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1. Introduction

Suppose that an economic agent is (1 − ε) × 100% certain that uncertainty she faces is

characterized by a particular probability measure, but that she has a fear that, with ε × 100%

chance, her conviction is completely wrong and she is left perfectly ignorant about the true

measure in the present as well as in the future. This situation is often called “ε-contamination

of confidence.”

The ε-contamination is a special case of Knightian uncertainty or ambiguity in which

the decision-maker faces not a single probability measure but a set of probability measures.

Since it is analytically tractable, a number of authors have examined the ε-contamination or its

variants in search behavior (Nishimura and Ozaki, 2001), portfolio choice (Chen and Epstein,

2002), learning (Nishimura and Ozaki, 2002) and voting (Chu and Liu, 2002).

The purpose of this paper is to provide a simple set of behavioral axioms under which

the decision-maker’s preference is represented by the Choquet expected utility with the ε-

contamination of confidence. It turns out that a natural extension of the Anscombe and

Aumann theory (Anscombe and Aumann, 1963) leads to the ε-contamination representation of

preferences.

2. Preliminaries

Let (S,Σ) be a measurable space, where S is the set of states of the world and Σ is an

algebra on it. Let Y be a mixture space. We call an element of Y a lottery. As a concrete

example, X may be taken as a set of prizes and Y may be taken as the set of simple probability

measures on (X, 2X ). Then, Y will be clearly a mixture space with the operation in a vector

space. Given y, y′ ∈ Y and λ ∈ [0, 1], we denote by λy + (1 − λ)y′ the “compound” lottery.1 A

simple lottery act is a Y -valued Σ-measurable function on S whose range is a finite subset of

Y . We henceforth call it a lottery act, or more simply, an act. The set of simple lottery acts

is denoted by L0. A lottery act whose range is a singleton is referred to as a constant act and

the set of constant acts is denoted by Lc.
1Here, λy + (1−λ)y′ should be understood as the element of Y to which (y, y′, λ) is mapped by the operation

which makes Y a mixture space, and hence, it does not necessarily mean the outcome of the operation in a vector
space. Accidentally, it does when Y is the set of simple probability measures on (X, 2X).
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The decision-maker’s preference is given by a binary relation � on L0. The two binary

relations, � and ∼, are defined from � by: � ⇔ ⊀ and ∼ ⇔ [� and ⊀]. A binary relation �
is a preference order by definition if it is asymmetric and negatively transitive.2 We define a

binary relation over Y by restricting � on Lc and denote it by the same symbol �, that is,

(∀y, y′ ∈ Y ) y � y′ ⇔ (∃f, g ∈ Lc) (∀s ∈ S) f(s) = y, g(s) = y′ and f � g .

We say that two acts, f and g, are comonotonic if (∀s, t ∈ S) [ f(s) � f(t) ⇒ g(t) � g(s) ].

In the following discussion, the “worst-limit” constant act as well as the “best-limit” one

plays a crucial role. Given f ∈ L0, let Ymin f be the subset of Y representing f ’s worst-limit

costant act, defined by

Ymin f = { y ∈ Y | (∀s) y 
 f(s) and (∃s) y = f(s) } .

Since f is a simple act, Ymin f is nonempty when � is a preference order. We henceforth denote

by ymin f an arbitrary element of Ymin f . Similarly, Ymax f , representing f ’s best-limit constant

act, is defined by

Ymax f = { y ∈ Y | (∀s) y � f(s) and (∃s) y = f(s) } ,

and its arbitrary element is denoted by ymax f .

Given f, g ∈ L0 and λ ∈ [0, 1], a “compound” lottery act λf +(1−λ)g ∈ L0 is defined by

(∀s) (λf + (1 − λ)g)(s) = λf(s) + (1 − λ)g(s). By this operation, L0 turns out to be a mixture

space. For a notational ease, we sometimes use the following notation:

fλg ≡ λf + (1 − λ)g .

Finally, a special case of the above “compound” lottery act will turn to be important. Define

(ymin f )λ (ymax f ) ≡ λymin f + (1 − λ)ymax f ,

that is, a “compound” act of the worst-limit act with “probability” λ and the best-limit act

with “probability” 1 − λ. We hereafter call it the λ-worst-limit 1 − λ-best-limit compound act .

