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Models for Large Dimensions

Muni S. Srivastava∗and Tatsuya Kubokawa†

University of Toronto and University of Tokyo

January 13, 2010

Abstract

The Akaike information criterion, AIC, and Mallows’ Cp statistic have been
proposed for selecting a smaller number of regressor variables in the multivariate
regression models with fully unknown covariance matrix. All these criteria are,
however, based on the implicit assumption that the sample size is substantially
larger than the dimension of the covariance matrix. To obtain a stable estimator
of the covariance matrix, it is required that the dimension of the covariance matrix
be much smaller than the sample size. When the dimension is close to the sample
size, it is necessary to use ridge type of estimators for the covariance matrix. In
this paper, we use a ridge type of estimators for the covariance matrix and obtain
the modified AIC and modified Cp statistic under the asymptotic theory that both
the sample size and the dimension go to infinity. It is numerically shown that these
modified procedures perform very well in the sense of selecting the true model in
large dimensional cases.

Key words and phrases: Akaike information criterion, Mallows’ Cp, large dimension,
multivariate linear regression model, selection of variables.

1 Introduction

Consider a multivariate linear regression model in which p response variables y1, . . . , yp

are regressed on k explanatory variables x(1), . . . , x(K), when n observations are available
on y1, . . . , yp and x(1), . . . , x(K). Let Y denotes the n × p observation matrix on the

response variable, and X̃ denotes the n × K observation matrix on the K explanatory
variables. Then the multivariate regression model is given by

Full Model : Y = X̃βF + E, (1)
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where the n rows of E are independent and identically distributed (iid) as multivariate
normal with mean vector zero and the p× p covariance matrix Σ, that is, ei ∼ Np(0,Σ),
where E = (e1, . . . , en)

′ and βF is a K × p matrix of unknown parameters. The n × p

matrix Y is given by Y = (y1, . . . , yn)
′ and the n × K matrix X̃ is given by X̃ =

(x1, . . . , xn)′ = (x(1), . . . , x(K)) where yi’s are random p-vector and xi’s and x(i) are,
respectively, K and n-vectors considered known or fixed.

In this paper, we consider the model (1) as a full model and we want to address
the problem of selecting the explanatory variables x(1), . . . , x(K) when n and p are large.
When k variables x(γ1), . . . , x(γk) are selected from {x(1), . . . , x(K)}, the candidate model
is written as

Candidate Model : Y = Xβ + E, (2)

where X = (x(γ1), . . . , x(γk)), and β is a k × p matrix of unknown parameters. For
simplicity, we hereafter write X = (x(1), . . . , x(k)) without any loss of generality. The
above model is written as

Y ∼ Nn,p(Xβ, In,Σ). (3)

The Akaike Information Criterion (AIC) proposed by Akaike (1973, 1974) is recognized
as a useful tool for selecting variables in linear regression models. For obtaining an
expression for the AIC, we shall assume that the model given in (2) is an overspecified
model, and the true model is given by

True Model : Y ∼ Nn,p(Xβ∗, In,Σ∗). (4)

It will be assumed that the true model belongs to the overspecified model (2). Let
f(Y ; Xβ∗,Σ∗) denote the pdf of the true model, namely,

f(Y |Xβ∗,Σ∗) = (2π)−pn/2|Σ∗|−n/2etr
[
−1

2
Σ∗−1(Y − Xβ∗)′(Y − Xβ∗)

]
.

Let β̂(Y ) and Σ̂(Y ) be estimators of β and Σ based on the candidate model. When the
true model is predicted based on the candidate model, the prediction error relative to the
the Kullback-Leibler information is given by

RKL(β,Σ; β̂, Σ̂) = E∗
�

[E∗
�
[log{f(Z|Xβ∗,Σ∗)/f(Z |Xβ̂(Y ), Σ̂(Y )}]], (5)

where Y and Z are independently distributed but having the same distribution as f(Y |Xβ∗,Σ∗)
and f(Z |Xβ∗,Σ∗). Let us define the Akaike Information (AI) by

AI = −2E∗
�

[
E∗
�
[log f(Z|Xβ̂(Y ), Σ̂(Y ))]

]
, (6)

which is a model-related part of the prediction error RKL(β,Σ; β̂, Σ̂). Then the AIC
is generally defined as an asymptotically unbiased estimator of AI , where β and Σ are
estimated by the maximum likelihood estimators (MLE), given by

β̂ =(X ′X)−1X ′Y ,

Σ̂0 =S/n = (Y −Xβ̂)(Y − Xβ̂)′/n,
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where S = (Y −Xβ̂)(Y −Xβ̂)′. For more accounts on the AIC and the related selection
criteria, see Sugiura (1978) and Konishi and Kitagawa (2007).

The AIC and the modified criterion in the multivariate linear regression model were
derived by Fujikoshi and Satoh (1997) when n → ∞ and p is bounded. In the large

dimensional case, namely the case that p → ∞, the MLE Σ̂0 and the inverse matrix

Σ̂
−1

0 must be instable or nonexistent, which means that the AIC based on the MLE Σ̂0

is not appropriate. Srivastava and Kubokawa (2008) considered the ridge type estimator

Σ̂λ = (S + λ̂Ip)/n for a function λ̂ = λ̂(S) instead of the MLE, and derived the AIC
when p > n, p → ∞ and n is bounded based on the theory given in Srivastava (2007).
Recently, Yamamura, Yanagihara and Srivastava (2009) obtained the AIC when p > n,
n − k = O(pδ) and (n, p) → ∞ for 0 < δ < 1/3.

In this paper, we consider the case that

νk ≡ n − k − p − 3 > 0 and (n, p) → ∞ such that p/n = c for 0 < c < 1, (7)

where the condition of n − k − p − 3 > 0 is required for the existence of the moment
E[tr [S−2]]. Since n − k > p + 1, there exists the inverse matrix of the MLE Σ̂0. Thus,
the AIC based on the MLE are available, but not appropriate for large dimension p,
because the MLE is very unstable when p is large, see, e.g.,Johnston (2001). In this case,

the ridge-type estimator Σ̂λ should be used instead of the MLE, and we obtain the AIC
based on Σ̂λ.

When a squared error loss function is employed instead of the Kullback-Leibler infor-
mation, the prediction error is given by

RPE(β,Σ; β̂) = E∗
�

[E∗
�
[tr [(Z − Xβ̂(Y ))Σ−1(Z − Xβ̂(Y ))′]]]. (8)

Corresponding to the derivation of the AIC, we can suggest an unbiased estimator of
RPE(β,Σ; β̂) for the model selection. The unbiased estimator is related to the Mallows’
Cp statistic proposed by Mallows (1973), and we here call it the Cp-type statistic. In this

paper, we also obtain the Cp-type statistic based on the ridge-type estimator Σ̂λ.

The AIC and Cp-type statistics based on the ridge-type estimator Σ̂λ are given in

Section 2. We also propose the double ridge AIC and Cp-type statistics based on Σ̂λ and
the ridge regression estimator of β, which can be expected to work well in the multico-
linearity case of X. The proofs of their derivation is given in Section 3. A simulation
experiment is carried out in Section 4 to compare the AIC and Cp criteria for different
value of λ including λ = 0, and it is shown that the usual AIC and Cp based on the MLE
do not work in the large dimensional case, but the AIC and Cp statistics based on the
ridge-type estimator perform very well in all the cases. We conclude in Section 5.
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2 Ridge-type variable selection procedures

2.1 Ridge-type AIC

In this section, we derive ridge-type AIC and Cp statistic based on the ridge-type estimator
of Σ. The ridge-type estimator we want to propose for Σ is

Σ̂λ = n−1(S + λ̂Ip), (9)

where

λ̂ = cn(trS/np), for cn = O(n−δ), δ ≥ 0. (10)

Let us define the Akaike information based on the ridge-type estimator by

AIλ = −2E∗
�

[
E∗
�
[log f(Z|Xβ̂(Y ), Σ̂λ(Y ))]

]
.

