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Abstract

This paper investigates the role of policy in money search models with divisible money.
Recently, real indeterminacy of stationary equilibria has been found in both specific and general
search models with divisible money. Thus if we assume the divisibility of money, it would be
quite difficult to make accurate predictions of the effects of simple monetary policies. Instead, we
show that some tax-subsidy schemes select a determinate efficient equilibrium. In other words,
for a given efficient equilibrium and for any real number δ > 0, a certain tax-subsidy scheme
induces a locally determinate equilibrium within the δ-neighborhood of the given equilibrium.
Moreover, the size of the tax-subsidy can be arbitrarily small.
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1 Introduction

This paper studies the roles of tax-subsidy schemes in money search models. In most

of cases, money is indivisible and the stationary equilibria are determinate. Thus the

effects of the policies are determinate as well. However, real indeterminacy of stationary

equilibria has been recently found in both specific and general search models with

divisible money. (See, for example, Green and Zhou [3] [4], Kamiya and Shimizu [6],

Matsui and Shimizu [7], and Zhou [9].) In other words, if we assume the divisibility of

money in these models, the stationary equilibria become indeterminate. Thus it is quite

difficult to make accurate predictions of the effects of simple monetary policies in such

models. Instead, we show that some tax-subsidy schemes select a determinate efficient

equilibrium. In other words, for a given efficient equilibrium and for any real number
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δ > 0, a certain tax-subsidy scheme induces a locally determinate equilibrium within

the δ-neighborhood of the given equilibrium. Moreover, the size of the tax-subsidy can

be arbitrarily small.

In order to explain the indeterminacy of equilibria, we first consider a random match-

ing model with divisible money and without intervention of government. There is a

continuum of private agents who meets pairwise according to a random matching pro-

cess. In each meeting, there is no double coincidence of wants, and therefore fiat money

can be used as a medium of exchange. In such a model, the conditions for a stationary

equilibrium are (i) each agent maximizes the expected value of utility-streams, i.e., the

Bellman equation is satisfied, and (ii) the money holdings distribution of the economy

is stationary, i.e., time-invariant.

In some special models with divisible money, Green and Zhou [3], Matsui and

Shimizu [7], and Zhou [9] found indeterminacy of stationary equilibria by calculating

explicit solutions. Kamiya and Shimizu [6] found the underlying logic of indeterminacy;

namely, there is at least one-degree of freedom in the condition for the stationarity of

money holdings distributions.

To be more precise, we focus on a stationary equilibrium in which all transac-

tions are made with integer multiples of some p > 0 and money holdings distribu-

tions have a support expressed by {0, p, 2p, . . . , Np} for some positive integer N . Let

h = (h0, h1, . . . , hN) be a probability distribution on the support, where hn is a mea-

sure of agent with money holding np. Suppose the values of the other variables, besides

h, are given. Note that these variables are determined by the Bellman equations for a

given h; namely, the number of these variables are equal to the number of equations in

the Bellman equations. Let In, a function of h, be a measure of agents whose money

holdings are not np before trades and become np after trades, and On, a function of h,

be a measure of agents whose money holdings are np before trades and become n′p for

some n′ �= n after trades. In other words, In is the measure of agents in the inflow at

np, and On is the measure of agents in the outflow at np. The stationary condition is

expressed by In = On for n = 0, 1, . . . , N .

Clearly,
∑N

n=0 In − ∑N
n=0 On = 0 always holds, i.e., this is an identity, since each

agent, who belongs to an outflow at some n, should belong to an inflow at some n′ and

thus the total measure of agents in all inflows, expressed by
∑N

n=0 In, is equal to that

in all outflows, expressed by
∑N

n=0 On. On the other hand,
∑N

n=0 nIn −
∑N

n=0 nOn = 0

always holds, i.e., this is also an identity. To see this, suppose that two agents, say
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a buyer and a seller, meet and a monetary trade occurs. Then the amount of money

the buyer pays is equal to that of the seller obtains; in other words, the sum of their

money holdings before trade is equal to that of after trade. Since this holds in each

trade, the total amount of money before trades, expressed by
∑N

n=0 pnOn, is equal to

the total amount of money after trades, expressed by
∑N

n=0 pnIn, and thus
∑N

n=0 nIn−∑N
n=0 nOn = 0 always holds. Thus there are N +1 equations, In = On, n = 0, 1, . . . , N ,

and two identities,
∑N

n=0 In − ∑N
n=0 On = 0 and

∑N
n=0 nIn − ∑N

n=0 nOn = 0; i.e., the

number of linearly independent equations among them is N − 1. On the other hand,∑N
n=0 hn − 1 = 0 is the other restriction and the number of variables, h0, h1, . . . , hN ,

is N + 1. Therefore there is at least one degree of freedom in the determination of

stationary distribution. This leads to the real indeterminacy of stationary equilibria in

random matching models with divisible money satisfying some regularity conditions.

For the details, see Kamiya and Shimizu [6].

Now we introduce a policy into this economy. More precisely, following Aiyagari et

al. [1], we introduce government agents who are similar to private agents in terms of

pairwise matching. According to the rule called a tax-subsidy scheme which is enforced

by the government, they collect tax from or give subsidy to matched private agents. If

the total amount of tax is more than that of subsidy, the monetary authority absorbs

the surplus, while if the total amount of tax is less than that of subsidy, the authority

issues the necessary amount. Thus the total amount of money the private agents have

at the beginning of the period is not necessarily equal to that at the end of the period.

This implies that
∑N

n=0 nIn − ∑N
n=0 nOn = 0 does not always hold. Thus the total

number of equations is equal to that of variables and the stationary equilibria become

determinate.

Furthermore, we show that a tax-subsidy scheme can select a determinate efficient

equilibrium. In other words, for a given equilibrium and for any real number δ > 0,

a certain tax-subsidy scheme induces a locally determinate equilibrium within the δ-

neighborhood of the given equilibrium. Of course, the given equilibrium can be an

efficient one, i.e., an equilibrium with high welfare. For that purpose, the size of the

tax-subsidy can be arbitrarily small.

It is well-known that, in the standard general equilibrium model, equilibria are

generically determinate and the lump-sum tax-subsidy only leads the economy to a

given Pareto efficient equilibrium. On the other hand, in the money search model with

divisible money, equilibria are indeterminate and the tax-subsidy scheme has another
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role; namely, it makes an efficient equilibrium determinate. In other words, we have

found a new role of tax-subsidy schemes which has not yet been known so far in the

literature.

The plan of this paper is as follows. In Section 2, we investigate a special model

which can be considered as Zhou [9]’s model with government agents. In Section 3,

we present a general model, to which most of random matching models with divisible

money belong, and investigate tax-subsidy schemes focusing on pure strategy equilibria.

Then in Section 4, we extend the results in Section 3 to the case of mixed strategy

equilibria. Finally, in Section 5, we conclude the paper with some discussion.

2 A Model with Government Agents

2.1 Model and Definitions

We first present a simple model with government agents. Our model can be considered

as Zhou [9]’s model with government agents introduced by Aiyagari et al. [1].

There is a continuum of private agents with a mass of measure one. There are k ≥ 3

types of agents with equal fractions and the same number of types of goods. Let κ

be the reciprocal of k. A type i − 1 agent can produce just one unit of type i good

and the production cost is c > 0. (We assume that a type k agent produces type 1

good.) A type i agent obtains utility u > 0 only when she consumes one unit of type

i good. We assume u > c. Time is continuous and pairwise random matchings take

place according to Poisson process with parameter µ > 0. For every matched pair, the

seller posts a take-it-or-leave-it price offer without knowing the amount of the buyer’s

money holdings. Let M > 0 be the nominal stock of fiat money, and γ > 0 be the

discount rate.

In what follows, we focus on a stationary distribution of money holdings of the

private agents with the support {0, p, . . . } for some p > 0. Thus the money holdings

distribution can be expressed by hn, n = 0, 1, . . . , the measure of the set of private

agents with money holding np. Of course, h satisfies
∑

n hn = 1 and hn ≥ 0 for all n.

We introduce government agents to this economy. They are “programmed” to follow

the rule specified later. That is, following the given rule, they collect tax from or give

subsidy to the agents they are matched with. We assume that government agents can

observe current money holdings of agents they are matched with. Let G > 0 be the

measure of the government agents. Thus the total measure of all agents is 1+G. Note
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that in the following arguments G can be any small positive number. We describe

the policy of the government by (t0, t1, . . . ), where tn ∈ [−1, 1]. When a government

agent meets an agent with η ∈ [np, (n + 1)p), she gives subsidy p with probability |tn|
if tn > 0, while she collects tax p with probability |tn| if tn < 0. If the total amount

of tax is more than that of subsidy, the government absorbs the surplus, while if the

total amount of tax is less than that of subsidy, the government issues the necessary

amount.