2A binary relation � is asymmetric if (∀f, g ∈ L0) f � g ⇒ g � f , and it is negatively transitive if (∀f, g, h ∈
L0) [f � g and g � h] ⇒ f � h.
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3. Axioms and Main Results

We consider the following set of axioms which may be imposed on a binary relation

defined on L0. In the axioms, f , g and h denote arbitrary elements in L0 and λ denotes an

arbitrary real number such that λ ∈ (0, 1]. The first five axioms (A1 through A5) are the same

as those of Schmeidler (1989). The sixth and the seventh are new in the literature.

A1 (Ordering) � is a preference order on L0 .

A2 (Comonotonic-independence) If f, g, h are pairwise comonotonic, then

f � g ⇒ λf + (1 − λ)h � λg + (1 − λ)h .

A3 (Continuity) If f � g and g � h, then

(∃α, β ∈ (0, 1)) αf + (1 − α)h � g and g � βf + (1 − β)h .

A4 (Monotonicity) [ (∀s ∈ S) f(s) � g(s) ] ⇒ f � g .

A5 (Non-degeneracy) (∃f, g ∈ L0) f � g .

As shown in Schmeidler (1989), these five axioms as a whole characterize the preference

which is represented by the Choquet expected utility with respect to some capacity.3

The next axiom requires that any simple lottery f is dominated by some compound

lottery of its worst-limit and best-limit constant acts. In the axiom, ε is a real number such

that ε ∈ [0, 1). The axiom requires that the given relation should hold with respect to this ε.

Therefore, whether the axiom is satisfied or not depends on ε, and hence, it is labeled A6(ε),

rather than A6.

A6(ε) (Dominance of the ε-worst-limit 1 − ε-best-limit compound act)

(ymin f )ε (ymax f ) [= (1 − ε)ymax f + εymin f ] � f.

3For related axiomatizations, see Gilboa (1987) and Gilboa and Schmeidler (1989).
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Under A1 through A6(ε), it can be shown (see Lemma 5 of Section 4) that all f ∈ L0

has the following ε-contamination equivalence:

(∀f ∈ L0)(∃yf ∈ Lc) f ∼ (1 − ε)yf + εymin f , (1)

where ε is the one with which A6(ε) holds. This property shows that all simple lottery acts have

their own equivalent compound act consisting of its worst-limit constant act with “probability”

ε and some constant act yf with “probability” 1 − ε.

Clearly, yf defined in (1) is one way of representing f . We hereafter call it f ’s equivalent

constant act in ε-contamination equivalence.

The next axiom concerns ordering among these equivalent constant acts in ε-contamination

equivalence. In the axiom, ε is a real number such that ε ∈ [0, 1). By the same reason given for

A6(ε), we label it A7(ε), rather than A7.

A7(ε) (Irrelevance of the worst limit in ordering among equivalent constant acts in ε-contamination

equivalence) Both of the following hold:

A7(ε)-1 (Affine irrelevance) If there exist yf , yg, yfλg ∈ Lc such that f ∼ (1 − ε)yf + εymin f ,

g ∼ (1 − ε)yg + εymin g and fλg ∼ (1 − ε)yfλg + εymin fλg, then yfλg ∼ λyf + (1 − λ)yg ; and

A7(ε)-2 (Monotone irrelevance) If (∀s) f(s) � g(s) and there exist yf , yg ∈ Lc such that

f ∼ (1 − ε)yf + εymin f and g ∼ (1 − ε)yg + εymin g, then yf � yg.

Axiom A7(ε)-1 means that if yf , yg and yfλg

[
= y{λf+(1−λ)g}

]
are the equivalent acts of f ,

g and fλg [= λf + (1 − λ) g] in ε-contamination equivalence, respectively, then yfλg

[
= y{λf+(1−λ)g}

]
=

λyf + (1− λ)yg, regardless of characteristics of the worst-limits ymin f , ymin g and ymin fλg. Sim-

ilarly, Axiom A7(ε)-2 implies that if f(s) � g(s) for all s, then the equivalent act of f and that

of g in ε-contamination equivalence, that is, yf and yg, should satisfy yf � yg, regardless of

characteristics of the worst-limits ymin f and ymin g. These two axioms imply that the worst

limits are irrelevant in ordering among equivalent constant acts in ε-contamination equivalence.

