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Bayesian analysis of a stochastic volatility model with a generalized hyperbolic

(GH) skew Student’s t-error distribution is described where we first consider an

asymmetric heavy-tailed error and leverage effects. An efficient Markov chain

Monte Carlo estimation method is described that exploits a normal variance-mean

mixture representation of the error distribution with an inverse gamma distribution

as the mixing distribution. The proposed method is illustrated using simulated

data, daily S&P500 and TOPIX stock returns. The models for stock returns

are compared based on the marginal likelihood in the empirical study. There is

strong evidence in the stock returns high leverage and an asymmetric heavy-tailed
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1. Introduction

It has been argued that financial time series data such as stock returns and

foreign exchange returns have several properties that depart from a normality

assumption. Major characteristics of the return distributions for financial variables

are their skewness, heavy-tailedness and volatility clustering with leverage effects.

These properties are crucial not only for describing the return distributions but

also for asset allocation, option pricing, forecasting and risk management.

As a promising approach to model flexible skewness and heavy-tailedness, the

generalized hyperbolic (GH) distribution proposed by Barndorff-Nielsen (1977)

has recently attracted attention in financial econometrics. It includes a very broad

parametric class of distributions such as normal, hyperbolic, normal inverse Gaus-

sian (NIG) and skew Student’s t-distributions, and it is closed under affine trans-

formations, conditioning and marginalization. Several studies have investigated

the skewness and heavy-tailedness of financial market variables, using for the un-

conditional return distribution various subclasses of the class of GH distributions:

hyperbolic distributions (Eberlein et al. (1998)), GH diffusion processes (Rydberg

(1999)), GH skew Student’s t-distributions (Hansen (1994), Fernández and Steel

(1998), Aas and Haff (2006)).

On the other hand, as regards volatility clustering, the stochastic volatility

(SV) model has been widely used to model the time-varying variance of time se-

ries in financial econometrics (e.g., Ghysels et al. (2002), Shephard (2005)), and

various extensions of the simple SV model with a normal error (SV-Normal) have

been discussed in the literature. For example, to describe the heavy-tailedness of

the asset return distribution in the SV context, heavy-tailed errors are often in-

corporated using distributions such as Student’s t-distribution (Chib et al. (2002),

Berg et al. (2004), Yu (2005), Omori et al. (2007), Nakajima and Omori (2009)

for discrete-time SV and Eraker et al. (2003) for continuous-time SV models) and

the NIG distribution (Barndorff-Nielsen (1997), Andersson (2001)). In addition,

the continuous-time SV model with jump diffusions for stock returns has also

been considered (Eraker (2004), Chernov et al. (2003) and Raggi and Bordignon

(2006)). The comparison of these models by Nakajima and Omori (2009), using

S&P500 and TOPIX daily returns, showed that the SV model with symmetric
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Student’s t-errors (SVt) model performs better than the SV model with jumps or

with both jumps and Student’s t-errors. From another perspective, Chen et al.

(2008) propose the heavy-tailed threshold SV model.

This paper proposes, for the first time in the literature, to the best of our

knowledge, an efficient Bayesian estimation method for the SV model incorporat-

ing both leverage and an asymmetrically heavy-tailed error, using the GH skew

Student’s t-distribution. It includes the SVt and SV-Normal models with and

without leverage as special cases. The GH skew Student’s t-distribution is one of a

subclass of GH distributions, and is well studied in literature (e.g., Prause (1999),

Jones and Faddy (2003), Aas and Haff (2006)).

Although the GH skew Student’s t-density itself can be easily estimated by

the maximum likelihood estimation for a time-independent model, it is difficult

to implement for the SV model due to the many latent volatility variables. It

imposes a heavy computational burden to repeat the particle filtering many times

to evaluate the likelihood function for each set of parameters until we find the

maximum. Alternatively, we develop a novel Markov chain Monte Carlo (MCMC)

algorithm for the precise and efficient estimation of the SV model with leverage

and with an asymmetrically heavy-tailed error using the GH skew Student’s t-

distribution.

There are various types of skew t-distributions in the literature (e.g., Hansen

(1994), Fernández and Steel (1998), Prause (1999), Jones and Faddy (2003), Az-

zalini and Capitanio (2003), Aas and Haff (2006)). Among these, the GH skew

Student’s t-error distribution is simple, flexible and easily incorporated into the

SV model for a Bayesian estimation scheme using the MCMC algorithm that we

develop in this paper. The key point in implementing an efficient MCMC algo-

rithm for our proposed model is to express the GH skew Student’s t-distribution as

a normal variance-mean mixture of the GIG distribution. Specifically, we consider

an inverse gamma distribution as a mixing distribution among the class of GIG

distributions to nest and extend various existing SV models. We also show that

the choice of the parameterization of the mixing distribution is important for an

efficient algorithm. The estimation scheme is illustrated using simulated data and

daily stock return data.
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The rest of this paper is organized as follows. In Section 2, we describe an

efficient MCMC algorithm in detail for the SV model with leverage and asymmet-

rically heavy-tailed error using the GH skew Student’s t-distribution. Section 3

illustrates our proposed method using simulated data. We also examine an alter-

native parameterization for the GH skew Student’s t-distribution. In Section 4,

the proposed model is applied to S&P500 and TOPIX daily return data and the

competing SV models are compared. Finally Section 5 concludes the paper.

2. SV model with GH skew Student’s t-distribution

2.1. The model

A basic SV model with leverage and a normal error distribution is given by

yt = εt exp(ht/2), t = 1, . . . , n,

ht+1 = µ + φ(ht − µ) + ηt, t = 0, . . . , n− 1,
(

εt

ηt

)
∼ N(0, Σ), and Σ =

(
1 ρσ

ρσ σ2

)
, (1)

where yt is the asset return, and ht is the unobserved log-volatility. We assume

that |φ| < 1, i.e., that the log-volatility process is stationary and that the initial

value, h1, is assumed to follow the stationary distribution by setting h0 = µ, and

η0 ∼ N(0, σ2/(1− φ2)). The parameter ρ measures the correlation between εt and

ηt. When ρ < 0, this indicates a so-called leverage effect, a drop in the return

followed by an increase in the volatility (Yu (2005), Omori et al. (2007)).

