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Abstract

This paper develops a Fourier transform method with an asymptotic expansion approach for option pricing.
The method is applied to European currency options with a libor market model of interest rates and jump-diffusion
stochastic volatility models of spot exchange rates. In particular, we derive closed-form approximation formulas
of the characteristic functions of log-prices of the underlying assets and the prices of currency options based on a
third order asymptotic expansion scheme; we use a jump-diffusion model with a mean-reverting stochastic variance
process such as in Heston[1993]/Bates[1996] and log-normal market models for domestic and foreign interest rates.
Finally, the validity of our method is confirmed through numerical examples.
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1 Introduction

This paper proposes new approximation formulas for evaluation of the characteristic functions of log-prices of forward
foreign exchange rates and of the prices of European currency options under stochastic volatility processes of spot
exchange rates in stochastic interest rates environment. In particular, we use models of variance processes such as in
Heston[1993] or of jump-diffusion stochastic variance ones in Bates[1996], and apply a libor market model developed
by Brace, Gatarek and Musiela[1998] and Miltersen, Sandmann and Sondermann[1997] to modeling term structures
of interest rates. The correlations between the domestic and foreign interest rates, and between the spot exchange
rate and its variance are allowed.

Currency options with maturities beyond one year become common in global currencies’ markets and even smiles
or skews for those maturities are frequently observed. Because it is well known that the effect of interest rates become
more substantial in longer maturities, we have to take term structure models into account for the currency options.
Further, stochastic volatility and/or jump-diffusion models of foreign exchange rates are necessary for calibration of
smiles and skews. As for term structure models, market models become popular in matured interest rates markets
since calibrations of caps, floors and swaptions are necessary and market models are regarded as most useful.

Hence, our objective is to develop a model with jump-diffusion stochastic volatility processes of exchange rates
and with a libor market model of interest rates. Moreover, a closed-form formula is desirable in practice especially
for calibrations which are usually done by numerical methods such as Monte Carlo simulation since they are very
time consuming. Because it is difficult to obtain an exact closed-form formula, we derive a closed-form approximation
formula by a Fourier transform method with an asymptotic expansion up to the third order where a spot exchange
rate follows a jump-diffusion process, its variance follows a mean-reverting stochastic one, and domestic and foreign
interest rates are generated by a libor market model. Some numerical examples presented later support accuracy
achieved by our formulas.

In addition, we emphasize two remarkable features of our method. First, this method is essentially different from
those used in preceding works on an asymptotic expansion in the following aspect; in our method, the distribution
of the component, of the underlying asset, dependent on the interest rates are not approximated around a normal
distribution such as in Takahashi and Takehara[2006] but around a log-normal one. Second, under the assumption
made in this paper, our method can be applied not only to the stochastic variance model in Heston[1993] with which
we are concerned in this paper but also to a broad class of models with stochastic volatility, jump-diffusion or even
more general Levy processes where the closed-form characteristic functions are available.

∗This is a full version of the paper published in International Journal of Theoretical and Applied Finance, Vol.11(4), pp. 381-401.
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Our asymptotic expansion approach have been applied to a broad class of Itô processes appearing in finance.
It started with pricing average options; Kunitomo and Takahashi[1992] derived a first order approximation and
Yoshida[1992b] applied an asymptotic expansion method developed in statistics for stochastic processes. Taka-
hashi[1995,1999] presented the second or third order schemes for pricing various options in a general Markovian
setting with a constant interest rate. Kunitomo and Takahashi[2001] provided approximation formulas for pricing
bond options and average options on interest rates in term structure models of HJM[1992] which is not necessarily
Markovian.

Moreover, Takahashi and Yoshida[2004,2005] extended the method to dynamic portfolio problems in a general
Markovian setting and proposed a new variance reduction scheme of Monte Carlo simulation with an asymptotic ex-
pansion. For mathematical validity of the method based on Watanabe[1987] in the Malliavin calculus, see Chapter 7 of
Malliavin and Thalmaier[2006], Yoshida[1992a], Kunitomo and Takahashi[2003] and Takahashi and Yoshida[2004,2005].

Other applications and extensions of asymptotic expansions to numerical problems in finance are found as follows:
Kawai[2003], Kobayashi,Takahashi and Tokioka[2003], Takahashi and Saito[2003], Kunitomo and Takahashi[2004], Ku-
nitomo and Kim[2005], Muroi[2005], Takahashi[2005], Matsuoka,Takahshi and Uchida[2006], Takahashi and Uchida[2006].

Additionally, Takahashi and Takehara[2006] developed the approximation formulas for evaluation of the prices of
European currency options and of the distribution of the underlying assets based on an asymptotic expansion approach
up to the third order with a market model of interest rates and a general time-inhomogeneous Markovian stochastic
volatility model of the spot exchange rate. Contrary to this paper, their paper took the standard approach which
expanded the underlying process around a normal distribution and did not depend upon the assumption made in this
paper.

The organization of the paper is as follows: After the next section describes a basic structure of our model, Section 3
derives an approximation formula by expansion of the component dependent on the interest rates around a log-normal
distribution, with the assumption of independence between the interest rates and the spot exchange rate/its stochastic
variance. Section 4 shows numerical examples and the final section states conclusion. Appendix A gives the concrete
expressions of coefficients used in the asymptotic expansions, and Appendix B presents formulas used in Appendix A.

2 European Currency Options with a Market Model of Interest Rates
and Stochastic Volatility Models of Spot Exchange Rates

Let (Ω,F , P, {Ft}0≤t≤T∗<∞) be a complete probability space with a filtration satisfying the usual conditions. First we
briefly state the basics of European currency options. The payoffs of call and put options with maturity T ∈ (0, T ∗]
and strike rate K > 0 are expressed as (S(T ) − K)+ and (K − S(T ))+ respectively where S(t) denotes the spot
exchange rate at time t ≥ 0 and x+ denotes max(x, 0). In this paper we will concentrate on the valuation of a call
option since the value of a put option can be obtained through the put-call parity or similar method. We also note
that the spot exchange rate S(T ) can be expressed in terms of a foreign exchange forward(forex forward) rate with
maturity T . That is, S(T ) = FT (T ) where FT (t), t ∈ [0, T ] denotes the time t value of the forex forward rate with
maturity T . It is well known that the arbitrage-free relation between the forex spot rate and the forex forward rate
are given by FT (t) = S(t)Pf (t,T )

Pd(t,T ) where Pd(t, T ) and Pf (t, T ) denote the time t values of domestic and foreign zero
coupon bonds with maturity T respectively.

Hence, our objective is to obtain the present value of the payoff (FT (T )−K)+. In particular, we need to evaluate:

V (0;T,K) = Pd(0, T ) × E
[
(FT (T ) − K)+

]
(2.1)

where V (0; T,K) denotes the value of an European call option at time 0 with maturity T and strike rate K, and
E[·] denotes an expectation operator under EMM(Equivalent Martingale Measure) of numeraire of the domestic zero
coupon bond maturing at T (we use a term of the domestic terminal measure in what follows).

Next, with a log-price of the forex forward fT (t) := ln( FT (t)
FT (0) ), (2.1) can be rewritten as:

V (0;T,K) = Pd(0, T ) × FT (0) E
[
(efT (T ) − ek)+

]
where k := ln( K

FT (0) ) denotes a log-strike rate. Here we note that efT (T ) = FT (T ) is a martingale under the domestic
terminal measure.

The following proposition is well known (e.g. Heston[1993]).
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Proposition 1 Let ΦT (u) denote a characteristic function of fT (T ). Then, V (0; T,K) is given by:

V (0; T,K) = Pd(0, T ) ×
[
FT (0)

{
1
2

+
1
π

∫ ∞

0

Re{e−iukΦT (u − i)
iu

}du

}
−K

{
1
2

+
1
π

∫ ∞

0

Re{e−iukΦT (u)
iu

}du

}]
(2.2)

where i :=
√
−1 and Re(x) denotes a real part of x.

Then, we need to know the characteristic function of fT (T ) under the domestic terminal measure for pricing the
option. For this objective, a market model and stochastic volatility models are applied to modeling interest rates’ and
the spot exchange rate’s dynamics respectively.

We first define domestic and foreign forward interest rates as fdj(t) =
(

Pd(t,Tj)
Pd(t,Tj+1)

− 1
)

1
τj

and ffj(t) =
(

Pf (t,Tj)
Pf (t,Tj+1)

− 1
)

1
τj

respectively, where j = n(t), n(t) + 1, · · · , N , τj = Tj+1 − Tj , and Pd(t, Tj) and Pf (t, Tj) denote the prices of do-
mestic/foreign zero coupon bonds with maturity Tj at time t(≤ Tj) respectively; n(t) = min{i : t ≤ Ti}. We
also define spot interest rates to the nearest fixing date denoted by fd,n(t)−1(t) and ff,n(t)−1(t) as fd,n(t)−1(t) =(

1
Pd(t,Tn(t))

− 1
)

1
(Tn(t)−t) and ff,n(t)−1(t) =

(
1

Pf (t,Tn(t))
− 1

)
1

(Tn(t)−t) . Finally, we set T = TN+1 and will abbreviate
FTN+1(t) to FN+1(t) in what follows.

Then R++-valued processes of domestic forward interest rates under the domestic terminal measure can be specified
as; for j = n(t) − 1, n(t), n(t) + 1, · · · , N ,

fdj(t) = fdj(0) +
∫ t

0

−fdj(u)γ̃
′

dj(u)
N∑

i=j+1

τifdi(u)γ̃di(u)
1 + τifdi(u)

 du

+
∫ t

0

fdj(u)γ̃
′

dj(u)dWu (2.3)

where x
′
denotes the transpose of x, and W is a D dimensional Brownian motion under the domestic terminal measure;

γ̃dj(u) is a function of time-parameter u. Similarly, R++-valued processes of foreign ones under the foreign terminal
measure are specified as;

ffj(t) = ffj(0) +
∫ t

0

−ffj(u)γ̃
′

fj(u)
N∑

i=j+1

τiffi(u)γ̃fi(u)
1 + τiffi(u)

 du

+
∫ t

0

ffj(u)γ̃
′

fj(u)dW f
u (2.4)

where W f is a D dimensional Brownian motion under the foreign terminal measure and γ̃fj(u) is also a function of u.
Finally, we assume that the spot exchange rate S(t) and its variance V (t) follow R++-valued stochastic processes

under the domestic risk neutral measure (not under the domestic terminal measure) :

S(t) = S(0) +
∫ t

0

S(u)(rd(u) − rf (u))du +
∫ t

0

S(u)
√

V (u)σ̄
′
dŴu + J̃(t) (2.5)

V (t) = V (0) +
∫ t

0

µ̂(V (u), u)du +
∫ t

0

ω
′
(V (u), u)dŴu (2.6)

where Ŵ is a D dimensional Brownian motion under the domestic risk neutral measure and J̃ is some jump martingale
independent of Ŵ ; rd(u) and rf (u) denote domestic and foreign instantaneous spot interest rates respectively; σ̄ denotes
a D dimensional constant vector satisfying ||σ̄|| = 1, and ω(x, u) is a function of x and u.