We focus on stationary equilibria in which all agents with identical characteristics

act similar and in which all of the k types are symmetric. Since relevant decisions for

an agent are only what price she offers to a buyer of her production good, and how

to respond to an offer made by a seller of her consumption good, then we consider

her strategy as a pair of functions of money holdings: ω(η) ∈ R+ ∪ {NT}, an offer

price, and ρ(η) ∈ R+, a reservation price, when her money holdings is η ∈ R+.1 Here,

ω(η) = NT implies that she rejects a trade. Since the reservation price cannot exceed

the buyer’s money holdings, ρ should satisfy the following feasibility condition:

ρ(η) ≤ η. (1)

We adopt one type of the Bayesian perfect equilibrium, called a stationary equilib-

rium, as our equilibrium concept. Since the rigorous definition is rather complicated,

then we present it in Appendix A. Instead, in Theorem 1 in the next subsection, we

present the conditions for stationary equilibria in the case with the following strategy.

Namely, we restrict our attention to a stationary equilibrium with the following strat-

egy both in the cases with and without tax-subsidy: there exists a positive integer N

such that

• a seller with η, 0 ≤ η < Np, offers p,

• a seller with η, η ≥ Np, offers NT, and

• the reservation price of a buyer with η, η ≥ p, is more than or equal to p.

Note that if the above strategy is indeed an equilibrium, then on the equilibrium path,

all trades occur with p > 0. Moreover, η > Np does not occur in the stationary

distribution; i.e., any n > N is a transient state and N is the endogenously determined

upper bound of money holdings. Thus {0, p, . . . , Np} can be the support of a stationary

distribution with the strategy. In what follows, a stationary equilibrium in which all

trades occur with a single price is called a single price equilibrium (SPE).
1Throughout this section we focus on equilibria with pure strategies.
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2.2 SPE without Tax-Subsidy

First, we consider the case that tn = 0 for all n, i.e., the case without tax-subsidy.

According to the strategy specified above, an agent moves out from np either by making

a sale or by making a purchase. More precisely, A type i agent with np < Np makes a

sale when she meets a type i+1 agent with money. The measure of agents with np is hn

and the probability that they can make a sale is µκ
1+G

(1−h0), and thus the set of agents

with measure µκ
1+G

hn(1 − h0) moves out from np, i.e., it is an outflow at np as well as

an inflow at (n+1)p. On the other hand, a type i agent with np > 0 makes a purchase

when she meets a type i− 1 agent with np < Np. The measure of agents with np is hn

and the probability that they can make a purchase is µκ
1+G

(1− hN ), and thus the set of

agents with measure µκ
1+G

hn(1 − hN ) moves out from np, i.e., it is an outflow at np as

well as an inflow at (n − 1)p. Thus the stationary condition for h = (h0, h1, . . . , hN ),

i.e., the time rate of inflow at n is equal to the time rate of outflow at n, is expresses

as follows:

µκ

1 + G
[h1(1 − hN) − h0(1 − h0)] = 0, (2)

µκ

1 + G
[{hn−1(1 − h0) + hn+1(1 − hN )} − hn {(1 − h0) + (1 − hN)}] = 0,

1 ≤ n ≤ N − 1, (3)
µκ

1 + G
[hN−1(1 − h0) − hN (1 − hN )] = 0, (4)

N∑
n=0

hn = 1. (5)

Let the LHS of the nth equation be denoted by Dn(h), the difference between the inflow

into state n and the outflow from state n. It can be easily checked that
∑N

n=0 Dn(h) = 0

and
∑N

n=0 nDn(h) = 0 always hold, i.e., they are identities. Thus if Dn(h) = 0 for

n = 2, . . . , N hold, then D0(h) = 0 and D1(h) = 0 are automatically satisfied. In other

words, two of the above equations are redundant. Thus the above system of equations

has at least one degree of freedom.

In fact, we obtain the following stationary distribution from the stationary condition:

hn = h0

(
1 − h0

1 − hN

)n

, n = 1, . . . , N, (6)

where hN is determined so that

hN(1 − hN)N = h0(1 − h0)
N . (7)
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It is verified that for any h0 ∈ (0, 1) there is the corresponding distribution h satisfy-

ing the stationary condition. In other words, we have a continuum of candidates for

stationary distributions.

Let V : R+ → R+ be a value function. Kamiya et al. [5] show the following existence

theorem for SPEs.

Theorem 1 Suppose

(φ + 1)N <
u

c
<

φ(φ + 1)2N

(φ + 1)N − 1
, (8)

holds for a positive integer N , where φ = (1+G)γ
µκ

.2 3 Then, for some ε > 0, there exists

(h,V) such that (i) h0 ∈ (1 − ε, 1) and hn, n = 1, . . . , N , are given by (6) and (7), (ii)

V is a solution to the Bellman equation, and (iii) the strategy specified above is the

optimal policy function of the Bellman equation. For the definition of the Bellman

equation, see Appendix A.

Moreover, Kamiya et al. [5] show that, in SPEs, all the relevant incentive conditions

are satisfied with strict inequalities besides the boundary of the set of SPEs. Thus

even if we slightly perturb the equilibrium condition by introducing a policy with small

amounts of tax and subsidy, the incentive conditions still hold in most of equilibria

with the policy. Of course, for this argument, we need to check the regularity condition

for the implicit function theorem. It is checked in the next subsection.

Let Vn = V(np), n = 0, . . . , N . Then we define the welfare as W =
∑N

n=0 hnVn.

Then we obtain

W =
(1 − h0)(1 − hN)

φ
(u − c).

It is verified that W takes a value in
(
0,

(
N

N+1

)2 u−c
φ

]
, and that the maximum value

is attained at h =
(

1
N+1

, . . . , 1
N+1

)
. Clearly, it constitutes the most efficient SPE

among stationary equilibria with the upper bound of money holdings N if the incentive

conditions are satisfied.
2This definition of φ is slightly different from the one defined in Kamiya et al. [5]. For the details, see Remark 2 in

Appendix A.
3It is verified that there exists φ ≥ 0 such that

(φ + 1)N <
φ(φ + 1)2N

(φ + 1)N − 1

holds for φ > φ. In other words, there exists a region of parameter profiles (φ, u, c) satisfying the sufficient condition.
(See Kamiya et al. [5].)
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2.3 SPE with Tax-Subsidy

We consider the case with tax-subsidy, i.e., t is a nonzero vector. In addition, we require

that t0 ≥ 0 and tN ≤ 0 throughout the paper so that the introduction of policy does

not change the support of money holdings distribution. According to the tax-subsidy

scheme and the strategy specified previously, an agent moves to np either by making

a sale from (n − 1)p, by making a purchase from (n + 1)p, by obtaining subsidy from

(n−1)p, or by paying tax from (n+1)p. Thus, denoting by h̃ a stationary distribution

with tax-subsidy, the stationary condition is as follows:

µκ

1 + G

[{
h̃1(1 − h̃N ) + h1kGt−1

}
− h̃0

{
(1 − h̃0) + kGt0

}]
= 0, (9)

µκ

1 + G

[{
h̃n−1(1 − h̃0) + h̃n+1(1 − h̃N ) + h̃n−1kGt+n−1 + h̃n+1kGt−n+1

}
− h̃n

{
(1 − h̃0) + (1 − h̃N ) + kG|tn|h̃n

}]
= 0, 1 ≤ n ≤ N − 1, (10)

µκ

1 + G

[{
h̃N−1(1 − h̃0) + h̃N−1kGt+N−1

}
− h̃N

{
(1 − h̃N ) − kGtN

}]
= 0, (11)

N∑
n=0

h̃n = 1, (12)

where t+n = max{0, tn} and t−n = −min{0, tn}. Let the nth equation be denoted by

D̃n(h̃) = 0. As in the case with tax-subsidy,
∑N

n=0 D̃n(h̃) = 0 is an identity, and thus

one of the above equations is redundant. On the other hand,
∑N

n=0 nD̃n(h̃) = 0 is no

longer an identity. Thus only one equation, say (9), is redundant and the system has

no degree of freedom. Then (h,V) is called a SPE with tax-subsidy if (10), (11), (12),

and the Bellman equation are satisfied.

First, as an example, we present a method to approximate
(

1
N+1

, . . . , 1
N+1

)
, which is a

stationary distribution for the above strategy in the case without tax-subsidy. Suppose

there exists V which, together with h =
(

1
N+1

, . . . , 1
N+1

)
, satisfies the Bellman equation

with the strict incentive condition.4 Let t = ετ where ε > 0 and τ = (τ0, 0, . . . , 0, τN ),

where ε is a size of the scheme. Let τ0 = −τN > 0. Then we obtain a solution

h̃n =

{
h̃0 if n = 0 or N,
h̃0(1−h̃0+kGετ0)

1−h̃0
if 1 ≤ n ≤ N − 1,

4The existence of such a V depends on the parameters and N .
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where h̃0 is a solution of the equation:

(N + 1)(h̃0)
2 − {3 + (N − 1)(1 + kGετ0)} h̃0 + 1 = 0,

with h̃0 ∈ (0, 1). It is verified that such h̃0 is uniquely determined and thus h̃ is

uniquely determined as well. Moreover, as ε → 0, h̃ → (
1

N+1
, . . . , 1

N+1

)
. Note that this

distribution is one of the stationary distributions without tax-subsidy and is orthogonal

to τ . If the regularity condition for the implicit function theorem holds, then V is also

a continuous function of ε and the incentive condition holds for a small ε > 0. Thus

we can approximate the equilibrium with h =
(

1
N+1

, . . . , 1
N+1

)
. Later, we show the

regularity in general.