For a joint model of the leverage and asymmetric heavy-tailedness, we replace

the normal random variable εt in (1) by a random variable from the GH skew

Student’s t-distribution, denoted by wt, which can be written in the form of the

normal variance-mean mixture as

wt = µw + βzt +
√

ztεt, εt ∼ N(0, 1), and zt ∼ IG(ν/2, ν/2), (2)

where IG denotes the inverse gamma distribution. We assume that µw = −βµz,

where µz ≡ E(zt) = ν/(ν − 2), for E(wt) = 0, and ν > 4 for the finite variance
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of wt. This GH skew Student’s t-distribution is a special case of the more general

class of the GH distributions, defined by

w∗
t = µw + βzt +

√
z∗t εt, εt ∼ N(0, 1), and z∗t ∼ GIG(λ, δ, γ). (3)

The GH skew Student’s t-distribution of (2) is the case where λ = −ν/2 (ν >

0), δ =
√

ν and γ = 0, which yields zt ∼ GIG(−ν/2,
√

ν, 0), and equivalently

IG(ν/2, ν/2). As observed in the previous literature (e.g., Prause (1999), Aas

and Haff (2006)), the parameters of the GH distribution are difficult to estimate

due to the flatness of the likelihood function, and ‘. . . some parameters are hard

to separate and the likelihood function may have several local maxima’ (Aas and

Haff (2006)) even for a GH skew Student’s t-distribution with λ = −ν/2 (ν > 0)

and γ = 0. Therefore, this paper makes the additional assumption that δ =
√

ν,

as formulated in Equation (2). The validity of this assumption will be discussed in

Section 3.3 and in Section 4.4 for comparison with an alternative parameterization.

The first four moments of the GH skew Student’s t-distribution are provided by

Aas and Haff (2006).

Using this GH Skew Student’s t-distribution, we propose the SV model (SVSKt

model, hereafter) formulated as

yt = {β(zt − µz) +
√

ztεt} exp(ht/2), t = 1, . . . , n, (4)

ht+1 = µ + φ(ht − µ) + ηt, t = 0, . . . , n− 1, (5)

and

zt ∼ IG(ν/2, ν/2), (6)

where (εt, ηt) are as in (1). The value of ν > 4 is the degree of freedom and

unknown to be estimated. When β ≡ 0, the model reduces to the SV model with

the symmetric Student’s t-distribution (denoted the SVt model), which has been

widely analyzed in the literature (e.g., Chib et al. (2002), Eraker et al. (2003), Yu

(2005), Omori et al. (2007)).

To interpret the parameters (β, ν) in relation to the skewness and heavy-
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tailedness, the GH skew Student’s t-densities are plotted using several combina-

tions of the parameter values in Figure 1. In Figure 1(i), the densities are drawn

using β = 0, −1 and −2, with ν fixed equal to 10. As mentioned, β = 0 cor-

responds to a symmetric Student’s t-density. A lower value of β implies a more

negative skewness or left-skewness as well as heavier tails. Figure 1(ii) shows the

densities for ν = 5, 10 and 15 with β fixed equal to −2. As ν becomes larger, the

density becomes less skewed and has lighter tails. Hence the skewness and heavy-

tailedness are determined jointly by the combination of the parameter values of β

and ν.

−8 −6 −4 −2 0 2 4 6 8

0.2

0.4 (i) ν=10

β=0 
β=−1 
β=−2 

−8 −6 −4 −2 0 2 4 6 8

0.2

0.4 (ii) β=−2

ν=15 
ν=10 
ν=5 

Figure 1: The GH skew Student’s t-distribution. (i) ν = 10 fixed; β = 0 (symmetric t), −1 and
−2. (ii) β = −2 fixed; ν = 5, 10 and 15.

Note that there are several definitions for the skew t-distribution in the liter-

ature (e.g., Hansen (1994), Fernández and Steel (1998), Prause (1999), Jones and

Faddy (2003), Azzalini and Capitanio (2003)). For example, Aas and Haff (2006)

provide an overview of other skew distributions with heavy tails, including several

definitions of the skew Student’s t-distributions. We could incorporate other skew
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Student’s t-distributions or a more general class of the GH distribution into the SV

model. However, as mentioned above, introducing more parameters would lead to

an over-parameterization because the second moment of the return distribution is

already modeled as a latent stochastic process in the SV model. Therefore, there

is less room to obtain thoughtful estimates from additional parameters.

Our formulation (4) is not only simple but suitable for the Bayesian estimation

scheme using the MCMC algorithm that we propose in this paper. The key feature

in our formulation of the model is to express the skew Student’s t-distribution

in the form of the normal variance-mean mixture, as stated in (3). We regard

the variable zt, following the mixing distribution, as a latent variable for a novel

implementation of the MCMC algorithm in the context of Bayesian inference.

The conditional posterior distribution of each parameter reduces to a much more

tractable form conditional on zt than when the model is considered in the direct

likelihood form of the skew Student’s t-distribution. Given other parameters, we

can draw sample from the conditional posterior distribution of zt for t = 1, . . . , n.

The next section describes our MCMC algorithm in detail.

It is worth noting when ρ = 0, the closed form of the density f(yt|ht), which

is marginalized over zt, is available (see, e.g., Aas and Haff (2006)). However, in

the case ρ 6= 0, which we consider in this paper, the closed form of the density

f(yt|ht, ht+1) is not available. Therefore, in our model formulation, the latent

variable zt plays an important role in exploring the posterior distribution using

the MCMC algorithm.

2.2. MCMC algorithm

Let θ = (φ, σ, ρ, µ, β, ν), y = {yt}n
t=1, h = {ht}n

t=1, z = {zt}n
t=1. For the prior

distributions of µ and β, we assume

µ ∼ N(µ0, v
2
0), and β ∼ N(β0, σ

2
0), (7)

and we let π(φ), π(ϑ) and π(ν) denote the prior probability densities of φ, ϑ ≡
(σ, ρ)′ and ν respectively. We draw random samples from the posterior distribution

of (θ, h, z) given y for the SVSKt model using the MCMC method (e.g., Koop

(2003), Geweke (2005), Gamerman and Lopes (2006)), as follows:
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1. Initialize θ, h and z.

