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Abstract

We develop the likelihood ratio criterion (LRC) for testing the coefficients of a

structural equation in a system of simultaneous equations in econometrics. We

relate the likelihood ratio criterion to the AR statistic proposed by Anderson and

Rubin (1949, 1950), which has been widely known and used in econometrics over

the past several decades. The method originally developed by Anderson and Rubin

(1949, 1950) can be modified to the situation when there are many (or weak in

some sense) instruments which may have some relevance in recent econometrics.

The method of LRC can be extended to the linear functional relationships (or the

errors-in-variables) model, the reduced rank regression and the cointegration models.
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1. Introduction

In ”Estimation of the parameters of a single equation in a complete system of

stochastic equations” Anderson and Rubin (1949) gave a confidence region for the

coefficients of the endogenous variables in that single equation. Such a confidence

region leads to a test of the null hypothesis, say H0, that the vector of coefficients

is a specified vector, say β0; the test consists of rejecting the null hypothesis if β0

is not included in the confidence region, that is, if

β
′

0P
′
2.1A22.1P2.1β0

β
′

0H11β0

>
K2

T − K
FK2,T−K(ϵ) ,(1.1)

where P2.1 is the regression of the ”included” endogenous variables on the K2 ”ex-

cluded” exogenous variables, A22.1 is the sample covariance matrix of the ”excluded”

exogenous variables, H11 is the sample error covariance matrix of T −K degrees of

freedom, and FK2,T−K(ϵ) is the 1− ϵ significance point of the F-distribution with K2

and T − K degrees of freedom. This test is a likelihood ratio test of H0 when the

disturbances are normally distributed and the exogenous variables are nonstochastic.

The hypothesis H0 that the vector of coefficients of the endogenous variables is β0

is relevant only if the equation is identified. This fact suggests that the hypothesis H0

should be tested against the set of alternatives in which the equation is identified, say

H1. The equation in question is identified if the relevant submatrix of the coefficients

in the reduced form is of rank G1 − 1 where G1 is the number of coefficients in β0.

The likelihood ratio test of identification is to reject the hypothesis, say H1, if

β̂
′

P
′
2.1A22.1P2.1β̂

β̂
′

H11β̂
= min

b

b
′
P

′
2.1A22.1P2.1b

b′H11b
(1.2)

is greater than a constant. Here β̂ is the Limited Information Maximum Likelihood

(LIML) estimator of coefficients of the endogenous variables in the selected structural

equation. [Anderson-Rubin (1949)].

The likelihood ratio test that the coefficients vector is β0 given that the equation

is identified is to reject H0 if

1 +
β̂

′

P
′
2.1A22.1P2.1β̂

β̂
′

H11β̂

1 +
β

′

0P
′
2.1A22.1P2.1β0

β
′

0H11β0

(1.3)
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is less than a constant. The ratio β
′

0P
′
2.1A22.1P2.1β0/β

′

0H11β0 measures the effect

of the excluded exogenous variables relative to the error variance of that linear

combination. The ratio β̂
′

P
′
2.1A22.1P2.1β̂/β̂

′

H11β̂ is the relative variance of the

linear combination on which the excluded exogenous variables have least effect.

The criterion for testing H0 vs. H2 has an asymptotic distribution of χ2 with

K2 degrees of freedom, while the criterion for testing H1 vs. H2 has an asymptotic

distribution of χ2 with K2−(G1−1) degrees of freedom under the standard regularity

conditions. The ratio (1.3) has an asymptotic χ2− distribution with K2 − [K2 −
(G1 − 1)] = G1 − 1 degrees of freedom.

For a recent review of the study of testing of H0 against H2, see Andrews and Stock

(2005). The shortcoming of the original method of Anderson and Rubin shows up

particularly when the number of excluded exogenous variables (instruments) is large.

Moreira (2003) developed a conditional likelihood test when the error covariance

matrix is known. It was derived by a different approach and has a form slightly

different from (1.3), to which we will mention at the end of Section 3.

In Section 2 we define the statistical model and a new (and simple) derivation of

the likelihood ratio criterion (LRC) is given in Section 3. Then we give some results

of the asymptotic distribution of LRC in Section 4 under a set of general conditions

including some cases of the weak instruments and many instruments situations. The

extensions of our approach to several problems (i.e. the errors-in-variables model,

the reduced rank regression and the cointegration models) are discussed in Section 5

and concluding remarks are given in Section 6. The mathematical proofs of theorems

are in Section 7.

2. The statistical models

The observed data consist of a T ×G matrix of endogenous or dependent variables

Y and a T × K matrix of exogenous or independent variables Z.

A linear model is

Y = ZΠ + V ,(2.1)

where Π is a K ×G matrix of parameters and V is a T ×G matrix of unobservable

disturbances. The rows of V are assumed independent; each row has a normal

distribution N(0,Ω). The coefficients Π are estimated by the sample regression

matrix

P = (Z
′
Z)−1Z

′
Y .(2.2)
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Ω is estimated by (1/T )H, where

H = (Y − ZP)
′
(Y − ZP) = Y

′
Y − P

′
AP ,(2.3)

and A = Z
′
Z. The matrices P and H constitute a sufficient set of statistics for the

model.

A structural or behavioral equation may involve a subset of the endogenous vari-

ables, say Y1, T ×G1, a subset of exogenous variables, say Z1, T ×K1, and a subset

of disturbances, say V1, T × G1. The equation of interest is written as

Y1β = Z1γ1 + u ,(2.4)

where u = V1β and V = (V1,V2); a component of u has the normal distribution

N(0, σ2), where σ2 = β
′
Ω11β and Ω11 is the G1 × G1 upper-left corner of Ω such

that

Ω =

[
Ω11 Ω12

Ω21 Ω22

]
.

Let Y, Z, V and Π be partitioned accordingly so that (2.1) is

(Y1,Y2) = (Z1,Z2)

[
Π11 Π12

Π21 Π22

]
+ (V1,V2) ,(2.5)

where Z2 is a T × K2 matrix. The relation between (2.4) and (2.5) is[
γ1

0

]
=

[
Π11 Π12

Π21 Π22

] [
β

0

]
=

[
Π11β

Π21β

]
.(2.6)

The second part of (2.6),

Π21β = 0 ,(2.7)

defines β except for a multiplicative constant if and only if the rank of Π21 is G1−1.

In that case the structural equation is said to be identified. Since Π21 is K2 × G1,

a necessary condition for identification is K2 ≥ G1 − 1.

Consider the null hypothesis

H0 : Π21β0 = 0 ,

where β0 is a (non-zero) specified vector. The alternative hypothesis, say H2, con-

sists of arbitrary Π and Ω.

It will be convenient to transform the model so that the two sets of exogenous

variables are orthogonal. Let

Z2.1 = Z2 − Z1A
−1
11 A12 = Z

[
−A−1

11 A12

IK2

]
,

4



where

A =

[
A11 A12

A21 A22

]
=

[
Z

′
1Z1 Z

′
1Z2

Z
′
2Z1 Z

′
2Z2

]
.

Define (Π∗
11,Π

∗
12) =

(
IK1 ,A

−1
11 A12

)
Π . Then

ZΠ = (Z1,Z2.1)

[
Π∗

11 Π∗
12

Π21 Π22

]
= (Z1,Z2.1)Π

∗ .

The matrix Z2.1 has the properties Z
′
1Z2.1 = O and Z

′
2.1Z2.1 = A22 −A21A

−1
11 A12 =

A22.1 . Define also

A∗ =

[
Z

′
1

Z
′
2.1

]
[Z1,Z2.1] =

[
A11 O

O A22.1

]
.

In terms of (Z1,Z2.1), the sample regression matrix is

P∗ = (A∗)−1

[
Z

′
1

Z
′
2.1

]
Y =

[
A−1

11 Z
′
1Y

A−1
22.1Z

′
2.1Y

]
=

[
P∗

1

P∗
2

]

and

H = Y
′
Y − P∗′A∗P∗ .