We can generalize this method to approximate any given SPE with strict incentive

condition. Note that the budget deficit is expressed as follows:

µG

1 + G
h̃ · t =

µG

1 + G
εh̃ · τ =

N∑
n=0

nD̃n. (13)

Since we do not require budget balancing, then this may not be 0 out of equilibrium.

Thus
∑N

n=0 nD̃n = 0 is not an identity. This enables us to make a stationary dis-

tribution determinate. Let (h∗,V∗) be a SPE without tax-subsidy in which the strict

incentive condition holds. Then choose a τ satisfying h∗ ·τ = 0 and let t = ετ . Then the

equilibrium is determinate for ε > 0, and the equilibrium for ε, denoted by (h̃(ε),V(ε))

converges to (h∗,V∗) as ε → 0.

More precisely, in the stationarity condition (10)-(12), we can use h̃ · τ = 0 instead

of D̃1 = 0. In other words, for ε > 0, the both conditions have the same solutions

because it follows from D̃n = 0 for n = 2, . . . , N , that h̃ · τ = 0 imply D̃1 = 0, and

vice versa. We call the system of equations including h̃ · τ = 0 the new system. Since

the new system is regular at ε = 0, h∗ is a determinate solution to the new system at

ε = 0. For the regularity, see Appendix B. Thus (h̃(ε),V(ε)) converges to (h∗,V∗) as

ε → 0 by the implicit function theorem.

As stated in the previous subsecion, as long as we consider a small size tax-subsidy

scheme, introducing the scheme just slightly perturbs the incentive conditions. There-

fore if we pick up a relative interior point of the equilibrium manifold found in Theorem

1 as a goal, the incentive condition is not violated.

Note that the budget deficit is zero in the stationary distribution, since D̃n = 0, n =

0, . . . , N , hold, although it is not identically zero.

The above arguments can be summarized as follows:

9



Theorem 2 Suppose a SPE without tax-subsidy, in which the strategy specified in

Subsection 2.1, satisfies strict incentive conditions. Then, for any δ > 0, there exists

a tax-subsidy scheme such that a SPE with the tax-subsidy is locally determinate and

lies in the δ-neighborhood of the SPE without tax-subsidy.

In Appendix C, we present the explicit solutions, including V in equilibria, with and

without tax-subsidy in case of N = 1.

2.4 Budget Balancing Rule

It is interesting to see that any tax-subsidy scheme with budget balancing rule cannot

make equilibria determinate. For example, consider stationary equilibria with N = 2

and the tax-subsidy scheme with the form (t0, 0, t2). It is not the case that we can freely

choose both t0 and t2 because t0h̃0 + t2h̃2 = 0 must hold even out of the equilibrium

path. If we set t2 = −1, then h̃ and t0 must satisfy

µκ

1 + G

[
h̃1(1 − h̃2) − h̃0

(
1 − h̃0 + kGt0

)]
= 0,

µκ

1 + G

[{
h̃0

(
1 − h̃0 + kGt0

)
+ h̃2

(
1 − h̃2 + kG

)}
− h̃1

(
1 − h̃0 + 1 − h̃2

)]
= 0,

µκ

1 + G

[
h̃1(1 − h̃0) − h̃2

(
1 − h̃2 + kG

)]
= 0,

t0 =
h̃2

h̃0

,

h̃0 + h̃1 + h̃2 = 0.

Therefore we obtain, for any h̃0 ∈
[

4+kG−
√

(4+kG)2−12

6
, 1

)
,5

h̃1 =
−h0 − kG +

√
(4 − 3h̃0 + kG)(h̃0 + kG)

2
,

h̃2 =
2 − h0 + kG−

√
(4 − 3h̃0 + kG)(h̃0 + kG)

2
.

Thus stationary distributions are indeterminate. The intuition is as follows. Requiring

budget balancing, we have one more additional variable t0, then the number of variables

is one larger than that of equations. Thus there is one degree of freedom in the system

of equations.

5The condition that h̃0 ≥ 4+kG−
√

(4+kG)2−12
6

is necessary for t0 ≤ 1.
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3 A General Model

In this section, we show the same results for a general model as in the previous section.

The private sector is slightly a special case of the one investigated by Kamiya and

Shimizu [6] (hereafter, we call KS simply).

There is a continuum of private agents with a mass of measure one. There are

k ≥ 3 types of agents with equal fractions and the same number of types of goods.

Let κ be the reciprocal of k. A type i good is produced by a type i − 1 agent. A

type i agent obtains some positive utility only when she consumes type i good. We

make no assumption on the divisibility of goods. We assume that fiat money is durable

and perfectly divisible. Time is continuous, and pairwise random matchings take place

according to Poisson process with parameter µ > 0.

We confine our attention to the case that, for some positive number p, all trades

occur with its integer multiple amounts of money. In what follows, we focus on a

stationary distribution of economy-wide money holdings on {0, . . . , N} expressed by

h = (h0, . . . , hN ), where hn is the measure of agents with np amount of money, and N <

∞ is the upper bound of the distribution. Our model includes the case of exogenously

determined N as well as the case of endogenously determined N . Of course, hn ≥ 0

and
∑N

n=0 hn = 1 hold. Let M > 0 be a given nominal stock of money circulating in

the private sector. Since p is uniquely determined by
∑N

n=0 pnhn = M for a given h

for h0 �= 1, then, deleting p from {0, p, . . . , Np}, the set {0, . . . , N} can be considered

as the state space.

Since we adopt a general framework, then various types of bargaining procedures

are allowed.6 An agent with n, or an agent with np amount of money, chooses an action

in An = {an1, . . . , ansn}. Let A = ΠN
n=0An. For example, an action consists of an offer

price and a reservation price. In this section, we confine our attention to the stationary

equilibrium in which all agents choose pure strategies. As for mixed strategy equilibria,

see Section 4. Let S =
∑N

n=0 sn. Given an equilibrium action profile a = (a0, . . . , aN ),

where an is the action taken at np in the equilibrium, define α(a) = {(n, j) | an = anj}.
The monetary transition resulted from transaction among a matched pair is de-

scribed by a function f . When an agent with money holdings np and action anj meets

an agent with n′p and an′j′, the former’s and the latter’s states, i.e., money holdings,

will be n+ f(n, j; n′, j′) and n′− f(n, j; n′, j′), respectively. That is f maps an ordered

pair (n, j; n′, j′) to a non-negative integer f(n, j; n′, j′). Here “ordered” means, for ex-
6See Remark 1 for the details.
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ample, that the former is a seller and the latter is a buyer. When N is exogenously

determined, we assume

N ≥ n + f(n, j; n′, j′) and n′ − f(n, j; n′, j′) ≥ 0.

When N is endogenously determined, we assume the latter condition while the former

one should be satisfied on the equilibrium path.

Next, we introduce government agents. They are programmed to follow a rule which

prescribes them how to collect tax from or give subsidy to the agents they are matched

with. We assume that government agents can observe current money holdings of agents

they are matched with. Let G > 0 be the measure of the government agents. Thus the

total measure of agents is 1 + G. Note that in the following arguments G can be any

small positive number.

Then we describe government’s policy by (t0, t1, . . . , tN), where tn ∈ [−1, 1], t0 ≥ 0,

and tN ≤ 0. Each government agent gives subsidy p to the matched agent with n with

probability |tn| when tn > 0, while she collects tax p with probability |tn| when tn < 0.

As seen in the previous section, the budget of the government may not be balanced

out of equilibria.

Let θ ∈ R
L be the parameters of the model besides t. Of course, θ includes k, µ,

and G.

We adopt Bellman equation approach. Let Vn be the value of state n, n = 0, . . . , N .

The variables in the model are denoted by x = (h, V, a). Let Wnj(x; θ, t) be the value of

action j at state n. Thus, in equilibria, Wnj(x; θ, t) = Vn holds for (n, j) ∈ α(a). Note

that Wnj(x; θ, t) includes the utility and/or the production cost of perishable goods.

3.1 Stationary Equilibria without Tax-Subsidy

First, we present the results in the case that tn = 0 for all n.

We define

hnj =

{
hn if anj = an,

0 if anj �= an.