2. Generate φ |σ, ρ, µ, β, ν, h, z, y.

3. Generate (σ, ρ) |φ, µ, β, ν, h, z, y.

4. Generate µ |φ, σ, ρ, β, ν, h, z, y.

5. Generate β |φ, σ, ρ, µ, ν, h, z, y.

6. Generate ν |φ, σ, ρ, µ, β, h, z, y.

7. Generate z | θ, h, y.

8. Generate h | θ, z, y.

9. Go to 2.

In the following subsections, we present each sampling step in detail.

2.2.1. Generation of the parameters (φ, σ, ρ, µ) (Steps 2-4)

Step 2. The conditional posterior probability density π(φ|σ, ρ, µ, β, ν, h, z, y)

(≡ π(φ|·)) is

π(φ|·) ∝ π(φ)
√

1− φ2 exp

{
−(1− φ2)h̄2

1

2σ2
−

n−1∑
t=1

(h̄t+1 − φh̄t − ȳt)
2

2σ2(1− ρ2)

}

∝ π(φ)
√

1− φ2 exp

{
−(φ− µφ)2

2σ2
φ

}
, (8)

where h̄t = ht − µ, ȳt = ρσ(yte
−ht/2 − βz̄t)/

√
zt, z̄t = zt − µz,

µφ =

∑n−1
t=1 (h̄t+1 − ȳt)h̄t

ρ2h̄2
1 +

∑n−1
t=2 h̄2

t

, and σ2
φ =

σ2(1− ρ2)

ρ2h̄2
1 +

∑n−1
t=2 h̄2

t

.

To sample from this conditional posterior distribution, we implement the Metropolis-

Hastings (MH) algorithm (see, e.g., Chib and Greenberg (1995)). We propose a

candidate, φ∗ ∼ TN(−1,1)(µφ, σ
2
φ), where TN(a,b)(µ, σ2) denotes the normal distri-

bution with mean µ and variance σ2 truncated on the interval (a, b). Then, we

accept it with probability

min

{
π(φ∗)

√
1− φ∗2

π(φ)
√

1− φ2
, 1

}
.
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Step 3. Because the joint conditional posterior probability density π(ϑ|φ, µ, ν, h, z, y)

(≡ π(ϑ|·)) of ϑ = (σ, ρ)′ is given by

π(ϑ|·) ∝ π(ϑ)σn(1− ρ2)
n−1

2 exp

{
−(1− φ2)h̄2

1

2σ2
−

n−1∑
t=1

(h̄t+1 − φh̄t − ȳt)
2

2σ2(1− ρ2)

}
,

a probability density from which it is not easy to sample, we apply the MH algo-

rithm based on a normal approximation of the density around the mode. Because

we have a constraint, R = {ϑ : σ > 0, |ρ| < 1}, on the parameter space of the

posterior distribution, we consider the transformation ϑ to ω = (ω1, ω2)
′, where

ω1 = log σ, and ω2 = log(1 + ρ) − log(1 − ρ), to generate a candidate using a

normal distribution. We first search for ϑ̂ that maximizes (or approximately max-

imizes) π(ϑ|·), and obtain its transformed value ω̂. We next generate a candidate

ω∗ ∼ N(ω∗, Σ∗), where

ω∗ = ω̂ + Σ∗
∂ log π̃(ω|·)

∂ω

∣∣∣∣
ω=ω̂

and Σ−1
∗ = − ∂ log π̃(ω|·)

∂ω∂ω′

∣∣∣∣
ω=ω̂

,

where π̃(ω|·) is a transformed conditional posterior density. Then, we accept the

candidate ω∗ with probability

min

{
π(ϑ∗|·)fN(ω|ω∗, Σ∗)|J(ϑ)|
π(ϑ|·)fN(ω∗|ω∗, Σ∗)|J(ϑ∗)| , 1

}
,

where fN(x|µ, Σ) denotes the probability density function of a normal distribution

with mean µ and covariance matrix Σ, and J(·) is the Jacobian for the transfor-

mation. The values of (ϑ, ϑ∗) are evaluated at (ω, ω∗), respectively.

Step 4. The conditional posterior probability density π(µ|φ, σ, ρ, β, ν, h, z, y) (≡
π(µ|·)) is given by

π(µ|·) ∝ exp

{
−(µ− µ0)

2

2v2
0

− (1− φ2)h̄2
1

2σ2
−

n−1∑
t=1

{(ht+1 − µ)− φ(ht − µ)− ȳt}2

2σ2(1− ρ2)

}
,
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from which we generate µ|· ∼ N(µ̂, σ2
µ), where

σ2
µ =

{
1

v2
0

+
(1− ρ2)(1− φ2) + (n− 1)(1− φ)2

σ2(1− ρ2)

}−1

, and

µ̂ = σ2
µ

{
µ0

v2
0

+
(1− ρ2)(1− φ2)h1 + (1− φ)

∑n−1
t=1 (ht+1 − φht − ȳt)

σ2(1− ρ2)

}
.

2.2.2. Generation of skew-t parameters (β, ν, z) (Steps 5-7)

Step 5. The posterior probability density π(β|φ, σ, ρ, µ, ν, h, z, y) (≡ π(β|·) is

given by

π(β|·) ∝ exp

{
−(β − β0)

2

2σ2
0

−
n∑

t=1

(yt − βz̄te
ht/2)2

2zteht

−
n−1∑
t=1

{h̄t+1 − φh̄t − ρσ(yte
−ht/2 − βz̄t)/

√
zt}2

2σ2(1− ρ2)

}
,

from which we generate β|· ∼ N(µβ, σ2
β) where

σ2
β =

{
1

σ2
0

+
1

1− ρ2

n−1∑
t=1

z̄2
t

zt

+
z̄2

n

zn

}−1

, and

µβ = σ2
β

{
β0

σ2
0

+
1

1− ρ2

n−1∑
t=1

ytz̄t

zteht/2
+

ynz̄n

znehn/2
− ρ

σ(1− ρ2)

n−1∑
t=1

(h̄t+1 − φh̄t)z̄t√
zt

}
.