3. A new derivation of the likelihood ratio criterion

The likelihood function is

L(Π,Ω)(3.1)

= (2π)−
1
2
TG|Ω|−

1
2
T exp{−1

2
tr(Y − ZΠ)

′
(Y − ZΠ)Ω−1}

= (2π)−
1
2
TG|Ω|−

1
2
T exp{−1

2
tr

[
(P − Π)

′
A(P − Π) + H

]
Ω−1}

= (2π)−
1
2
TG|Ω|−

1
2
T exp{−1

2
tr

[
(P∗ − Π∗)

′
A∗(P∗ − Π∗) + H

]
Ω−1}

= (2π)−
1
2
TG|Ω|−

1
2
T exp{−1

2
tr

[
(P∗

1 − Π∗
1)

′
A11(P

∗
1 − Π∗

1)

+(P∗
2 − Π2)

′
A22.1(P

∗
2 − Π2) + H

]
Ω−1} ,

where Π∗
1 = (Π∗

11,Π
∗
12) and Π2 = (Π21,Π22). The maximum of L(Π,Ω) with

respect to Π∗
1 occurrs at Π∗

1 = P∗
1 and is

L(Π2,Ω) = (2π)−
1
2
TG|Ω|−

1
2
T exp{−1

2
tr

[
(P∗

2 − Π2)
′
A22.1(P

∗
2 − Π2) + H

]
Ω−1} .

(3.2)
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The maximum of L(Π2,Ω) with respect to Ω is

L(Π2) = (2π)−
1
2
TG

∣∣∣(P∗
2 − Π2)

′
A22.1(P

∗
2 − Π2) + H

∣∣∣− 1
2
T

e−
1
2
TG .(3.3)

By Lemma 1 in Section 7, the maximum of L(Π2) with respect to Π22 is

L(Π21)(3.4)

= (2π)−
1
2
TG

∣∣∣(P2.1 − Π21)
′
A22.1(P2.1 − Π21) + H11

∣∣∣− 1
2
T
|H22.1|−

1
2
T e−

1
2
TG ,

where P2.1 = A−1
22.1Z

′
2.1Y1, H22.1 = H22 −H21H

−1
11 H12, H11 is a G1 ×G1 submatrix,

and

H =

[
H11 H12

H21 H22

]
.

Then the maximum of L(Π21) with respect to Π21 is

LH2 = (2π)−
1
2
TG |H|−

1
2
T e−

1
2
TG .(3.5)

This is the likelihood maximized with respect to Π and Ω without any rank restric-

tions on coefficient.

Let the G1 × G1 matrix be

G11 = P
′

2.1A22.1P2.1 .(3.6)

Define ν1 as the smallest root of

|G11 − λH11| = 0 ;(3.7)

that is

ν1 = min
b

b
′
G11b

b′H11b
=

β̂
′

G11β̂

β̂
′

H11β̂
,(3.8)

where β̂ is the LIML estimator of β. Then the likelihood function maximized under

H1 is 1

LH1 = (2π)−
1
2
TG |H|−

1
2
T (1 + ν1)

− 1
2
T e−

1
2
TG .(3.9)

Hence the likelihood ratio criterion for testing H1 against the alternative hypothesis

that Π is unrestricted is

LH1

LH2

= (1 + ν1)
− 1

2
T =

[
1 + min

b

b
′
G11b

b′H11b

]− 1
2
T

.(3.10)

1 The result can be directly obtained by (3.15) below by substituting the parameter vector β
for β0 and then maximizing the likelihood function with respect to β.
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(See Anderson and Rubin (1949), Theorem 2.)

Now consider maximizing the likelihood function under H0 : rank(Π21) = G1 − 1

and β = β0. The matrix Π21 can be parameterized as

Π21 = µΓ
′
,(3.11)

where µ is K2 × (G1 − 1) of rank G1 − 1 and Γ is G1 × (G1 − 1) of rank G1 − 1 such

that

Γ
′
β0 = 0 .(3.12)

Then by a direct minimization 2

min
µ

∣∣∣(P2.1 − µΓ
′
)
′
A22.1(P2.1 − µΓ

′
) + H11

∣∣∣(3.13)

=
∣∣∣(P2.1 − µ̂Γ

′
)
′
A22.1(P2.1 − µ̂Γ

′
) + H11

∣∣∣ ,

where

µ̂ = P2.1H
−1
11 Γ

(
Γ

′
H−1

11 Γ
)−1

.(3.14)

The determinant is then∣∣∣∣[P2.1 − P2.1H
−1
11 Γ

(
Γ

′
H−1

11 Γ
)−1

Γ
′
]
′
A22.1[P2.1 − P2.1H

−1
11 Γ

(
Γ

′
H−1

11 Γ
)−1

Γ
′
] + H11

∣∣∣∣
=

∣∣∣∣[IG1 − Γ
(
Γ

′
H−1

11 Γ
)−1

Γ
′
H−1

11 ]G11[IG1 − H−1
11 Γ

(
Γ

′
H−1

11 Γ
)−1

Γ
′
] + H11

∣∣∣∣
= |H11|

∣∣∣∣[IG1 − H
−1/2
11 Γ

(
Γ

′
H−1

11 Γ
)−1

Γ
′
H

−1/2
11

]
(H

−1/2
11 G11H

−1/2
11 )

×
[
IG1 − H

−1/2
11 Γ

(
Γ

′
H−1

11 Γ
)−1

Γ
′
H

−1/2
11

]
+ IG1

∣∣∣∣
= |H11|

∣∣∣[IG1 − Q(Q
′
Q)−1Q

′]
H

−1/2
11 G11H

−1/2
11

[
IG1 − Q(Q

′
Q)−1Q

′]
+ IG1

∣∣∣ ,

where Q = H
−1/2
11 Γ. The matrix Q(Q

′
Q)−1Q

′
is idempotent of rank G1−1 and IG1−

Q(Q
′
Q)−1Q

′
is idempotent of rank G1 − (G1 − 1) = 1. Then IG1 −Q(Q

′
Q)−1Q

′
=

x(x
′
x)−1x

′
and Q

′
x = 0 for x = H

1/2
11 β0. Then (3.13) is

|H11|
∣∣∣x(x

′
x)−1x

′
H

−1/2
11 G11H

−1/2
11 x(x

′
x)−1x

′
+ IG1

∣∣∣(3.15)

= |H11|
[
1 +

β
′

0G11β0

β
′

0H11β0

]

2 We can use the relation that |(P2.1 − µΓ
′
)
′
A22.1(P2.1 − µΓ

′
) + H11| = |H11||(µΓ

′
−

P2.1)H−1
11 (Γµ − P

′

2.1)A22.1 + IG1−1| and minimize the quadratic form of µ.
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by Corollary A.3.1 of Anderson (2003). The likelihood maximized over H0 is

LH0 = (2π)−
1
2
TG |H|

[
1 +

β
′

0G11β0

β
′

0H11β0

]− 1
2
T

.(3.16)

Hence the likelihood ratio criterion for the null hypothesis H0 : Π21 has rank G1−1

and Π21β0 = 0 vs. H1 : Π21 has rank G1 − 1 is

LH0

LH1

=

 1 + ν1

1 +
β

′

0G11β0

β
′

0H11β0


1
2
T

=


1 +

β̂
′

G11β̂

β̂
′

H11β̂

1 +
β

′

0G11β0

β
′

0H11β0



1
2
T

.(3.17)

The null hypothesis that β = β0 is rejected if the LRC is less than a suitable

constant; that is, if

1 +
β̂

′

G11β̂

β̂
′

H11β̂

1 +
β

′

0G11β0

β
′

0H11β0

< c(K2, T − K) .(3.18)

The likelihood ratio test (3.18) can be written

β
′

0G11β0

β
′

0H11β0

>
1 + ν1

c(K2, T − K)
− 1(3.19)

In Anderson and Rubin (1949) the test is

β
′

0G11β0

β
′

0H11β0

>
K2

T − K
FK2,T−K(ϵ) ,(3.20)

where FK2,T−K(ϵ) denotes the 1− ϵ significance point of the F-distribution with K2

and T − K degrees of freedom.