The Akaike information criterion is an asymptotically unbiased estimator of AIλ based
on −2 log f(Y ; Xβ̂, Σ̂λ), where the bias is given by

∆λ = ∆λ(β
∗,Σ∗, β̂, Σ̂λ) = AIλ − E∗

�
[−2 log f(Y |Xβ̂, Σ̂λ)]. (11)

When ∆λ is estimated by ∆∗
λ, the AIC is provided by

AICλ = −2 log f(Y |Xβ̂, Σ̂λ) + ∆∗
λ, (12)

We shall assume that limp→∞ trΣ/p ∈ (0,∞). Under this assumption, it follows
from Srivastava (2005) that trS/np → trΣ/p in probability as (n, p) → ∞. We shall
consider the case when cn = n/p, other choices of cn can also be considered. We obtain an
asymptotic expression for the bias in calculating the AIC under (7) and the assumption

lim
p→∞

tr [Σ]/p < ∞. (13)

Theorem 2.1 Assume the conditions (7) and (13). Then, ∆λ given in (11) is approxi-
mated as

∆λ =
np(p + 1 + 2k)

n − k − p − 1

+
cn(n − k)

p(n − k − p − 1)

{(n + k)(n − k)

(n − p)2
− 1
}

tr [Σ∗]tr [Σ∗−1] + O(n−δ). (14)

The unknown quantity tr [Σ∗]tr [Σ∗−1] is estimated based on the equality

E∗
�

[
λ̂tr [Σ̂

−1

λ ]
]

=
cn(n − k)

p(n − k − p − 1)
tr [Σ∗]tr [Σ∗−1] + O(n−δ). (15)

Combining these approximations yields AICλ given by

AICλ =np log 2π + n log |Σ̂λ| + tr [Σ̂
−1

λ S]

+
np(p + 1 + 2k)

n − k − p − 1
+
{(n + k)(n − k)

(n − p)2
− 1
}

λ̂tr [Σ̂
−1

λ ], (16)
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From Theorem 2.1, the AIC based on the MLE Σ̂0 is derived by putting λ̂ = 0 in (16)
as

AIC0 = np log 2π + n log |Σ̂0| + np +
np(p + 1 + 2k)

n − k − p − 1
. (17)

2.2 Ridge-type Cp

As explained above, the AIC is an asymptotically unbiased estimator of a part of the
prediction error based on the Kullback-Leiber information. We here use the squared error
loss function instead of the Kullback-Leibler information, and consider to estimate the
prediction error given by

RPE(β,Σ; β̂) = E∗
�

[E∗
�
[tr [(Z − Xβ̂)Σ−1(Z − Xβ̂)′]]].

This is rewritten as RPE(β,Σ; β̂) = np + PE, where

PE = E∗
�

[tr [Σ−1(β̂ − β)′X ′X(β̂ − β)]]. (18)

Since an unbiased estimator of PE is related to the Cp statistic, we here call it the Cp-
type statistic. According to the same arguments as in the derivation of the Mallows’
Cp statistic, we estimate the covaraince matrix Σ based on the full model (1). Let

S̃ = n−1(Y − X̃β̃)′(Y − X̃β̃) for β̃ = (X̃
′
X̃)−1X̃

′
Y . Then Σ is estimated by

Σ̃λ = n−1(S̃ + λ̃Ip),

where
λ̃ = cn(tr S̃/np), for cn = O(n−δ), δ ≥ 0.

When PE is estimated based on the statistic tr [Σ̃
−1

λ (Y − Xβ̂)′(Y − Xβ̂)], the bias is

∆PE = PE − E∗
�

[tr [Σ̃
−1

λ (Y − Xβ̂)′(Y − Xβ̂)]]. Then, the Cp statistic based on the

ridge-type estimator Σ̃λ is given by

Cp,λ = tr [Σ̃
−1

λ (Y −Xβ̂)′(Y − Xβ̂)] + ∆∗
PE ,

where ∆∗
PE is an estimator of ∆PE.

Theorem 2.2 Assume the conditions (7) and (13). Then, ∆PE is evaluated as

∆PE =
np(n − k − p − 1)

n − K − p − 1
− cn(n − K)

p(n −K − p − 1)
tr [Σ∗]tr [Σ∗−1] + O(n−δ). (19)

Let us define Cλ by

Cλ = tr [Σ̃
−1

λ S] − np(n − k − p − 1)

n − K − p − 1
+ pk + λ̃tr [Σ̃

−1
]. (20)

Then, Cλ is an asymptotically unbiased estimator of PE given in (18), namely, E[Cλ] =
PE + O(n−δ).

When λ̃ = 0, from Theorem 2.2, we get Mallows’ Cp statistic based on the MLE, given
by

C0 = ntr [S̃
−1

S] − np(n− k − p − 1)

n −K − p − 1
+ pk. (21)
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2.3 An extension to double ridge criteria for selection

We are often faced with the multicolinearity cases, where the variables x1, . . . , xK are
highly correlated for X̃ = (x1, . . . , xK). In this case, the inverse matrix of X ′X is not

stable, and it is known that the least squares estimator β̂ of β does not behave well. An
alternative procedure is the ridge regression estimator

β̂τ = (X ′X + τI)−1X ′Y ,

where τ is a nonnegative constant. It is certain that β̂τ must be stable for an aprropriate

constant τ , which results in a good predictor based on β̂τ . However, it may be important
how to determine τ . A possible method in the framework of variable selection is that τ
and the variable in X can be chosen based on AIC or Cp. We thus extend the results
given in the previous subsections to the criteria based on the ridge regression estimator
β̂τ instead of β̂, which we call here the double ridge criteria.

Let us define the Akaike information based on the double ridge-type estimators by

AIλ,τ = −2E∗
�

[
E∗
�
[log f(Z|Xβ̂τ(Y ), Σ̂λ(Y ))]

]
.

The Akaike information criterion is an asymptotically unbiased estimator of AIλ,τ based

on −2 log f(Y ; Xβ̂τ , Σ̂λ), where the bias is given by

∆λ,τ = ∆λ,τ (β
∗,Σ∗, β̂τ , Σ̂λ) = AIλ,τ − E∗

�
[−2 log f(Y |Xβ̂τ , Σ̂λ)]. (22)

Theorem 2.3 Assume the conditions (7) and (13). Then, ∆λ,τ given in (22) is approxi-
mated as

∆λ,τ =
np{p + 1 + k + (1 − τ 2)ρτ}

n − k − p − 1

+
cn(n − k)

p(n − k − p − 1)

{{n + (1 − τ 2)ρτ}(n − k)

(n − p)2
− 1
}

tr [Σ∗]tr [Σ∗−1] + O(n−δ),

(23)

where ρτ = tr [X ′X(X ′X + τI)−1]2. The double ridge Akaike information criterion is
given by

AICλ,τ =np log 2π + n log |Σ̂λ| + tr [Σ̂
−1

λ (Y −Xβ̂τ )
′(Y −Xβ̂τ )]

+
np{p + 1 + k + (1 − τ 2)ρτ}

n − k − p − 1
+
{{n + (1 − τ 2)ρτ}(n − k)

(n − p)2
− 1
}
λ̂tr [Σ̂

−1

λ ],

(24)

When τ takes a value in the range of [0, τ0] for a fixed τ0, the optimal ridge parameter
τ and the optimal variables can be simultaneously and numerically selected so as to
minimize the double ridge criterion AICλ,τ .
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The Cp statistic can be similarly extended to the case of the double ridge criterion.