Hereafter, the variance and jump processes are specified as in Bates[1996], that is, V (t) and J̃(t) are given by;

V (t) = V (0) +
∫ t

0

κ(θ − V (u))du +
∫ t

0

ωv̄
′√

V (u)dŴu (2.7)

J̃(t) = J(t) − ληt (2.8)

where κ, θ and ω are all constant and denote the speed of the mean-reversion of the variance process, the level of the
mean-reversion and the volatility on the variance, respectively; v̄

′
is some D dimensional constant vector denoting
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the correlation structure between the variance and other factors, that is, the domestic and foreign interest rates and
the spot exchange rate. J(t) denotes a compound Poisson process with intensity of λ and with a random jump size l
whose distribution is determined as ln(1 + l) ∼ N(ln(1 + η) − 1

2δ2, δ2).

We next note the following well known relations among Brownian motions under different measures;

Wu = Ŵu −
∫ u

0

σ̃dN+1(s)ds

= W f
u +

∫ u

0

{σ̃fN+1(s) − σ̃dN+1(s) +
√

V (s)σ̄}ds

where σ̃dN+1(u) and σ̃fN+1(u) are volatilities of the domestic and foreign zero coupon bonds with the maturity TN+1,
that is,

σ̃dN+1(u) :=
∑

i∈JN+1(u)

−τifdi(u)γ̃di(u)
1 + τifdi(u)

, σ̃fN+1(u) :=
∑

i∈JN+1(u)

−τiffi(u)γ̃fi(u)
1 + τiffi(u)

and Jj+1(t) = {n(t) − 1, n(t), n(t) + 1, · · · , j}. Since γfi(t) = 0 and γdi(t) = 0 for all i such that Ti ≤ t, the set of
indices Jj+1(t) can be changed into Ĵj+1 := {0, 1, · · · , j}, which does not depend on t.

By above equations, expressions of those processes under different measures are unified into those under the same
measure, the domestic terminal one:

ffj(t) = ffj(0) +
∫ t

0

ffj(u)γ̃
′

fj(u)

−
∑

i∈Ĵj+1

−τiffi(u)γ̃fi(u)
1 + τiffi(u)

+
∑

i∈ĴN+1

−τifdi(u)γ̃di(u)
1 + τifdi(u)

 du

−
∫ t

0

ffj(u)γ̃
′

fj(u)
√

V (u)σ̄du +
∫ t

0

ffj(u)γ̃
′

fj(u)dWu (2.9)

V (t) = V (0) +
∫ t

0

κ(θ − V (u))du

−
∫ t

0

ωv̄
′√

V (u)
∑

i∈ĴN+1

τifdi(u)γ̃di(u)
1 + τifdi(u)

du +
∫ t

0

ωv̄
′√

V (u)dWu (2.10)

Next, we consider the process of the forex forward FN+1(t). Since FN+1(t) := FTN+1(t) can be expressed as
FN+1(t) := S(t)Pf (t,TN+1)

Pd(t,TN+1)
, we easily notice that it is a martingale under the domestic terminal measure, and obtain

its log-process, fN+1(t) under that measure by Itô’s formula:

fN+1(t) = ln(
FN+1(t)
FN+1(0)

)

= −1
2

∫ t

0

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
j∈ĴN+1

(
−τjffj(u)γ̃fj(u)

1 + τjffj(u)
− −τjfdj(u)γ̃dj(u)

1 + τifdj(u)

)
+

√
V (u)σ̄

∣∣∣∣∣∣
∣∣∣∣∣∣
2

du

+
∫ t

0

 ∑
j∈ĴN+1

(
−τjffj(u)γ̃fj(u)

1 + τjffj(u)
− −τjfdj(u)γ̃dj(u)

1 + τifdj(u)

)
+

√
V (u)σ̄


′

dWu

+Ĵ(t) − ληt (2.11)

where Ĵ(t) denotes a compound Poisson process with intensity of λ and with a Gaussian random jump size.

3 An Approximation Scheme based on an Asymptotic Expansion Ap-
proach

3.1 An independence assumption

Hereafter, we make an assumption;
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[ A 1 ] Domestic and foreign interest rates are assumed to be independent of the spot exchange rate and its variance.
Then, γ̃dj(u), γ̃fj(u), σ̄ and v̄ satisfy the following conditions.
For all u ∈ (0, T ] and j ∈ ĴN+1, {

γ̃dj(u)
′
σ̄ = 0, γ̃fj(u)

′
σ̄ = 0

γ̃dj(u)
′
v̄ = 0, γ̃fj(u)

′
v̄ = 0

(3.1)

Under this assumption, the equation (2.11) can be decomposed as:

fN+1(t) = Y (t) + Z(t) + Ĵ(t) − ληt (3.2)

where

Y (t) = −1
2

∫ t

0

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
j∈ĴN+1

(
−τjffj(u)γ̃fj(u)

1 + τjffj(u)
− −τjfdj(u)γ̃dj(u)

1 + τifdj(u)

)∣∣∣∣∣∣
∣∣∣∣∣∣
2

du

+
∫ t

0

 ∑
j∈ĴN+1

(
−τjffj(u)γ̃fj(u)

1 + τjffj(u)
− −τjfdj(u)γ̃dj(u)

1 + τifdj(u)

)
′

dWu (3.3)

Z(t) = −1
2

∫ t

0

V (u)du +
√

V (u)σ̄
′
dWu (3.4)

Note that Y (t), Z(t) and Ĵ(t) are independent and that Y (t) depends only on the domestic and foreign interest rates
(in what follows we sometimes call Y (t) the interest-rate part of the forex forward to emphasize this property) and
that Z(t) does only on the variance of the spot exchange rate (we sometimes call Z(t) the volatility part as well).
Moreover, under the same assumption, the equations (2.9) and (2.10) are simplified as follows:

ffj(t) = ffj(0) +
∫ t

0

ffj(u)γ̃
′

fj(u)

−
∑

i∈Ĵj+1

−τiffi(u)γ̃fi(u)
1 + τiffi(u)

+
∑

i∈ĴN+1

−τifdi(u)γ̃di(u)
1 + τifdi(u)

 du

+
∫ t

0

ffj(u)γ̃
′

fj(u)dWu (3.5)

V (t) = V (0) +
∫ t

0

κ(θ − V (u))du +
∫ t

0

ωv̄
′√

V (u)dWu (3.6)

Let ΦN+1(t, u) denote the characteristic function of fN+1(t). Then, ΦN+1(t, u) can be also decomposed as;

ΦN+1(t, u) = ΦY (t, u)ΦZ(t, u)ΦĴ(t, u) exp{−iuληt} (3.7)

where ΦY (t, u), ΦZ(t, u) and ΦĴ(t, u) denote the characteristic functions of Y (t), Z(t) and Ĵ(t), respectively.
For evaluation of European currency options, an explicit expression of ΦN+1(t, u) is necessary. However, the process

of Y (t) is too complicated to obtain the analytical expression of ΦY (t, u) while that of ΦZ(t, u) is well known (see
Section 6.3.2 in Brigo and Mercurio[2006] or Section 25.5 in Björk[2004] ) . Then, we suggest to utilize an asymptotic
expansion for the approximation of ΦY (t, u).

Before concentrating on the approximation of the interest-rate part of the forex forward, we state the expression
of ΦZ(t, u)(see Duffie, Pan and Singleton[1999] for details) and ΦĴ(t, u):

ΦZ(t, u) =
{

cosh
ξt

2
+

κ − iρωu

ξ
sinh

ξt

2

}− 2κθ
ω2

× exp

{
κθ(κ − iρωu)t

ω2
− (u2 + iu)V (0)

ξ cosh ξt
2 + (κ − iρωu)

}
(3.8)

ΦĴ(t, u) = exp
{

λt

(
exp

{(
ln(1 + η) − 1

2
δ2

)
iu − 1

2
δ2u2

})}
(3.9)

where ρ := σ̄
′
v̄ and ξ :=

√
ω2(u2 + iu) + (κ − iρωu)2.
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3.2 An asymptotic expansion approach

An asymptotic expansion approach describes the processes of forward rates as f
(ϵ)
dj (t) and f

(ϵ)
fj (t) respectively, both

explicitly depend upon a parameter ϵ ∈ (0, 1], and expands the processes around ϵ = 0, that is asymptotic expansions
are made around deterministic processes.

First, the processes of f
(ϵ)
dj (t) and f

(ϵ)
fj (t) are redefined as follows; for j = n(t) − 1, n(t), n(t) + 1, · · · , N ,

f
(ϵ)
dj (t) = fdj(0) + ϵ2

∫ t

0

−f
(ϵ)
dj (u)γ

′

dj(u)
N∑

i=j+1

τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

 du

+ϵ

∫ t

0

f
(ϵ)
dj (u)γ

′

dj(u)dWu (3.10)

f
(ϵ)
fj (t) = ffj(0) + ϵ2

∫ t

0

−f
(ϵ)
fj (u)γ

′

fj(u)
N∑

i=j+1

τif
(ϵ)
fi (u)γfi(u)

1 + τif
(ϵ)
fi (u)

 du

+ϵ

∫ t

0

f
(ϵ)
fj (u)γ

′

fj(u)dW f
u (3.11)

where γ̃dj(t) and γ̃fj(t) in the previous section are replaced by ϵγdj(t) and ϵγfj(t), respectively.
Hence, the processes of f

(ϵ)
fj (t) and Y (ϵ)(t) under the domestic terminal measure are expressed as follows:

f
(ϵ)
fj (t) = f

(ϵ)
fj (0) + ϵ2

∫ t

0

f
(ϵ)
fj (u)γ

′

fj(u)

−
∑

i∈Ĵj+1

−τif
(ϵ)
fi (u)γfi(u)

1 + τif
(ϵ)
fi (u)

+
∑

i∈ĴN+1

−τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

 du

+ϵ

∫ t

0

f
(ϵ)
fj (u)γ

′

fj(u)dWu (3.12)

Y (ϵ)(t) = −ϵ2

2

∫ t

0

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
j∈ĴN+1

−τjffj(u)γfj(u)
1 + τjffj(u)

−
∑

j∈ĴN+1

−τjfdj(u)γdj(u)
1 + τifdj(u)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

du

+ϵ

∫ t

0

 ∑
j∈ĴN+1

−τjffj(u)γfj(u)
1 + τjffj(u)

−
∑

j∈ĴN+1

−τjfdj(u)γdj(u)
1 + τifdj(u)


′

dWu (3.13)

Of course, variables and functions such as F
(ϵ)
N+1(t), f

(ϵ)
N+1(t), Φ(ϵ)

N+1(t, u) or Φ(ϵ)
Y (t, u) explicitly depend on ϵ.

Next, we expand forward rates’ processes up to the second order of ϵ(ϵ2-order) around ϵ = 0 to obtain the third order
asymptotic expansion of Y (ϵ)(t), the interest-rate part of the forex forward. These expansions can be obtained by
differentiating the right hand side of the equations (3.10), (3.12) and (3.13) with respect to ϵ and setting ϵ = 0. The
result is stated as the following lemma.