Comments :

1. The LRC does not depend on a normalization of the vector of coefficients. The

ratio β
′

0P
′
2.1A22.1P2.1β0/β

′

0H11β0 is unchanged by replacing β0 by β0 times an arbi-

trary constant. Similarly, β̂
′

P
′
2.1A22.1P2.1β̂/β̂

′

H11β̂ is unchanged by replacing the

LIML estimator multiplied by a constant. The normalization of β0 does not have

to be the same as of β̂.

2. The LRC (3.10) compares the hypothesized β0 with the LIML estimator β̂.
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3. The LRC is a function of the sufficient statistics P and H.

4. The LRC is invariant with respect to linear transformations Y1 → Y1C, β0 →
C−1β0 and Z2 → Z2D for C and D nonsingular.

The only invariants of β
′

0G11β0/β
′

0H11β0 and β̂
′

G11β̂/β̂
′

H11β̂ are β
′

0G11β0/β
′

0H11β0

and the roots of (3.7).

5. The logarithm of the likelihood ratio criterion is

log
LH0

LH1

=
1

2
T

log

1 +
β̂

′

G11β̂

β̂
′

H11β̂

 − log

(
1 +

β
′

0G11β0

β
′

0H11β0

) ,(3.21)

which is approximately

1

2
T

 β̂
′

G11β̂

β̂
′

H11β̂
− β

′

0G11β0

β
′

0H11β0

 .(3.22)

Moreira (2003) has arrived at (3.22) by another route. He considered criteria

which are functions of the sufficient statistics that are invariant with respect to

certain linear transformations when Ω11 is known and expressed the statistic as

LR0 = S̄
′
S̄ − λmin ,

where λmin is the smallest eigenvalue of (S̄, T̄)
′
(S̄, T̄),

(S̄, T̄) = Z
′

2.1Z2.1

[
S(β

′

0Ω11β0)
−1/2,T(Γ

′
Ω11Γ)−1/2

]
and

S = Z
′

2.1Y1β0 ,T = Z
′

2.1YΩ−1
11 Γ .

(We have used our notations here.) He has proposed to use the simulated distribu-

tion of LR0 when Ω11 is known for testing H0.

4. Asymptotic Distributions

We shall investigate the limiting distributions of the likelihood ratio (LR) statistic

under conditions much more general than the conditions under which the test was de-

veloped. Let the σ−field Ft−1 be generated by z1,v1, · · · , zt−1,vt−1, zt (t = 1, · · · , T )

and F0 is the initial σ−field generated by z1. We partition 1 × (G1 + G2) vec-

tors v
′
t = (v

′
1t,v

′
2t) (t = 1, · · · , T ), and we assume that E(vt|Ft−1) = 0 a.s.,

9



E(vtv
′
t|Ft−1) = Ωt a.s., and Ωt can be a function of z1,v1, · · · , zt−1,vt−1, zt. Since

ut = v
′
1tβ, we have E(ut|Ft−1) = 0 a.s. and E(u2

t |Ft−1) = σ2
t = β

′
Ω

(t)
11β a.s., where

Ωt is a (G1 + G2) × (G1 + G2) matrix

Ωt =

 Ω
(t)
11 Ω

(t)
12

Ω
(t)
21 Ω

(t)
22

 .

We first investigate the limiting distribution of LR statistic under the standard

situation when T is large. Suppose

(I)
1

T

T∑
t=1

ztz
′

t

p−→ M (as T → ∞) ,

(II)
1

T
max
1≤t≤T

∥zt∥2 p−→ 0 (as T → ∞) ,

(III)
1

T

T∑
t=1

Ω
(t)
11 ⊗ ztz

′

t

p−→ Ω11 ⊗ M (as T → ∞) ,

(IV)
1

T

T∑
t=1

Ω
(t)
11

p−→ Ω11 (as T → ∞) ,

(V) sup
t≥1

E [v
′

1tv1tI(v
′

1tv1t > c)|Ft−1]
p−→ 0 (as c → ∞) ,

where I(·) is the indicator function, and M and Ω11 are nonsingular (constant)

matrices. Conditions (IV) and (V) imply

1

T

T∑
t=1

v1tv
′

1t

p−→ Ω11 (as T → ∞)(4.1)

and σ2 = β
′
Ω11β (> 0).

Comments :

1. We allow some heteroscedasticity of disturbances and only require second-order

moments. Thus the conditions on disturbances are minimal.

2. The conditions (I) and (II) on instruments include the situations that the lagged

endogenous variables are subsets of instruments when they follow the stationary AR

processes, for instance.

In order to investigate the limiting null-distribution and the local power of LRC,

we consider a sequence of local alternatives as Π
(T )
11 Π

(T )
12

Π
(T )
21 Π

(T )
22

 [
β0

0

]
=

[
γ1

0

]
+

1√
T

[
ξ1

ξ2

]
,(4.2)
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where ξi (i = 1, 2) are Ki×1 (i = 1, 2) vectors, each element of the (K1+K2)×(G1+

G2) matrix Π are functions of T (say ΠT ) and it is partitioned as ΠT = (Π
(T )
ij ).

Hence limT→∞ Π
(T )
21 = Π21 and Π21β0 = 0 as the limit (T → ∞) in (4.2). (See (2.6)

and (2.7) in Section 2.) Then Theorem 1 is an extension of Theorem 4 of Anderson

and Kunitomo (1994). The proof is given in Section 7.

Theorem 1 : Assume Conditions (I)-(V). Under the local alternative sequences

(4.2), as T → ∞ the limiting distribution of

LR1 = −2 log
LH0

LH1

= T

[
log

(
1 +

β
′

0G11β0

β
′

0H11β0

)
− log

(
1 + min

b

b
′
G11b

b′H11b

)]
(4.3)

is the non-central χ2 with G1−1 degrees of freedom and the non-centrality parameter

κ1 = θ1σ
−2, where σ2 = β

′
Ω11β, M22.1 = M22 − M21M

−1
11 M12,

θ1 = ξ
′

2M22.1Π
∗
2(Π

∗′
2 M22.1Π

∗
2)

−1Π∗′
2 M22.1ξ2 ,(4.4)

and a (K1 + K2) × (K1 + K2) matrix

M =

[
M11 M12

M21 M22

]
,Π∗

2 = Π21

[
0

′

IG1−1

]
,

in which we assume that Π∗
2 has rank G1 − 1.

Under H0 (ξ = 0), the limiting distribution of LR1 is χ2 with G1 − 1 degrees

of freedom under the general conditions on disturbances. Then by using the χ2

distribution in Theorem 1 when T is large in (3.19), we can take the rejection region

as
β

′

0G11β0

β
′

0H11β0

> [1 + ν1] e
1
T

χ2
G1−1(ϵ) − 1(4.5)

by using χ2(ϵ) with G1 − 1 degrees of freedom. It is also possible to investigate the

power functions under the local alternative hypotheses of (4.2).

Next, we consider the case of so-called weak instruments in econometrics. Let

ΠT = C/T δ for a constant matrix C and δ > 0. The (K1 + K2) × (G1 + G2)

matrices ΠT = (Π
(T )
ij ) and C = (Cij) are partitioned as Π, accordingly. Then

Condition (I) implies

(I
′
)

1

T 1−2δ

T∑
t=1

Π
′

Tztz
′

tΠT
p−→ C

′
MC (as T → ∞) .
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We rewrite

(Y
(T )
1 ,Y

(T )
2 ) = ZΠT + V ,(4.6)

G
(T )
11 = P

(T )′

2.1 A22.1P
(T )
2.1

and

H
(T )
11 = Y

(T )′

1 Y
(T )
1 − P

(T )′

2.1 A22.1P
(T )
2.1 .

Define ν
(T )
1 as the smallest root of

∣∣∣G(T )
11 − λ(T )H

(T )
11

∣∣∣ = 0 ; that is

ν
(T )
1 = min

b

b
′
G

(T )
11 b

b′H
(T )
11 b

=
β̂

(T )′

G
(T )
11 β̂

(T )

β̂
(T )′

H
(T )
11 β̂

(T )
,(4.7)

where β̂
(T )

= (1,−β̂
(T )′

2 )
′
is the LIML estimator of β.