Since the prediction error based on the ridge estimator β̂τ is written as

RPE(β,Σ; β̂τ) =E∗
�

[E∗
�
[tr [(Z − Xβ̂τ)Σ

−1(Z − Xβ̂τ )
′]]]

=np + PEτ ,

where PEτ = E∗
�

[tr [Σ−1(β̂τ − β)′X ′X(β̂τ − β)]]. When PEτ is estimated based on

the statistic tr [Σ̃
−1

λ (Y −Xβ̂τ)
′(Y −Xβ̂τ )], the bias is ∆PE,τ = PEτ −E∗

�
[tr [Σ̃

−1

λ (Y −
Xβ̂τ )

′(Y −Xβ̂τ )]]. To evaluate ∆PE,τ , we assume the condition

lim
p→∞

βΣ−1β′/p < ∞. (25)

Theorem 2.4 Assume the conditions (7), (13) and (25). Then, ∆PE,τ is evaluated as

∆PE,τ =pρτ − np(n − k − p − 1 + τ 2ρτ )

n − K − p − 1

+
cn(n − K)

p(n − K − p − 1)
tr [Σ∗]tr [Σ∗−1] + O(1). (26)

Let us define Cλ,τ by

Cλ,τ =tr [Σ̃
−1

λ (Y −Xβ̂τ )
′(Y −Xβ̂τ )]

− np(n− k − p − 1 + τ 2ρτ )

n − K − p − 1
+ pρτ + λ̃tr [Σ̃

−1
]. (27)

Then, Cλ,τ is an asymptotically unbiased estimator of PEτ , namely, E[Cλ,τ ] = PEτ +
O(1).

Similarly to AICλ,τ , the optimal ridge parameter τ and the optimal variables can be
simultaneously and numerically selected so as to minimize Cλ,τ for 0 ≤ τ ≤ τ0.

3 Proofs of the main results

3.1 Proofs of Theorems 2.1 and 2.3.

Since Theorem 2.1 is a spacial case of Theorem 2.3, we here prove Theorem 2.3. For
large p we consider the ridge-type estimator of the p × p covariance matrix Σ given in
(9). In order to obtain AICλ defined in (17), we need to first evaluate ∆λ under the true
model and, if it depends on some of the unknown parameters, we may need to provide
an estimated value of ∆λ. To prove Theorem 2.1, we note that −2 log f(Y |Xβ̂τ , Σ̂λ) is
given by

−2 log f(Y |Xβ̂τ , Σ̂λ) = np log(2π) + n log |Σ̂λ| + tr [Σ̂
−1

λ (Y −Xβ̂τ )
′(Y −Xβ̂τ )]

and AIλ,τ is written as

AIλ,τ = E∗
�

[E∗
�
[np log(2π) + n log |Σ̂λ|+ tr [Σ̂

−1

λ (Z − Xβ̂τ )
′(Z −Xβ̂τ )]]].
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Taking the expectation with respect to Z yields that

E∗
�
[tr [Σ̂

−1

λ (Z − Xβ̂τ)
′(Z − Xβ̂τ)]]

=ntr [Σ̂
−1

λ Σ] + tr [Σ̂
−1

λ (β̂τ − β)′X ′X(β̂τ − β)],

so that the bias is written as

∆λ,τ =AIλ,τ − E∗
�

[−2 log f(Y |Xβ̂τ , Σ̂λ)]

=E∗
�

[ntr [Σ̂
−1

λ Σ] + tr [Σ̂
−1

λ (β̂τ − β)′X ′X(β̂τ − β)]

− tr [Σ̂
−1

λ (Y − Xβ̂τ )
′(Y − Xβ̂τ )]]. (28)

It is here observed that

E∗
�

[tr [Σ̂
−1

λ (Y − Xβ̂τ )
′(Y − Xβ̂τ )]]

=E∗
�

[tr [Σ̂
−1

λ S]] − 2E∗
�

[tr [Σ̂
−1

λ (Y − Xβ̂τ )
′X(β̂τ − β)]]

+ E∗
�

[tr [Σ̂
−1

λ (β̂τ − β̂)′X ′X(β̂τ − β̂)]], (29)

where S = (Y −Xβ̂)(Y −Xβ̂). Note that β̂τ − β̂ = −τ (X′X + τI)−1(X ′X)−1X ′Y =

−τ (X ′X + τI)−1β̂ and that Y −Xβ̂ is independent of β. Since S is invariant under the

sign change of Y − Xβ̂, it can be seen that

E∗
�

[tr [Σ̂
−1

λ (Y −Xβ̂τ )
′X(β̂τ − β)]]

=tr [E∗
�

[Σ̂
−1

λ (Y − Xβ̂τ)
′] E∗

�
[X(β̂τ − β)]] = 0. (30)

Also, note that β̂τ − β ∼ N (−τ (X ′X + τI)−1β, (X ′X + τI)−1X ′X(X ′X + τI)−1,Σ)

and β̂ − β ∼ N (0, (X ′X)−1,Σ). Then,

E∗
�

[tr [Σ̂
−1

λ (β̂τ − β)′X ′X(β̂τ − β)]]

=E∗
�

[tr [Σ̂
−1

λ Σ]]ρτ + τ 2E∗
�

[tr [Σ̂
−1

λ β′(X ′X + τI)−1X ′X(X ′X + τI)−1β]], (31)

E∗
�

[tr [Σ̂
−1

λ (β̂τ − β̂)′X ′X(Xβ̂τ − β̂)]]

=τ 2E∗
�

[tr [Σ̂
−1

λ β̂
′
(X ′X + τI)−1X ′X(X ′X + τI)−1β̂]]

=τ 2E∗
�

[tr [Σ̂
−1

λ Σ]]ρτ + τ 2E∗
�

[tr [Σ̂
−1

λ β′(X ′X + τI)−1X ′X(X ′X + τI)−1β]]. (32)

Combining these observations, from (28) we can express the bias as

∆λ,τ = E∗
�

[{n + (1 − τ 2)ρτ}tr [Σ̂
−1

λ Σ] − tr [Σ̂
−1

λ S]]. (33)

From the equation given in problem 1.6 (i) of Srivastava and Khatri (1979, pp33), it
is noted that

(I + λ̂S−1)−1 = I − λ̂S−1 + λ̂2S−2(I + λ̂S−1)−1. (34)
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Hence, ∆λ is rewritten as

∆λ,τ =n{n + (1 − τ 2)ρτ}E∗
�

[tr [{I − λ̂S−1 + λ̂2S−2(I + λ̂S−1)−1}S−1Σ∗]]

− nE∗
�

[tr [I − λ̂S−1 + λ̂2S−2(I + λ̂S−1)−1]]