Step 6. Because, as in Step 3, it is not easy to sample from directly from the

posterior probability density of ν,

π(ν|·) ∝ π(ν)
n∏

t=1

(ν/2)ν/2

Γ(ν/2)
z
−ν/2
t exp

(
− ν

2zt

)

× exp

{
−

n∑
t=1

(yt − βz̄te
ht/2)2

2zteht
−

n−1∑
t=1

(h̄t+1 − φh̄t − ȳt)
2

2σ2(1− ρ2)

}
, ν > 4,

we draw a sample of ν using the MH algorithm based on the normal approximation

of the posterior probability density. We generate a candidate ν∗ using a normal
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distribution truncated on (4,∞).

Step 7. The conditional posterior probability density of the latent variable zt is

π(zt|θ, h, y) ∝ g(zt)× z
−( ν+1

2
+1)

t exp

(
− ν

2zt

)
, and

g(zt) = exp

{
−(yt − βz̄te

ht/2)2

2zteht
− (h̄t+1 − φh̄t − ȳt)

2

2σ2(1− ρ2)
I(t < n)

}
,

where I(·) is an indicator function. Using the MH algorithm, we generate a can-

didate z∗t ∼ IG((ν + 1)/2, ν/2) and accept it with probability min{g(z∗t )/g(zt), 1}.

2.2.3. Generation of volatility latent variable h (Step 8)

Step 8. An efficient strategy is to sample from the conditional posterior dis-

tribution of h = {ht}n
t=1 by dividing it into several blocks and sampling each block

given the other blocks. This idea, called the block sampler or multi-move sampler,

is developed by Shephard and Pitt (1997), and Watanabe and Omori (2004) in

the context of state space modeling. They show that the sampler can produce effi-

cient draws from the target conditional posterior distribution in comparison with a

single-move sampler which primitively samples one state, say ht, at a time given the

others, hs (s 6= t). For the SV model with leverage, Omori and Watanabe (2008)

develop the associated multi-move sampler and show that it produces efficient sam-

ples (see also Takahashi et al. (2009)). We extend their method for sampling h

in the SVSKt model. The details of the multi-move sampler are described in the

Appendix.

3. Simulation study

3.1. Setup

To illustrate our proposed estimation method, we estimate the SVSKt model

using simulated data. We generate 3,000 observations from the SVSKt model given

by Equations (1) and (4)–(6) with fixed parameter values φ = 0.95, σ = 0.15,

ρ = −0.5, µ = −9, β = −0.5, and ν = 15. The following prior distributions are
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assumed:

φ + 1

2
∼ Beta(20, 1.5), σ−2 ∼ Gamma(2.5, 0.025), ρ ∼ U(−1, 1),

µ ∼ N(−10, 1), β ∼ N(0, 1) and ν ∼ Gamma(16, 0.8) I(ν > 4),

The beta prior distribution for (φ + 1)/2 implies that the mean and standard

deviation are (0.86, 0.11) for φ. The means and standard deviations of Gamma(2.5,

0.025) and Gamma(16,0.8) are (100, 63.2) and (20, 5), respectively. We use these

prior distributions to reflect empirical results from the literature.

If we assume certain classes of improper priors, then the posterior distribution

may be improper (see, e.g., Bauwens and Lubrano (1998)). This problem is well

known for the symmetric t-distribution, and evidently, the same problem may arise

here. Therefore we use proper priors for the SVSKt model, and further, we provide

a prior sensitivity analysis in Section 4.5.

We draw 20,000 samples after discarding the initial 2,000 samples as a burn-

in period, which are selected using the time series plots of the marginal averages

of the samples for each parameter. We compute the inefficiency factor to check

the efficiency of the MCMC algorithm. The inefficiency factor is defined by 1 +

2
∑∞

s=1 ρs where ρs is the sample autocorrelation at lag s. It measures how well

the MCMC chain mixes (see, e.g., Chib (2001)). It is the estimated ratio of the

numerical variance of the posterior sample mean to the variance of the sample

mean from uncorrelated draws. When the inefficiency factor is equal to m, we

need to draw MCMC samples m times as many as uncorrelated samples. In the

following analyses, we compute the inefficiency factor using a Parzen window with

bandwidth bw = 1,000.

3.2. Estimation results

Figure 2 shows the sample autocorrelation functions, the sample paths and

the posterior densities for each parameter. The sample paths appear to be stable

and the sample autocorrelations decay quickly, which implies that our sampling

method is efficient.

Table 1 shows the posterior means, the standard deviations, the 95% credible

intervals and the inefficiency factors. All the posterior means are close enough
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to the true values that the corresponding 95% credible intervals include the true

values. The inefficiency factors in Table 1 are found to be of almost the same

magnitude as those in Omori and Watanabe (2008) for the basic SV model with

leverage using a multi-move sampler. This suggests that we are successful in ex-

tending their method to the SVSKt model without a loss of sampling efficiencies.
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Figure 2: MCMC estimation results of the SVSKt model for simulated data. Sample autocorre-
lations (top), sample paths (middle) and posterior densities (bottom).

Parameter True Mean Stdev. 95% interval Inefficiency
φ 0.95 0.9450 0.0099 [0.9233, 0.9624] 79.5
σ 0.15 0.1644 0.0146 [0.1386, 0.1958] 168.5
ρ -0.5 -0.5425 0.0680 [-0.6694, -0.4042] 75.3
µ -9.0 -8.9209 0.0620 [-9.0434, -8.8003] 22.5
β -0.5 -0.7059 0.2349 [-1.2268, -0.3048] 122.2
ν 15.0 21.104 4.2843 [14.682, 31.325] 254.4

Table 1: MCMC estimation results of the SVSKt model for simulated data.

In the MH algorithms, the average acceptance rates are 97.6% for φ, 97.5% for

(σ, ρ), 99.0% for ν and 86.4% for zt in this experiment. The acceptance rates of

the AR-MH algorithm in the multi-move sampler for the volatility h are 90.0%
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and 90.6% in the AR step and the MH step respectively. These results suggest

that our proposed algorithm would work well in practice.

3.3. Alternative parameterization

As already mentioned in Section 2.1, we investigate whether our proposed pa-

rameterization for the GH skew Student’s t-distribution is appropriate. An alter-

native parameterization is explored in the following example using simulated data.

The model is formulated by (1), (4) and (5) but we replace (6) by

zt ∼ GIG(−ν/2, δ, 0), or zt ∼ IG(ν/2, δ2/2),

where δ > 0. We generate 3,000 observations from the alternative model with

parameter values φ = 0.95, σ = 0.15, ρ = −0.5, µ = −9.0, β = −0.5, ν = 15

and δ = 4.0. In addition to the previous experiment, we assume that the prior

distribution as δ ∼ Gamma(4, 0.4), which implies that the mean and standard

deviation are (10.0, 15.8).