The weak instruments case is different from the standard situation for (2.1) and (2.4).

The limiting distribution of LR1 depends on the weakness of instruments, which

could be measured by the parameter δ. Theorem 2 states the limiting distribution

of the LR statistic when 0 < δ < 1/2, of which the proof is similar to Theorem 1

and it is omitted.

Theorem 2 : Assume ΠT = C/T δ for a (constant) K ×G1 matrix C with 0 < δ <

1/2 and Conditions (I) − (V). Under the local alternative sequences with η = 1/2 Π
(T )
11 Π

(T )
12

Π
(T )
21 Π

(T )
22

 [
β0

0

]
=

[
γ1

0

]
+

1

Tη

[
ξ1

ξ2

]
,(4.8)

as T → ∞ the limiting distribution of LR1 is the non-central χ2 with G1−1 degrees

of freedom and the non-centrality parameter κ2 = θ2σ
−2, where σ2 = β

′

0Ω11β0,

θ2 = ξ
′

2M22.1C
∗
2

[
C∗′

2 M22.1C
∗
2

]−1
C∗′

2 M22.1ξ2(4.9)

and a K2 × (G1 − 1) matrix

C∗
2 = C21

[
0

′

IG1−1

]

has rank G1 − 1.

If η > 1/2, then the statistic LR1 has the limiting distribution of the central χ2

with G1 − 1 degrees of freedom.

12



When δ ≥ 1/2 and the instruments are extremely weak, however, the limiting

distribution of LR1 under H0 is not a χ2 distribution. First we consider the case

when δ = 1/2. Define

XT =
1√
T

A
−1/2
22.1 Z

′

2.1V1 .(4.10)

Then for any constant vector a, XTa converges to Xa weakly as T → ∞ under

Conditions (I)-(V) and Xa follows NK

[
0, (a

′
Ω11a)IK

]
. Since H

(T )
11 /T

p→ Ω11, we

find that for any C
′
21

T
β

′

0G
(T )
11 β0

β
′

0H
(T )
11 β0

w→ β
′

0(C
′
21M

1/2
22.1 + X

′
)(M

1/2
22.1C21 + X)β0

β
′

0Ω11β0

and

min
b

b
′
G

(T )
11 b

b′H
(T )
11 b

w→ ν∗
1 ,

where ν∗
1 is the smallest root of ∣∣∣G(∗)

11 − λ∗Ω11

∣∣∣ = 0 ;(4.11)

that is

ν∗
1 =

β̂
∗′
(C

′
21M

1/2
22.1 + X

′
)(M

1/2
22.1C21 + X)β̂

∗

β̂
∗′
Ω11β̂

∗

and β̂
∗

is the characteristic vector of (4.11) with ν∗
1 . Then as T → ∞ under the

condition C21β0 = 0,

LR1
w→ β

′

0(C
′
21M

1/2
22.1 + X

′
)(M

1/2
22.1C21 + X)β0

β
′

0Ω11β0

− ν∗
1(4.12)

=
β

′

0X
′
Xβ0

β
′

0Ω11β0

− ν∗
1 (= LR∗

1, say),

where the first term of the limiting random variable follows χ2(K2) and the second

term (i.e. ν∗
1) follows the minimum of a non-central Wishart matrix. Hence we have

a representation of the G1 × G1 random matrix

G
(∗)
11 = (C

′

21M
1/2
22.1 + X

′
)(M

1/2
22.1C21 + X)

and it is actually a central Wishart if and only if C21 = O.

When δ > 1/2, we have

LR1
w→ β

′

0X
′
Xβ0

β
′

0Ω11β0

− ν∗∗
1 = LR∗

1 ,(4.13)

13



where ν∗∗
1 is the smallest root of∣∣∣X′

X − λ∗∗Ω11

∣∣∣ = 0 .(4.14)

In our formulation it is possible to analyze the asymptotic behavior of LR1 under

the local alternatives when η ≥ 1/2 with some complications. There is no technical

difficulty, but we need some further notations.

Then we can investigate the asymptotic behavior of LR∗
1 when K or K2 is large.

An interesting observation is the fact that the LIML estimator is still consistent when

K2 is large and δ = 1/2. On the other hand, when δ > 1/2 the structural relation is

asymptotically under-identification. This leads to the asymptotic behavior of LR∗
1

when K2 is large, which is different from the standard situation. We summarize

the results on the asymptotic distributions of LR∗
1 under H0 when K2 is large. The

proof is given in Section 7.

Theorem 3 : Suppose each row of X follows NG1(0,Ω11). [i] Let M∗
K2

=

C
′
21M22.1C21 and assume

(VI)
1

K2

M∗
K2

→ M∗

as K2 → ∞ and the lower-right corner ((G1 − 1)× (G1 − 1)) submatrix M∗
22 of M∗

is a non-singular matrix (i.e. M∗
22 is of rank G1). When δ = 1/2, as K2 → ∞

LR∗
1

w→ x
′
x ,(4.15)

where x follows the (G1 − 1)-dimensional normal distribution with the covariance

matrix

Q∗ = IG1−1 + M
∗−1/2
22

[
Ω11 −

Ω11β0β
′

0Ω11

β
′

0Ω11β0

]
22

M
∗−1/2
22 ,

which is a positive definite matrix and [ · ] stands for the (G1 − 1) × (G1 − 1)

lower-right corner of the matrix. [ii] When δ > 1/2, as K2 → ∞

1√
K2

LR∗
1

w→ τG1 ,(4.16)

where τG1 is the largest characteristic root of the symmetric matrix

W∗ =
1√
K2

[(
β

′

0X
′
Xβ0

β
′

0Ω11β0

)
IG1 − Ω

−1/2
11 X

′
XΩ

−1/2
11

]
= (w∗

ij) ,(4.17)
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and each elements w∗
ij follows the Gaussian distributions with zero means and

E(w∗2
ii ) = 4(1 − a2

i ), E(w∗2
ij ) = 1 (i ̸= j), E(w∗

iiw
∗
ij) = −2aiaj (i ̸= j), E(w∗

iiw
∗
jj) =

2[1 − a2
i − a2

j ] (i ̸= j) and

a = (ai) =
Ω

1/2
11 β0

∥Ω1/2
11 β0∥

.

When G1 = 2, the larger root of the determinant equation is

τ2 =
w∗

11 + w∗
22 +

√
(w∗

11 + w∗
22)

2 − 4(w∗
11w

∗
22 − w∗2

12)

2
.(4.18)

The above situations when T → ∞ and K2 → ∞ can be regarded as some cases

of many weak instruments recently discussed in econometrics. The alternative (and

it may be more natural) formulation of many weak instruments is to relate K2 to T,

and take each elements and the size of Π as functions of T . Let the size K×G of Π

be dependent on T, and we denote a sequence of KT ×G (KT = K1 +K2T , T ≥ 3, G

is a fixed integer) matrices ΠT , which is partitioned into the (K1 +K2T )× (G1 +G2)

submatrices

ΠT =

 Π
(T )
11 Π

(T )
12

Π
(T )
21 Π

(T )
22

 .

Suppose

(VII)
KT

T
−→ 0 .

Also instead of Conditions (I)-(III), we suppose the conditions

(I
′′
)

1

T

T∑
t=1

Π
′

Tz
(T )
t z

(T )′

t ΠT
p−→ Φ (as T → ∞) ,

(II
′′
)

1

T
max
1≤t≤T

∥Π′

Tz
(T )
t ∥2 p−→ 0 (as T → ∞) ,

(III
′′
)

1

T

T∑
t=1

Ω
(t)
11 ⊗ Π

′

Tz
(T )
t z

(T )′

t ΠT
p−→ Ω11 ⊗ Φ (as T → ∞) ,

where Ω11 is a positive definite constant matrix, Φ is a non-negative definite constant

matrix (the upper-left G1 ×G1 sub-matrix of Φ is of rank G1 − 1), and z
(T )
t are the

KT × 1 vectors of instruments.