Lemma 1 The asymptotic expansions of domestic and foreign forward rates are given as follows:

f
(ϵ)
dj (t) = fdj(0) + ϵA

(1)
dj (t) + ϵ2A

(2)
dj (t) + o(ϵ2) (3.14)

f
(ϵ)
fj (t) = ffj(0) + ϵA

(1)
fj (t) + ϵ2A

(2)
fj (t) + o(ϵ2) (3.15)
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where

A
(1)
dj (t) :=

∂f
(ϵ)
dj (t)
∂ϵ

|ϵ=0 = fdj(0)
∫ t

0

γ
′

dj(u)dW (u),

A
(2)
dj (t) :=

1
2

∂2f
(ϵ)
dj (t)

∂ϵ2
|ϵ=0 = fdj(0)

∫ t

0

γ
′

dj(u)
N∑

i=j+1

(
−τifdi(0)

1 + τifdi(0)

)
γdi(u)du +

∫ t

0

A
(1)
dj (u)γ

′

dj(u)dWu

A
(1)
fj (t) :=

∂f
(ϵ)
fj (t)
∂ϵ

|ϵ=0 = ffj(0)
∫ t

0

γ
′

fj(u)dW (u),

A
(2)
fj (t) :=

1
2

∂2f
(ϵ)
fj (t)

∂ϵ2
|ϵ=0

= ffj(0)
∫ t

0

γ
′

fj(u)

 ∑
i∈Ĵj+1

−
(

−τiffi(0)
1 + τiffi(0)

)
γfi(u) +

∑
i∈ĴN+1

(
−τifdi(0)

1 + τifdi(0)

)
γdi(u)

 du

+
∫ t

0

A
(1)
fj (u)γ

′

fj(u)dWu

(Proof)
Only (3.14) is shown. (3.15) is obtained similarly. Differentiating the equation (3.10) with respect to ϵ once and twice,
we have:

∂f
(ϵ)
dj (t)
∂ϵ

= 2ϵ

∫ t

0

−f
(ϵ)
dj (u)γ

′

dj(u)
N∑

i=j+1

τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

 du

+ ϵ2
∫ t

0

∂

∂ϵ

−f
(ϵ)
dj (u)γ

′

dj(u)
N∑

i=j+1

τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

 du

+
∫ t

0

f
(ϵ)
dj (u)γ

′

dj(u)dWu + ϵ

∫ t

0

{
∂

∂ϵ
f

(ϵ)
dj (u)

}
γ

′

dj(u)dWu

and

∂2f
(ϵ)
dj (t)

∂ϵ2
= 2

∫ t

0

−f
(ϵ)
dj (u)γ

′

dj(u)
N∑

i=j+1

τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

 du

+ 4ϵ

∫ t

0

∂

∂ϵ

−f
(ϵ)
dj (u)γ

′

dj(u)
N∑

i=j+1

τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

 du

+ ϵ2
∫ t

0

∂2

∂ϵ2

−f
(ϵ)
dj (u)γ

′

dj(u)
N∑

i=j+1

τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

 du

+ 2
∫ t

0

{
∂

∂ϵ
f

(ϵ)
dj (u)

}
γ

′

dj(u)dWu + ϵ

∫ t

0

{
∂2

∂ϵ2
f

(ϵ)
dj (u)

}
γ

′

dj(u)dWu.

Then, setting ϵ = 0, we obtain A
(1)
dj (t) and A

(2)
dj (t). 2

We next define the following variables:

σX(u) :=
∑

i∈ĴN+1
g
(0)
fi (u) −

∑
i∈ĴN+1

g
(0)
di (u),

g
(0)
fi (u) :=

(
−τiffi(0)
1+τiffi(0)

)
γfi(u), g

(0)
di (u) :=

(
−τifdi(0)
1+τifdi(0)

)
γdi(u)

g
(1)
fi (u) :=

(
−τi

(1+τiffi(0))2

)
γfi(u), g

(1)
di (u) :=

(
−τi

(1+τifdi(0))2

)
γdi(u)

g
(2)
fi (u) :=

(
2τ2

i

(1+τiffi(0))3

)
γfi(u), g

(2)
di (u) :=

(
2τ2

i

(1+τifdi(0))3

)
γdi(u)

(3.16)
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Then, the asymptotic expansion of the interest-rate part of the forex forward up to the third order of ϵ(ϵ3-order) can
be derived.

Proposition 2 The asymptotic expansion of Y (ϵ)(t) up to the third order is expressed as follows:

Y (ϵ)(t) = ϵA
(1)
t + ϵ2A

(2)
t + ϵ3A

(3)
t + o(ϵ3) (3.17)

where

A
(1)
t :=

∫ t

0

σX(u)
′
dWu, (3.18)

A
(2)
t := −1

2

∫ t

0

||σX(u)||2du

+
∫ t

0

[
∑

i∈ĴN+1

g
(1)
fi (u)A(1)

fi (u) −
∑

i∈ĴN+1

g
(1)
di (u)A(1)

di (u)]
′
dWu (3.19)

and

A
(3)
t := −

∑
i,j∈ĴN+1

∫ t

0

(g(1)
fi (u))

′
A

(1)
fi (u)g(0)

fj (u)du +
∑

i,j∈ĴN+1

∫ t

0

(g(1)
fi (u))

′
A

(1)
fi (u)g(0)

dj (u)du

+
∑

i,j∈ĴN+1

∫ t

0

(g(1)
di (u))

′
A

(1)
di (u)g(0)

fj (u)du −
∑

i,j∈ĴN+1

∫ t

0

(g(1)
di (u))

′
A

(1)
di (u)g(0)

dj (u)du

+
∑

i∈ĴN+1

∫ t

0

A
(2)
fi (u)(g(1)

fi (u))
′
dWu +

1
2

∑
i∈ĴN+1

∫ t

0

(A(1)
fi (u))2(g(2)

fi (u))
′
dWu

−
∑

i∈ĴN+1

∫ t

0

A
(2)
di (u)(g(1)

di (u))
′
dWu − 1

2

∑
i∈ĴN+1

∫ t

0

(A(1)
di (u))2(g(2)

di (u))
′
dWu (3.20)

(Proof)
We first note that

Y (ϵ)(t) = ϵ
∂Y (ϵ)(t)

∂ϵ
|ϵ=0 +

ϵ2

2
∂2Y (ϵ)(t)

∂ϵ2
|ϵ=0 +

ϵ3

6
∂3Y (ϵ)(t)

∂ϵ3
|ϵ=0 + o(ϵ3),

and set A
(1)
t := ∂Y (ϵ)(t)

∂ϵ |ϵ=0, A
(2)
t := 1

2
∂2Y (ϵ)(t)

∂ϵ2 |ϵ=0 and A
(3)
t := 1

6
∂3Y (ϵ)(t)

∂ϵ3 |ϵ=0. As for (3.18), differentiating the equation
(3.13) with respect to ϵ once, we have:

∂Y (ϵ)(t)
∂ϵ

= −ϵ

∫ t

0

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
j∈ĴN+1

−τjf
(ϵ)
fj (u)γfj(u)

1 + τjf
(ϵ)
fj (u)

−
∑

j∈ĴN+1

−τjf
(ϵ)
dj (u)γdj(u)

1 + τif
(ϵ)
dj (u)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

du

−ϵ2

2

∫ t

0

∂

∂ϵ

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
j∈ĴN+1

−τjf
(ϵ)
fj (u)γfj(u)

1 + τjf
(ϵ)
fj (u)

−
∑

j∈ĴN+1

−τjf
(ϵ)
dj (u)γdj(u)

1 + τif
(ϵ)
dj (u)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

du

+
∫ t

0

 ∑
j∈ĴN+1

−τjf
(ϵ)
fj (u)γfj(u)

1 + τjf
(ϵ)
fj (u)

−
∑

j∈ĴN+1

−τjf
(ϵ)
dj (u)γdj(u)

1 + τif
(ϵ)
dj (u)


′

dWu

+ϵ

∫ t

0

∂

∂ϵ

 ∑
j∈ĴN+1

−τjf
(ϵ)
fj (u)γfj(u)

1 + τjf
(ϵ)
fj (u)

−
∑

j∈ĴN+1

−τjf
(ϵ)
dj (u)γdj(u)

1 + τif
(ϵ)
dj (u)


′

dWu

Then, setting ϵ = 0, noting the definitions of g
(0)
fi (u), g

(0)
di (u) and σX(u) in (3.16), we obtain the expression of A

(1)
t ,

that is (3.18).
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Although tedious calculations are necessary, (3.19) and (3.20) can be obtained in the similar manner; we first differen-
tiate the equation (3.13) with respect to ϵ twice and three times. Then, setting ϵ = 0, and substituting the expressions
of A

(1)
dj (t), A

(2)
dj (t), A

(1)
fj (t) and A

(2)
fj (t) given in Lemma 1, and noting the definitions of g

(1)
fi (u), g

(1)
di (u), g

(2)
fi (u), g

(2)
di (u)

and σX(u) in (3.16), we obtain the expressions of A
(2)
t and A

(3)
t . 2

Next, we define a random variable X(ϵ) := Y (ϵ)(TN+1)
ϵ . First, we note that Φ(ϵ)(u) := Φ(ϵ)

N+1(TN+1, u) which is necessary
for pricing options is given by;

Φ(ϵ)(u) = Φ(ϵ)
Y (u)ΦZ(u)ΦĴ(u) exp{−iuληTN+1} (3.21)

= Φ(ϵ)
X (ϵu)ΦZ(u)ΦĴ(u) exp{−iuληTN+1} (3.22)

where Φ(ϵ)
Y (u) := Φ(ϵ)

Y (TN+1, u), ΦZ(u) := ΦZ(TN+1, u) in (3.8), ΦĴ(u) := ΦĴ(TN+1, u) in (3.9) and Φ(ϵ)
X (u) denotes

the characteristic function of X(ϵ).
Second, we also note that X(ϵ) is expanded up to the second order as follows:

X(ϵ) = g1 + ϵg2 + ϵ2g3 + o(ϵ2), (3.23)

where g1 := A
(1)
TN+1

, g2 := A
(2)
TN+1

and g3 := A
(3)
TN+1

.
Finally, note that the first order term g1 follows a normal distribution with mean 0 and variance Σ:

Σ :=
∫ TN+1

0

||σX(u)||2du. (3.24)

Using the following theorem, we will obtain an approximation of Φ(ϵ)(u), the characteristic function of f
(ϵ)
N+1(TN+1).

Theorem 1 Under the assumption of Σ > 0, an asymptotic expansion of ϕ
(ϵ)
X (x), the density function of X(ϵ), is

given by

ϕ
(ϵ)
X (x) =

[
1 + D

(ϵ)
1

x

Σ
+ D

(ϵ)
2

(
x2

Σ2
− 1

Σ

)
+ D

(ϵ)
3

(
x3

Σ3
− 3x

Σ2

)
+ D

(ϵ)
4

(
x4

Σ4
− 6x2

Σ3
+

3
Σ2

)
+ D

(ϵ)
5

(
x6

Σ6
− 15x4

Σ5
+

45x2

Σ4
− 15

Σ3

)]
× ϕ0,Σ(x) + o(ϵ2) (3.25)

where

ϕµ,Σ(x) :=
1√
2πΣ

e−
(x−µ)2

2Σ

and 
D

(ϵ)
1 := ϵC2,1

D
(ϵ)
2 := ϵ2C3,1 + 1

2ϵ2C4,1, D
(ϵ)
3 := ϵC2,2

D
(ϵ)
4 := ϵ2C3,2 + 1

2ϵ2C4,2, D
(ϵ)
5 := 1

2ϵ2C4,3.