Axioms A6(ε) and A7(ε) are closely related to the axioms of Anscombe and Aumann

(1963), especially their independence axiom. In fact they can be considered as a natural
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extension of the Anscombe-Aumann theory to the case in which the decision-maker has a fear

of the worst outcome with the possibility of ε all the time. We will turn to this issue in the

next section.

The main result of this paper is the following theorem and corollary. The proof is

relegated to Section 5.

Theorem 1. A binary relation � defined on L0 satisfies A1-A5, A6(ε) and A7(ε) if and only

if there exist a unique finitely additive probability measure µ on (S,Σ), an affine function u :

Y → R, which is unique up to a positive affine transformation, and ε ∈ [0, 1) such that

f � g ⇔ (1 − ε)
∫

S
u(f(s)) dµ(s) + εmin

s∈S
u(f(s)) > (1 − ε)

∫
S

u(g(s)) dµ(s) + εmin
s∈S

u(g(s)) .

Let M = M(S,Σ) be the set of finitely additive probability measures (probability charges)

on (S,Σ), let ε ∈ [0, 1), and let µ ∈ M. Let us now define ε-contamination of µ, {µ}ε , which

is a subset of M, by

{µ}ε = { (1 − ε)µ + εq | q ∈ M } .

Then, it follows that

(∀f ∈ L0)
∫

S
u(f(s)) d {µ}ε (s) ≡ min

{ ∫
S

u(f(s)) dp(s)
∣∣∣∣ p ∈ {µ}ε

}

= (1 − ε)
∫

S
u(f(s)) dµ(s) + εmin

s∈S
u(f(s)) .

Therefore, the following corollary is immediate.

Corollary 1. A binary relation � defined on L0 satisfies A1-A5, A6(ε) and A7(ε) if and only

if there exist a unique finitely additive probability measure µ on (S,Σ), an affine function u :

Y → R, which is unique up to a positive affine transformation, and ε ∈ [0, 1) such that

f � g ⇔
∫

S
u(f(s)) d {µ}ε (s) >

∫
S

u(g(s)) d {µ}ε (s) .
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4. Relation to the Anscombe-Aumann Theory

Consider the following axiom which strengthens Axiom A2.

AA2 (Independence) f � g ⇒ λf + (1 − λ)h � λg + (1 − λ)h .

Note that in AA2, f , g and h are not assumed to be pairwise comonotonic. The next

theorem is well-known.

Theorem 2 (Anscombe and Aumann, 1963). A binary relation � defined on L0 satisfies

A1, AA2, A3, A4 and A5 if and only if there exist a unique finitely additive probability mea-

sure µ on (S,Σ) and an affine function u : Y → R, which is unique up to a positive affine

transformation, such that

f � g ⇔
∫

S
u(f(s)) dµ(s) >

∫
S

u(g(s)) dµ(s) . (2)

We now show that Axioms A1-A5 and the following A6(0) and A7(0), which are special

cases of A6(ε) and A7(ε) by setting ε = 0, are necessary and sufficient for the Anscombe-Aumann

axioms (A1, AA2, A3-A5).

A6(0) ymax f � f ;

A7(0)-1 If there exist yf , yg, yfλg ∈ Lc such that f ∼ yf , g ∼ yg and fλg ∼ yfλg, then

yfλg ∼ λyf + (1 − λ)yg ; and

A7(0)-2 If (∀s) f(s) � g(s) and there exist yf , yg ∈ Lc such that f ∼ yf and g ∼ yg, then

yf � yg.

Proposition 1. (A1, AA2, A3, A4, A5) ⇒ (A6(0), A7(0)).