In the many-weak instruments cases, there can be alternative assumptions among

the relative magnitudes of T, KT and ΠT . The condition (VII) is a very mild

15



condition and it is not possible to obtain the χ2− distribution 3 without (VII). The

many-weak instruments cases are different from the standard situation for (2.1) and

(2.4) with a fixed K (and K2). We have the next result and we have omitted the

proof because it is similar to those of Theorem 1 and Theorem 3.

Theorem 4 : Let z
(T )
t be a sequence of KT × 1 vectors of instruments. For a

sequence of KT ×G coefficient matrices ΠT , assume Conditions (I)
′′
-(III)

′′
, (IV)-(V)

and (VII). Under the local alternative sequences

ΠT

[
β0

0

]
=

[
γ1

0

]
+

1√
T

[
ξ1

ξ2T

]
,(4.19)

as T → ∞ the statistic LR1 has the limiting distribution of the non-central χ2 with

G1 − 1 degrees of freedom and the non-centrality parameter κ4 = θ4σ
−2, provided

that the probability limits of

θ4 =
[
plim

1

T
ξ

′

2TA22.1Π2T

] [
plim

1

T
Π

′

2TA22.1Π2T

]−1 [
plim

1

T
Π

′

2TA22.1ξ2T

]
,(4.20)

exist and θ4 is positive for a sequence of the K2T × 1 vectors ξ2T , the K2T × 1

sub-vectors z
(T )
2t of z

(T )
t , a sequence of the K2T × K2T matrices

A22.1 =
T∑

t=1

z
(T )
2t z

(T )′

2t −
T∑

t=1

z
(T )
2t z

′

1t

[
T∑

t=1

z1tz
′

1t

]−1 T∑
t=1

z1tz
(T )′

2t ,

and a sequence of K2T × (G1 − 1) matrices

Π2T = Π
(T )
21

[
0

′

IG1−1

]
.

Thus we also find that the rejection region and confidence region based on χ2

distribution with G1 − 1 degrees of freedom are asymptotically valid for some cases

of weak instruments including some many weak instruments situation. The assump-

tions of Theorem 2 on weak instruments (with ξ2 = C21β0 = 0) or Theorem 4 (with

θ4 = 0) on many instruments are sufficient for χ2 with G1 − 1 degrees of freedom as

the asymptotic null-distribution.

3 Recently, Matsushita (2007) has investigated the finite sample distribution of LR1 without
Condition (IV). The related problem on estimation with many instruments has been explored by
Anderson, Kunitomo and Matsushita (2005), for instance.

16



5. Some Extensions

The likelihood ratio criterion we have developed can be extended to several sta-

tistical models, which have been often treated separately in the literatures. We shall

discuss three important problems which have many applications in statistical and

econometric analyses.

5.1 Linear Functional Relationships

We shall pay an attention to the fundamental relationship between the simultane-

ous equation system and the linear functional (or the errors-in-variables) models in

the statistical literature, which are mathematically equivalent. A linear functional

relationships model can be defined as follows.

Let the observed G1-component vector Xαj (α = 1, · · · , K2; j = 1, · · · ,m) be

modeled as

Xαj = ξα + V αj ,(5.1)

where ξ1, · · · , ξK2
are incidental parameters, Vαj are unobserved random vectors dis-

tributed as N(0,Ω), and m is the number of repeated measurements. The assumed

linear relationship among ξα is

ξ
′

αβ = 0 , α = 1, · · · , K2 .(5.2)

Then (5.1) can be written as X = ZΠ + V, where mK2 = T and

X =



X
′
11
...

X
′
1m

X
′
21
...

X
′
K2m


, Z =



1 0 0 · · · 0
...

1 0 0 · · · 0

0 1 0 · · · 0
...

...

0 0 0 · · · 1


, V =



V
′
11
...

V
′
1m

V
′
21
...

V
′
K2m


,(5.3)

Π =


ξ

′

1

ξ
′

2
...

ξ
′

K2

 .

The linear relationship (5.3) implies that the rank of Π is G1 − 1 . The estimator

of ξα is x̄α = (1/m)
∑m

j=1 Xαj; the estimator of Π
′
= (ξ1, · · · , ξK2

) of unrestricted
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rank is (x̄1, · · · , x̄K2); further for statistical inference it may be natural to use two

matrices

G11 = m
K2∑
α=1

x̄αx̄
′

α ,H11 =
K2∑
α=1

m∑
j=1

(xαj − x̄α)(xαj − x̄α)
′
.(5.4)

The relation between the estimation problem of structural equations in economet-

rics and the linear functional relationships model has been investigated by Anderson

(1984). (See Sections 12 and 13 of Anderson (2003) for the details.) However, the

likelihood ratio criteria for testing coefficients have not been fully developed al-

though there were some test statistics proposed. In this respect, the test statistic

and confidence region in the form of (3.18), (3.19) and (4.5) are directly applicable.

5.2 Reduced Rank Regression

In (2.1) and (2.5) we consider the null hypothesis

H
′

0 : Π21B0 = 0 ,

where B0 is a specified G1 × r (1 ≤ r < G1) matrix of rank r. The alternative

hypothesis consists of arbitrary Π and Ω. Consider also

H
′

1 : rank(Π21) = G1 − r .

Note that H0 includes H1. By using the same argument as in Section 3, the likeli-

hood ratio test of the null hypothesis H
′
2 : Π21 has rank G1 − r and Π21B0 = 0 vs.

H
′
1 : Π21 has rank G1−r can be developed. In the derivations of (3.13)-(3.15), we no-

tice that the matrix Q(Q
′
Q)−1Q

′
is idempotent of rank G1−r and IG1−Q(Q

′
Q)−1Q

′

is idempotent of rank G1 − (G1 − r) = r. Then IG1 −Q(Q
′
Q)−1Q

′
= X(X

′
X)−1X

′

and Q
′
X = 0 for X = H

1/2
11 B0. Since (3.13) becomes

|H11|
∣∣∣∣Ir + B

′

0G11B0

[
B

′

0H11B0

]−1
∣∣∣∣ ,(5.5)

then (3.16) can be replaced by a monotone function of

r∏
i=1

(1 + νi)
∣∣∣B′

0H11B0

∣∣∣∣∣∣B′

0(G11 + H11)B0

∣∣∣ = min
B

∣∣∣B′
(G11 + H11)B

∣∣∣
|B′H11B|

∣∣∣B′
0H11B0

∣∣∣∣∣∣B′
0(G11 + H11)B

∣∣∣ ,(5.6)

where B is a G1 × r matrix and νi is the i-th smallest root (i = 1, · · · , G1) of (3.7).

The likelihood ratio test in (3.17) becomes the form of∣∣∣B′
0(G11 + H11)B0

∣∣∣∣∣∣B′
0H11B0

∣∣∣ >

∏r
i=1(1 + νi)

c∗(K2, T − K)
,(5.7)
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where c∗(K2, T − K) is a suitable constant.

The resulting test procedure and confidence region are invariant to the linear

transformations of Ξ0 and they are direct extensions of Section 3 to the reduced

rank regression problem. (See Anderson (1951), Anderson and Amemiya (1991) for

the details, for instance.) The degrees of freedom of χ2−distribution for the statistic

LR2

LR2 = T log



∣∣∣B′

0(G11 + H11)B0

∣∣∣∣∣∣B′

0H11B0

∣∣∣
r∏

i=1

(1 + νi)

(5.8)

is r(G1 − r) in the reduced rank regression.

It is straightforward to extend our analysis of the limiting distribution of LRC in

Section 4 to the present case.

5.3 Cointegration

It has been known that the conintegration problem in econometrics can be es-

sentially reduced to the reduced rank regression in the previous subsection. The

main interest in the former is to make statistical inference on cointegrating vectors

Γ = Γ0 for

Γ
′

0B0 = O(5.9)

under the hypothesis H
′
0 when Γ0 is a G1×(G1−r) matrix consisting of cointegrating

vectors. (See Johansen (1995) and Anderson (2000), for instance.)