(3.26)

All of C2,1, C2,2, C3,1, C3,2, C4,1, C4,2 and C4,3 are constants and are defined in Appendix A.

(Proof)
Substituting d = 1, ϕ(ϵ)(x) ≡ 1, and B = (−∞, x] in Theorem 3.4 of Kunitomo and Takahashi[2003], we can obtain
an asymptotic expansion of the probability distribution function of X(ϵ):

P
(
{X(ϵ) ≤ x}

)
=

∫ x

−∞
ϕ0,Σ(z)dz

+ϵ

∫ x

−∞
− ∂

∂z
{E[g2|g1 = z]ϕ0,Σ(z)} dz

+ϵ2
∫ x

−∞
− ∂

∂z
{E[g3|g1 = z]ϕ0,Σ(z)} dz

+
1
2
ϵ2

∫ x

−∞

∂2

∂z2

{
E[g2

2 |g1 = z]ϕ0,Σ(z)
}

dz + o(ϵ2).
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Then, differentiating both sides of the equation above with respect to x, we have:

ϕ
(ϵ)
X (x) = ϕ0,Σ(x)

−ϵ
∂

∂x
{E[g2|g1 = x]ϕ0,Σ(x)}

−ϵ2
∂

∂x
{E[g3|g1 = x]ϕ0,Σ(x)}

+
1
2
ϵ2

∂2

∂x2

{
E[g2

2 |g1 = x]ϕ0,Σ(x)
}

+ o(ϵ2).

Finally, noting that E[g2|g1 = x],E[g3|g1 = x], and E[g2
2 |g1 = x] are polynomials of x(see Appendix A for details.):

E[g2|g1 = x] = C2,1 + C2,2(
x2

Σ2
− 1

Σ
) (3.27)

E[g3|g1 = x] = C3,1
x

Σ
+ C3,2(

x3

Σ3
− 3x

Σ2
) (3.28)

E[g2
2 |g1 = x] = C4,1 + C4,2(

x2

Σ2
− 1

Σ
) + C4,3(

x4

Σ4
− 6x2

Σ3
+

3
Σ2

), (3.29)

we obtain the result. 2

With the density function in (3.25), the characteristic function of X(ϵ) can be calculated.

Corollary 1 Under the assumption of Σ > 0, an asymptotic expansion of Φ(ϵ)
X (u), the characteristic function of X(ϵ),

is given by

Φ(ϵ)
X (u) =

[
1 + D

(ϵ)
1 iu + D

(ϵ)
2 (iu)2 + D

(ϵ)
3 (iu)3 + D

(ϵ)
4 (iu)4 + D

(ϵ)
5 (iu)6

]
× Φ0,Σ(u) + o(ϵ2) (3.30)

where

Φµ,Σ(u) := eiµu−Σ
2 u2

;

D
(ϵ)
1 , D

(ϵ)
2 , D

(ϵ)
3 , D

(ϵ)
4 and D

(ϵ)
5 are given in the equation (3.26).

Finally, we derive an approximation formula for valuation of the European call option written on F
(ϵ)
N+1(TN+1).

Let V (0; TN+1,K) be a value of the option with maturity TN+1 and strike rate K at time 0.
First, note that

V (0;TN+1,K)
Pd(0, TN+1)

= FN+1(0) E
[
ef(ϵ)

1{f(ϵ)>k}

]
− K E

[
1{f(ϵ)>k}

]
where the notation f (ϵ) := fN+1(TN+1) is used.
Then Q(A) := E

[
1

E[ef(ϵ)
]
ef(ϵ)

1A

]
is defined as a probability measure on (Ω,F), and hence under the measure Q, we

obtain;

V (0; TN+1,K)
Pd(0, TN+1)

= FN+1(0)E[ef(ϵ)
] EQ

[
1{f(ϵ)>k}

]
− K E

[
1{f(ϵ)>k}

]
(3.31)

where EQ[·] denotes an expectation operator under Q.
Next, Let Φ(ϵ)(u) := E

[
eiuf(ϵ)

]
and Φ̂(ϵ)

Q (u) := EQ
[
eiuf(ϵ)

]
. Note that

Φ(ϵ)(u) = Φ(ϵ)
Y (u)ΦZ(u)ΦĴ(u) exp{−iuληTN+1}

= Φ(ϵ)
X (ϵu)ΦZ(u)ΦĴ(u) exp{−iuληTN+1}

and that Φ(ϵ)
Q (u) can be expressed as;

Φ(ϵ)
Q (u) = E

[
1

E[ef(ϵ) ]
ei(u−i)f(ϵ)

]
=

1
E[ef(ϵ) ]

Φ(ϵ)(u − i).
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We easily notice that E[ef(ϵ)
] can be decomposed as E[ef(ϵ)

]=E[eϵX(ϵ)
] ×E[eZ(TN+1)] ×E[eĴ(TN+1)−ληTN+1 ] under the

independence assumption and E[eZ(TN+1)] = E[eĴ(TN+1)−ληTN+1 ] = 1. Moreover, by E[eϵX(ϵ)
] = Φ(ϵ)

X (−ϵi), we obtain

Φ(ϵ)
Q (u) =

Φ(ϵ)(u − i)

Φ(ϵ)
X (−ϵi)

=
Φ(ϵ)

X (u − i)ΦZ(u − i)ΦĴ(u − i) exp{−i(u − i)ληTN+1}
Φ(ϵ)

X (−ϵi)
.

Then, the first and second terms of the right hand side of (3.31) can be evaluated through the Levy’s inversion formula
as:

V (0;TN+1,K)
Pd(0, TN+1)

= FN+1(0)E[ef(ϵ)
]

{
1
2

+
1
π

∫ ∞

0

Re{
e−iukΦ(ϵ)

Q (u)
iu

}du

}

−K

{
1
2

+
1
π

∫ ∞

0

Re{e−iukΦ(ϵ)(u)
iu

}du

}
= FN+1(0)Φ(ϵ)

X (−ϵi)

{
1
2

+
1
π

1

Φ(ϵ)
X (−ϵi)

∫ ∞

0

Re{e−iukΦ(ϵ)(u − i)
iu

}du

}

−K

{
1
2

+
1
π

∫ ∞

0

Re{e−iukΦ(ϵ)(u)
iu

}du

}
. (3.32)

However, we do not have the exact close-form expression Φ(ϵ)
X (u) while ΦZ(u) and ΦĴ(u) are given analytically.

Thus, we approximate it by Φ̂(ϵ)
X (u) which is defined as:

Φ̂(ϵ)
X (u) =

[
1 + D

(ϵ)
1 iu + D

(ϵ)
2 (iu)2 + D

(ϵ)
3 (iu)3 + D

(ϵ)
4 (iu)4 + D

(ϵ)
5 (iu)6

]
× Φ0,Σ(u).

Then, by substituting Φ̂(ϵ)
X (u) for Φ(ϵ)

X (u) in the equation (3.32), we can provide V̂ (0; TN+1,K), the approximation
of the option value as follows:

V̂ (0;TN+1,K)
Pd(0, TN+1)

:= FN+1(0)

{
1
2
Φ̂(ϵ)

X (−ϵi) +
1
π

∫ ∞

0

Re{e−iukΦ̂(ϵ)(u − i)
iu

}du

}

−K

{
1
2

+
1
π

∫ ∞

0

Re{e−iukΦ̂(ϵ)(u)
iu

}du

}

where Φ̂(ϵ)(u) := Φ̂(ϵ)
X (ϵu)ΦZ(u)ΦĴ(u) exp{−iuληTN+1}.

This result is summarized as the following theorem.

Theorem 2 Assume Σ > 0. Let V̂ (0;TN+1,K) be an approximated value of V (0;TN+1,K) which denotes the exact
value of the option with maturity TN+1 and strike rate K. Then, V̂ (0;TN+1,K) is given by:

V̂ (0;TN+1,K) := Pd(0, TN+1)

[
FN+1(0)

{
1
2
Φ̂(ϵ)

X (−ϵi) +
1
π

∫ ∞

0

Re{e−iukΦ̂(ϵ)(u − i)
iu

}du

}

−K

{
1
2

+
1
π

∫ ∞

0

Re{e−iukΦ̂(ϵ)(u)
iu

}du

}]
. (3.33)

Here, k := ln( K
FN+1(0)

) and Φ̂(ϵ)(u) := Φ̂(ϵ)
X (ϵu)ΦZ(u)ΦĴ(u) exp{−iuληTN+1}; ΦZ(u) = ΦZ(TN+1, u) is given by (3.8),

ΦĴ(u) = ΦĴ(TN+1, u) is given by (3.9), and Φ̂(ϵ)
X (u) is defined as follows;

Φ̂(ϵ)
X (u) =

[
1 + D

(ϵ)
1 iu + D

(ϵ)
2 (iu)2 + D

(ϵ)
3 (iu)3 + D

(ϵ)
4 (iu)4 + D

(ϵ)
5 (iu)6

]
× Φ0,Σ(u).

4 Numerical Examples

In this section, we examine the effectiveness of our method through some numerical examples. The approximate option
prices by our method are compared with their estimates by Monte Carlo simulations.

First of all, the processes of domestic and foreign forward interest rates and of a volatility of the spot exchange
rate are specified. We suppose D = 4, that is the dimension of a Brownian motion is set to be four; it represents the
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Table 1: Initial domestic/foreign forward interest rates and their volatilities

fd γ∗
d ff γ∗

f

case (i) 0.05 0.2 0.05 0.2

case (ii) 0.02 0.5 0.05 0.2

case (iii) 0.05 0.2 0.02 0.5

uncertainty of domestic and foreign interest rates, the spot exchange rate, and its variance. We note that correlations
between domestic and foreign interest rates and between the spot exchange rate and its variance are allowed. For
simplicity we also suppose λ = 0 which implies no jump part.

The parameters in our model are set as follows:
For the process of the stochastic variance, we set V (0) = θ = 0.015 and κ = 0.5 in the equation (2.7); ω is set to
be zero (i.e. the variance is set to be constant) in former examples below(indicated by “C.V.”), or ω = 0.1 in the
latter(indicated by “S.V.”). v̄ is a four dimensional vector given below.
We further suppose that initial term structures of domestic and foreign forward interest rates are flat, and their

volatilities have flat structures and are constant over time: that is, for all j, fdj(0) = fd, ffj(0) = ff , γdj(t) =
γ∗

d γ̄d1[0,Tj)(t) and γfj(t) = γ∗
f γ̄f1[0,Tj)(t). Here, γ∗

d and γ∗
f are constant scalars, and γ̄d and γ̄f denote four dimensional

constant vectors. We consider three different cases for fd, γ∗
d , ff and γ∗

f as in Table 1. Moreover, given correlation
parameters ρ̃ and ρ which denote the correlations between domestic and foreign interest rates and between the
spot exchange rate and its variance respectively, the constant vectors γ̄d, γ̄f , σ̄ and v̄ can be determined to satisfy
||γ̄d|| = ||γ̄f || = ||σ̄|| = ||v̄|| = 1, γ̄

′

dγ̄f = ρ̃, σ̄
′
v̄ = ρ and the independence assumption.