Then by the random matching assumption and the definition of f , the inflow In into

12



state n and the outflow On from state n are defined as follows:

In(h, a; θ) =
µκ

1 + G

⎡
⎣ ∑

(i,j,i′,j′)∈Xn

hijhi′j′ +
∑

(i,j,i′,j′)∈X ′
n

hijhi′j′

⎤
⎦ ,

On(h, a; θ) =
µκ

1 + G

⎡
⎣ ∑

(j,i′,j′)∈Yn

hnjhi′j′ +
∑

(j,i′,j′)∈Y ′
n

hnjhi′j′

⎤
⎦ ,

where

Xn = {(i, j, i′, j′) | f(i, j; i′, j′) > 0, i + f(i, j; i′, j′) = n},
X ′

n = {(i, j, i′, j′) | f(i, j, i′, j′) > 0, i′ − f(i, j; i′, j′) = n},
Yn = {(j, i′, j′) | f(n, j; i′, j′) > 0},
Y ′

n = {(j, i′, j′) | f(i′, j′; n, j) > 0}.
We denote In−On by Dn. Then the condition for stationarity is Dn = 0 for n = 0, . . . , N

and
∑N

n=0 hn = 1. Clearly,
∑N

n=0 Dn = 0 holds as an identity, and thus at least one

equation is redundant. The following theorem shows that one more equation is always

redundant.

Theorem 3 (Kamiya and Shimizu [6]) For any a,

N∑
n=0

nDn(h, a; θ) = 0, (14)

is an identity.

Suppose that two agents, say a buyer and a seller, meet and a monetary trade occurs.

Then the amount of money the buyer pays is equal to that of the seller obtains; in

other words, the sum of their money holdings before trade is equal to that after trade.

Since this holds in each trade, the total amount of money before trades, expressed by∑N
n=0 pnOn(h, a; θ), is equal to the total amount of money after trades, expressed by∑N
n=0 pnIn(h, a; θ), and thus

∑N
n=0 nDn(h, a; θ) = 0 always holds.

Together with the other identity
∑N

n=0 Dn(h, a; θ) = 0, the above theorem implies

that h is a stationary distribution if and only if Dn(h, a; θ) = 0, n = 2, . . . , N, and∑N
n=0 hn = 1 hold. Namely, the condition for stationarity has at least one-degree of

freedom. This is the main cause of the indeterminacy.

Now the equilibrium condition is expressed as follows:

13



Definition 1 Given θ, x = (h, V, a) ∈ R
N+1×R

N+1
+ ×A is a (pure strategy) stationary

equilibrium without tax-subsidy if it satisfies the following:

Dn(h, a; θ) = 0, n = 2, . . . , N
N∑

n=0

hn − 1 = 0,

Vn −Wnj(x; θ, 0) = 0, (n, j) ∈ α(a)

Vn −Wnj(x; θ, 0) ≥ 0, (n, j) /∈ α(a). (15)

(h, V ) is called a stationary equilibrium for a and θ if (h, V, a) is a stationary equilib-

rium for θ. Let Ea
θ be the set of such (h, V )s, and ga : R

N+1
+ ×R

N+1×R
L(
 (h, V, θ)) →

R
N−1 × R × R

N+1 × R
S−N−1 be the LHS of the above condition.

Remark 1 In addition to the above equilibrium conditions, the following conditions

are typically required to be an “equilibrium” in most of matching models with money:

(i) the existence of p > 0 satisfying
∑N

n=0 pnhn = M , (ii) the incentive not to choose

an action out of our action space,7 and (iii) the incentive to take the equilibrium

strategy at state η /∈ {0, p, . . . , Np}. However, they are not very restrictive. As for

(i), it immediately follows from h0 �= 1. As for (ii) and (iii), KS presents a sufficient

condition to assure that (ii) and (iii) hold, and it is satisfied in all of the matching

models with divisible money known so far, such as Zhou [9]’s model, a divisible money

version of Camera and Corbae [2]’s model, and a divisible money version of Trejos and

Wright [8]’s model.

Let

Ca = {0} × · · · × {0}︸ ︷︷ ︸
2N+1

×R++ × · · · × R++︸ ︷︷ ︸
S−N−1

,

and, for (n, j) /∈ α(a),

Ca(n,j) = {0} × · · · × {0}︸ ︷︷ ︸
2N+1

×R++ × · · · × R++ × {0} × R++ × · · · × R++︸ ︷︷ ︸
S−N−1

,

where the last {0} corresponds to Vn−Wnj(x; θ, 0). Moreover, for (n, j), (n′, j′) /∈ α(a),

Ca(n,j)(n′,j′) = {0} × · · · × {0}︸ ︷︷ ︸
2N+1

×R × · · · × R × {0} × R × · · · × R × {0} × R × · · · × R︸ ︷︷ ︸
S−N−1

,

7For example in Section 2, a seller may offer a price which is not an integer multiple of p.
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where the last two {0}s correspond to Vn −Wnj(x; θ, 0) and Vn −Wn′j′(x; θ, 0), respec-

tively. Below, it is verified that there is the indeterminacy of the stationary equilibrium

under some regularity conditions.

Assumption 1 [Regularity Condition] Given a, ga is of class C2 and is transversal to

Ca, Ca(n,j), and Ca(n,j)(n′,j′) for all (n, j) /∈ α(a) and (n′, j′) /∈ α(a).8

Assumption 2 [Existence Condition] Given a, there exists a C2-manifold without

boundary, Θ ⊂ R
L, such that Ea

θ �= ∅ holds for all θ ∈ Θ.

Theorem 4 (Kamiya and Shimizu [6]) For a given a, suppose the Regularity Condition

and the Existence Condition are satisfied for some Θ. Then, for almost every θ ∈ Θ,

Ea
θ is a one-dimensional manifold with boundary. Moreover, at any endpoint of the

manifold, only one Vn −Wnj(x; θ, 0) ≥ 0, (n, j) /∈ α(a), is binding, and at points in the

relative interior of the manifold, no inequality is binding.

KS also shows that this indeterminacy is indeed a real one; i.e., the welfare are

typically not the same in a connected component of the equilibrium manifold.

3.2 Stationary Equilibria with Tax-Subsidy

In this section, we investigate the case with t �= (0, . . . , 0). In what follows, variables

and functions with “tilde” denote the ones with nonzero t. The inflow at n, Ĩn, and

the outflow at n, Õn, are defined as follows:

Ĩn(h̃, a; θ, t) = In(h̃, a; θ) +
µG

1 + G

(
t+n−1h̃n−1 + t−n+1h̃n+1

)
,

Õn(h̃, a; θ, t) = On(h̃, a; θ) +
µG

1 + G
|tn|h̃n,

where t+n = max{0, tn}, t−n = −min{0, tn}, and t−1 = tN+1 = 0. Let D̃n(h̃, a; θ, t) =

Ĩn(h̃, a; θ, t) − Õn(h̃, a; θ, t).

Since
∑N

n=0 nD̃n is not identically zero, then we define a stationary equilibrium with

tax-subsidy as follows.

Definition 2 Given θ, x̃ = (h̃, Ṽ , a) ∈ R
N+1×R

N+1
+ ×A is a (pure strategy) stationary

8This assumption implies that that Dn = 0, n = 2, . . . , N , are linearly independent in stationary equilibria. See KS
for indeterminacy results of the other cases.
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equilibrium with tax-subsidy scheme t if it satisfies the following:

D̃n(h̃, a; θ, t) = 0, n = 1, . . . , N
N∑

n=0

h̃n − 1 = 0,

Ṽn − Wnj(x̃; θ, t) = 0, (n, j) ∈ α(a)

Ṽn − Wnj(x̃; θ, t) ≥ 0, (n, j) /∈ α(a). (16)

Theorem 5 Given a, consider the following system of the stationary condition:

(D̃1, . . . , D̃N ,
N∑

n=0

h̃n − 1)T = (0, . . . , 0)T ,

where T denotes transpose. If the Jacobian matrix with respect to h̃ of the LHS of the

above system is of full rank at a stationary distribution, then the stationary distribution

is locally determinate. Moreover, the budget is balanced on this stationary distribution.

Proof:

The first statement follows from the inverse function theorem. As for the second state-

ment, it is verified that the budget deficit is equal to

µG

1 + G
h̃ · t =

N∑
n=0

nD̃n(h̃, a; θ, t) −
N∑

n=0

nDn(h̃, a; θ)

=
N∑

n=0

nD̃n(h̃, a; θ, t),

where the second equality follows from Theorem 3. Note that even in the case with

tax-subsidy the same logic as in Theorem 3 applies. Then
∑N

n=0 nDn(h̃, a; θ) is equal

to 0 in stationary distributions with tax-subsidy, since D̃n(h̃, a; θ, t) = 0, n = 0, . . . , N .

Next, we show the existence of a locally determinate stationary equilibrium which

has the following property; it is induced by a certain tax-subsidy scheme, and it exists

in any given neighborhood of the stationary equilibrium which is not induced by tax-

subsidy. We choose an arbitrary stationary equilibrium without tax-subsidy, denoted

by x∗ = (h∗, V ∗, a∗), which is in the relative interior of the equilibrium manifold. Thus,

by Theorem 4, (15) is satisfied with strict inequalities.