Let a G × 1 time series vector xt follows

∆xt =
[
Π

′

1(1), · · · ,Π′

1(p)
] 

∆xt−1

...

∆xt−p

 + Π
′

2xt−1 + vt(5.10)

= Π
′

1z1t + Π
′

2z2t + vt ,

where Π
′

1 = (Π
′

1(1), · · · ,Π′

1(p)) and Π
′

2 are G×Gp and G×G matrices of coefficients.

Then we take a T ×G matrix Y = (∆x
′
t) and a T × (Gp + G) matrix Z = (Z1,Z2),

where ∆xt−i = xt−i − xt−(i+1) (i = 1, · · · , p), z
′
1t = (∆x

′
t−1, · · · , ∆x

′
t−p) and z

′
2t =

x
′
t−1. In the cointegration case (G = G1) instead of Conditions (I)-(III), we assume
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the condition 4 that all characteristic roots of

(VII)

∣∣∣∣∣(λ − 1)λpIG − λpΠ
′

2 − (λ − 1)
p∑

i=1

λp−iΠ
′

1(i)

∣∣∣∣∣ = 0

are in the range (−1, 1] or their absolute values are in the range [0, 1).

By using the same arguments of Section 3 and Section 5.2, the determinant of

the maximized likelihood function in (3.4) (and thus (3.13) or (5.5)) under H
′
0 :

rank(Π2) = G1 − r and Γ = Γ0 (G = G1) is proportional to

|H11|
∣∣∣∣[H−1

11 − H−1
11 Γ

(
Γ

′
H−1

11 Γ
)−1

Γ
′
H−1

11

]
G11 + IG1

∣∣∣∣
= |H11| |G11|

∣∣∣∣(G−1
11 + H−1

11 ) − H−1
11 Γ

(
Γ

′
H−1

11 Γ
)−1

Γ
′
H−1

11

∣∣∣∣
= |H11| |G11|

∣∣∣G−1
11 + H−1

11

∣∣∣ ×
∣∣∣Γ′ [

H−1
11 − H−1

11 (G−1
11 + H−1

11 )−1H−1
11

]
Γ

∣∣∣∣∣∣Γ′
H−1

11 Γ
∣∣∣

=
|G11 + H11|

|H11|
×

∣∣∣Γ′
(G11 + H11)

−1Γ
∣∣∣∣∣∣Γ′

H−1
11 Γ

∣∣∣ .

Hence the likelihood ratio test in (3.17) can be replaced by∣∣∣Γ′

0(G11 + H11)
−1Γ0

∣∣∣∣∣∣Γ′

0H
−1
11 Γ0

∣∣∣ >

∏r
i=1(1 + νi)

c∗∗(K2, T − K)
,(5.11)

where c∗∗(K2, T − K) is a suitable constant.

In the cointegrating case, the LRC can be written in terms of

LR3 = T log

 r∏
i=1

ξi

∣∣∣Γ′

0(G11 + H11)
−1Γ0

∣∣∣∣∣∣Γ′

0H
−1
11 Γ0

∣∣∣
 ,(5.12)

where ξG1−1+i = 1/(1 + νi) (i = 1, · · · , r) are the larger characteristic roots of∣∣∣(G11 + H11)
−1 − ζH−1

11

∣∣∣ = 0 .(5.13)

Then we have the next result on the limiting distribution of LR3, which is analogous

to the reduced rank regression case. The outline of derivation is given in Section 7.

Theorem 5 : Assume that vt are an i.i.d. sequence of random variables with

4 It is sufficient that ∆xt is stationary and xt is an I(1)−process.
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E(vt) = 0 and E(vtv
′
t) = Ω, and Condition (VII). Then under the rank condition

H
′
0 : rank(Π2) = G1 − r and Γ = Γ0, as T → ∞ LR3 has the limiting distribution

of χ2 with r(G1 − r) degrees of freedom.

The resulting test procedure and confidence region are invariant to the orthogonal

transformations of Γ0 (i.e. cointegrating vectors) and they are direct extensions of

Section 3 to the cointegration problem.

6. Concluding remarks

This paper has shed a new light on the classical problem of the likelihood ratio

tests of structural coefficients in a structural equation in the simultaneous equation

system. The method developed by Anderson and Rubin (1949, 1950) can be modified

to the situation when there are many (or weak in some sense) instruments which

may have some relevance in recent econometrics. We have found that the asymptotic

null-distribution of LRC is (not always, but) often the χ2−distribution with G1 − 1

degrees of freedom under a set of fairly general conditions.

Then we have shown that the testing problems in the structural equation (si-

multaneous equations) model, the linear functional relationship (errors-in-variables)

models, the reduced rank regression and the cointegration models are essentially

the same. Since these statistical models have been used in many applications, it is

worthwhile and useful to show that the problems can be indeed formulated as direct

extensions of the classical method by Anderson and Rubin for a single structural

equation model.

7. Mathematical Details

In this section we give some technical details which were omitted in the previous

sections. At the last part of this section, we shall refer to Anderson and Kunitomo

(1994) as AK (1994) and use their method for Theorem 5. Also we shall use the

notation of projection operators PZ = Z(Z
′
Z)−1Z

′
and PZ1 = Z1(Z

′
1Z1)

−1Z
′
1.

Lemma 1 : Let a p×p nonsingular matrix D be decomposed into (p1+p2)×(p1+p2)

submatrices D = (Dij) and D−1 = (Dij). For any q × p1 matrix B, q × p2 matrix

C and any positive definite matrix A,

min
C

∣∣∣∣∣
(

B
′

C
′

)
A (B,C) + D

∣∣∣∣∣ =
∣∣∣D22 − D21D

−1
11 D12

∣∣∣ ∣∣∣D11 + B
′
AB

∣∣∣(7.1)
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and the minimum occurs at C = −BD−1
11 D12.

Proof of Lemma 1: For |D| ̸= 0 and A > 0,

∣∣∣∣∣D +

(
B

′

C
′

)
A (B,C)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
D −

(
B

′

C
′

)
A1/2

A1/2 (B,C) Iq

∣∣∣∣∣∣∣∣(7.2)

= |D|
∣∣∣∣∣Iq + A1/2 (B,C)D−1

(
B

′

C
′

)
A1/2

∣∣∣∣∣ .

Also we have

A1/2 (B,C)D−1

(
B

′

C
′

)
A1/2

= A1/2
[
C + BD12(D22)−1

]
D22

[
C + BD12(D22)−1

]′

A1/2 ≥ A1/2BD22B
′
A1/2 .

Then ∣∣∣∣∣D +

(
B

′

C
′

)
A (B,C)

∣∣∣∣∣ ≥ |D|
∣∣∣Iq + A1/2BD22B

′
A1/2

∣∣∣(7.3)

=
|D|
|D11|

∣∣∣D11 + B
′
AB

∣∣∣ ,

which is the right-hand side of (7.1).

Q.E.D

In order to prove Theorem 1, we first prove two lemmas. (Similar arguments can be

used for the proof of Theorem 2 and Theorem 4.)

Lemma 2 : Under the assumptions of Theorem 1, for any 0 ≤ ϵ < 1

T ϵν1
p→ 0 .(7.4)

Proof of Lemma 2 : It is immediate to see that (1/T )H11
p→ Ω11 and

β
′

0G11β0 = β
′

0V
′

1Z2.1A
−1
22.1Z2.1V1β0 +

2√
T

β
′

0V
′

1Z2.1ξ2 +
1

T
ξ

′

2Z
′

2.1Z2.1ξ2 ,

of which each component of the right-hand side converges to a limiting random

variable as T → ∞. Then for 0 ≤ ϵ < 1 ,

0 ≤ T ϵ min
b

b
′
G11b

b′H11b
≤ 1

T 1−ϵ

β
′

0G11β0

β
′

0
1
T
H11β0

p→ 0 .
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Q.E.D.