Proof. Assume that A1, AA2, A3, A4 and A5 are satisfied. It is immediate that A4 implies

A6(0) and that A1 and A4 imply A7(0)-2. Then, we only need to prove that A7(0)-1 holds.

The proof will be complete if we show the following claim:

(∀f, g, h ∈ L0) f ∼ g ⇒ λf + (1 − λ)h ∼ λg + (1 − λ)h , (3)
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for it follows from (3) that

λyf + (1 − λ)yg ∼ λyf + (1 − λ)g ∼ λf + (1 − λ)g = fλg ∼ yfλg .

However, A1, AA2 and A3 imply (3) by Kreps (1988, p.46, Lemma 5.6(c)). �

We also have its “converse.”

Proposition 2. (A1, A2, A3, A4, A5, A6(0), A7(0)) ⇒ AA2.

Proof. Assume that A1, A2, A3, A4, A5, A6(0) and A7(0) are satisfied. Then, Lemma

5 (Section 5) proves that (∀f ∈ L0)(∃yf ∈ Lc) f ∼ yf (simply let ε = 0 there). Let

yf , yg, yh, yfλh, ygλh ∈ Lc be such that f ∼ yf , g ∼ yg, h ∼ yh, fλh ∼ yfλh and gλh ∼ ygλh,

and let f � g. Then, A1 implies that yf � yg. Since any pair of constant acts is comono-

tonic, A2 implies that λyf + (1 − λ)yh � λyg + (1 − λ)yh. Finally, A1 and A7(0)-1 imply that

fλh ∼ yfλh � ygλh ∼ gλh, which completes the proof. �

By combining these two propositions, we have

Proposition 3. (A1, A2, A3, A4, A5, A6(0), A7(0)) ⇔ (A1, AA2, A3, A4, A5).

By this proposition, we immediately have that the set of axioms, (A1, A2, A3, A4, A5,

A6(0), A7(0)), characterizes the preference which is represented by (2). This shows that (A1,

A2, A3, A4, A5, A6(ε), A7(ε)) can be considered as an extension of the Anscombe-Aumann

theory to the case where the decision-maker considers the possibility of the worst outcome with

the possibility of ε all the time (ε-contamination).

The similarity of our axioms with those of Anscombe and Aumann is utilized in the

proof of the main theorem, which we now turn to.
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5. Proof

The necessity of the axioms in Theorem 1 can be easily verified. We prove the sufficiency

of them in this section.

Let ε ∈ [0, 1) be such that Axioms A6(ε) and A7(ε) hold with it. We henceforth suppress

“(ε)” and simply write as A6 and A7. Throughout the section, we always assume that Axioms

A1-A5 are satisfied.

5.1. Definition of �∗ and Preliminary Lemmas

We define a binary relation �∗ on L0 induced by � as follows:

f �∗ g ⇔
[

f ∼ (1 − ε)yf + εymin f and g ∼ (1 − ε)yg + εymin g

⇒ yf � yg

]
,

where yf and yg are arbitrary elements of Lc. By definition, f �∗ g holds true whenever there

does not exist such a yf and/or yg.

Clearly, yf [yg] is, if it exists (existence will be proved later in Lemma 5), f [g]’s equivalent

constant act in ε-contamination equivalence. Thus, the binary relation �∗ is induced by the

original preferences over these equivalent constant acts. In this subsection, we show this induced

binary relation is a preference order by showing it is asymmetric (Lemma 6) and negatively

transitive (Lemma 3). We also prove non-degeneracy of the binary relation �∗ (Lemma 4).

A binary relation on Y is naturally induced from �∗ as its restriction on Lc and it is

denoted by the same symbol, �∗. Also, we define �∗ and ∼∗ from �∗ by the same manner as

we did for �. Then, the following lemma holds.

Lemma 1. Let f ∈ L0 and yf ∈ Lc. If f ∼ (1 − ε)yf + εymin f , then f ∼∗ yf .