Finally, we make another assumption that γdn(t)−1(t) and γfn(t)−1(t), volatilities of the domestic and foreign
interest rates applied to the period from t to the next fixing date Tn(t), are equal to be zero for arbitrary t ∈ [t, Tn(t)].

This section shows numerical examples for call option prices calculated with Monte Carlo simulations, with our
approximation formulas of the second and third orders and in addition with the approximation formula introduced
by Takahashi, Takehara and Yamazaki[2006](TTY[2006]), with different maturities of five and ten years in different
cases(“C.V.” and “S.V.”) for the variance of the spot exchange rate; each estimate based on the Monte Carlo simulation
is obtained by 1,000,000 trials with antithetic variables method. As for the correlations, we suppose ρ̃ = 0.5 and
ρ = −0.5. Moreover, these consist of results under three different scenarios (i)-(iii) in Table 1 for term structures of
interest rates. We set S(0) = 100, and K = FN+1(0) × 0.5, · · · , FN+1(0) × 1.5.

Tables 2-13 and Figures 1-12 show the differences of the second/third order approximations and of those in
TTY[2006] against the estimates by Monte Carlo in the cases “C.V.” (listed in Tables 2-4 and Figures 1-3 with a
maturity of five year and in Tables 8-10 and Figures 7-9 with ten year, respectively) or “S.V.” (listed in Tables 5-7
and Figures 4-6 with a maturity of five year and in Tables 11-13 and Figures 10-12 with ten year, respectively): “dif-
ference”(“diff.”) and “relative difference”(“rel.diff.”) are defined by (the approximate value)-(the estimate by Monte
Carlo) and (difference)/(the estimate by Monte Carlo)× 100(%), respectively. Colored cells in these tables indicate
which is the closest to the estimates by Monte Carlo simulations at that moneyness in three approximations done by
the asymptotic expansion up to the second and third orders and by the method introduced in TTY[2006].

To begin with, we note that the figures of the differences between the estimates by Monte Carlo simulations and
our approximations in the “C.V.” case generally look quite similar to those in the “S.V.” case except for only those
in the case (i) of five year, while the stochastic structure of the variance of the spot exchange rate in each case differs
and so do the option prices. This may seem natural since we make use of the exact characteristic function for the
volatility part in our procedure. Thus, it comes to substantial in pricing these options how the characteristic function
of the interest-rate part is approximated. This aspect implies importance of our method.

Furthermore, there are the following two features in our numerical examples.
First, through almost all experiments, the third order terms improve the approximation by the second order,

even with a maturity of five year where every approximation seems to work well. Compared with the largest
differences in the second order of -0.0447(case(iii),ATM), -0.0569(case(iii),ATM), -0.4176(case(iii),20%ITM) and -
0.4430(case(iii),20%ITM) in the cases with “C.V.”, 5y, with “S.V.”, 5y, “C.V.”, 10y and with “S.V.”, 10y, respec-
tively, in the third order they are -0.0358(case(ii),50%OTM), -0.0280(case(ii),50%OTM), -0.3659(case(ii),50%OTM)
and -0.3287(case(ii),50%OTM) respectively. In most of these experiments, the same result holds for the approximation
by TTY[2006]; their largest differences in the same cases above are -0.0427(case(iii),ATM), -0.0568(case(iii),ATM),
-0.4455(case(ii),50%OTM) and -0.4651(case(ii),50%OTM) respectively, which are the worst in these three approxima-
tions.

Second, in comparison with other two approximations, the approximation by the third order seems to work signif-
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icantly well especially around ATM. In contrast to the performances of others at ATM, the largest differences of the
third order approximation in “C.V.”, 5y, with “S.V.”, 5y, “C.V.”, 10y and with “S.V.”, 10y, are only 0.0155(case(i)),
-0.0096(case (iii)), -0.0994(case (iii)) and -0.0949(case (iii)) respectively. We can find this feature with a glance at
figures. For a practical purpose, This may be an advantage of our method since the liquidity of options is in general
the highest at/around ATM.

5 Conclusion

This paper proposed approximation formulas based on a Fourier transform method with an asymptotic expansion
to evaluate currency options with a libor market model of domestic and foreign interest rates and jump-diffusion
stochastic volatility processes of spot exchange rates by expanding the interest-rate part. Then, the distribution of the
component of the underlying asset dependent on the interest rates are not approximated around a normal distribution
such as in Takahashi and Takehara[2006] but around a log-normal one.

We also provided numerical examples to investigate the accuracy of the approximations for option prices with
maturities of five and ten year; in general, satisfactory results were obtained for the approximation up to the third
order.

Finally, we state our research plans as follows: we may use higher order asymptotic expansions and will also utilize
asymptotic expansion formulas for extended models where a stochastic volatility structure of interest rates or a more
general stochastic structure of the volatility of the spot exchange rate are allowed. Especially, to any model where
the analytical characteristic function of the volatility part is known, the same procedure in this article can be applied
under the independence assumption.
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6 Appendix

A Coefficients in the Asymptotic Expansion

This section presents the expressions of coefficients C2,1, C2,2, C3,1, C3,2, C4,1, C4,2 and C4,3 in Theorem 3.1. First,
we show them as a relatively compact form:

C2,1 := C̄

C2,2 :=
∑

i∈ĴN+1
(af

2i − ad
2i)

C3,1 := −
∑

i,j∈ĴN+1

{
(af

3i,j + ad
3i,j) − (b3i,j + c3i,j)

}
+

∑
i∈ĴN+1

{
(df

3i + ff
3i) − (dd

3i + fd
3i)

}
C3,2 :=

∑
i∈ĴN+1

{
(ef

3i + gf
3i) − (ed

3i + gd
3i)

}
C4,1 := a4 +

∑
i,j∈ĴN+1

(ef
4i,j + ed

4i,j − h4i,j)

C4,2 := b4 +
∑

i,j∈ĴN+1
(df

4i,j + dd
4i,j − g4i,j)

C4,3 :=
∑

i,j∈ĴN+1
(cf

4i,j + cd
4i,j − f4i,j)

(A.1)

Subsections A.1 and A.2 below provide the expressions for the terms on the right hand side of (A.1) in detail. For the
derivation of the coefficients with supersprict ‘d’, since they are obtained by a similar calculation in this section, it is
omitted and will be given upon request.

Here, it is stressed that all coefficients are expressed by the form of only nine functionals defined in Appendix B,
and that this seems to make it easy for us to implement our method.

A.1 The second order

In this subsection, we concentrate on the second order scheme. First, we note that g1 and g2 are expressed as

g1 = A
(1)
TN+1

=
∫ TN+1

0

σX(u)
′
dWu,

g2 = A
(2)
TN+1

= −1
2

∫ TN+1

0

||σX(u)||2du +
∑

i∈ĴN+1

(∫ TN+1

0

g
(1)
fi (u)A(1)

fi (u)
′
dWu −

∫ TN+1

0

g
(1)
di (u)A(1)

di (u)
′
dWu

)
.

Let T ≡ TN+1, F (0) ≡ FN+1(0).
Then,

E[g2|g1 = x] = C̄ + E

∫ T

0

∑
i∈ĴN+1

A
(1)
fi (u)(g(1)

fi (u))
′
dWu|g1 = x

 − E

∫ T

0

∑
i∈ĴN+1

A
(1)
di (u)(g(1)

di (u))
′
dWu|g1 = x


where C̄ is a constant and defined by C̄ := −1

2

∫ T

0
||σX(u)||2du = −1

2Σ. To evaluate the right hand side of the equation
above, we utilize a formula associated with conditional expectations of Gaussianity: The formulas used in this and
the following subsections are listed in Appendix B. In particular, applying (2) in Appendix B, we can evaluate each
term in E[g2|g1 = x] as follows:

E

[∫ T

0

A
(1)
fi (u)(g(1)

fi (u))
′
dWu|g1 = x

]
=

(
−τiffi(0)

(1 + τiffi(0))2

)
I2
2 (γfi, γfi; T ) ×

(
x2

Σ2
− 1

Σ

)
=: af

2i

(
x2

Σ2
− 1

Σ

)
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Then, C2,1 and C2,2 are defined by

C2,1 = C̄

C2,2 =
∑

i∈ĴN+1

(af
2i − ad

2i)

A.2 The third order

A.2.1 Computation of E[g3|g1 = x]

We first note that

g3 = A
(3)
T =

∑
i,j∈ĴN+1

(
−

∫ T

0

(g(1)
fi (u))

′
A

(1)
fi (u)g(0)

fj (u)du +
∫ T

0

(g(1)
fi (u))

′
A

(1)
fi (u)g(0)

dj (u)du

+
∫ T

0

(g(1)
di (u))

′
A

(1)
di (u)g(0)

fj (u)du −
∫ T

0

(g(1)
di (u))

′
A

(1)
di (u)g(0)

dj (u)du

)

+
∑

i∈ĴN+1

(∫ T

0

A
(2)
fi (u)(g(1)

fi (u))
′
dWu +

1
2

∫ T

0

(A(1)
fi (u))2(g(2)

fi (u))
′
dWu

)

−
∑

i∈ĴN+1

(∫ T

0

A
(2)
di (u)(g(1)

di (u))
′
dWu +

1
2

∫ T

0

(A(1)
di (u))2(g(2)

di (u))
′
dWu

)
.

Define C
(2)
dj (u) and C

(2)
fj (u) as

C
(2)
dj (u) :=

∫ u

0

γ
′

dj(s)
N∑

i=j+1

(
−τifdi(0)

1 + τifdi(0)

)
γdi(s)ds,

C
(2)
fj (u) :=

∫ u

0

γ
′

fj(s)

 ∑
i∈Ĵj+1

−
(

−τiffi(0)
1 + τiffi(0)

)
γfi(s) +

∑
i∈ĴN+1

(
−τifdi(0)

1 + τifdi(0)

)
γdi(s)

 ds.

Then, we take the expectation of each term of g3 conditional to g1 = x. To evaluate each expectation, we use formulas
in Appendix B, again. we report results below;

1. Apply formula 1.

E

[∫ T

0

(g(1)
fi (u))

′
A

(1)
fi (u)g(0)

fj (u)du|g1 = x

]

=
(

−τiffi(0)
(1 + τiffi(0))2

)(
−τjffj(0)

1 + τjffj(0)

)
Î1
1 (γfi, γfi, γfj ; T ) × x

Σ

:= af
3i,j

x

Σ

2. Apply formula 1.

E

[∫ T

0

(g(1)
fi (u))

′
A

(1)
fi (u)g(0)

dj (u)du|g1 = x

]

=
(

−τiffi(0)
(1 + τiffi(0))2

)(
−τjfdj(0)

1 + τjfdj(0)

)
Î1
1 (γfi, γfi, γdj ;T ) × x

Σ

:= b3i,j
x

Σ

3. Apply formula 1.

E

[∫ T

0

(g(1)
di (u))

′
A

(1)
di (u)g(0)

fj (u)du|g1 = x

]

=
(

−τifdi(0)
(1 + τifdi(0))2

)(
−τjffj(0)

1 + τjffj(0)

)
Î1
1 (γdi, γdi, γfj ; T ) × x

Σ

:= c3i,j
x

Σ
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4. Apply formulas 1,3.