First we can find the following vector:
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Lemma 1 There exists an (N + 1)-dimensional vector τ satisfying

(a) τ �= (0, . . . , 0),

(b)
(

∂Dn(h∗,a∗;θ)
∂hi

)
i=0,...,N

· τ = 0 for n = 2, . . . , N ,

(c) h∗ · τ = 0.

The above lemma clearly holds, since (b) and (c) have at least one-degree of freedom.

Using this vector, we construct a tax-subsidy scheme t = ετ . Here ε > 0 is the size of

the policy. For such a t to be a tax-subsidy scheme, we need the following assumption:

Assumption 3 It is also satisfied for τ in Lemma 1 that

(d) τN ≤ 0, and

(e) τ0 ≥ 0.

Next, we make the following assumption.

Assumption 4 Wnj is C2 with respect to ε for any (n, j).

If this assumption holds and ε is sufficiently small, then all the incentive conditions in

the case with tax-subsidy is also satisfied. Thus a∗ is also an equilibrium action even

in the case with tax-subsidy. In other words, (h̃, Ṽ , a∗) such that (h̃, Ṽ ) is in the neigh-

borhood of (h∗, V ∗) and satisfies the following conditions is a stationary equilibrium

for sufficiently small ε > 0.

D̃n(h̃, a∗; θ, ετ ) = 0, n = 1, . . . , N (17)
N∑

n=0

h̃n − 1 = 0, (18)

Ṽn − Wnj(h̃, Ṽ , a∗; θ, ετ ) = 0, (n, j) ∈ α(a∗). (19)

Let g̃a∗
ε (h̃, Ṽ ) be the LHS of the above equations. Then the set of stationary equilibria

is equivalent to the solution set of g̃a∗
ε (h̃, Ṽ ) = (0, . . . , 0)T .

Furthermore, we construct ĝa∗
ε by replacing D̃1 in g̃a∗

ε by h̃ · τ . Then for ε > 0, the

solution set of g̃a∗
ε (h̃, Ṽ ) = (0, . . . , 0)T is equivalent to the solution set of ĝa∗

ε (h̃, Ṽ ) =

(0, . . . , 0)T , since

µGε

1 + G
h̃ · τ =

N∑
n=0

nD̃n (20)

holds on any stationary equilibrium. More precisely, in the stationarity condition (17),

we can use h̃ · τ = 0 instead of D̃1 = 0. In other words, for ε > 0, the both conditions
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have the same solutions because it follows from D̃2 = 0, . . . , D̃N = 0, and (20) that

h̃ · τ = 0 imply D̃1 = 0, and vice versa. In the following lemma, we show that if

the Regularity Condition is satisfied, (h∗,V∗) is a determinate solution to ĝa∗
ε (h̃, Ṽ ) =

(0, . . . , 0)T at ε = 0. Thus (h̃(ε), Ṽ(ε)) converges to (h∗,V∗) as ε → 0 by the implicit

function theorem.

Lemma 2 Under the Regularity Condition and Assumption 3, the Jacobian matrix of

ĝa∗
0 with respect to (h̃, Ṽ ) is of full rank at (h∗, V ∗).

Proof:

Since the Jacobian matrix has the following form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

τ0 . . . τN
∂D2

∂h0
. . . ∂D2

∂hN

. . .
∂DN

∂h0
. . . ∂DN

∂hN

1 . . . 1

⎤
⎥⎥⎥⎥⎦ 0

. . .

⎡
⎣ JV (V0 − W0j(0))

. . .
JV (VN − WNj(N ))

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where j(n) is defined as (n, j(n)) ∈ α(a∗) and JV (Vn − Wnj(n)) is the Jacobian ma-

trix with respect to V = (V0, V1, . . . , VN ), then it suffices to show that the upper-left

submatrix and the lower-right submatrix are of full rank. The Regularity condition

implies that the lower-right submatrix is of full rank. As for the upper-left submatrix,

condition (b) implies that the 1st row vector is independent of the 2nd, . . . , and Nth

row vectors. Next, conditions (a), (d), and (e) imply that the 1st row vector is inde-

pendent of the last row vector. By the Regularity Condition, the 2nd , . . . , and Nth

row vectors are mutually independent. Finally, by the Regularity Condition, the last

row vector is independent of 2nd, . . . , and Nth row vectors.

Thus (h∗, V ∗) is a locally determinate solution to ĝa∗
0 = (0, . . . , 0)T . Then applying

the implicit function theorem to ĝa∗
ε = (0, . . . , 0)T at (h̃, Ṽ , ε) = (h∗, V ∗, 0), it can be

clearly shown that, for all δ > 0, there exist ε > 0 and (h∗
ε , V

∗
ε ) such that (h∗

ε , V
∗
ε ) is the

locally unique solution to g̃a∗
ε = (0, . . . , 0)T and is in the δ-neighborhood of (h∗, V ∗).

Finally, since (h∗, V ∗) is in the relative interior of the equilibrium manifold, all the

incentive conditions are still satisfied for a sufficiently small ε. Thus we obtain the

following theorem.
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Theorem 6 Suppose the Regularity Condition, the Existence Condition, and Assump-

tions 3 and 4 hold. Then, for almost every θ ∈ Θ, almost every (h∗, V ∗) ∈ Ea∗
θ , and any

δ-neighborhood of (h∗, V ∗), there exists a tax-subsidy scheme such that a stationary

equilibrium with tax-subsidy is locally determinate and lies in the neighborhood.

4 Mixed Strategy Equilibria

In this section we deal with mixed strategy stationary equilibria.

Let bnj ≥ 0 be the proportion of the agents choosing an action anj among the agents

with n, and b = (b01, . . . , bnj, . . . , bNsN
). Thus

∑sn

j=1 bnj = 1 holds. Then an equilibrium

is defined in terms of x = (h, V, b).

First, we present the results in the case without tax-subsidy. Let hnj = bnjhn. Then

In and On are defined similarly as in the previous section. Then we obtain the following

result similar to Theorem 3.

Theorem 7 For any b,

N∑
n=0

nDn(h, b; θ) = 0, (21)

is an identity.

Let B̂ be the power set of {(n, j) | j = 1, . . . , sn, n = 0, . . . , N} and B be {β ∈
B̂ | ∀n, ∃j, (n, j) ∈ β}. β ∈ B can be considered as a set of actions used in an

equilibrium. For a given β ∈ B, let

Ωβ = {(bnj)(n,j)∈β | bnj > 0 for (n, j) ∈ β}. (22)

Let xβ = (V, h, bβ), where bβ ∈ Ωβ . For a given β ∈ B, W β
nj(x

β; θ, t) is defined from

Wnj(x; θ, t) by setting bn′j′ = 0 for any (n′, j′) /∈ β. In parallel with this, Dβ
n(h, bβ; θ) is

defined.

Definition 3 For a given β ∈ B, xβ = (V, h, bβ) ∈ R
N+1 × R

N+1
+ × R

�N
n=0 kn

+ is a

mixed strategy stationary equilibrium without tax-subsidy for β and θ if it satisfies the
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following:

Dβ
n(h, bβ; θ) = 0, n = 2, . . . , N
N∑

n=0

hn − 1 = 0,

Vn − W β
nj(x

β; θ, 0) = 0, (n, j) ∈ β∑
j∈{j′|(j′,n)∈β}

bnj − 1 = 0, n = 0, . . . , N

Vn − W β
nj(x

β; θ, 0) ≥ 0, (n, j) /∈ β. (23)

Let Eβ
θ be the set of such an xβ, and gβ : R

N+1 × R
N+1
++ × Ωβ × R

L → R
N−1 × R ×

R
#β × R

N+1 × R
S−#β be the LHS of the above equations.

Let

Cβ = {0} × · · · × {0}︸ ︷︷ ︸
2N+#β+1

×R++ × · · · × R++︸ ︷︷ ︸
S−#β

,

and, for (n, j) /∈ β,

Cβ(n,j) = {0} × · · · × {0}︸ ︷︷ ︸
2N+#β+1

×R++ × · · · × R++ × {0} × R++ × · · · × R++︸ ︷︷ ︸
S−#β

,

where the last {0} corresponds to Vn − W β
nj(x

β; θ, 0). Moreover, for (n, j), (n′, j′) /∈ β

such that (n, j) �= (n′, j′),

Cβ(n,j)(n′,j′) = {0} × · · · × {0}︸ ︷︷ ︸
2N+#β+1

×R × · · · × R × {0} × R × · · · × R × {0} × R × · · · × R︸ ︷︷ ︸
S−#β

,

where the last two {0}s correspond to Vn − W β
nj(x

β; θ, 0), and Vn − W β
n′j′(x

β; θ, 0),

respectively.

Assumption 5 [Regularity Condition] Given β, gβ is C2 and is transversal to Cβ ,

Cβ(n,j), and Cβ(n,j)(n′,j′) for all (n, j) /∈ β and (n′, j′) /∈ β.