Proof. Suppose that f ∼ (1 − ε)yf + εymin f . It always holds that yf ∼ (1 − ε)yf + εymin yf

since ymin yf
= yf . Furthermore, yf � yf since � is asymmetric. Therefore, by the definition of

�∗, it follows that f �∗ yf . Similarly, yf �∗ f . Therefore, f ∼∗ yf . �

Lemma 2. The two binary relations, � and �∗, coincide on Lc.
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Proof. Let y, y′ ∈ Y . First, assume that y �∗ y′. Note that y ∼ (1 − ε)y + εymin y and

y′ ∼ (1 − ε)y′ + εy′min y′ hold since (∀y ∈ Y ) ymin y = y. Hence, it follows from the definition of

�∗ that y � y′.

Second, assume that y � y′. Let ȳ and ȳ′ be arbitrary constant acts such that (a)

y ∼ (1−ε)ȳ +εymin y and (b) y′ ∼ (1−ε)ȳ′ +εy′min y′ . Such ȳ and ȳ′ certainly exist (for example,

set ȳ = y and ȳ′ = y′). From (a), it holds that (1− ε)y + εymin y ∼ (1− ε)ȳ + εymin y. Therefore,

A2 implies that y ∼ ȳ (recall that any pair of constant acts is comonotonic). Similarly, it holds

from (b) that y′ ∼ ȳ′. Finally, A1 and the assumption that y � y′ show that ȳ � ȳ′, which in

turn shows that y �∗ y′ by the definition of �∗. �

Lemma 3. The binary relation �∗ is negatively transitive.

Proof. Assume that f �∗ g and g �∗ h. Then, there exist constant acts yf and yg such that

f ∼ (1− ε)yf + εymin f , g ∼ (1− ε)yg + εymin g and yf � yg, and there exist constant acts y′g and

yh such that g ∼ (1 − ε)y′g + εy′min g, h ∼ (1 − ε)yh + εymin h and y′g � yh. It then holds that

(1 − ε)yg + εymin g ∼ g ∼ (1 − ε)y′g + εy′min g ∼ (1 − ε)y′g + εymin g

where the last indifference relation holds since ymin g ∼ y′min g. (See Kreps, 1988, p.46, Lemma

5.6(c). Note that � satisfies all the axioms of the mixture-space theorem (Herstein and Milnor,

1954) on Lc and hence (3) holds on Lc.) Therefore, A2 implies that yg ∼ y′g (recall that any pair

of constant acts are comonotonic). Hence, A1 implies that yf � yh, which shows that f �∗ h.

�

Lemma 4. (∃f, g ∈ L0) f �∗ g .

Proof. From A4 and A5, it follows that (∃y, y′ ∈ Y ) y � y′. Since �∗ and � coincide on Lc

(Lemma 2), y �∗ y′. �

So far, we have not assumed any additional axioms beyond A1-A5. The following lemmas

need Axiom A6.
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Lemma 5. Assume that Axiom A6 holds. Then,

(∀f ∈ L0)(∃yf ∈ Lc) f ∼ (1 − ε)yf + εymin f .

Proof. Let f ∈ L0. Then,

y∗ ≡ (1 − ε)ymax f + εymin f � f � ymin f ≡ y∗ ,

where the first and second orderings hold true by A6 and by A4, respectively. In the rest of

proof, we assume that

y∗ � f � y∗ (4)

since the lemma would follow immediately otherwise.

This paragraph shows that

0 ≤ a < b ≤ 1 ⇒ by∗ + (1 − b)y∗ � ay∗ + (1 − a)y∗ . (5)

Let y ≡ by∗ + (1 − b)y∗. Then, it follows from A2 that y � y∗ (recall that any pair of constant

acts is comonotonic), and hence, that

y = (1 − (a/b))y + (a/b)y � (1 − (a/b))y∗ + (a/b)y

= (1 − (a/b))y∗ + (a/b)(by∗ + (1 − b)y∗) = ay∗ + (1 − a)y∗ ,

which shows the claim.

Define a∗ ∈ [0, 1] by

a∗ = sup{ a ∈ [0, 1] | f � ay∗ + (1 − a)y∗ } .

The set defining a∗ is nonempty by (4) and hence a∗ is well-defined. We complete the proof in

three steps.