Table 2 reports the correlations of the posterior samples, and Figure 3 shows

scatter plots of the posterior samples of (β, ν) for the SVSKt model and (δ, ν) for

the alternative model. Evidently, the correlation between δ and ν is extremely high

(0.99), while that between β and ν is moderate (−0.63). This suggests that we

need to sample under the narrow state space when we use the alternative param-

eterization, which would result in inefficient sampling. Thus, although we could

model the GH skew Student’s t-distribution in other ways, the alternative mod-

els could lead either to inefficient MCMC sampling or to over-parameterization.

This example shows that our proposed parameterization is appropriate for the SV

model with the GH skew Student’s t-distribution. In related work, Strickland et al.

(2008) provide an efficiency comparison among different parameterizations of the

SV model in the MCMC estimation context.
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(i) SVSKt model (ii) Alternative model
φ σ ρ µ β ν φ σ ρ µ β ν δ

φ 1 -.60 -.15 .04 -.01 -.03 φ 1 -.59 -.14 .04 -.03 .01 .01
σ 1 .08 -.05 -.07 .07 σ 1 .07 -.07 -.06 .03 .03
ρ 1 .04 .16 .04 ρ 1 .04 .17 -.01 -.01
µ 1 .28 .09 µ 1 .38 -.06 -.07
β 1 -.63 β 1 -.66 -.66
ν 1 ν 1 .99

Table 2: Correlation matrix of posterior samples of (i) the SVSKt model and (ii) the alternative
model for simulated data.
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Figure 3: Scatter plots of posterior samples of (β, ν) for the SVSKt model (left) and (δ, ν) for
the alternative model (right) using simulated data.

4. Application to stock return data

4.1. Data

This section applies our proposed model to daily stock return data. We consider

the S&P500 index from January 1, 1970 to December 31, 2003, and the TOPIX

(Tokyo stock price index) from January 5, 1970 to December 30, 2004. The returns
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are computed as the log-difference yt = log Pt − log Pt−1, where Pt is the closing

price on day t. The sample size is 8,869 for S&P500 and 9,376 for TOPIX.

Figure 4 shows the time series plots of the stock returns, and Table 3 sum-

marizes the descriptive statistics. Both series are negatively skewed where the

skewness is -1.3778 for S&P500 and -0.4833 for TOPIX. The kurtosis is as large

as 37 for S&P500 and 16 for TOPIX. This is partly due to the significant nega-

tive return corresponding to the crash in October, 1987. If we remove it from the

observations, the skewness and kurtosis reduce to (-0.0642, 7.9835) for S&P500

and (-0.0633, 10.404) for TOPIX. However, these figures still imply the negative

skewness and heavy-tailedness of empirical returns distribution of the data.

1970 1975 1980 1985 1990 1995 2000

−0.2

−0.1

0.0

S&P500

1970 1975 1980 1985 1990 1995 2000

−0.15

−0.10

−0.05

0.00

0.05
TOPIX

Figure 4: Time series plots for S&P500 (1970/1/1 - 2003/12/31) and TOPIX (1970/1/5 -
2004/12/30) daily returns.
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S&P500 (1970/1/1 - 2003/12/31)
Obs. Mean Stdev. Skewness Kurtosis Min. Max.
8,869 0.0003 0.0101 -1.3778 37.246 -0.2283 0.0871

TOPIX (1970/1/5 - 2004/12/30)
Obs. Mean Stdev. Skewness Kurtosis Min. Max.
9,376 0.0002 0.0100 -0.4833 16.644 -0.1581 0.0912

Table 3: Summary statistics for S&P500 and TOPIX returns.

4.2. Parameter estimates

We assume the same prior distributions as in Section 3 for the parameters. The

number of MCMC iterations and discarded initial samples are also as in Section

3. Figure 5 shows the estimation results for the S&P500 data, where the sample

paths appear to stable and the proposed estimation scheme works well.

Table 4 reports the estimation result of the posterior estimates for the S&P500

and TOPIX data. The posterior means of φ are close to one, which indicates

the well-known high persistence of volatility in stock returns. The ρ values are

estimated to be negative, implying that there exist leverage effects. Regarding the

skewness, the posterior means of β are -0.0946 for the S&P500 and -0.3901 for

TOPIX data. Although the 95% credible interval of β barely contains zero for

S&P500 data, its posterior distribution is primarily located in the negative range

as shown in Figure 5. For the TOPIX data, the posterior probability that β is

negative is greater than 0.95, and the negativity of β is credible. This supports

the strong evidence of skewnesses in both data. On the other hand, the posterior

means of ν’s are around 13 for the S&P500 and 30 for the TOPIX returns, which

indicates a heavy-tailedness in the stock return distributions especially for the

S&P500 data.
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Figure 5: MCMC estimation results of the SVSKt model for S&P500 data. Sample autocorrela-
tions (top), sample paths (middle) and posterior densities (bottom).

(i) S&P500
Parameter Mean Stdev. 95% interval Inefficiency

φ 0.9865 0.0021 [0.9821, 0.9904] 64.6
σ 0.1253 0.0072 [0.1117, 0.1407] 162.6
ρ -0.4786 0.0397 [-0.5548, -0.3975] 86.2
µ -9.7455 0.0929 [-9.9287, -9.5637] 11.2
β -0.0946 0.0558 [-0.2093, 0.0097] 55.6
ν 12.513 1.4522 [10.122, 15.623] 292.2

(ii) TOPIX
Parameter Mean Stdev. 95% interval Inefficiency

φ 0.9742 0.0032 [0.9675, 0.9802] 123.6
σ 0.2641 0.0149 [0.2396, 0.2945] 272.1
ρ -0.3577 0.0315 [-0.4186, -0.2966] 25.3
µ -9.8653 0.1057 [-10.241, -9.6263] 9.4
β -0.3901 0.1225 [-0.6517, -0.1615] 42.6
ν 29.791 4.4430 [21.766, 38.512] 269.2

Table 4: Estimation results of the SVSKt model for stock return data.
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4.3. Model comparison

In this subsection, we compare the SVSKt model with two alternative models

discussed in the existing literature:

(i) Model SV: the basic SV model with a normal error distribution (zt ≡ 1 for

all t and β = 0).