Assumption 6 [Existence Condition] Given β, there exists C2 manifold without

boundary, Θ ⊂ RL such that Eβ
θ �= ∅ holds for all θ ∈ Θ.
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Theorem 8 (Kamiya and Shimizu [6]) For a given β, suppose the Regularity Condition

and the Existence Condition is satisfied for Θ. Then, for almost every θ ∈ Θ, Eβ
θ is a

one-dimensional manifold with boundary. Moreover, at any endpoint of the manifold,

only one Vn − Wnj(x; θ, 0) ≥ 0, (n, j) /∈ β, is binding, and at points in the relative

interior of the manifold, no inequality is binding.

Based on these results, we investigate the case with tax-subsidy. First, we obtain

almost the same result as Theorem 5.

Theorem 9 Given β, consider the following system of the stationary condition:

(D̃β
1 , . . . , D̃β

N ,

N∑
n=0

h̃n − 1)T = (0, . . . , 0)T .

If the Jacobian matrix with respect to h̃ of the LHS of the above system is of full rank

at a stationary distribution, then the stationary distribution is locally determinate.

Moreover, the budget is balanced on this stationary distribution.

Next, we fix an arbitrary stationary equilibrium without tax-subsidy, denoted by

x∗,9 which is in the relative interior of the equilibrium manifold.

We construct a tax-subsidy scheme such that t = ετ . To do so, we need the following

Lemma and Assumption.

Lemma 3 There exists an (N + 1)-dimensional vector τ satisfying

(a) τ �= (0, . . . , 0),

(b)
(

∂Dβ∗
n (h∗ ,b∗β∗

;θ)
∂hi

)
i=0,...,N

· τ = 0 for n = 2, . . . , N ,

(c) h∗ · τ = 0.

Assumption 7 It is also satisfied for τ in Lemma 3 that

(d) τN ≤ 0, and

(e) τ0 ≥ 0.

Also we make the following assumption.

Assumption 8 W̃ β∗
nj is C2 with respect to ε for any (n, j).

9To be strict, we should denote by x∗β∗
, but we simply do by x∗ to avoid a complicated notation.
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As in the case of pure strategies, for a sufficiently small ε, we express the condition for

a stationary equilibrium with tax-subsidy as follows:

D̃β∗
n (h̃, b̃β∗

; θ, ετ ) = 0, n = 1, . . . , N
N∑

n=0

h̃n − 1 = 0,

Ṽn −W β∗
nj (x̃β∗

; θ, ετ ) = 0, (n, j) ∈ β∗.

Let g̃β∗
ε (x̃β∗

) be the LHS of the above equations. Then the set of stationary equilibria

is equivalent to the solution set of g̃β∗
ε (x̃β∗

) = (0, . . . , 0)T .

Furthermore, we construct ĝβ∗
ε by replacing D̃β∗

1 in g̃β∗
ε by h̃ · τ . Then for ε > 0,

the solution set of g̃β∗
ε (x̃β∗

) = (0, . . . , 0)T is equivalent to the solution set of ĝβ∗
ε (x̃β∗

) =

(0, . . . , 0)T . We need to make the assumption on ĝa∗
ε :

Assumption 9 The Jacobian matrix of ĝβ∗
0 with respect to x̃β∗

is of full rank at x∗.

This assumption implies x∗ is a locally determinate solution to ĝβ∗
0 = (0, . . . , 0)T .

Then applying the implicit function theorem to ĝβ∗
ε = (0, . . . , 0)T at (xβ∗

, ε) = (x∗, 0),

it can be clearly shown that, for any δ > 0, there exist ε > 0 and (x∗
ε such that x∗

ε

is the locally unique solution to g̃β∗
ε = (0, . . . , 0)T and is in the δ-neighborhood of x∗.

Finally, since x∗ is in the relative interior of the equilibrium manifold, all the incentive

conditions are still satisfied for a sufficiently small ε. Thus we obtain the following

theorem.

Theorem 10 Suppose the Regularity Condition, the Existence Condition, and As-

sumptions 8 and 9 hold. Then for almost every θ ∈ Θ, almost every x∗ ∈ Eβ∗
θ , and

any δ-neighborhood of x∗, there exists a tax-subsidy scheme such that a stationary

equilibrium with tax-subsidy is locally determinate and lies in the neighborhood.

5 Conclusion

In this paper, we show that although there is a continuum of stationary equilibria in

money search models, some tax-subsidy schemes can select a determinate efficient one

among them. In other words, we find a new role of the tax-subsidy schemes. It is

notable that a small amount of tax-subsidy is enough for this role.

If the amounts of tax and subsidy are relatively large, the government may obtain

a more efficient equilibrium than those without tax-subsidy. Thus it is the most im-
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portant future research to seek for the best policy allowing for a tax-subsidy scheme of

relatively large amounts.
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A The Definition of Stationary Equilibrium in Zhou’s Model

From h, the stationary distribution of offer prices, Ω, and the stationary distribution

of reservation prices, R, are defined as follows.

Ω(x) =
∑

n∈{n′∈�|ω(n′p)≤x}
hn, (24)

R(x) =
∑

n∈{n′∈�|ρ(n′p)<x}
hn. (25)

Let V : R+ → R+ be a value function. Then, using γ, µ, and h, the Bellman equation

for V(η) is given by

V(η) =
1

φ + 2 + kG

[
max
r∈[0,η]

{∫ r

0

(u + V(η − x)) dΩ(x) + (1 − Ω(r))V(η)

}

+ max
o∈�+∪{NT }

S(o) + (kG|t� η
p
	|V(η + sign(t� η

p
	)p) + kG(1 − |t� η

p
	|)V(η))

]
,

(26)

where �y� is the integer part of y, and

S(o) =

{
R(o)V(η) + (1 − R(o)) (V(η + o) − c) , if o ∈ R+,

V(η), if o = NT.
(27)

The first term in the bracket of the RHS of (26) is the value when an agent is a buyer,

the second term is the value when she is a seller, and the third term is the value

when she meets a government agent. If ρ(η) and ω(η) are the maximizers of the above

equation, it can be rewritten as

V(η) =
1

φ + 2 + kG

[∫ ρ(η)

0

(u + V(η − x)) dΩ(x) + (1 −Ω(ρ(η)))V(η) + S(ω(η))

+ (kG|t� η
p
	|V(η + sign(t� η

p
	)p) + kG(1 − |t� η

p
	|)V(η))

]
. (28)

In terms of V(η), it is optimal to accept offer o ∈ R+ if u + V(η − o) ≥ V(η). That

is the optimal offer strategy ρ satisfies ρ(η) ≥ o if and only if u +V(η − o) ≥ V(η). For

the perfectness of equilibria, this should hold even in off-equilibrium-paths. Then, in

case that a value function is continuous from the right, the perfectness condition with
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respect to reservation price is as follows:

ρ(η) = max
{
r ∈ [0, η]

∣∣u + V(η − r) ≥ V(η)
}
. (29)

That is, type i’s reservation price is her full value for good i+1, and thus it is a function

of η. In order to assure that (29) is actually defined, we confine our attention to the

case that a value function is continuous from the right.

The economy is stationary if h is an initial stationary distribution of the process in-

duced by the optimal trading strategy (ω, ρ). Now we define the stationary equilibrium

grounded on the above.

Definition 4 〈h, ω, ρ,V〉, where V is a step function with step p > 0, is said to be a

stationary equilibrium if

1. h is stationary under trading strategies ω and ρ, and the distribution of offer prices

Ω and that of reservation prices R are derived from (24) and (25),

2.
∑N

n=0 pnhn = M , and

3. given the distributions h, R and Ω, the reservation price strategy ρ satisfies the

feasibility condition (1) and the perfectness condition (29), respectively, and the

value function V , together with ρ and ω, solves the Bellman equation (26).

Remark 2 In the case without tax-subsidy, i.e., t = (0, . . . , 0), (28) can be rewritten

as

V(η) =
1

φ + 2

[∫ ρ(η)

0

{u + V(η − x)} dΩ(x) + {1 − Ω(ρ(η))}V(η) + S(ω(η))

]
.