=nE∗
�

[{n + (1 − τ 2)ρτ}tr [S−1Σ∗] − p
]− nE∗

�

[{n + (1 − τ 2)ρτ}λ̂tr [S−2Σ∗] − λ̂tr [S−1]
]

+ nE∗
�

[{n + (1 − τ 2)ρτ}λ̂2tr [S−2(I + λ̂S−1)−1S−1Σ∗] − λ̂2tr [S−2(I + λ̂S−1)−1]
]

=I1 − I2 + I3. (say)

We first evaluate I3. Since p/n → c, 0 < c < 1, it follows from Bai and Yin (1993)
that S/n is almost surely bounded by a constant matrix. Also, we have assumed that
limp→∞ tr [Σ]/p < ∞. Hence, it can be seen that

n{n + (1 − τ 2)ρτ}tr [S−2(I + λ̂S−1)−1S−1Σ∗]

≤n{n + (1 − τ 2)ρτ}tr [S−3Σ∗] =
n + k

n

p

n

tr [(S/n)−3Σ∗]
p

= Op(1),

and

ntr [S−2(I + λ̂S−1)−1] ≤ ntr [S−2] =
p

n

tr [(S/n)−2]

p
= Op(1). (35)

Also, note that λ̂ = cntr [S]/(np) = cntr [S/n]/p = Op(n
−δ) since cn = O(n−δ), δ ≥ 0.

These evaluations mean that I3 = O(n−2δ). Since E∗
�

[tr [S−1Σ∗]] = p/(n − k − p − 1), it
is easy to see that

I1 =
np(p + 1 + 2k)

n − k − p − 1
,

which is of order O(n2). To estimate I2, we can express I2 as

I2 =
cn

p
E∗
�

[{n + (1 − τ 2)ρτ}tr [S]tr [S−2Σ∗] − tr [S]tr [S−1]
]
.

Thus, from Lemmas A.1 and A.2, it follows that

I2 =
cn

p(n − k − p − 1)

{[{n + (1 − τ 2)ρτ}(n − k − 1)(n − k + 1)

(n − k − p + 1)(n − k − p − 3)
− (n − k)

]
tr [Σ∗]tr [Σ∗−1]

+ 2p − {n + (1 − τ 2)ρτ}p
n − k − p − 3

[ (n − k)2 − 1

n − k − p + 1
− (n − k)2 − 5(n − k) + 2p + 2

n − k − p

]}
.

Since {n + (1 − τ 2)ρτ}(n − k − 1)(n − k + 1)/{(n − k − p + 1)(n − k − p − 3)} =
{n + (1 − τ 2)ρτ}(n − k)(n − k)/(n − p)2 + O(1), I2 can be approximated as

I2 =
cn(n − k)

p(n − k − p − 1)

{{n + (1 − τ 2)ρτ}(n − k)

(n − p)2
− 1
}

tr [Σ∗]tr [Σ∗−1] + O(n−δ).

Combining the above evaluations, we get

∆λ,τ =
np{p + 1 + k + (1 − τ 2)ρτ}

n − k − p − 1

+
cn(n − k)

p(n − k − p − 1)

{{n + (1 − τ 2)ρτ}(n − k)

(n − p)2
− 1
}

tr [Σ∗]tr [Σ∗−1] + O(n−δ).

(36)
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Since ∆λ,τ involves unknown quantity, we need to estimate tr [Σ∗]tr [Σ∗−1]. Using (34)
and (35), we can observe that

E[tr [Σ̂
−1

λ S]] =np − cn

p
E∗
�

[
tr [S]tr [S−1]

]
+ O(n−2δ)

=np − cn(n − k)

p(n − k − p − 1)
tr [Σ∗]tr [Σ∗−1] + O(n−δ),

where Lemma A.1 is used to show the second equality. Since np − tr [Σ̂
−1

λ S] = λ̂tr [Σ̂
−1

λ ],
it follows that

E∗
�

[
λ̂tr [Σ̂

−1

λ ]
]

=
cn(n − k)

p(n − k − p − 1)
tr [Σ∗]tr [Σ∗−1] + O(n−δ), (37)

which is substituted into (36) to get the expression

∆λ,τ =
np{p + 1 + k + (1 − τ 2)ρτ}

n − k − p − 1

+
{{n + (1 − τ 2)ρτ}(n − k)

(n − p)2
− 1
}

E∗
�

[
λ̂tr [Σ̂

−1

λ ]
]
+ O(n−δ). (38)

Hence, the approximated value of AICλ stated in Theorem 2.1 is obtained.

3.2 Proofs of Theorems 2.2 and 2.4

Since Theorem 2.2 is a special case of Theorem 2.4, we here prove Theorem 2.4. Letting
PEτ = E∗

�
[tr [Σ−1(β̂τ − β)′X ′X(β̂τ − β)], we can see that

PEτ = pρτ + τ 2tr [Σ−1β′(X ′X + τI)−1X ′X(X ′X + τI)−1β.

We shall obtain an asymptotic unbised estimator of PEτ based on tr [Σ̃
−1

λ (Y −Xβ̂τ )
′(Y −

Xβ̂τ )]. The expectation can be evaluated as

E∗
�

[tr [Σ̃
−1

λ (Y −Xβ̂τ )
′(Y −Xβ̂τ )]]

=E∗
�

[tr [Σ̃
−1

λ S]] − 2E∗
�

[tr [Σ̃
−1

λ (Y −Xβ̂)′X(β̂τ − β̂)]]

+ E∗
�

[tr [Σ̃
−1

λ (β̂τ − β̂)′X ′X(β̂τ − β̂)]].

It is noted that Y −X̃β̃, X̃β̃−Xβ̂ and β̂ are mutually independent for β̃ = (X̃
′
X̃)−1X̃

′
Y .

Since Y − Xβ̂ = (Y − X̃β̃) + (X̃β̃ −Xβ̂), the product term can be evaluated as

E∗
�

[tr [Σ̃
−1

λ (Y − Xβ̂)′X(β̂τ − β̂)]]

=E∗
�

[tr [Σ̃
−1

λ {(Y − X̃β̃) + (X̃β̃ − Xβ̂)}′X(β̂τ − β̂)]]

=tr [E∗
�

[Σ̃
−1

λ (Y − X̃β̃)′]E∗
�

[X(β̂τ − β̂)]]

=0,
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where the same arguments as in (30) have been used to show the last equality. Similar to
(32), it can be observed that

E∗
�

[tr [Σ̃
−1

λ (β̂τ − β̂)′X ′X(β̂τ − β̂)]]

=τ 2E∗
�

[tr [Σ̃
−1

λ Σ]]ρτ + τ 2E∗
�

[tr [Σ̃
−1

λ β′(X ′X + τI)−1X ′X(X ′X + τI)−1β]].

Hence, the bias can be evaluated as

∆PE,τ =PEτ − E∗
�

[tr [Σ̃
−1

λ (Y − Xβ̂τ)
′(Y − Xβ̂τ)]]

=pρτ + τ 2tr [Σ−1β′(X ′X + τI)−1X ′X(X ′X + τI)−1β]

− E∗
�

[tr [Σ̃
−1

λ S] − τ 2ρτE
∗
�

[tr [Σ̃
−1

λ Σ]]

− τ 2tr [E∗
�

[Σ̃
−1

λ ]β′(X ′X + τI)−1X ′X(X ′X + τI)−1β]. (39)

Since βΣ−1β′/p is bounded for large p from the condition (25), it is seen that

tr [Σ−1β′(X ′X + τI)−1X ′X(X ′X + τI)−1β]

≤ tr [βΣ−1β′(X ′X + τI)−1] = O(1).