(ii) Model SVt: the SV model with a symmetric Student’s t error distribution

(β = 0).

Note that all models are allowed to include leverage effects (ρ is not set equal

to 0 in Equation (1)). In a Bayesian framework, we compare several competing

models using their posterior probabilities to select the one that is best supported

by the data. The posterior probability of each model is proportional to the product

of prior probability of the model and the marginal likelihood. The ratio of two

posterior probabilities is also well known as a Bayes factor. If the prior probabilities

are assumed to be equal, we choose the model that yields the largest marginal

likelihood.

The marginal likelihood is defined as the integral of the likelihood with respect

to the prior density of the parameter. Following Chib (1995), we estimate the

logarithm of the marginal likelihood m(y), as

log m(y) = log f(y|Θ) + log π(Θ)− log π(Θ|y), (9)

where Θ is a parameter, f(y|Θ) is a likelihood, π(Θ) is a prior probability density

and π(Θ|y) is a posterior probability density. The equality holds for any values

of Θ, but we usually use the posterior mean of Θ to obtain a stable estimate of

m(y). The prior probability density is easily calculated, although the likelihood

and posterior part must be evaluated by simulation.

The likelihood is estimated using the auxiliary particle filter (see, e.g., Pitt and

Shephard (1999), Chib et al. (2002), Omori et al. (2007)) with 10,000 particles.

It is replicated 10 times to obtain the standard error of the likelihood estimate.

The posterior probability density at Θ is evaluated by the method of Chib (1995)
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and Chib and Jeliazkov (2001) through additional but reduced MCMC runs. The

number of iterations for the reduced runs is set 5,000.

We use eight series of daily return data for the model comparison, as considered

in Nakajima and Omori (2009). In addition to the datasets used for the previous

estimation, we use the datasets of the S&P500 series from 1970 to 1985, from 1990

to 2003, from 2004 to 2009, and the TOPIX series from 1970 to 1985, from 1990

to 2004, and from 2005 to 2009, i.e., we consider two long-period (about thirty

years) data sets and six short-period (about fifteen or recent five years) data sets.

We select two short (about fifteen-year) periods to exclude the crash of October

1987 because the huge negative return could affect the model selection among the

competing models. Regarding computational time, it takes about six hours and 17

minutes to obtain the marginal likelihood for the S&P500 (1994-2003) data using

2.1 GHz CPU computer.

Table 5 shows the logarithm of the estimated marginal likelihoods and their

standard errors. Overall, the SVSKt model outperforms other models for all

datasets regardless of the sample periods. Taking the standard errors into ac-

count, we can see that the GH skew Student’s t-error distribution in the SV model

is clearly successful in describing the distribution of the daily stock return data.

We also report the posterior estimates of the skewness parameter β for each

dataset in Table 5. It is interesting to observe that the posterior distribution of β

is estimated to be negative for the S&P500 of 1970-2003, 1994-2003 and 2004-2009,

and for the TOPIX of 1970-2004, 1970-1985 and 2005-2009, while it is centered

around zero for the TOPIX of 1992-2004 and is almost certainly positive for the

S&P500 of 1970-1985. The result of the recent data (2004-2009 for S&P500 and

2005-2009 for TOPIX) exhibits the largest negative posterior mean value of β,

probably due to the recent financial crisis. Although the skewness of the empirical

return distributions seems to change depending on the sample periods, we can

conclude that the SVSKt model is favoured over other symmetric error SV models

for all the sample periods.
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S&P500 1970-2003 1970-1985 1994-2003 2004-2009
SV 29605.67 (1.54) 14198.89 (0.39) 8406.06 (0.37) 4840.71 (0.36)
SVt 29657.41 (1.62) 14205.03 (0.47) 8417.55 (0.43) 4849.08 (0.84)
SVSKt 29666.51 (1.42) 14206.97 (0.40) 8419.35 (0.23) 4852.07 (0.86)
Posterior of β
Mean (Stdev.) -0.0946 (0.0558) 0.2699 (0.1775) -0.3942 (0.1977) -0.4822 (0.2526)
95% interval [-0.2093, 0.0097] [-0.0460, 0.6599] [-0.8165, -0.0460] [-1.0307, -0.0213]

TOPIX 1970-2004 1970-1985 1992-2004 2005-2009
SV 32461.14 (1.50) 17626.79 (0.54) 9738.27 (0.22) 3583.16 (0.34)
SVt 32483.03 (1.55) 17641.75 (0.49) 9743.49 (0.32) 3591.92 (0.39)
SVSKt 32490.13 (0.72) 17665.91 (0.52) 9746.98 (0.31) 3598.67 (0.35)
Posterior of β
Mean (Stdev.) -0.3901 (0.1225) -0.5979 (0.1790) -0.0163 (0.1109) -0.6195 (0.2908)
95% interval [-0.6517, -0.1615] [-0.9643,-0.2730] [-0.2068, 0.2344] [-1.2513, -0.0961]

*Standard errors of the log-ML in parentheses.

Table 5: Estimated marginal likelihoods on a logarithmic scale (log-ML) and the parameter
estimates of β for S&P500 (top) and TOPIX (bottom) returns data.

4.4. Alternative model

As shown in Section 3.3, the alternative model with the additional parameter

for the GH skew Student’s t-distribution can be considered, although it runs the

risk of serial over-identification. To confirm this point, we estimate the alternative

model introduced in Section 3.3 for the S&P500 return data (1994-2003).

Table 6 reports the correlations of the posterior samples, and Figure 6 shows

scatter plots of the posterior samples of (β, ν) for the SVSKt model and (δ, ν)

for the alternative model. Again, the posterior correlation between δ and ν is

extremely high (0.99), which implies that the additional parameter leads either to

inefficient MCMC sampling or to over-parameterization.