E

[∫ T

0

A
(2)
fi (u)(g(1)

fi (u))
′
dWu|g1 = x

]

=
(

−τiffi(0)
(1 + τiffi(0))2

){
I1
1 (C(2)

fi × γfi; T ) × x

Σ
+ I3

3 (γfi, γfi, γfi;T ) ×
(

x3

Σ3
− 3x

Σ2

)}
=: df

3i

x

Σ
+ ef

3i

(
x3

Σ3
− 3x

Σ2

)
5. Apply formula 4.

1
2
× E

[∫ T

0

(A(1)
fi (u))2(g(2)

fi (u))
′
dWu|g1 = x

]

=
(

τ2
i ffi(0)2

(1 + τiffi(0))3

) [
I4
1 (γfi, γfi, γfi; T ) × x

Σ
+ I4

3 (γfi, γfi, γfi; T ) ×
(

x3

Σ3
− 3x

Σ2

)]
=: ff

3i

x

Σ
+ gf

3i

(
x3

Σ3
− 3x

Σ2

)
Finally, coefficients of C3,1 and C3,2 can be defined as follows;

C3,1 = −
∑

i,j∈ĴN+1

{
(af

3i,j + ad
3i,j) − (b3i,j + c3i,j)

}
+

∑
i∈ĴN+1

{
(df

3i + ff
3i) − (dd

3i + fd
3i)

}
C3,2 =

∑
i∈ĴN+1

{
(ef

3i + gf
3i) − (ed

3i + gd
3i)

}

A.2.2 Computation of E[g2
2 |g1 = x]

We first note that g2
2 is expressed as

g2
2 =

C̄ +
∑

i∈ĴN+1

(∫ T

0

g
(1)
fi (u)A(1)

fi (u)
′
dWu −

∫ T

0

g
(1)
di (u)A(1)

di (u)
′
dWu

)2

= C̄2 + 2C̄ ×
∑

i∈ĴN+1

(∫ T

0

g
(1)
fi (u)A(1)

fi (u)
′
dWu −

∫ T

0

g
(1)
di (u)A(1)

di (u)
′
dWu

)

+

 ∑
i∈ĴN+1

(∫ T

0

g
(1)
fi (u)A(1)

fi (u)
′
dWu −

∫ T

0

g
(1)
di (u)A(1)

di (u)
′
dWu

)2

.

Next, we easily notice that E[g2
2 |g1 = x] consists of the following terms.

1.

E

C̄2 + 2C̄

∫ T

0

[
∑

i∈ĴN+1

g
(1)
fi (u)A(1)

fi (u) −
∑

i∈ĴN+1

g
(1)
di (u)A(1)

di (u)]
′
dWu|g1 = x


= C̄2 + 2C̄ × C2,2(

x2

Σ2
− 1

Σ
)

:= a4 + b4(
x2

Σ2
− 1

Σ
)
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2. Apply formula 5.

E

[(∫ T

0

g
(1)
fi (u)A(1)

fi (u)dWu

)(∫ T

0

g
(1)
fj (u)A(1)

fj (u)dWu

)
|g1 = x

]

=
(

−τiffi(0)
(1 + τiffi(0))2

)(
−τjffj(0)

(1 + τjffj(0))2

)
×[

I5
4 (γfi, γfi, γfj , γfj ; T ) ×

(
x4

Σ4
− 6x2

Σ3
+

3
Σ2

)
+I5

2 (γfi, γfi, γfj , γfj ; T ) ×
(

x2

Σ2
− 1

Σ2

)
+ I5

0 (γfi, γfi, γfj , γfj ; T )
]

=: cf
4i,j

(
x4

Σ4
− 6x2

Σ3
+

3
Σ2

)
+ df

4i,j

(
x2

Σ2
− 1

Σ2

)
+ ef

4i,j

3. Apply formula 5.

2 × E

[(∫ T

0

g
(1)
fi (u)A(1)

fi (u)dWu

)(∫ T

0

g
(1)
dj (u)A(1)

dj (u)dWu

)
|g1 = x

]

= 2
(

−τiffi(0)
(1 + τiffi(0))2

) (
−τjfdj(0)

(1 + τjfdj(0))2

)
×[

I5
4 (γfi, γfi, γdj , γdj ; T ) ×

(
x4

Σ4
− 6x2

Σ3
+

3
Σ2

)
+I5

2 (γfi, γfi, γdj , γdj ; T ) ×
(

x2

Σ2
− 1

Σ2

)
+ I5

0 (γfi, γfi, γdj , γdj ;T )
]

=: f4i,j

(
x4

Σ4
− 6x2

Σ3
+

3
Σ2

)
+ g4i,j

(
x2

Σ2
− 1

Σ2

)
+ h4i,j

Consequently, C4,1, C4,2 and C4,3 are defined as;

C4,1 = a4 +
∑

i,j∈ĴN+1

(ef
4i,j + ed

4i,j − h4i,j)

C4,2 = b4 +
∑

i,j∈ĴN+1

(df
4i,j + dd

4i,j − g4i,j)

C4,3 =
∑

i,j∈ĴN+1

(cf
4i,j + cd

4i,j − f4i,j).

B Formulas

In this section, the formulas 1.- 5. and definitions of functionals {I l
k(· · · ; T )} used in the previous sections are listed

up for convenience. They are derived by direct calculations using Gaussianity of the processes involved, which are
straightforward, but lengthy and hence omitted. W = {(W 1

t , · · · ,W d
t ) : 0 ≤ t} denotes a d-dimensional Brownian

motion. Let qi : [0, T ] 7→ Rd, i = 1, 2, 3, 4, 5 be non-random functions and define Σ as

Σ =
∫ T

0

q
′

1tq1tdt,

where z
′

is the transpose of z. Suppose q1t = σX(t) so that we abbreviate ‘q1’ in {Ii
k(· · · ;T )}, and assume that

0 < Σ < ∞ and integrability in the following formulas.

1.

E

[∫ T

0

q
′

2tdWt|
∫ T

0

q
′

1vdWv = x

]
=

(∫ T

0

q
′

2tq1tdt

)
x

Σ

=: I1
1 (q2; T )

x

Σ
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2.

E

[∫ T

0

∫ t

0

q
′

2udWuq
′

3tdWt|
∫ T

0

q
′

1vdWv = x

]
=

(∫ T

0

∫ t

0

q
′

2uq1uduq
′

3tq1tdt

) (
x2

Σ2
− 1

Σ

)
=: I2

2 (q2, q3; T )
(

x2

Σ2
− 1

Σ

)
3.

E

[∫ T

0

∫ t

0

∫ s

0

q
′

2udWuq
′

3sdWsq
′

4tdWt|
∫ T

0

q
′

1vdWv = x

]
=

(∫ T

0

q
′

4tq1t

∫ t

0

q
′

3sq1s

∫ s

0

q
′

2uq1ududsdt

) (
x3

Σ3
− 3x

Σ2

)
=: I3

3 (q2, q3, q4; T )
(

x3

Σ3
− 3x

Σ2

)
4.

E

[∫ T

0

(∫ t

0

q
′

2udWu

)(∫ t

0

q
′

3sdWs

)
q
′

4tdWt|
∫ T

0

q
′

1vdWv = x

]

=

{∫ T

0

(∫ t

0

q
′

2uq1udu

)(∫ t

0

q
′

3sq1sds

)
q
′

4tq1tdt

}(
x3

Σ3
− 3x

Σ2

)

+

(∫ T

0

∫ t

0

q
′

2uq3uduq
′

4tq1tdt

)
x

Σ

=: I4
3 (q2, q3, q4;T )

(
x3

Σ3
− 3x

Σ2

)
+ I4

1 (q2, q3, q4; T )
( x

Σ

)
5.

E

[(∫ T

0

∫ t

0

q
′

2sdWsq
′

3tdWt

)(∫ T

0

∫ r

0

q
′

4udWuq
′

5rdWr

)
|
∫ T

0

q
′

1vdWv = x

]

=

(∫ T

0

q
′

3tq1t

∫ t

0

q
′

2sq1sdsdt

)(∫ T

0

q
′

5rq1r

∫ r

0

q
′

4uq1ududr

) (
x4

Σ4
− 6x2

Σ3
+

3
Σ2

)

+

(∫ T

0

q
′

3tq1t

∫ t

0

q
′

5rq1r

∫ r

0

q
′

2uq4ududrdt

)(
x2

Σ2
− 1

Σ

)

+

(∫ T

0

q
′

5tq1t

∫ t

0

q
′

3rq1r

∫ r

0

q
′

2uq4ududrdt

)(
x2

Σ2
− 1

Σ

)

+

(∫ T

0

q
′

3tq1t

∫ t

0

q
′

2rq5r

∫ r

0

q
′

4uq1ududrdt

)(
x2

Σ2
− 1

Σ

)

+

{∫ T

0

q
′

3tq5t

(∫ t

0

q
′

2sq1sds

)(∫ t

0

q
′

4uq1udu

)
dt

}(
x2

Σ2
− 1

Σ

)

+

(∫ T

0

q
′

5rq1r

∫ r

0

q
′

3uq4u

∫ u

0

q
′

2sq1sdsdudr

) (
x2

Σ2
− 1

Σ

)
+

∫ T

0

∫ t

0

q
′

2uq4uduq
′

3tq5tdt

=: I5
4 (q2, q3.q4, q5; T )

(
x4

Σ4
− 6x2

Σ3
+

3
Σ2

)
+ I5

2 (q2, q3, q4, q5; T )
(

x2

Σ2
− 1

Σ

)
+ I5

0 (q2, q3, q4, q5;T )

Finally, we define

6.