This is essentially the same as the value function in Zhou [9], though the definition of

φ is slightly different. Thus all the results in Zhou [9] and Kamiya et al. [5] hold even

in our model with t = (0, . . . , 0).
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B The Regularity of Single Price Equilibria

Let Vn = V(np), n = 0, 1, . . . . Then h̃ = (h̃0, . . . , h̃N ) and Ṽ = (Ṽ0, . . . , ṼN ) should

satisfy the following equations in stationary equilibria:

F0 = h̃0 + · · · + h̃N − 1 = 0, (30)

F1 = h̃ · τ = 0, (31)

Fn = h̃n−1(1 − h̃0) + h̃n+1(1 − h̃N ) + kGε(t+n−1h̃n−1 + t−n+1h̃n+1)

− h̃n(1 − h̃0 + 1 − h̃N + kGε|τn|) = 0, n = 2, . . . , N − 1, (32)

FN = h̃N−1(1 − h̃0) + kGετ+
N−1h̃N−1 − h̃N (1 − h̃N ) + kGετN h̃N = 0, (33)

G0 = Ṽ0 − 1

φ + 2 + kG

{
(1 − h̃0)(Ṽ1 − c) + h̃0Ṽ0 + Ṽ0

+kGετ0Ṽ1 + kG(1 − ετ0)Ṽ0

}
= 0, (34)

Gn = Ṽn − 1

φ + 2 + kG

{
(1 − h̃0)(Ṽn+1 − c) + h̃0Ṽn + (1 − h̃N)(u + Ṽn−1) + h̃N Ṽn

+kGετ+
n Ṽn+1 + kGετ−

n Ṽn−1 + kG(1 − ε|τn|)Ṽn

}
= 0, n = 1, . . . , N − 1, (35)

GN = ṼN − 1

φ + 2 + kG

{
ṼN + (1 − h̃N )(u + ṼN−1) + h̃N ṼN

−kGετN ṼN−1 + kG(1 + ετN)ṼN

}
= 0, (36)

where t+n = max{0, tn} and t−n = −min{0, tn}. (30) simply says that the total measure

is one. (31) is the equation introduced instead of the stationarity condition at n = 1.

(32) and (33) are the conditions for stationary of money holdings distribution. The last

three equations (34)-(36) are the conditions that the specified strategy indeed realizes

the value.

Next, let Ψ : R
N+1 × R

N+1 × R × R
N+1 → R

N+1 × R
N+1 be defined as

Ψ
(
h̃, Ṽ , ε, τ

)
= (F0, . . . , FN , G0, . . . , GN )(h̃, Ṽ , ε, τ ).

Recall that (h∗, V ∗) is a SPE without tax-subsidy. Clearly, Ψ(h∗, V ∗, 0, τ ) = 0 holds

for any τ . Note that Ψ is C2. For a given τ , if the determinant of Ψ w.r.t. (h̃, Ṽ ) at

(h∗, V ∗, 0, τ ) is not zero, then by the implicit function theorem, Ψ(h̃, Ṽ , ε, τ ) = 0 can be

solved for (h̃, Ṽ ) in terms of ε, in a small neighborhood of (h∗, V ∗), and these functions

are continuously differentiable functions of ε.

We restrict our attention to the set of τ1, . . . , τN such that
∑N

n=1 τnh∗
n < 0 and h

such that hn > 0, n = 0, . . . , N . Let τ0 = −
�N

n=1 τnh∗
n

h∗
0

. The Jacobian matrix of Ψ w.r.t.
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h̃, Ṽ , and τ1, . . . , τN is as follows:

A =

[
Υ1 0 Υ3

Υ2 Υ4 Υ5

]
,

where Υ1 and Υ2 are the Jacobian matrices of (F0, . . . , FN) and (G0, . . . , GN ) w.r.t. h̃,

respectively, Υ4 is the Jacobian matrix (G0, . . . , GN) w.r.t. Ṽ , and Υ3 and Υ5 are the

Jacobian matrices of (F0, . . . , FN) and (G0, . . . , GN ) w.r.t. τ1, . . . , τN , respectively.

First, we consider the case of (h∗
0, . . . , h

∗
N ) �= (

1
N+1

, . . . , 1
N+1

)
. Suppose

∑N
n=0 τn �= 0.

Then, for any (h̃, Ṽ , τ1, . . . , τN) satisfying Ψ
(
h̃, Ṽ , 0, τ

)
= 0, h̃N �= 1

N+1
holds, since

h̃ =
(

1
N+1

, . . . , 1
N+1

)
is the unique stationary distribution satisfying h̃N = 1

N+1
, (30),

(32) and (33), and this does not satisfy (31), i.e.,

(τ0, . . . , τN ) ·
(

1

N + 1
, . . . ,

1

N + 1

)
=

1

N + 1

N∑
n=0

τn �= 0.

Note that if h̃N �= 1
N+1

holds, then h̃N �= h̃0 holds in stationary distributions satisfying

(30), (32) and (33).

Then we will show that A is always of full rank at equilibria in the set of (τ1, . . . , τN )

such that
∑N

n=0 τn �= 0, and thus by the parametric transversality theorem the Jacobian

matrix of Ψ w.r.t. h̃ and Ṽ is of full rank at an equilibrium for almost every τ1, . . . , τN

in the set. To see this, we show that, Υ4 and the matrix consists of the first column of

Υ3 and the second to the last column of Υ1, denoted by Υ6, are of full rank.
Since, at ε = 0,

Υ1 =

�
�����������

1 . . . . . . 1
τ0 . . . . . . τN

−h̃1 + h̃2 1 − h̃0 −2 + h̃0 + h̃N 1 − h̃N 0 . . . . . . 0 h̃2 − h̃3

.

.

.

−h̃N−3 + h̃N−2 0 . . . . . . 0 1 − h̃0 −2 + h̃0 + h̃N 1 − h̃N h̃N−2 − h̃N−1

−h̃N−2 + h̃N−1 0 . . . . . . 0 1 − h̃0 −2 + h̃0 + h̃N 1 + h̃N−1 − 2h̃N

−h̃N−1 0 . . . . . . 0 1 − h̃0 −1 + 2h̃N

�
�����������

and

Υ3 =

�
����

0 . . . 0

h̃1 . . . h̃N

.

..
.
..

.

..
0 . . . 0

�
���� ,

then Υ6 at ε = 0 is expressed as follows:

Υ6 =

�
�����������

0 1 . . . 1

h̃1 τ1 . . . τN

0 1 − h̃0 −2 + h̃0 + h̃N 1 − h̃N . . . . . . 0 h̃2 − h̃3

..

.

0 0 . . . . . . 0 1 − h̃0 −2 + h̃0 + h̃N 1 − h̃N h̃N−2 − h̃N−1

0 0 . . . . . . 0 1 − h̃0 −2 + h̃0 + h̃N 1 + h̃N−1 − 2h̃N

0 0 . . . . . . 0 1 − h̃0 −1 + 2h̃N

�
�����������
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Thus

|Υ6| =
1

h̃N − h̃0

������������������

0 −1 + h̃N 0 . . . . . . 0 h̃1

h̃1 τ1 . . . τN

0 1 − h̃0 −1 + h̃N 0 . . . . . . 0 h̃2

0 0 1 − h̃0 −1 + h̃N 0 . . . . . . 0 h̃3

..

.

0 0 . . . . . . 0 1 − h̃0 −1 + h̃N 0 h̃N−2

0 0 . . . . . . 0 1 − h̃0 −1 + h̃N h̃N−1

0 0 . . . . . . 0 1 − h̃0 −1 + 2h̃N

������������������

=
h̃1

h̃0 − h̃N

����������������

−1 + h̃N 0 . . . . . . 0 h̃1

1 − h̃0 −1 + h̃N 0 . . . . . . 0 h̃2

0 1 − h̃0 −1 + h̃N 0 . . . . . . 0 h̃3

.

..

0 . . . . . . 0 1 − h̃0 −1 + h̃N 0 h̃N−2

0 . . . . . . 0 1 − h̃0 −1 + h̃N h̃N−1

0 . . . . . . 0 1 − h̃0 −1 + 2h̃N

����������������
=

h̃1

h̃0 − h̃N

�
N	

n=1

(−1)N+nh̃n



1 − h̃0

�N−n 
−1 + h̃N

�n−1
+


−1 + h̃N

�N
�

.

Then substituting h̃n =
(

1−h̃0

1−h̃N

)n

h̃0, |Υ6| at ε = 0 is expressed as follows:

|Υ6| =
h̃1(−1 + h̃N )N−1

h̃0 − h̃N

⎡
⎣N

(
1 − h̃0

1 − h̃N

)N

h̃0 − (1 − h̃N )

⎤
⎦

=
h̃1(−1 + h̃N )N−1

h̃0 − h̃N

[
Nh̃N − (1 − h̃N )

]
=

h̃1(−1 + h̃N )N−1

h̃0 − h̃N

[
(N + 1)h̃N − 1

]
�= 0.

Thus by the parametric transversality theorem |Υ1| �= 0 holds in stationary distribu-

tions for almost every (τ1, . . . , τN) in the space.
On the other hand, at ε = 0,

|Υ4| =
1

(φ + 2 + kG)N+1

������������

φ + 1 − h̃0 −1 + h̃0 0 . . . . . . 0

−1 + h̃N φ + 2 − h̃0 − h̃N −1 + h̃0 0 . . . . . . 0
.
.
.

0 . . . . . . 0 −1 + h̃N φ + 2 − h̃0 − h̃N −1 + h̃0

0 . . . . . . 0 −1 + h̃N φ + 1 − h̃N

������������

=
1

(φ + 2 + kG)N+1(N + 1)N+1

�����������

(N + 1)φ + N −N 0 . . . . . . 0
−N (N + 1)φ + 2N −N 0 . . . . . . 0

.

.