21



(i) SVSKt model (ii) Alternative model
φ σ ρ µ β ν φ σ ρ µ β ν δ

φ 1 -.67 -.10 -.01 -.00 -.02 φ 1 -.59 .02 -.02 -.01 -.01 -.02
σ 1 .13 -.04 -.17 .16 σ 1 -.07 .02 -.02 .00 .01
ρ 1 -.01 .07 .00 ρ 1 .13 .22 .02 .02
µ 1 .26 .15 µ 1 .17 .04 .04
β 1 -.69 β 1 -.34 -.34
ν 1 ν 1 .99

Table 6: Correlation matrix of posterior samples of (i) the SVSKt model and (ii) the alternative
model for S&P500 data.
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Figure 6: Scatter plots of posterior samples of (β, ν) for the SVSKt model (left) and (δ, ν) for
the alternative model (right) using the S&P500 return (1994-2003) data.

4.5. Prior sensitivity analysis

To check the robustness of the model comparison, we assess the sensitivity of

our results to the choice of prior distributions. As we have assumed the values

commonly used in the previous literature for the prior distributions of (φ, σ, ρ, µ),

we focus on the parameters of the GH skew Student’s t-distribution, i.e., on the

skewness and heavy-tailedness parameters (β, ν).
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Let Prior #1 denote the prior distribution with hyper-parameters assumed in

the previous estimation. Three alternative priors are considered:

Prior #1: β ∼ N(0, 1), ν ∼ Gamma(16, 0.8)I(ν > 4),

Prior #2: β ∼ N(0, 4), ν ∼ Gamma(16, 0.8)I(ν > 4),

Prior #3: β ∼ N(0, 1), ν ∼ Gamma(24, 0.6)I(ν > 4),

Prior #4: β ∼ N(0, 4), ν ∼ Gamma(24, 0.6)I(ν > 4),

Prior #5: β ∼ N(0, 1), ν ∼ Gamma(1.2, 0.03)I(ν > 4),

where we note that the mean and standard deviation are (40, 8) for Gamma(24,0.6)

and (40, 36.5) for Gamma(1.2, 0.03), respectively. Prior #5 for ν is rather flat

compared to Priors #1–#4. First, the SVSKt model is estimated using the S&P500

data (1994-2003) under alternative priors. The estimates for (φ, σ, ρ, µ) are found

to be almost the same under all priors. Table 7 shows the parameter estimates

and the inefficiency factors for β and ν. The estimates for (β, ν) are not affected

by changing the prior for β from Prior #1 to Prior #2 (or from Prior #3 to Prior

#4).

On the other hand, the estimates of (β, ν) are largely affected by altering the

prior for ν from Prior #1 to Prior #3 (or from Prior #2 to Prior #4). The estimates

of β get smaller (from −0.4 to −0.6) and the posterior means of ν get larger (from

22 to 40), implying greater skewness and less heavy-tailedness. The posterior

standard deviations also become larger reflecting the increase in the dispersion of

the prior distribution for ν. Also, as suggested by the 95% credible intervals, the

posterior distribution of ν (β) moves to right (left). Given less information on ν,

as described by Prior #5, the estimate of β is similar to those obtained by using

Priors #3 and #4, while the posterior mean of ν is around 36, and its standard

deviation and credible intervals indicate the flatter posterior distribution.

23



SVSKt model
Prior #1 Prior #2 Prior #3 Prior #4 Prior #5

-0.3867 (0.1943) -0.3813 (0.1980) -0.6046 (0.2999) -0.6766 (0.3243) -0.5686 (0.3221)
β [-0.8167, -0.0460] [-0.7976, -0.0357] [-1.2432, -0.0133] [-1.3762, -0.0991] [-1.3896, -0.0839]

76.05 76.16 66.86 91.8 150.65
21.432 (4.4932) 21.985 (4.4399) 38.492 (7.9765) 40.915 (7.1658) 36.457 (13.847)

ν [15.316, 33.162] [14.723, 31.495] [25.499, 53.776] [27.192, 57.732] [16.533, 68.380]
223.49 209.46 186.16 194.65 285.08

The first row: posterior mean and standard deviation in parentheses.
The second row: 95% credible interval in square brackets.
The third row: inefficiency factor.

Table 7: Prior sensitivity analysis for the SVSKt model. Parameter estimates of β and ν for
S&P500 data (1994-2003).

Nakajima and Omori (2009) found that the posterior estimate of ν is rather

more sensitive to the choice of the prior distribution for ν than other parameters

in the SV model with a symmetric Student’s t-error, which is also observed in

our prior sensitivity analysis. In addition, our result indicates that the posterior

estimate of β is also sensitive to the choice of the prior distribution for ν. This

may be because the skewness and heavy-tailedness of the GH skew Student’s t-

distribution are determined by β and ν simultaneously rather than individually.

Our main findings are that the prior distribution of ν with a higher mean value

results in its higher posterior means and that it would even lead to a lower posterior

mean of β so as to maintain some of the skewness and heavy-tailedness of the

empirical return distribution, as shown in Figure 1 of Section 2.1.

Finally, we investigate the prior sensitivity of the marginal likelihoods for the

SVt and the SVSKt models using S&P500 data (1994-2003). Table 8 reports

the logarithm of estimated marginal likelihoods under alternative priors. For the

SVSKt model, all priors yield almost the same marginal likelihoods, which is quite

reasonable. Although the marginal likelihoods of Priors #1 and #2 are slightly

larger than those of Priors #3–#5 for the SVt model, the SVSKt models are still

favoured over the SVt model regardless of the choice of the prior.
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Model Prior #1 Prior #2 Prior #3 Prior #4 Prior #5
SVt 8417.16 (0.35) 8417.77 (0.39) 8413.69 (0.11) 8413.84 (0.12) 8412.46 (0.34)
SVSKt 8420.95 (0.32) 8419.53 (0.25) 8420.03 (0.42) 8418.16 (0.34) 8417.89 (0.36)

*Standard errors of the Log-ML in parentheses.

Table 8: Prior sensitivity analysis. Estimated marginal likelihoods on a logarithmic scale for
S&P500 data (1994-2003).