Î1
1 (q2, q3, q4; T ) :=

∫ T

0

q
′

3tq4t

∫ t

0

q
′

2uq1ududt.
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Moneyness(K/F) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Monte Carlo 39.0934 31.4731 24.3071 17.9655 12.7332 8.6896 5.7388 3.6927 2.3288 1.4471 0.8893

TTY[2006] 39.0933 31.4740 24.3109 17.9749 12.7425 8.6973 5.7459 3.6947 2.3240 1.4364 0.8758
diff. -0.0001 0.0009 0.0038 0.0094 0.0093 0.0077 0.0071 0.0020 -0.0048 -0.0107 -0.0135
rel.diff. 0.00% 0.00% 0.02% 0.05% 0.07% 0.09% 0.12% 0.05% -0.21% -0.74% -1.52%

A.E.(2nd) 39.0932 31.4740 24.3108 17.9748 12.7423 8.6971 5.7458 3.6947 2.3239 1.4364 0.8758
diff. -0.0002 0.0009 0.0037 0.0093 0.0091 0.0075 0.0070 0.0020 -0.0049 -0.0107 -0.0135
rel.diff. 0.00% 0.00% 0.02% 0.05% 0.07% 0.09% 0.12% 0.05% -0.21% -0.74% -1.52%

A.E.(3rd) 39.0936 31.4755 24.3147 17.9810 12.7501 8.7051 5.7527 3.6994 2.3264 1.4365 0.8737
diff. 0.0002 0.0024 0.0076 0.0155 0.0169 0.0155 0.0139 0.0067 -0.0024 -0.0106 -0.0156
rel.diff. 0.00% 0.01% 0.03% 0.09% 0.13% 0.18% 0.24% 0.18% -0.10% -0.73% -1.75%

Moneyness(K/F) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Monte Carlo 39.0943 31.4737 24.3136 17.9824 12.7600 8.7219 5.7770 3.7281 2.3595 1.4709 0.9072

TTY[2006] 39.0933 31.4744 24.3119 17.9768 12.7449 8.7001 5.7487 3.6972 2.3260 1.4381 0.8770
diff. -0.0010 0.0007 -0.0017 -0.0056 -0.0151 -0.0218 -0.0283 -0.0309 -0.0335 -0.0328 -0.0302
rel.diff. 0.00% 0.00% -0.01% -0.03% -0.12% -0.25% -0.49% -0.83% -1.42% -2.23% -3.33%

A.E.(2nd) 39.0930 31.4733 24.3102 17.9752 12.7447 8.7016 5.7518 3.7013 2.3303 1.4419 0.8803
diff. -0.0013 -0.0004 -0.0034 -0.0072 -0.0153 -0.0203 -0.0252 -0.0268 -0.0292 -0.0290 -0.0269
rel.diff. 0.00% 0.00% -0.01% -0.04% -0.12% -0.23% -0.44% -0.72% -1.24% -1.97% -2.97%

A.E.(3rd) 39.0946 31.4801 24.3262 18.0010 12.7770 8.7347 5.7803 3.7212 2.3403 1.4420 0.8714
diff. 0.0003 0.0064 0.0126 0.0186 0.0170 0.0128 0.0033 -0.0069 -0.0192 -0.0289 -0.0358
rel.diff. 0.00% 0.02% 0.05% 0.10% 0.13% 0.15% 0.06% -0.19% -0.81% -1.96% -3.95%

Moneyness(K/F) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Monte Carlo 45.3077 36.4864 28.1980 20.8684 14.8114 10.1247 6.7025 4.3174 2.7200 1.6832 1.0278

TTY[2006] 45.3031 36.4739 28.1737 20.8323 14.7694 10.0820 6.6619 4.2845 2.6955 1.6665 1.0164
diff. -0.0046 -0.0125 -0.0243 -0.0361 -0.0420 -0.0427 -0.0406 -0.0329 -0.0245 -0.0167 -0.0114
rel.diff. -0.01% -0.03% -0.09% -0.17% -0.28% -0.42% -0.61% -0.76% -0.90% -0.99% -1.11%

A.E.(2nd) 45.3035 36.4752 28.1756 20.8338 14.7694 10.0800 6.6580 4.2797 2.6905 1.6620 1.0127
diff. -0.0042 -0.0112 -0.0224 -0.0346 -0.0420 -0.0447 -0.0445 -0.0377 -0.0295 -0.0212 -0.0151
rel.diff. -0.01% -0.03% -0.08% -0.17% -0.28% -0.44% -0.66% -0.87% -1.08% -1.26% -1.47%

A.E.(3rd) 45.3055 36.4837 28.1957 20.8663 14.8101 10.1216 6.6939 4.3048 2.7031 1.6619 1.0015
diff. -0.0022 -0.0027 -0.0023 -0.0021 -0.0013 -0.0031 -0.0086 -0.0126 -0.0169 -0.0213 -0.0263
rel.diff. 0.00% -0.01% -0.01% -0.01% -0.01% -0.03% -0.13% -0.29% -0.62% -1.27% -2.56%
Table 4: Our approximations for options with maturity five year and their estimates by Monte Carlo Simulations in the case(iii), C.V.in the case(iii), C.V.in the case(iii), C.V.in the case(iii), C.V.

Table 3: Our approximations for options with maturity five year and their estimates by Monte Carlo Simulations in the case(ii), C.V.in the case(ii), C.V.in the case(ii), C.V.in the case(ii), C.V.

Table 2: Our approximations for options with maturity five year and their estimates by Monte Carlo Simulations in the case(i), C.V.in the case(i), C.V.in the case(i), C.V.in the case(i), C.V.
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Figure 1:Differences in the case(i), C.V., 5ycase(i), C.V., 5ycase(i), C.V., 5ycase(i), C.V., 5y
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Figure 2:Differences in the case(ii), C.V., 5ycase(ii), C.V., 5ycase(ii), C.V., 5ycase(ii), C.V., 5y

AE(2nd) AE(3rd) TTY[2006]
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Figure 3:Differences in the case(iii), C.V., 5ycase(iii), C.V., 5ycase(iii), C.V., 5ycase(iii), C.V., 5y
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Moneyness(K/F) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Monte Carlo 39.2223 31.7420 24.6629 18.2340 12.7197 8.3257 5.1064 2.9485 1.6199 0.8579 0.4461

TTY[2006] 39.2221 31.7404 24.6588 18.2285 12.7147 8.3178 5.0953 2.9352 1.6058 0.8456 0.4350
diff. -0.0002 -0.0016 -0.0041 -0.0055 -0.0050 -0.0079 -0.0111 -0.0133 -0.0141 -0.0123 -0.0111
rel.diff. 0.00% -0.01% -0.02% -0.03% -0.04% -0.09% -0.22% -0.45% -0.87% -1.43% -2.49%

A.E.(2nd) 39.2220 31.7404 24.6588 18.2284 12.7146 8.3177 5.0952 2.9351 1.6057 0.8456 0.4349
diff. -0.0003 -0.0016 -0.0041 -0.0056 -0.0051 -0.0080 -0.0112 -0.0134 -0.0142 -0.0123 -0.0112
rel.diff. 0.00% -0.01% -0.02% -0.03% -0.04% -0.10% -0.22% -0.45% -0.88% -1.43% -2.51%

A.E.(3rd) 39.2225 31.7419 24.6618 18.2337 12.7222 8.3267 5.1038 2.9418 1.6095 0.8462 0.4326
diff. 0.0002 -0.0001 -0.0011 -0.0003 0.0025 0.0010 -0.0026 -0.0067 -0.0104 -0.0117 -0.0135
rel.diff. 0.00% 0.00% 0.00% 0.00% 0.02% 0.01% -0.05% -0.23% -0.64% -1.36% -3.03%

Moneyness(K/F) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Monte Carlo 39.2246 31.7447 24.6653 18.2398 12.7361 8.3510 5.1370 2.9801 1.6482 0.8799 0.4581

TTY[2006] 39.2222 31.7408 24.6596 18.2300 12.7171 8.3209 5.0986 2.9382 1.6082 0.8473 0.4361
diff. -0.0024 -0.0039 -0.0057 -0.0098 -0.0190 -0.0301 -0.0384 -0.0419 -0.0400 -0.0326 -0.0220
rel.diff. -0.01% -0.01% -0.02% -0.05% -0.15% -0.36% -0.75% -1.41% -2.43% -3.70% -4.80%

A.E.(2nd) 39.2240 31.7401 24.6583 18.2281 12.7153 8.3207 5.1012 2.9434 1.6145 0.8531 0.4404
diff. -0.0006 -0.0046 -0.0070 -0.0117 -0.0208 -0.0303 -0.0358 -0.0367 -0.0337 -0.0268 -0.0177
rel.diff. 0.00% -0.01% -0.03% -0.06% -0.16% -0.36% -0.70% -1.23% -2.04% -3.05% -3.86%

A.E.(3rd) 39.2240 31.7459 24.6706 18.2499 12.7469 8.3583 5.1376 2.9717 1.6301 0.8551 0.4301
diff. -0.0006 0.0012 0.0053 0.0101 0.0108 0.0073 0.0006 -0.0084 -0.0181 -0.0248 -0.0280
rel.diff. 0.00% 0.00% 0.02% 0.06% 0.08% 0.09% 0.01% -0.28% -1.10% -2.82% -6.11%

Moneyness(K/F) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Monte Carlo 45.4559 36.7930 28.6001 21.1644 14.7889 9.6994 5.9602 3.4417 1.8888 0.9984 0.5144

TTY[2006] 45.4524 36.7826 28.5767 21.1257 14.7371 9.6426 5.9085 3.4049 1.8636 0.9819 0.5054
diff. -0.0035 -0.0104 -0.0234 -0.0387 -0.0518 -0.0568 -0.0517 -0.0368 -0.0252 -0.0165 -0.0090
rel.diff. -0.01% -0.03% -0.08% -0.18% -0.35% -0.59% -0.87% -1.07% -1.33% -1.65% -1.75%

A.E.(2nd) 45.4527 36.7834 28.5781 21.1277 14.7389 9.6425 5.9052 3.3988 1.8563 0.9753 0.5005
diff. -0.0032 -0.0096 -0.0220 -0.0367 -0.0500 -0.0569 -0.0550 -0.0429 -0.0325 -0.0231 -0.0139
rel.diff. -0.01% -0.03% -0.08% -0.17% -0.34% -0.59% -0.92% -1.25% -1.72% -2.31% -2.70%

A.E.(3rd) 45.4553 36.7906 28.5935 21.1551 14.7786 9.6898 5.9512 3.4344 1.8759 0.9776 0.4875
diff. -0.0006 -0.0024 -0.0066 -0.0093 -0.0103 -0.0096 -0.0090 -0.0073 -0.0129 -0.0208 -0.0269
rel.diff. 0.00% -0.01% -0.02% -0.04% -0.07% -0.10% -0.15% -0.21% -0.68% -2.08% -5.23%
Table 7: Our approximations for options with maturity five year and their estimates by Monte Carlo Simulations in the case(iii), S.V.in the case(iii), S.V.in the case(iii), S.V.in the case(iii), S.V.

Table 6: Our approximations for options with maturity five year and their estimates by Monte Carlo Simulations in the case(ii), S.V.in the case(ii), S.V.in the case(ii), S.V.in the case(ii), S.V.