(a) Assume that a∗y∗ + (1 − a∗)y∗ � f . Then, since a∗y∗ + (1 − a∗)y∗ � f � y∗ by (4),

A3 implies that (∃b ∈ (0, 1)) b(a∗y∗ + (1 − a∗)y∗) + (1 − b)y∗ = ba∗y∗ + (1 − ba∗)y∗ � f . Since

a∗ �= 0 by the assumption of (a), it holds that ba∗ < a∗. It then follows from the definition of

a∗ that (∃a′ ∈ (ba∗, a∗)) f � a′y∗ + (1 − a′)y∗. Then, (5) implies that f � ba∗y∗ + (1 − ba∗)y∗,

which is a contradiction.
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(b) Assume that f � a∗y∗ + (1 − a∗)y∗. Then, since y∗ � f � a∗y∗ + (1 − a∗)y∗ by (4),

A3 implies that (∃b ∈ (0, 1)) f � (1−b)y∗+b(a∗y∗+(1−a∗)y∗) = (1−b(1−a∗))y∗+b(1−a∗)y∗.

Since (1 − b(1 − a∗)) > a∗, the definition of a∗ implies that (1 − b(1 − a∗))y∗ + b(1 − a∗)y∗ � f ,

which is a contradiction.

(c) By (a) and (b), only remaining possibility is: f ∼ a∗y∗ + (1 − a∗)y∗. On the other

hand,

a∗y∗ + (1 − a∗)y∗ = a∗((1 − ε)ymax f + εymin f ) + (1 − a∗)((1 − ε)ymin f + εymin f )

= (1 − ε)(a∗ymax f + (1 − a∗)ymin f ) + εymin f .

Therefore, to define yf = a∗ymax f + (1 − a∗)ymin f completes the proof. �

Lemma 6. Assume that Axiom A6 holds. Then, the binary relation �∗ is asymmetric.

Proof. Assume that f �∗ g. Also suppose that f ∼ (1 − ε)yf + εymin f and that g ∼ (1 −
ε)yg + εymin g. The existence of constant acts, yf and yg, is guaranteed by Lemma 5. Then, it

follows from the definition of �∗ that yf � yg and the asymmetry of � implies that yg � yf .

Hence, the definition of �∗ implies that g �∗ f . �

5.2. �∗ and Anscombe-Aumman Axioms

In this subsection, we show that the binary relation �∗ satisfies axioms postulated in

Anscombe and Aumann (1963). For concreteness, we first list the Anscombe-Aumann axioms

below. In these axioms, f , g and h denote arbitrary elements in L0 and λ denotes an arbitrary

number such that λ ∈ (0, 1].

AA1∗ (Ordering) �∗ is a preference order on L0 .

AA2∗ (Independence) f �∗ g ⇒ λf + (1 − λ)h �∗ λg + (1 − λ)h .

AA3∗ (Continuity) If f �∗ g and g �∗ h, then

(∃α, β ∈ (0, 1)) αf + (1 − α)h �∗ g and g �∗ βf + (1 − β)h .
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AA4∗ (Monotonicity) [ (∀s ∈ S) f(s) �∗ g(s) ] ⇒ f �∗ g .

AA5∗ (Non-degeneracy) (∃f, g ∈ L0) f �∗ g .

It should be noted that we have already proved that �∗ satisfies Axioms AA1∗ and AA5∗

when � satisfies Axiom A6 (Lemmas 3, 4 and 6). The following lemmas show that the other

axioms are also satisfied with Axioms A7-1 and A7-2 as well as Axiom A6.

Lemma 7. Assume that Axioms A6 and A7-1 hold. Then, �∗ satisfies Axioms AA2∗ and

AA3∗.

Proof. (AA2∗) Assume that f �∗ g and let yfλh and ygλh be any constant acts such that

λf +(1−λ)h ∼ (1−ε)yfλh +εymin fλh and λg+(1−λ)h ∼ (1−ε)ygλh +εymin gλh. Such yfλh and

ygλh exist by Lemma 5. We show that yfλh � ygλh, which completes the proof by the definition

of �∗.