5. Conclusion

This paper proposes a Bayesian estimation of the SV model with leverage and

with a GH skew Student’s t-error distribution to assess the asymmetrically heavy-

tailed distributions of stock returns. The efficient MCMC estimation method is

developed using the normal variance-mean mixture representation of the GH skew

Student’s t-distribution, where the mixing distribution is the inverse gamma dis-

tribution. We illustrate our proposed method using simulated data and applied it

to daily stock return data. The models are compared on the basis of the marginal

likelihood, and the estimation results show strong evidence of skewness and heavy-

tailedness. The proposed model is found to outperform other SV models. The

prior sensitivity analysis shows that our results are robust, except for the param-

eter estimates of (β, ν), which are affected by the choice of the prior distribution

of ν.
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Appendix. Multi-move sampler for the SVSKt model

Extending the algorithm of Omori and Watanabe (2008), we describe the multi-

move sampler for sampling the volatility variable h in the SVSKt model. Defining

αt = ht − µ, for t = 0, . . . , n and γ = exp(µ/2), we consider the state space model

with respect to {αt}n
t=1 as

yt = {βz̄t +
√

ztεt} exp(αt/2)γ, t = 1, . . . , n, and

αt+1 = φαt + ηt, t = 0, . . . , n− 1.

Let Θ̃ = (θ, αr, αr+d+1, zr, . . . , zr+d, yr, . . . , yr+d). To sample a block (αr+1, . . . , αr+d)

from its joint conditional posterior density using MH algorithm, (r ≥ 0, d ≥ 1,

r + d ≤ n), we sample disturbances

(ηr, . . . , ηr+d−1) ∼ π(ηr, . . . , ηr+d−1|Θ̃)

∝
r+d∏
t=r

1√
2πσ̃t

exp

{
−(yt − µ̃t)

2

2σ̃2
t

}
×

r+d−1∏
t=r

f(ηt)× f(αr+d),

where

µ̃t = {βz̄t + ρt

√
zt(αt+1 − φαt)/σ} exp(αt/2)γ,

σ̃2
t = (1− ρ2

t )zt exp(αt)γ
2,

f(αr+d) = exp

{
−(αr+d+1 − φαr+d)

2

2σ2

}
· I[r + d < n],

and ρt = ρ · I[r + d < n]. To determine the block (r and d), we use the

stochastic knots (e.g. Shephard and Pitt (1997)). Let η = (ηr, . . . , ηr+d−1)
′ and

α = (αr+1, . . . , αr+d)
′. To construct a proposal density based on the normal ap-
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proximation of the posterior density of η, we first define

L =
r+d∑
t=r

{
−αt

2
− (yt − µ̃t)

2

2σ̃2
t

}
+ log f(αr+d),

δ = (δr+1, . . . , δr+d)
′, δt =

∂L

∂αt

,

Q = −E

(
∂2L

∂α∂α′

)
=




Ar+1 Br+2 0 · · · 0

Br+2 Ar+2 Br+3 · · · 0

0 Br+3 Ar+3
. . .

...
...

. . . . . . . . . Br+d

0 · · · 0 Br+d Ar+d




,

At = −E

(
∂2L

∂α2
t

)
, and Bt = −E

(
∂2L

∂αt∂αt−1

)
,

for t = r + 2, . . . , r + d, and Br+1 = 0. For the second derivatives, we take the

expectations with respect to yt’s and obtain

At =
1

2
+

1

σ̃2
t

(
∂µ̃t

∂αt

)2

+
1

σ̃2
t−1

(
∂µ̃t−1

∂αt

)2

+ φ2/σ2 · I[t = r + d < n], and

Bt =
1

σ̃2
t−1

· ∂µ̃t−1

∂αt−1

· ∂µ̃t−1

∂αt

.

Applying the second-order Taylor expansion to the log of the posterior density

around the mode, η = η̂, we obtain an approximate normal density as follows:

log π(η|Θ̃)

≈ L̂ +
∂L

∂η′

∣∣∣∣
η=η̂

(η − η̂) +
1

2
(η − η̂)′E

(
∂2L

∂η∂η′

)∣∣∣∣
η=η̂

(η − η̂) +
r+d−1∑

t=r

(
−1

2
η2

t

)
+ (const.)

= L̂ + δ̂′(α− α̂)− 1

2
(α− α̂)′Q̂(α− α̂) +

r+d−1∑
t=r

(
−1

2
η2

t

)
+ (const.)

≡ log q(η|Θ̃).
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where L̂, δ̂ and Q̂ is the value of L, δ and Q at α = α̂ (or, equivalently at η = η̂).

It can be shown that the proposal density q(η|Θ̃) is the posterior density of η for

a linear Gaussian state space model given by (10)–(12) below. The mode η̂ can be

obtained by repeating the following algorithm until it converges.

1. Initialize η̂ and compute α̂ at η = η̂ using the state equation (5) recursively.

2. Evaluate δ̂t’s, Ât’s and B̂t’s at α = α̂.

3. Let D̂r+1 = Âr+1 and b̂r+1 = δ̂r+1. Compute the following variables recur-

sively for t = r + 2, . . . , r + d:

D̂t = Ât − D̂−1
t−1B̂

2
t , K̂t =

√
D̂t, b̂t = δ̂t − B̂tD̂

−1
t−1b̂t−1,

and B̂d+r+1 = 0.

4. Define an auxiliary variable ŷt = γ̂t + D̂−1
t b̂t, where γ̂t = α̂t + D̂−1

t B̂t+1α̂t+1,

for t = r + 1, . . . , r + d, and α̂r+d+1 = αr+d+1.

5. Consider the linear Gaussian state space model formulated by

ŷt = Ztαt + Gtζt, t = r + 1, . . . , r + d, (10)

αt+1 = φαt + Htζt, t = r, . . . , r + d, (11)

and

ζt ∼ N(0, I2), (12)

where

Zt = 1 + φD̂−1
t B̂t+1, Gt = (K̂−1

t , D̂−1
t B̂t+1σ), and Ht = (0, σ),

for t = r+1 . . . , r+d and H0 = (0, σ/
√

1− φ2). Apply the Kalman filter and

the disturbance smoother to this state space model, and obtain the posterior

mode η̂ and α̂.

6. Go to 2.

In the MCMC sampling procedure, the current sample of η may be taken as an

initial value of the η̂ in Step 1. To sample η from the conditional posterior density,
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we implement the AR (Accept-Reject)-MH algorithm via the simulation smoother

(e.g., de Jong and Shephard (1995), Durbin and Koopman (2002)) using the mode

η̂ to obtain the approximated linear Gaussian state space model (10)–(12). See

Omori and Watanabe (2008), Takahashi et al. (2009) for the detail of this AR-MH

algorithm.
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