, xa2) = (1/6, 1/6 + r) is the maximizer of eΠa for all −1/6 + r ≤ xa1 ≤ xa2 ≤ 3/6
given (xb1, xb1, xc2, xc2) = (3/6, 3/6 + r, 5/6, 5/6 + r).

Computing deΠa/dxa1 + deΠa/dxa2 = 0, we have an expression similar to (1). By

identifying the derivatives up to the 4th order, we can similarly show that (xa1, xa2) =

(1/6, 4/6) is the unique solution of deΠa/dxa1 = deΠa/dxa2 = 0, and that the second-

order conditions for local maximum are satisfied. Hence, (xa1, xa2, xb1, xb2, xc1, xc2) =

(1/6, 1/6 + r, 3/6, 3/6 + r, 5/6, 5/6 + r) is the unique segmentation configuration that is

an SPNE up to permutation. The equilibrium prices and profits given in Proposition 1

are similarly shown.

A.4 quasi-interlacing

Calculating the first-order conditions of location equilibrium for arrangement a1b1c1a2c2b2

by the damped Newton’s method in Mathematica, we get (xa1, xb1, xc1, xb2, xa2, xc2) =

(r4, r5, 1/2, 1/2 + r4, 1/2 + r5, 1). However, this is not a Nash equilibrium because the

profit of firm b increases upon withdrawing its first outlet.

A.5 quasi-partial segmentation

Calculating the first-order conditions of location equilibrium for arrangement a1a2b1c1b2c2

by the damped Newton’s method command inMathematica, we have (xa1, xb1, xc1, xc2, xa2, xb2) =
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(r1, r2, r3, 1− r3, 1− r2, 1− r1). However, this is not a Nash equilibrium because the profit
of firm c increases upon relocating its first outlet from xc1 = r3 to xc1 = 0.
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Figure 1:   Three single-store firms on a disk
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Figure 2:   Firm a's profit Πa as a function of za
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Figure 3:   Convenience stores near Shinjuku station (blue: Seven-Eleven, red: Lawson,

                  green: FamilyMart, yellow: am/pm, light blue: CircleKSunkus)