Similarly,

tr [E∗
�

[Σ̃
−1

λ ]β′(X ′X + τI)−1X ′X(X ′X + τI)−1β]

≤ tr [βE∗
�

[nS̃
−1

]β′(X ′X + τI)−1] = O(1).

Thus,

∆PE,τ = pρτ − E∗
�

[tr [Σ̃
−1

λ S] − τ 2ρτE
∗
�

[tr [Σ̃
−1

λ Σ]] + O(1). (40)

We first evaluate E∗
�

[tr [Σ̃
−1

λ S]. Noting that S = Y ′(I − X(X ′X)−1X ′)Y and S̃ =

Y ′(I − X̃(X̃
′
X̃)−1X̃

′
)Y , there exists a p × (K − k) random matrix U such that S =

S̃ + UU ′ and U is distributed as U ′ ∼ NK−k(0, IN ,Σ∗), independent of S̃. Since Σ̃λ is

a function of S̃, it is seen that

E∗
�

[tr [Σ̃
−1

λ S]] =E∗
�

[tr [Σ̃
−1

λ (S̃ + UU ′)]]

=E∗
�

[tr [Σ̃
−1

λ S̃] + (K − k)tr [Σ̃
−1

λ Σ]]

=E∗
�

[ntr [(S̃ + λ̃I)−1S̃] + n(K − k)tr [(S̃ + λ̃I)−1Σ]]

=E∗
�

[ntr [(I + λ̃S̃
−1

)−1] + n(K − k)tr [(I + λ̃S̃
−1

)−1S̃
−1

Σ]].

From (34) and the fact that (I + λ̂S−1)−1 = I − λ̂S−1(I + λ̂S−1)−1, it follows that

E∗
�

[tr [Σ̃
−1

λ S]] =E∗
�

[ntr [I − λ̃S̃
−1

+ λ̃2Σ̃
−2

(I + λ̃S̃
−1

)−1]

+ n(K − k)tr [{I − λ̃Σ̃
−1

(I + λ̃S̃
−1

)−1}S̃−1
Σ]].
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Using the arguments as in (35), we can see that

E∗
�

[tr [Σ̃
−1

λ S]] =np −E∗
�

[nλ̃tr [S̃
−1

] + n(K − k)tr [S̃
−1

Σ]] + O(n−2δ)

=np − cn

p
E∗
�

[tr [S̃]tr [S̃
−1

]] + n(K − k)
p

n − K − p − 1
+ O(n−2δ)

=
np(n − k − p − 1)

n − K − p − 1
− cn(n − K)

p(n −K − p − 1)
tr [Σ∗]tr [Σ∗−1] + O(n−δ). (41)

where Lemma A.1 is used at the third equality.

Using a similar argument, we next evaluate E∗
�

[tr [Σ̃
−1

λ Σ]]. Since (I + λ̃S̃
−1

)−1 =

I − λ̃S̃
−1

(I + λ̃S̃
−1

)−1, it can be seen that

tr [Σ̃
−1

λ Σ] =ntr [S̃
−1

Σ] − nλ̃tr [S̃
−1

ΣS̃
−1

(I + λ̃S̃
−1

)−1]

=
np

n − K − p − 1
+ O(n−δ).

Hence from (40) and (41), we can see that

∆PE,τ =pρτ − np(n − k − p − 1)

n − K − p − 1
+

cn(n − K)

p(n − K − p − 1)
tr [Σ∗]tr [Σ∗−1]

− τ 2ρτ
np

n − K − p − 1
+ O(1)

=pρτ − np(n − k − p − 1 + τ 2ρτ )

n −K − p − 1
+

cn(n − K)

p(n − K − p − 1)
tr [Σ∗]tr [Σ∗−1] + O(1).

(42)

From (15), it follows that

E∗
�

[
λ̃tr [Σ̃

−1

λ ]
]

=
cn(n − K)

p(n −K − p − 1)
tr [Σ∗]tr [Σ∗−1] + O(n−δ),

where K is the rank of X̃. Hence, we get the Cp,τ type criterion given in (27).

4 Simulation and empirical studies

4.1 Simulation experiments

We now investigate the numerical performances of the ridge-type and double ridge-type
AICs and Cp statistics derived in Section 2 through simulation and compare them in terms
of the frequencies of selecting the true model.

As the true model, we consider the model that Y ∼ Nn,p(X̃β∗, In,Σ∗), where X̃ =
(x(1), . . . , x(K)) is a matrix of regressor variables in a full model given in (1),

β∗ = ((β∗
1)

′, . . . , (β∗
k∗)′, 0, . . . , 0)′, β∗

ij = 2(−1)i(uij + i), i = 1, . . . , k∗, j = 1, . . . , p,

12



for random variable uij from a uniform distribution on the interval [0, 1], and

Σ∗ =

⎛⎜⎜⎜⎝
σ1

σ2

. . .

σp

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ρ|1−1| 17 ρ|1−2| 17 · · · ρ|1−p| 17

ρ|2−1| 17 ρ|2−2| 17 · · · ρ|2−p| 17
...

...
. . .

...

ρ|p−1| 17 ρ|p−2| 17 · · · ρ|p−p| 17

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

σ1

σ2

. . .

σp

⎞⎟⎟⎟⎠ .

for a constant ρ on the interval (−1, 1) and σi = 2 + (p − i + 1)/p.

The simulation experiments have been carried out for n = 76, K = 7, ρ = 0.7,
p = 10, 20, 30, 40, 50, 60. For the n × K matrix X̃ of the regressor variables in the full
model (1), the row vectors x1, . . . , xn for X ′ = (x1, . . . , xn) are generated as mutually
independent random variables distributed as Nk(0,Σx) where Σx = (1 − ρx)IK + ρxJK

for ρx = 0.7, where JK = jKj′
K for jK = (1, . . . , 1)′, a K-vector of ones. The above true

model is expressed as

Mk∗ Y = X̃β∗ + ε,

where 1 ≤ k∗ ≤ 7, β∗ = ((β1)
′, . . . , (βk∗)′, 0, . . . , 0)′, and ε is a random variable having

ε ∼ Nn,p(X̃β∗, In,Σ
∗). Let us write the model using the first m regressor variables

β1, . . . , βm by Mm. Then, the full model is M7 and the true model is Mk∗ . As candidate
models, we consider the nested subsets M1, . . . , M7, namely,

Mm y = X̃β(m) + ε,

where β(m) = (β1, . . . , βm, 0, . . . , 0)′.

In the simulation experiments, 20 observations of the regressor variables X̃ are gen-
erated, and for each observation of X̃, 50 observations of the response variable y are
generated from the true model Mk∗ for k∗ = 4. Thus, we have 20 × 50(= 1, 000) total
data sets. For each data set, we calculate the values of AIC0, AICλ, C0 and Cλ with
cn = n/p given in (17), (16), (21) and (20), respectively, for the seven candidate models
M1, . . . , M7, and we select the models minimizing the values of the selection procedures.
For each criterion and each candidate model Mm, the number of selecting the model Mm

is counted for 1,000 data set. We thus obtain the frequencies of the model Mm selected
by the criteria by dividing the number by 1,000.