By the assumption that f �∗ g and Lemma 5, there exist constant acts yf , yg and yh

such that f ∼ (1−ε)yf +εymin f , g ∼ (1−ε)yg +εymin g, h ∼ (1−ε)yh+εymin h and yf � yg. Since

any pair of constant acts is comonotonic, A2 implies that λyf +(1−λ)yh � λyg +(1−λ)yh. On

the other hand, A7-1 implies that λyf +(1−λ)yh ∼ yfλh and λyg +(1−λ)yh ∼ ygλh. Therefore,

A1 shows that yfλh � ygλh.

(AA3∗) Assume that f �∗ g and g �∗ h and let yf , yg and yh be any constant acts such

that f ∼ (1 − ε)yf + εymin f , g ∼ (1 − ε)yg + εymin g and h ∼ (1 − ε)yh + εymin h. Such yf , yg

and yh exist by Lemma 5. By the assumption that f �∗ g and g �∗ h and the definition of �∗,

it follows that yf � yg and yg � yh. Then, A3 implies that there exists α ∈ (0, 1) such that

αyf +(1−α)yh � yg. Let yfαh be any constant act such that αf+(1−α)h ∼ (1−ε)yfαh+εymin fαh.

Such a yfαh exists by Lemma 5. Then, A7-1 implies that yfαh ∼ αyf + (1−α)yh. Therefore, A1

shows that yfαh � yg, which in turn shows that αf + (1 − α)h �∗ g by the definition of �∗. A

similar proof applies for the existence of β. �

Lemma 8. Assume that Axioms A6 and A7-2 hold. Then, �∗ satisfies Axioms AA4∗.
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Proof. Suppose that (∀s ∈ S) f(s) �∗ g(s). Since �∗ and � coincide on Lc (Lemma 2), it

follows that (∀s ∈ S) f(s) � g(s). Let yf and yg be constant acts such that f ∼ (1−ε)yf +εymin f

and g ∼ (1− ε)yg + εymin g. Such yf and yg exist by Lemma 5. Then, A7-2 implies that yf � yg,

or equivalently, yg � yf . Therefore, it follows from the definition of �∗ that g �∗ f , implying

that f �∗ g. �

5.3. Completion of Proof

Assume that all the axioms in the theorem hold. By Lemmas 3, 4, 6, 7 and 8, the binary

relation �∗ satisfies AA1∗-AA5∗. Therefore, Anscombe and Aumann’s theorem (1963) shows

that there exist a unique finitely additive probability measure µ on (S,Σ) and an affine function

u : Y → R, which is unique up to a positive affine transformation, such that

f �∗ g ⇔
∫

S
u(f(s)) dµ(s) >

∫
S

u(g(s)) dµ(s) . (6)

Define J∗ : L0 → R by

(∀f ∈ L0) J∗(f) =
∫

S
u(f(s)) dµ(s) . (7)

Note that when f is a constant act such that (∃y ∈ Y )(∀s ∈ S) f(s) = y, then J∗(f) = u(y).

Define J : L0 → R by

(∀f ∈ L0) J(f) = u((1 − ε)yf + εymin f )

where yf ∈ Lc is a constant act such that

f ∼ (1 − ε)yf + εymin f . (8)

The existence of such a yf is guaranteed by Lemma 5. Note that u represents �∗ on Lc by (6)

and that �∗ and � coincide on Lc by Lemma 2. It then follows that u represents � on Lc. This

shows that J is well-defined and represents � on L0.

Finally, we have

J(f) = u((1 − ε)yf + εymin f )
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= (1 − ε)u(yf ) + εu(ymin f )

= (1 − ε)J∗(yf ) + εmin
s

u(f(s))

= (1 − ε)J∗(f) + εmin
s

u(f(s))

= (1 − ε)
∫

S
u(f(s)) dµ(s) + εmin

s
u(f(s)) ,

where the first equality holds by the definition of J ; the second equality holds by u’s affinity;

the third equality holds by the definition of J∗ and the fact that u represents � on Y ; the fourth

equality holds by (8), Lemma 1 and the fact that J∗ represents �∗; and the last equality holds

by (7). Since J represents � on L0, the proof is complete. �
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