Define

LRd = T

[
β

′

0G11β0

β
′

0H11β0

− min
b

b
′
G11b

b′H11b

]
.(7.5)

Lemma 3 : Under the assumptions of Theorem 1, as T → ∞

LR1 − LRd
p→ 0 .(7.6)

Proof of Lemma 3 : Taylor’s expansion yields

|T log(1 + ν1) − Tν1| ≤
1

2

[
T 1/2ν1

]2
,

which converges to zero by Lemma 2 as T → ∞.

Q.E.D.

Proof of Theorem 1 : By using Lemma 2, we find that as T → ∞ β̂
p→ β0. Define

G(0) = Π
′

21M22.1Π21 = plim(1/T )G11. By using the fact that 1√
T
G11β0 = Op(1)

and substituting G(0) into the set of equations [G11 − ν1H11] β̂ = 0, we have

1√
T

G11β0 + G(0)

 0

−
√

T
(
β̂2 − β2

)  = op(1) .(7.7)

By multiplying (0, IG1−1) from the left, we find

√
T

(
β̂2 − β2

)
=

[
(0, IG1−1)G

(0)(
0

′

IG1−1

)

]−1

(0, IG1−1)
1√
T

G11β0 + op(1) .(7.8)

Because (1/T )H11 = Ω11+Op(1/
√

T ), we rewrite the set of equations [G11 − ν1H11] β̂ =

0 as

G11β0−Tν1

[
Ω11 + Op(

1√
T

)

]
β0−

[
G11 − Tν1

(
Ω11 + Op(

1√
T

)

)]  0

−
(
β̂2 − β2

)  = 0.

By multiplying β
′

0 from the left, we find that

β
′

0G11β0 − Tν1β
′

0Ω11β0 −
1√
T

β
′

0G11

 0

−
(
β̂2 − β2

)  = op(1) .(7.9)
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Then by using (7.8) and (7.9) we find that

β
′

0G11β0 − Tν1β
′

0Ω11β0(7.10)

=
1√
T

β
′

0G11

[
0

′

IG1−1

] [
(0, IG1−1)G

(0)(
0

′

IG1−1

)

]−1

[0, IG1−1]
1√
T

G11β0 + op(1) .

The limiting distribution of (7.10) is the limiting distribution of [β
′

0Ω11β0] × LRd

as T → ∞. The local alternatives of Theorem 1 imply

Y1β0 = Z1

(
γ1 +

1√
T

ξ1

)
+ V1β0 +

1√
T

Z2ξ2

and then

1√
T

G11β0 =
1√
T

Π
′

21Z
′

2.1Z2.1Π21β0 +
1√
T

Π
′

21Z
′

2.1V1β0 + op(1)(7.11)

=
1√
T

Π
′

21Z
′

2.1V1β0 + Π
′

21M22.1ξ2 + op(1) .

By applying the CLT (Lindeberg-type Central Limit Theorem, see Anderson and

Kunitomo (1992) for instance) to the first term of (7.11) and using (7.10), we have

the result.

Q.E.D.

Proof of Theorem 3 :

[i] As K2 → ∞,

0 =
∣∣∣∣plim

1

K2

(C
′

21M
1/2
22.1 + X

′
)(M

1/2
22.1C21 + X) −

[
plim

1

K2

ν∗
1

]
Ω11

∣∣∣∣(7.12)

=
∣∣∣∣M∗ + Ω11 −

[
plim

1

K2

ν∗
1

]
Ω11

∣∣∣∣
and then (1/K2)ν

∗
1

p→ 1 = ν(0). Hence β̂
∗ p→ β0. Define G(1), ν(1), and b1 by G(0) =

M∗+Ω11, G
(1) =

√
K2(

1
K2

G(∗)−G(0)), ν(1) =
√

K2(ν
∗
1 −1) and b1 =

√
K2(β̂

∗
−β0).

Then [
G(1) − ν(1)Ω11

]
β0 +

[
G(0) − ν(0)Ω11

] [
0

−e1

]
= op(1) ,

where e1 =
√

K(β̂
∗
2 − β2). By multiplying β

′

0 from the left and using the fact that

β
′

0

[
G(0) − ν(0)Ω11

]
= 0

′
, we find

ν(1) =
β

′

0G
(1)β0

β
′

0Ω11β0

+ op(1) .(7.13)
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Let also define G(2), ν(2), and b2 by G(2) = K2(
1

K2
G(∗) − G(0) − 1√

K2
G(1)), ν(1) =

K2(ν
∗
1 − 1 − 1√

K2
ν(1)) and b2 = K2(β̂

∗
− β0 − 1√

K2
b1). Then

[
G(2) − ν(2)Ω11

]
β0 +

[
G(1) − ν(1)Ω11

] [
0

−e1

]
+

[
G(0) − ν(0)Ω11

] [
0

−e2

]
= op(1) ,

where e2 is defined accordingly.

By multiplying β
′

0 from the left and using the above expression for ν(1), we find that

β
′

0G
(0)β0 − β

′

0Ω11β0 = 0, β
′

0G
(1)β0 − ν(1)β

′

0Ω11β0 = op(1),

β
′

0G
(2)β0 − ν(2)β

′

0Ω11β0 − β
′

0G
(1)

[
IG1 −

β0β
′

0Ω11

β
′

0Ω11β0

] [
0

′

IG1−1

]
e1 = op(1) ,

and

M∗
22e1 = [0, IG1−1]

[
IG1 −

Ω11β0β
′

0

β
′

0Ω11β0

]
G(1)β0 + op(1)(7.14)

= [0, IG1−1]

[
IG1 −

Ω11β0β
′

0

β
′

0Ω11β0

]

×
[

1√
K2

C
′

21M
1/2
22.1Xβ0 +

√
K2(

1

K2

X
′
X − Ω11)β0

]
+ op(1) .

We need to evaluate the covariance of the asymptotic distribution and use the rela-

tion that the limiting distribution of

β
′

0G
(1)

[
IG1 −

β0β
′

0Ω11

β
′

0Ω11β0

] [
0

′

IG1−1

]
M∗−1

22 [0, IG1−1]

[
IG1 −

Ω11β0β
′

0

β
′

0Ω11β0

]
G(1)β0

is the same as the limiting distribution of [β
′

0Ω11β0] × LR∗
1 as K2 → ∞. Then by

applying CLT to[
IG1 −

Ω11β0β
′

0

β
′

0Ω11β0

]
G(1)β0(7.15)

=

[
IG1 −

Ω11β0β
′

0

β
′

0Ω11β0

] [
C

′

21M
1/2
22.1X +

√
K2(

1

K2

X
′
X − Ω11)

]
β0 + op(1)

and using the relation[
IG1 −

Ω11β0β
′

0

β
′

0Ω11β0

] [
β

′

0Ω11β0Ω11 + Ω11β0β
′

0Ω11

] [
IG1 −

β0β
′

0Ω11

β
′

0Ω11β0

]
(7.16)

= β
′

0Ω11β0

(
Ω11 −

Ω11β0β
′

0Ω11

β
′

0Ω11β0

)
,
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we have the result.

[ii] We apply the CLT to each elements of

W∗∗ =
√

K2

[
1

K2

Ω
−1/2
11 X

′
XΩ

−1/2
11 − IG1+1

]
(7.17)

and W0 = a
′
W∗∗a as K2 → ∞. Since the asymptotic distributions of W∗∗ and

W0 are the Gaussian distributions when K2 → ∞, we only need to calculate their

asymptotic covariance. By using direct evaluations E(w2
ii) = 2, E(w2

ij) = 1 (i ̸= j),

E(wiiwjj) = 0 (i ̸= j), E(w2
0) = 2 and E(wijw0) = 2aiaj (i ̸= j). Then by evaluating

the second moments of each elements of

W∗ = a
′
W∗∗aIG1 − W∗∗ = (w∗

ij)(7.18)

in (4.17) and noting the fact that LR∗
1 is the maximum of W∗, we have the result.

Q.E.D.