Table 1 reports the frequencies in the cases of p = 10, 20, 30, 40, 50, 60 under the true model
M4, namely k∗ = 4. From this table, it is seen that all the criteria perform well for small
p in the sense of selecting the true model. For larger p, AIC0 and C0 based on the MLE of
Σ perform much worse, while AICλ and Cλ based on the ridge-type estimator of Σ perform
quite well. Table 2 handles the extreme cases of p = 65, namely νK = n − K − p − 3 = 1 for
k∗ = 2, 3, 4, 5, 6, 7. For the extreme cases reported in this table, AICλ and Cλ work still well.

It is interesting to investigate how the double ridge criteria AICλ,τ and Cλ,τ work in mul-
ticolinearity cases, where AICλ,τ and Cλ,τ are given in (24) and (27). To clarify the difference
between the ridge-type and the double ridge-type criteria, we consider the extreme case of n = 22,
K = 7, p = 10 and νK = n − K − p − 3 = 2. For the n × K matrix X̃ = (x(1), . . . , x(7)) of the
regressor variables in the full model (1), it is supposed that x(3), x(5) and x(7) are generated as

13



Table 1: Frequencies selected by the four criteria AIC0, AICλ, C0 and Cλ in 1,000 repli-
cations for n = 76, K = 7, p = 10, 20, 30, 40, 50, 60 and νK = n − K − p − 3 under the
true model M4, namely k∗ = 4

Mk AIC0 AICλ C0 Cλ AIC0 AICλ C0 Cλ

p = 10, νK = 56 p = 20, νK = 46
M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M4 99.7 99.6 90.3 99.0 100.0 100.0 91.6 99.2
M5 0.3 0.4 7.2 0.9 0.0 0.0 6.7 0.7
M6 0.0 0.0 2.0 0.1 0.0 0.0 1.4 0.0
M7 0.0 0.0 0.5 0.0 0.0 0.0 0.3 0.1

p = 30, νK = 36 p = 40, νK = 26
M1 1.8 0.0 0.0 0.0 100.0 0.0 0.0 0.0
M2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M4 97.6 100.0 89.4 99.3 0.0 100.0 83.3 99.2
M5 0.0 0.0 6.9 0.7 0.0 0.0 10.8 0.8
M6 0.0 0.0 2.5 0.0 0.0 0.0 3.4 0.0
M7 0.0 0.0 1.2 0.0 0.0 0.0 2.5 0.0

p = 50, νK = 16 p = 60, νK = 6
M1 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
M2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M4 0.0 100.0 69.3 99.0 0.0 100.0 53.1 100.0
M5 0.0 0.0 14.4 1.0 0.0 0.0 17.9 0.0
M6 0.0 0.0 8.3 0.0 0.0 0.0 13.1 0.0
M7 0.0 0.0 8.0 0.0 0.0 0.0 15.9 0.0
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Table 2: Frequencies selected by the four criteria AIC0, AICλ, C0 and Cλ in 1,000 repli-
cations for the extreme case of n = 76, K = 7, p = 65, namely νK = n − K − p − 3 = 1

Mk AIC0 AICλ C0 Cλ AIC0 AICλ C0 Cλ

k∗ = 2 k∗ = 3
M1 100.0 0.0 0.0 0.7 100.0 0.0 0.0 0.2
M2 0.0 100.0 50.7 99.3 0.0 0.0 0.0 0.7
M3 0.0 0.0 9.7 0.0 0.0 100.0 52.0 99.1
M4 0.0 0.0 8.3 0.0 0.0 0.0 14.7 0.0
M5 0.3 0.1 8.1 0.0 0.0 0.0 7.9 0.0
M6 0.0 0.0 8.8 0.0 0.0 0.0 9.3 0.0
M7 0.0 0.0 14.4 0.0 0.0 0.0 16.1 0.0

k∗ = 4 k∗ = 5
M1 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
M2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
M3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
M4 0.0 100.0 54.8 99.8 0.0 0.0 0.0 0.0
M5 0.0 0.0 15.2 0.0 0.0 100.0 63.3 100.0
M6 0.0 0.0 14.3 0.0 0.0 0.0 17.3 0.0
M7 0.0 0.0 15.7 0.0 0.0 0.0 19.4 0.0

k∗ = 6 k∗ = 7
M1 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
M2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M6 0.0 100.0 71.6 100.0 0.0 0.0 0.0 0.0
M7 0.0 0.0 28.4 0.0 0.0 100.0 100.0 100.0
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follows:

x(3) =0.3x(1) + 0.7x(2) + εZ1,

x(5) =0.5x(3) + 0.5x(4) + εZ2,

x(7) =0.7x(5) + 0.3x(6) + εZ3,

where ε is a positive constant and Z1, Z2 and Z3 are mutually independently distributed as
a standard normal distribution. For smaller ε, X̃ is closer to the multicolinierity case. In
this experiment, we treat the two cases: ε = 1 and ε = 0.0001, which correspond to the
non-multicolinearity and the multicolinearity cases, respectively. In the multicolinerity case, the
ridge parameter τ in the ridge regression estimator β̂τ should be large since (X ′X)−1 is instable.
Define L(X̃) by

L(X̃) = {|X̃ ′
X̃/tr [X̃

′
X̃/K]| − log(|X̃ ′

X̃/tr [X̃
′
X̃/K]|) − 1}/K,

which measures the discrepancy between the two matrices X̃
′
X̃ and tr [X̃

′
X̃/K]IK . L(X̃)

takes a large value when X̃ is close to the multicolinearity. For the double ridge AIC, we select
the regressor variables and the ridge parameter τ so as to minimize AICλ,τ for 0 ≤ τ ≤ L(X̃)/5.
For the double ridge Cp, the regressor variables and the ridge parameter τ are selected to
minimize Cλ,τ for 0 ≤ τ ≤ L(X̃)/10. The frequencies selected by AICλ, AICλ,τ , Cλ and Cλ,τ

in this experiment are reported in Table 3. For ε = 1, the non-multicolinearity case, there are
little difference between (AICλ,τ , Cλ,τ ) and (AICλ, Cλ). For ε = 0.0001, which is close to the
multicolinearity case, the double ridge criteria AICλ,τ and Cλ,τ are slightly better than AICλ

and Cλ. When the true model is M6, we can observe that AICλ,τ performs well while AICλ

does not work.

4.2 An application to posted land price data

We here treat the posted land price data along the Keikyu train line which connects the
suburbs in Kanagawa prefecture to the Tokyo metropolitan area. Those who live in the
suburbs take this line to work or study in Tokyo every weekday. Thus, it is expected
that the land price depends on the distance from Tokyo. We use the selection procedures
AIC0, AICλ, C0 and Cλ to search for the covariates which affect the land price.

The posted land price data for fifteen years from 1987 to 2001 are available for 47 sites
along the Keikyu train line. Each site is indexed by i, namely, i = 1, . . . , n for n = 47.
The values which are transformed by logarithm from the posted land price (Yen) per m2

of the i-th site for the fifteen years are described by yi = (yi1, . . . , yiT ) for T = 15. For
each yit, we consider the following five explanatory variables: T1i is the time to take from
the nearby station to the Tokyo station around 8:30 in the morning, T2i is the time to take
on foot from the site i to the nearby station and FARi and ACRi denote, respectively, the
floor-area ratio and the acreage of the site i. Also, TKYi is the dummy variable indicating
whether the site i is in Tokyo or in Kanagawa prefecture, namely TKYi = 0 if the site i
is in Tokyo, otherwise TKYi = 1. As the full model, we consider the mixed linear model

yit = β0t + T1iβ1t + (T 2
1i)β2t + T2iβ3t + FARiβ4t + TKYiβ5t + ACRiβ6t + eit.