Table 5: Our approximations for options with maturity five year and their estimates by Monte Carlo Simulations in the case(i), S.V.in the case(i), S.V.in the case(i), S.V.in the case(i), S.V.
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Figure 4:Differences in the case(i), S.V., 5ycase(i), S.V., 5ycase(i), S.V., 5ycase(i), S.V., 5y
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Figure 5:Differences in the case(ii), S.V., 5ycase(ii), S.V., 5ycase(ii), S.V., 5ycase(ii), S.V., 5y
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Figure 6:Differences in the case(iii), S.V., 5ycase(iii), S.V., 5ycase(iii), S.V., 5ycase(iii), S.V., 5y
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Moneyness(K/F) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Monte Carlo 30.9214 25.5431 20.7434 16.6063 13.1440 10.3135 8.0420 6.2410 4.8291 3.7301 2.8791

TTY[2006] 30.8968 25.5038 20.6883 16.5398 13.0693 10.2350 7.9619 6.1640 4.7567 3.6633 2.8180
diff. -0.0246 -0.0393 -0.0551 -0.0665 -0.0747 -0.0785 -0.0801 -0.0770 -0.0724 -0.0668 -0.0611
rel.diff. -0.08% -0.15% -0.27% -0.40% -0.57% -0.76% -1.00% -1.23% -1.50% -1.79% -2.12%

A.E.(2nd) 30.8960 25.5021 20.6857 16.5365 13.0657 10.2315 7.9588 6.1615 4.7550 3.6625 2.8180
diff. -0.0254 -0.0410 -0.0577 -0.0698 -0.0783 -0.0820 -0.0832 -0.0795 -0.0741 -0.0676 -0.0611
rel.diff. -0.08% -0.16% -0.28% -0.42% -0.60% -0.80% -1.03% -1.27% -1.53% -1.81% -2.12%

A.E.(3rd) 30.9144 25.5317 20.7246 16.5808 13.1131 10.2781 8.0019 6.1987 4.7841 3.6820 2.8273
diff. -0.0070 -0.0114 -0.0188 -0.0255 -0.0309 -0.0354 -0.0401 -0.0423 -0.0450 -0.0481 -0.0518
rel.diff. -0.02% -0.04% -0.09% -0.15% -0.24% -0.34% -0.50% -0.68% -0.93% -1.29% -1.80%

Moneyness(K/F) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Monte Carlo 30.9365 25.5789 20.8081 16.7109 13.2956 10.5138 8.2886 6.5336 5.1613 4.0972 3.2731

TTY[2006] 30.8991 25.5085 20.6956 16.5494 13.0807 10.2474 7.9745 6.1764 4.7683 3.6740 2.8276
diff. -0.0374 -0.0704 -0.1125 -0.1615 -0.2149 -0.2664 -0.3141 -0.3572 -0.3930 -0.4232 -0.4455
rel.diff. -0.12% -0.28% -0.54% -0.97% -1.62% -2.53% -3.79% -5.47% -7.61% -10.33% -13.61%

A.E.(2nd) 30.8861 25.4910 20.6804 16.5429 13.0881 10.2698 8.0105 6.2228 4.8215 3.7303 2.8844
diff. -0.0504 -0.0879 -0.1277 -0.1680 -0.2075 -0.2440 -0.2781 -0.3108 -0.3398 -0.3669 -0.3887
rel.diff. -0.16% -0.34% -0.61% -1.01% -1.56% -2.32% -3.36% -4.76% -6.58% -8.95% -11.88%

A.E.(3rd) 30.9586 25.6099 20.8380 16.7255 13.2805 10.4574 8.1809 6.3659 4.9293 3.7974 2.9072
diff. 0.0221 0.0310 0.0299 0.0146 -0.0151 -0.0564 -0.1077 -0.1677 -0.2320 -0.2998 -0.3659
rel.diff. 0.07% 0.12% 0.14% 0.09% -0.11% -0.54% -1.30% -2.57% -4.49% -7.32% -11.18%

Moneyness(K/F) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Monte Carlo 41.8053 34.6344 28.2061 22.6409 17.9642 14.1288 11.0424 8.5945 6.6712 5.1712 4.0076

TTY[2006] 41.4950 34.2558 27.7925 22.2245 17.5663 13.7614 10.7092 8.2944 6.4035 4.9339 3.7972
diff. -0.3103 -0.3786 -0.4136 -0.4164 -0.3979 -0.3674 -0.3332 -0.3001 -0.2677 -0.2373 -0.2104
rel.diff. -0.74% -1.09% -1.47% -1.84% -2.21% -2.60% -3.02% -3.49% -4.01% -4.59% -5.25%

A.E.(2nd) 41.5101 34.2753 27.8058 22.2233 17.5468 13.7222 10.6531 8.2261 6.3284 4.8571 3.7235
diff. -0.2952 -0.3591 -0.4003 -0.4176 -0.4174 -0.4066 -0.3893 -0.3684 -0.3428 -0.3141 -0.2841
rel.diff. -0.71% -1.04% -1.42% -1.84% -2.32% -2.88% -3.53% -4.29% -5.14% -6.07% -7.09%

A.E.(3rd) 41.6234 34.4631 28.0597 22.5205 17.8613 14.0294 10.9312 8.4578 6.5007 4.9610 3.7540
diff. -0.1819 -0.1713 -0.1464 -0.1204 -0.1029 -0.0994 -0.1112 -0.1367 -0.1705 -0.2102 -0.2536
rel.diff. -0.44% -0.49% -0.52% -0.53% -0.57% -0.70% -1.01% -1.59% -2.56% -4.06% -6.33%

Table 8: Our approximations for options with maturity ten year and their estimates by Monte Carlo Simulations in the case(i), C.V.in the case(i), C.V.in the case(i), C.V.in the case(i), C.V.

Table 9: Our approximations for options with maturity ten year and their estimates by Monte Carlo Simulations in the case(ii), C.V.

Table 10: Our approximations for options with maturity ten year and their estimates by Monte Carlo Simulations in the case(iii), C.V.
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Figure 7:Differences in the case(i), C.V., 10ycase(i), C.V., 10ycase(i), C.V., 10ycase(i), C.V., 10y
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Figure 8:Differences in the case(ii), C.V., 10ycase(ii), C.V., 10ycase(ii), C.V., 10ycase(ii), C.V., 10y
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Figure 9:Differences in the case(iii), C.V., 10ycase(iii), C.V., 10ycase(iii), C.V., 10ycase(iii), C.V., 10y

AE(2nd) AE(3rd) TTY[2006]



Moneyness(K/F) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Monte Carlo 31.1372 25.7907 20.9299 16.6437 12.9837 9.9555 7.5175 5.6026 4.1336 3.0277 2.2065

TTY[2006] 31.1163 25.7563 20.8795 16.5827 12.9168 9.8839 7.4446 5.5314 4.0633 2.9575 2.1371
diff. -0.0209 -0.0344 -0.0504 -0.0610 -0.0669 -0.0716 -0.0729 -0.0712 -0.0703 -0.0702 -0.0694
rel.diff. -0.07% -0.13% -0.24% -0.37% -0.52% -0.72% -0.97% -1.27% -1.70% -2.32% -3.14%

A.E.(2nd) 31.1156 25.7549 20.8773 16.5797 12.9132 9.8800 7.4408 5.5282 4.0610 2.9561 2.1369
diff. -0.0216 -0.0358 -0.0526 -0.0640 -0.0705 -0.0755 -0.0767 -0.0744 -0.0726 -0.0716 -0.0696
rel.diff. -0.07% -0.14% -0.25% -0.38% -0.54% -0.76% -1.02% -1.33% -1.76% -2.36% -3.15%

A.E.(3rd) 31.1312 25.7816 20.9153 16.6256 12.9624 9.9286 7.4860 5.5682 4.0947 2.9823 2.1542
diff. -0.0060 -0.0091 -0.0146 -0.0181 -0.0213 -0.0269 -0.0315 -0.0344 -0.0389 -0.0454 -0.0523
rel.diff. -0.02% -0.04% -0.07% -0.11% -0.16% -0.27% -0.42% -0.61% -0.94% -1.50% -2.37%

Moneyness(K/F) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Monte Carlo 31.1565 25.8286 20.9966 16.7468 13.1320 10.1523 7.7630 5.8951 4.4698 3.4024 2.6131

TTY[2006] 31.1183 25.7601 20.8858 16.5917 12.9282 9.8971 7.4587 5.5456 4.0769 2.9698 2.1480
diff. -0.0382 -0.0685 -0.1108 -0.1551 -0.2038 -0.2552 -0.3043 -0.3495 -0.3929 -0.4326 -0.4651
rel.diff. -0.12% -0.27% -0.53% -0.93% -1.55% -2.51% -3.92% -5.93% -8.79% -12.71% -17.80%

A.E.(2nd) 31.1089 25.7451 20.8675 16.5757 12.9217 9.9063 7.4867 5.5919 4.1378 3.0400 2.2215
diff. -0.0476 -0.0835 -0.1291 -0.1711 -0.2103 -0.2460 -0.2763 -0.3032 -0.3320 -0.3624 -0.3916
rel.diff. -0.15% -0.32% -0.61% -1.02% -1.60% -2.42% -3.56% -5.14% -7.43% -10.65% -14.99%

A.E.(3rd) 31.1682 25.8457 21.0160 16.7583 13.1217 10.1067 7.6744 5.7578 4.2751 3.1428 2.2844
diff. 0.0117 0.0171 0.0194 0.0115 -0.0103 -0.0456 -0.0886 -0.1373 -0.1947 -0.2596 -0.3287
rel.diff. 0.04% 0.07% 0.09% 0.07% -0.08% -0.45% -1.14% -2.33% -4.36% -7.63% -12.58%

Moneyness(K/F) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Monte Carlo 42.0912 34.9785 28.4891 22.7375 17.8014 13.6935 10.3726 7.7525 5.7414 4.2195 3.0853

TTY[2006] 41.7893 34.5938 28.0480 22.2813 17.3615 13.2910 10.0164 7.4473 5.4749 3.9882 2.8846
diff. -0.3019 -0.3847 -0.4411 -0.4562 -0.4399 -0.4025 -0.3562 -0.3052 -0.2665 -0.2313 -0.2007
rel.diff. -0.72% -1.10% -1.55% -2.01% -2.47% -2.94% -3.43% -3.94% -4.64% -5.48% -6.50%

A.E.(2nd) 41.8000 34.6103 28.0667 22.2945 17.3603 13.2680 9.9685 7.3763 5.3866 3.8904 2.7852
diff. -0.2912 -0.3682 -0.4224 -0.4430 -0.4411 -0.4255 -0.4041 -0.3762 -0.3548 -0.3291 -0.3001
rel.diff. -0.69% -1.05% -1.48% -1.95% -2.48% -3.11% -3.90% -4.85% -6.18% -7.80% -9.73%

A.E.(3rd) 41.8928 34.7739 28.3035 22.5895 17.6870 13.5986 10.2796 7.6504 5.6105 4.0535 2.8787
diff. -0.1984 -0.2046 -0.1856 -0.1480 -0.1144 -0.0949 -0.0930 -0.1021 -0.1309 -0.1660 -0.2066
rel.diff. -0.47% -0.58% -0.65% -0.65% -0.64% -0.69% -0.90% -1.32% -2.28% -3.93% -6.70%
Table 13: Our approximations for options with maturity ten year and their estimates by Monte Carlo Simulations in the case(iii), S.V.in the case(iii), S.V.in the case(iii), S.V.in the case(iii), S.V.

Table 12: Our approximations for options with maturity ten year and their estimates by Monte Carlo Simulations in the case(ii), S.V.in the case(ii), S.V.in the case(ii), S.V.in the case(ii), S.V.

Table 11: Our approximations for options with maturity ten year and their estimates by Monte Carlo Simulations in the case(i), S.V.in the case(i), S.V.in the case(i), S.V.in the case(i), S.V.
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Figure 10:Differences in the case(i), S.V., 10ycase(i), S.V., 10ycase(i), S.V., 10ycase(i), S.V., 10y

AE(2nd) AE(3rd) TTY[2006]
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Figure 11:Differences in the case(ii), S.V., 10ycase(ii), S.V., 10ycase(ii), S.V., 10ycase(ii), S.V., 10y

AE(2nd) AE(3rd) TTY[2006]
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Figure 12:Differences in the case(iii), S.V., 10ycase(iii), S.V., 10ycase(iii), S.V., 10ycase(iii), S.V., 10y

AE(2nd) AE(3rd) TTY[2006]