Proof of Theorem 5: We shall consider the limiting distribution of LR2 of (5.8),

which is the same of LR3 of (5.11), and we shall use the similar arguments as

AR(1994). We utilize the fact that K2 = G = G1 in the cointegration case, and

set Y = Y1 and V = V1. Let a G1 × [(G1 − r) + r] matrix Φ = (Γ0,B0) and a

(K1 + G1) × [K1 + (G1 − r) + r] matrix

Ψ∗ =

[(
IK1

O

)
,

(
O

Γ0

)
,

(
O

B0

)]
,

a G1 × r matrix B0 = (Ir,−B
′
2)

′
and a K × [K1 + (G1 − r) + r] matrix

Γ∗ =

[(
IK1

O

)
,

(
O

Γ0

)]
.

For normalizations, we set Π2Γ0 = (IG0−r,O)
′
for convenience and

DT =

 1√
T
IK1+G1−r O

O 1
T
Ir

 .

We use the fact that for Z = (Z1,Z2), each row of Z1 and Z2Γ0 is a vector stationary

process and each row of Z2B0 follows an I(1) (the 1st order integrated) process

under H
′
0. We prepare the following lemmas. (Their proofs are based on the similar

arguments given in Appendix B of Johansen (1995) and so we have omitted the

details.)
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Lemma 4 : Under H
′
0, we have the weak convergence 1

T
Γ∗′Z

′
ZΓ∗ 1

T
√

T
Γ∗′Z

′
ZB0

1
T
√

T
B

′
0Z

′
2ZΓ∗ 1

T 2B
′
0Z

′
2Z2B0

 w→ M∗ =

[
Γ∗′MΓ∗ Γ∗′M.2B0

B
′
0M2.Γ

∗ B
′
0M22B0

]
(7.19)

where Γ∗′MΓ∗ is a (K1 + G1 − r) × (K1 + G1 − r) constant matrix, B
′
0M2.Γ

∗ and

B
′
0M22B0 are random matrices.

Lemma 5 : Under H
′
0, we have

1√
T

Γ∗′ZUc
w→ NK1+G1−r(0, c

′
ΣcΓ∗′MΓ∗)(7.20)

for any constant (non-zero) vector c, where U = VB0 and Σ = B
′
0ΩB0.

We use the relations

Π
′
Z

′
ZΠ = Π

′
Ψ

′−1DT

[
D−1

T Ψ
′
Z

′
ZΨD−1

T

]
DTΨ−1Π ,

Π
′
Z

′
Z1(Z

′

1Z1)
−1Z

′

1ZΠ

= Π
′
Ψ

′−1DT

[
D−1

T Ψ
′
Z

′
(

1√
T

)Z1(
1

T
Z

′

1Z1)
−1(

1√
T

)Z
′

1ZΨD−1
T

]
DTΨ−1Π

and

Π
′
Z

′
(PZ − PZ1)ZΠ = Π

′

2

[
Z

′

2Z2 − Z
′

2Z1(Z
′

1Z1)
−1Z

′

1Z2

]
Π2 .

We consider the smaller characteristic roots 0 ≤ ν1 ≤ · · · ≤ νr , which satisfy

(3.7) and the corresponding characteristic vectors βi. We can use the relation that

β
′

iY
′
PZYβi − νiβ

′

iY
′
P̄ZYβi = 0 (i = 1, · · · , r)(7.21)

is equivalent to

1

T ϵ
β

′

iV
′
PZVβi −

[
T 1−ϵνi

] 1

T
β

′

iV
′
P̄ZVβi = 0

for any 1 > ϵ > 0. Then we have

plimT→∞

[
T 1−ϵνi

]
β

′

iΩβi = 0 ,

which implies the next result.

Lemma 6 : Under H
′
0 and Ω11 is nonsingular, for any 0 ≤ δ < 1

T δνi
p→ 0 (i = 1, · · · , r) .(7.22)
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We set the corresponding characteristic vectors as a G1 × r matrix B̂ML and apply

the similar arguments for
ˆ̂
βLI in AK (1994). By setting a G1×r matrix B̂ such that

Y
′
[PZ − PZ1 ]YB̂ = 0 ,(7.23)

then the limiting distribution of B̂ is the same as the limiting distribution of B̂ML.

Now we decompose

Y
′
PZY

= V
′
ZΨD−1

T

[
D−1

T Ψ
′
Z

′
ZΨD−1

T

]−1
D−1

T ΨZV +
[
V

′
ZΨD−1

T DTΨ−1Π
]

+
[
V

′
ZΨD−1

T DTΨ−1Π
]′

+ Π
′
Ψ

′−1DT

[
D−1

T Ψ
′
Z

′
ZΨD−1

T

]
DTΨ−1Π

and

Y
′
PZ1Y

= V
′
Z1(

1√
T

)(
1

T
Z

′

1Z1)
−1(

1√
T

)Z
′

1V

+

[
V

′
(

1√
T

)Z1(
1

T
Z

′

1Z1)
−1(

1√
T

)Z
′

1ZΨD−1
T DTΨ−1Π

]

+

[
V

′
(

1√
T

)Z1(
1

T
Z

′

1Z1)
−1(

1√
T

)Z
′

1ZΨD−1
T DTΨ−1Π

]′

+Π
′
Ψ

′−1DT

[
D−1

T Ψ
′
Z

′
(

1√
T

)Z1(
1

T
Z

′

1Z1)
−1(

1√
T

)Z
′

1ZΨD−1
T

]
DTΨ−1Π .

We utilize

Ψ
′
Y

′
[PZ − PZ1 ]YΨΨ−1B̂ = O .(7.24)

By dividing (7.22) by 1/T and using the relation Ψ−1B0 = (O, Ir)
′
and M∗ of the

G1 × G1 left-lower corner sub-matrix of M∗ in Lemma 4, we find that[
IG1−r O

O O

]
M∗

[
IG1−r O

O O

]
Ψ−1plimT→∞

[
B̂ − B0

]
= O

and

plimT→∞B̂ = B0 .

By dividing (7.24) by 1/
√

T , we have[
IG1−r O

O O

]
M∗

[
IG1−r O

O O

]
Φ−1

√
T

[
B̂ − B0

]
(7.25)

+

[
IG1−r O

O O

]
D−1

T Φ
′
Z [PZ − PZ1 ]VΦΦ−1B0 = op(1) .
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By using the fact that the limiting distribution of

B
′

0G11B0 − B̂
′
G11B̂

= B
′

0Y
′
(PZ − PZ1)Y(B0 − B̂) + (B0 − B̂)

′
Y

′
(PZ − PZ1)YB0

−(B0 − B̂)
′
Y

′
(PZ − PZ1)Y(B0 − B̂LI) ,

is the same as the limiting distribution of

(B0 − B̂)
′
Y

′
(PZ − PZ1)Y(B0 − B̂) .

Also by (7.23), we find that

[
B̂ − B0

]′

Y
′
[PZ − PZ1 ]Y

[
B̂ − B0

]
is asymptotically equivalent to[

1√
T

U∗′Z2Γ

] [
1

T
Γ

′ (
Z

′

2Z2 − Z
′

2Z1(Z
′

1Z1)
−1Z

′

1Z2

)
Γ

]−1
[

1√
T

Γ
′
Z

′

2U
∗
]

,

where we use the notations U = VB and U∗ =
[
IT − Z1(Z

′
1Z1)

−1Z
′
1

]
U.

Then

tr
([

B̂ − B0

]′

Y
′
[PZ − PZ1 ]Y

[
B̂ − B0

]
Σ−1

)
converges to the χ2−distribution as T → ∞ under H

′
0.

Finally, we notice that as T → ∞

1

T
B̂

′
H11B̂

p→ Σ(7.26)

and
1

T
B

′

0H11B0
p→ Σ ,(7.27)

where Σ = B
′
0Ω11B0. Then we use the fact that LR2 and LR3 are equivalent, and

T
∑r

i=1 log(1 + νi) − T
∑r

i=1 νi = op(1) by using Lemma 6. Since

LR3 − tr
[
(B

′

0G11B0 − B̂
′
G11B̂)Σ−1

]
= op(1) ,

we have the result.

Q.E.D
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