For simplicity, the regressor variables 1, T1i, T 2
1i, T2i, FARi, TKYi and ACRi are denoted

by x0i, x1i, x2i, x3i, x4i, x5i and x6i. Let X = (x0, x1, . . . , x6) = (x(1), . . . , x(N ))
′, which
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Table 3: Frequencies selected by the four criteria AICλ, AICλ,τ, Cλ and Cλ,τ in 1,000
replications for n = 22, K = 7, p = 10 and νK = n − K − p − 3 = 2 in the case of
multicolinearity under the true models M2, M4, M6

ε = 1, non-multicolinearity ε = 0.0001, multicolinearity
Mk AICλ AICλ,τ Cλ Cλ,τ AICλ AICλ,τ Cλ Cλ,τ

M2 : the true model
M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 100.0 100.0 95.9 95.9 100.0 100.0 95.9 99.8
M3 0.0 0.0 3.7 3.7 0.0 0.0 3.7 0.0
M4 0.0 0.0 0.3 0.3 0.0 0.0 0.3 0.2
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M6 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0
M7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

M4 : the true model
M1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
M2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M4 100.0 100.0 97.0 96.9 99.9 100.0 97.0 99.3
M5 0.0 0.0 2.4 2.5 0.0 0.0 2.4 0.0
M6 0.0 0.0 0.3 0.3 0.0 0.0 0.3 0.7
M7 0.0 0.0 0.3 0.3 0.0 0.0 0.3 0.0

M6 : the true model
M1 4.8 4.2 0.0 0.0 83.5 0.0 0.0 0.0
M2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M6 95.2 95.8 97.0 97.0 16.5 100.0 97.0 100.0
M7 0.0 0.0 3.0 3.0 0.0 0.0 3.0 0.0
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is an n × 7 matrix, for xj = (xj1, . . . , xjN )′ and x′
(i) = (x0i, x1i, x2i, x3i, x4i, x5i, x6i). Also

let Y = (y′
1, . . . , y′

n)′ for yi = (yi1, . . . , yiT ), and E is similarly defined. Then, the model
is expressed as Y = Xβ + E, where β = (β(1), . . . , β(T )), which is a 7 × T matrix, for
β(t) = (β0t, . . . , β6t)

′.

Table 4 reports values of AIC0, AICλ, C0 and Cλ for several candidate models, where
the regressor variable which minimizes AICλ is added to the model based on the forward
selection rule. Among these candidate models, the minimum value of AICλ is -670 and
attained by the model with the regressor variables {x0, x1, x4, x5}, while AIC0 and Cλ

select {x0, x1, x5} or {x0, x1, x4, x5}. It is also observed that C0 selects the full model,
which shows that C0 does not work well for this example. According to these observations
based on AIC0, AICλ and Cλ, we can recommend the model given by

yit = β0t + T1iβ1t + FARiβ4t + TKYiβ5t + eit.

Although values of AICλ,τ and Cλ,τ are not reported in Table 4, it is noted that their
values are very close to those of AICλ and Cλ, respectively.

We here investigate whether the selected model is endorsed by a testing procedure.
The general linear hypothesis is expressed as a testing of hypothesis

H : Cβ = 0 vs A : Cβ 	= 0

where C is a known m× 7 matrix of rank m ≤ 7. The error sum of squares and products
is given by the matrix

V = Y ′(I − X(X ′X)−1X ′]Y ,

and the sum of squares and products due to regression under the hypotheses H is

W = β̂
′
C ′[C(X ′X)−1C ′]−1Cβ̂.

To test the hypothesis H we need to compare these matrices. The likelihood ratio test
rejects the hypothesis H if

|V |
|V + W | = Up,m,f ≤ Up,m,f,α

where f = n− 7 and Up,m,f,α is the upper 100α% point of the distribution of Up,m,f . The
asymptotic approximation for Up,m,f is given by

P [−{f−(p − m + 1)/2} log Up,m,f ≥ z]

= P [χ2
pm ≥ z] + f−2γ2

{
P [χ2

pm+4 ≥ z] − P [χ2
pm ≥ z]

}
(43)

where γ2 = pm(p2 + p − 5)/48. See Srivastava (2002, p.282).

Let β be decomposed into β = (β′
0, β

′
1, . . . , β′

k)
′. When the null hypothesis H : β0 =

β1 = β4 = β5 = 0 is tested, the P-value given in (43) is 0.000, and the hypothesis is
rejected strongly. When each hypothesis Hi : βi = 0 is tested for i = 0, 1, . . . , 6, the P-
values are given by P0 = P1 = P2 = P4 = P5 = 0.000, P3 = 0.022 and P6 = 0.008, where
Pi is the P-value given in (43) for testing Hi. When the P-values can be also obtained
numerically based on simulation experiments, those values for testing the hypotheses H3

and H6 are 0.027 and 0.007. Thus, it may be plausible that the variables x3 and x6,
namely T2i and ACRi are deleted from the regressor variables.
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Table 4: Selection of regressor variables in the posted land price data

k xi AIC0 AICλ C0 Cλ

1 x0 -3040 105 2051 286
2 x0, x1 -3106 -490 1279 68
3 x0, x1, x2 -3108 -489 906 54
3 x0, x1, x3 -3070 -438 1271 109
3 x0, x1, x4 -3104 -619 1158 74
3 x0, x1, x5 -3174 -521 353 -14
3 x0, x1, x6 -3081 -445 1215 95
4 x0, x1, x4, x2 -3101 -594 777 58
4 x0, x1, x4, x3 -3064 -578 1150 113
4 x0, x1, x4, x5 -3167 -670 232 -9
4 x0, x1, x4, x6 -3067 -560 1136 108
5 x0, x1, x4, x5, x2 -3145 -601 160 29
5 x0, x1, x4, x5, x3 -3129 -634 211 30
5 x0, x1, x4, x5, x6 -3128 -605 215 26
6 x0, x1, x4, x5, x3, x2 -3106 -566 127 68
6 x0, x1, x4, x5, x3, x6 -3085 -565 190 67
7 x0, x1, x4, x5, x3, x2, x6 -3056 -490 105 105

5 Concluding remarks

The variable selection problem in the multivariate linear regression model is addressed
under the asymptotic condition that both n and p tend to infinity subject to n − k −
p − 3 > 0 and lim(n,p)→∞ p/n = c for 0 < c < 1. In this paper, we have proposed
the modified AIC and Cp statistic, denoted by AICλ and Cλ, based on the ridge-type
estimator of Σ instead of the MLE, and proved their analytical justifications, namely,
they are asymptotic unbiased estimators of the quantities related to the prediction errors.
We also have extended the modified AIC and Cp statistic to the double ridge-type criteria
which use the ridge regression estimator of β instead of the least squares estimator.

Through simulation studies reported in Tables 1 and 2, it is seen that AIC0 and C0

statistic, based on MLE of Σ, perform well for small p and large n, as it should be.
The performances of AICλ and Cλ are, however, equally good and somewhat better. In
contrast for large p, the performance of AIC0 and C0 are rather poor in comparison to
the performance of AICλ and Cλ. In the case close to the multicolinearity, the double
ridge-type criteria AICλ,τ and Cλ,τ have been shown to work well. Thus we recommend
the use of AICλ and Cλ, or AICλ,τ and Cλ,τ for all p so long as n − k − p > 3.
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A Appendix

Lemma A.1 Let S ∼ Wp(Σ,m). Then,

E[(trS)(trS−1)] =
m

m − p − 1
trΣtrΣ−1 − 2p

m − p − 1
.