.
0 . . . . . . 0 −N (N + 1)φ + 2N −N
0 . . . . . . 0 −N (N + 1)φ + N

�����������
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Then defining (υn)n=0,...,N as

υ0 = (N + 1)φ + N,

υn = (N + 1)φ + 2N − N2

υn−1
, n = 1, . . . , N − 1,

υN = (N + 1)φ + N − N2

υN−1

,

we obtain

|Υ4| =

∏N
n=0 υn

(φ + 2 + kG)N+1(N + 1)N+1
.

Since we can show that

υ0 > N,

υn−1 > N ⇒ υn > N,

for n = 1, . . . , N − 1, and

υN−1 > N ⇒ υN > 0,

then |Υ4| > 0 holds at ε = 0.

Next, we consider the case of h∗
0 = · · · = h∗

N = 1
N+1

. In this case, for any

(h̃, Ṽ , τ1, . . . , τn) such that Ψ
(
h̃, Ṽ , 0, τ

)
= 0, h̃0 = · · · = h̃N = 1

N+1
holds. There-

fore we can directly show that Υ4 and Υ1 are of full rank for almost every τ1, . . . , τN .
|Υ1| at ε = 0 is expressed as follows:

|Υ1| =

����������������

1 . . . . . . 1
τ0 . . . . . . τN

−h̃1 + h̃2 1 − h̃0 −2 + h̃0 + h̃N 1 − h̃N 0 . . . . . . 0 h̃2 − h̃3

.

.

.

−h̃N−3 + h̃N−2 0 . . . . . . 0 1 − h̃0 −2 + h̃0 + h̃N 1 − h̃N h̃N−2 − h̃N−1

−h̃N−2 + h̃N−1 0 . . . . . . 0 1 − h̃0 −2 + h̃0 + h̃N 1 + h̃N−1 − 2h̃N

−h̃N−1 0 . . . . . . 0 1 − h̃0 −1 + 2h̃N

����������������

=
1

(N + 1)N−1

���������������

1 . . . . . . 1
τ0 . . . . . . τN

0 N −2N N 0 . . . . . . 0

.

.

.
0 . . . . . . 0 N −2N N 0
0 . . . . . . 0 N −2N N
−1 0 . . . . . . 0 N −N + 1

���������������

=
1

(N + 1)N−1

���������������

N + 1 −N(N+1)
2 2 . . . . . . N − 1 N

0 −�N
n=1 nτn

�2
n=1 τn . . . . . .

�N−1
n=1 τn

�N
n=1 τn

0 0 −N 0 . . . . . . 0
0 0 0 −N 0 . . . . . . 0

.

.

.
0 . . . . . . 0 −N 0
0 . . . . . . 0 1

���������������

= −
� −N

N + 1

	N−2 N

n=1

nτn.
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Then choosing any τ satisfying
∑N

n=1 nτn �= 0 and
∑N

n=0 τn = 0, |Υ1| is nonzero at

ε = 0. In other words, for almost every τ1, . . . , τN , |Υ1| �= 0 at ε = 0. Moreover, as

shown in the previous case, |Υ4| > 0 holds at ε = 0.

Therefore the Jacobian matrix of Ψ w.r.t. (h̃, Ṽ ) is nonzero. Then, by the implicit

function theorem, Vn(ε), n = 0, . . . , N , and h̃(ε), n = 0, . . . , N are C1 functions of ε.

Finally, we recursively define

Ṽn(ε) =
1

φ + 2 + kG

{
Ṽn(ε) + (1 − h̃N(ε))(u + Ṽn−1(ε)) + h̃n(ε)Ṽn(ε)

}
, n = N + 1, N + 2, . . . ,

and Ṽ (η)(ε) = Ṽ� η
p
	(ε). Note that strict incentive conditions at n = 0, 1, . . . , N imply

those at all η ∈ R+.

C SPEs with N = 1

We first consider the case without tax-subsidy. The stationarity condition for h =

(h0, h1) is expressed as

µκ

1 + G
[h1(1 − h1) − h0(1 − h0)] = 0,

µκ

1 + G
[h0(1 − h0) − h1(1 − h1)] = 0,

h0 + h1 = 1.

However, for any h0 ∈ (0, 1), h = (h0, 1 − h0) satisfies the stationarity condition. Also

for any h0 ∈ (0, 1), p is determined as follows:

M

p
= 1 − h0.

Next, we consider the values at {0, p, . . . }. We denote the value at np by Vn, then

we obtain

V0 =
1

φ + 2 + kG
[(1 − h0)(−c + V1) + h0V0 + V0 + kGV0],

Vn =
1

φ + 2 + kG
[Vn + (1 − h1)(u + Vn−1) + h1Vn + kGVn], n ≥ 1.

Solving this system of equation, we obtain

Vn =
1

φ

[
h0u −

(
h0

φ + h0

)n
φ + h0

φ + 1
{h0u + (1 − h0)c}

]
, n ≥ 0.
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Let

V(η) = V (�η/p�).
Then all we have to do is to check the incentive conditions.

The incentive conditions with strict inequalities are as follows:

− c + V1 > V0,

Vn > −c + Vn+1, n ≥ 1,

u + Vn−1 > Vn, n ≥ 1.

The first inequality is the condition that an agent with no money has incentive to sell

her production good. The second inequality is the condition that an agent with np does

not have incentive to sell her production good. The third inequality is the condition

that an agent with np has incentive to accept an offer price p. Note that the conditions

at the other η follow from the above condition. (See Zhou [9].) The necessary and

sufficient condition for the above inequalities is as follows:10

φ

h0
+ 1 <

u

c
<

φ(φ + 1 + h0)

(h0)2
+ 1. (37)

In other words, if

φ + 1 <
u

c
< (φ + 1)2, (38)

holds, then, for any h0 ∈
(

φ
(u/c)−1

, 1
)
, the corresponding h and V constitute a station-

ary equilibrium in which all the relevant incentive conditions are satisfied with strict

inequalities.

On the other hand, the welfare is expressed as

W =
h0(1 − h0)

φ
(u− c).

It is easily seen that W has a single peak at h = (1/2,1/2) with W = u−c
4φ

.

Now consider the case with tax-subsidy. We consider the tax-subsidy scheme t = ετ .

Then the stationarity condition for h̃ is
µκ

1 + G

[
h̃1(h̃0 − kGετ1) − h̃0(h̃1 + kGετ0)

]
= 0,

µκ

1 + G

[
h̃0(h̃1 + kGετ0) − h̃1(h̃0 − kGετ1)

]
= 0,

h̃0 + h̃1 = 1.

10The following condition is slightly different from the one obtained in Zhou [9], since she adopts a different equilibrium
concept.
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Then for any ε > 0, we obtain the unique solution

(h̃0, h̃1) =

( −τ1

τ0 − τ1
,

τ0

τ0 − τ1

)
.

Note that h̃ is orthogonal to τ . Setting τ0 = 1 and τ1 = −1, (h̃0, h̃1) = (1
2
, 1

2
) is obtained

and the corresponding (V0, V1) is close to optimal.

Next, we obtain the values at {0, p, . . . } as follows:

V0 =
1

φ + 2 + kG
[(1 − h̃0)(−c + V1) + h̃0V0 + V0 + kGt0V1 + kG(1 − t0)V0],

V1 =
1

φ + 2 + kG
[V1 + (1 − h̃1)(u + V0) + h̃1V1 − kGt1V0 + kG(1 + t1)V1],

Vn =
1

φ + 2 + kG
[Vn + (1 − h̃1)(u + Vn−1) + h̃1Vn + kGVn], n ≥ 1.

Solving this system of equations, we obtain

V0 =
h̃0(1 − h̃0 + kGt0)u− (1 − h̃0)(φ + h̃0 − kGt1)c

φ {φ + 1 + kG(t0 − t1)} ,

Vn =
1

φ

⎡
⎣h̃0u −

(
h̃0

φ + h̃0

)n−1
h̃0 − kGt1

φ + 1 + kG(t0 − t1)

{
h̃0u + (1 − h̃0)c

}⎤
⎦ , n ≥ 1.

Then, since any Vn is continuous in ε, all the incentive conditions are satisfied whenever

h̃ satisfies (37) and ε is sufficiently small.

Suppose (38) holds. Choose any h∗
0 ∈

(
φ

(u/c)−1
, 1

)
and set τ ∗ = (1 − h∗

0,−h∗
0). Then

set

ε∗ =

⎧⎨
⎩

1
kG

h∗
0

(
u
c
− 1

) − φ, if h∗
0 ≤

√
φ

u
c
−1

,

1
kG

min
{

h∗
0

(
u
c
− 1

) − φ,
φ(φ+h∗

0)

(h∗
0)2 u

c
−(φ+(h∗

0)2)
− 1

}
, otherwise.

Then it is verified that ε∗ > 0 and that, for any ε ∈ (0, ε∗), (h∗
0, 1−h∗

0) is the distribution

in the unique SPE with N = 1.
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