Proof. Since tr S and tr S−1 are invariant under an orthogonal transformation, we
may assume that Σ is a diagonal matrix with diagonal elements σi, i = 1, . . . , p, Σ =
diag (σ1, . . . , σp). Thus, with W ∼ Wp(I, m), W = (wij), W−1 = (wij), we get

trS = trΣW =
∑

i

σiwii.

Hence,

(trS)(trS−1) = (

p∑
i=1

σiwii)(
∑

σ−1
i wii) =

p∑
i=1

wiiw
ii +

∑
i�=j

σiσ
−1
j wiiw

jj .

Noting that E[wiiw
ii] = E[wppw

pp] for any i, and E[wiiw
jj ] = E[w11w

pp] for any i 	= j, we
get

E[(tr S)(trS−1)] = pE[wppw
pp] +

∑
i�=j

σiσ
−1
j E[w11w

pp].

Consider now the triangular factorization of W = TT ′, where

T =

(
T 1 0
t′12 tpp

)
.

Then,

W =

(
T 1T

′
1 T 1t12

t′12T
′
1 t2pp + t′12t12

)
=

(
W 11 w12

w′
12 wpp

)
and

wpp = (wpp −w′
12W

−1
11 w12)

−1 = (t2pp)
−1.

Hence,

E[wppw
pp] =E

[
t2pp + t′12t12

t2pp

]
= 1 + E

[
t′12t12

t2pp

]
=1 + E[t′12t12]E[t−2

pp ] = 1 +
p − 1

m − p − 1
=

m − 2

m − p − +1
,

since t12 ∼ Np−1(0, I) is independently distributed of t2pp, and t2pp is distributed as
chisquare with m − p + 1 degrees of freedom, see Srivastava and Khatri (1979, Lemma
3.2.1, pp 74). Similarly,

E[w11w
pp] = E[t211/t

2
pp] = E[t211]E[1/t2pp] =

m

m − p − 1
.

20



Hence,

E[(trS)(trS−1)] =
(m − 2)p

m − p − 1
+

m

m− p − 1

∑
i�=j

σiσ
−1
j

=
m

m − p − 1
[(trΣ)(trΣ−1) − p] +

(m − 2)p

m− p − 1

=
m

m − p − 1
(trΣ)(trΣ−1) − 2p

m − p − 1
.

Lemma A.2 Let S ∼ Wp(Σ,m). Then,

E[(tr S)tr (ΣS−2)] =
(m − 1)(m + 1)

(m − p + 1)(m − p − 1)(m − p − 3)
(tr Σ)(trΣ−1)

− p

(m − p − 1)(m − p − 3)

(
m2 − 1

m− p + 1
− m2 − 5m + 2p + 2

m − p

)
.

Proof. As explained above, we assume that Σ = diag (σ1, . . . , σp), and W ∼
Wp(I , m),

E[(tr S)(trΣS−2)] =E[(trΣW )(trΣ−1W−2)]

=E[

(∑
i

σiwii

)(∑
i

σ−1
i (W −2)ii

)
]

=E[

p∑
i=1

wii(W
−2)ii +

∑
i�=j

σiσ
−1
j wii(W

−2)jj]

=pE[wpp(W
−2)pp + w11(W

−2)pp

∑
i�=j

σiσ
−1
j ].

Note that

(W−2)pp =
1

t4pp

[1 + t′12(T
′
1T 1)

−1t12],

and wpp = t2pp + t′12t12. Thus,

E[wpp(W
−2)pp] =E[(t2pp + t′12t12)(1 + t′12(T 1T 1)

−1t12/t
4
pp]

=E[(t−2
pp + t′12t12t

−4
pp )(1 + t′12(T

′
1T 1)

−1t12]

=E

[
(

1

m− p − 1
+

t′12t12

(m − p − 1)(m − p − 3)
)(1 + t′12(T

′
1T 1)

−1t12)

]
=

1

m − p − 1
E[1 + t′12(T

′
1T 1)

−1t12] + E[
t′12t12t

′
12(T

′
1T 1)

−1t12 + t′12t12

(m − p − 1)(m − p − 3)
]

=
1

m − p − 1
{1 + E[tr (T ′

1T 1)
−1]} + E[

t′12t12t
′
12(T

′
1T 1)

−1t12 + t′12t12

(m − p − 1)(m − p − 3)
].
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Note that t′12t12t
′
12(T

′
1T 1)

−1t12 = tr (t12t
′
12)

2(T ′
1T 1)

−1, where t12 ∼ Np−1(0, Ip−1) and T 1

are independently distributed. Hence, t12t
′
12 ∼ W p−1(I , 1). From Srivastava and Khatri

(1979, Problem 3.2, pp 97),

E[(t12t
′
12)

2] = 2Ip−1 + (p − 1)Ip−1 = (p + 1)Ip−1.

Hence,

E[t′12t12t
′
12(T

′
1T 1)

−1t12] =(p + 1)E[tr (T ′
1T 1)

−1]

=(p + 1)E[tr (T 1T
′
1)

−1] =
(p + 1)(p − 1)

m − p
,

since T 1T
′
1 ∼ Wp−1(Ip−1, m), and E[(T 1T

′
1)

−1] = (m − p)−1Ip−1. Hence,

E[wpp(W
−2)pp] =

1

m − p − 1
[1 +

p − 1

m− p
+

p − 1

m− p − 3
+

(p + 1)(p − 1)

(m − p)(m − p − 3)
].

We shall need to calculate

E[w11(W
−2)pp] =E[

t211

t4pp

(1 + t′12(T
′
1T 1)

−1t12)]

=
1

(m − p − 1)(m − p − 3)
E[m + t211t

′
12(T

′
1T 1)

−1t12].

It may be noted that t11 is the (1, 1)st element of T 1, so we need to write T 1 as

T 1 =

(
t11 0
t31 T 3

)
, T −1

1 =

(
t−1
11 0

−T−1
3 t−1

11 t31 T −1
3

)
.

Thus,

E[t211tr (T ′
1T 1)

−1t12t
′
12] =E[t211tr (T ′

1T 1)
−1]

=E[t211

{
t−2
11 +

trT −1
3 t31t

′
31(T

−1
3 )′

t211

+ tr T−1
3 (T−1

3 )′
}

]

=E[1 + tr t31t
′
31(T 3T

′
3)

−1 + t211tr (T 3T
′
3)

−1]

=1 + (m + 1)E[tr (T 3T
′
3)

−1] = 1 +
(m + 1)(p − 2)

m− p + 1
.

Combining all the above calculation, we get

E[w11(W
−2)pp] =

(m − 1)(m + 1)

(m − p + 1)(m − p − 1)(m − p − 3)
.

Hence, after some simplification, we get

E[(tr S)(trΣS−2)] =
(m − 1)(m + 1)

(m − p + 1)(m − p − 1)(m − p − 3)
(trΣ)(trΣ−1)

− p

(m − p − 1)(m − p − 3)
(

m2 − 1

m − p − 1
− m2 − 5m + 2p + 2

m − p
).
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