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abstract

We develop the panel limited information maximum likelihood (PLIML)
approach for estimating dynamic panel structural equation models. When
there are dynamic effects and endogenous variables with individual effects
at the same time, the PLIML estimation method for the filtered data does
give not only a consistent estimator, but also it has the asymptotic normal-
ity and often attains the asymptotic bound when the number of orthogonal
conditions is large. Our formulation includes Alvarez and Arellano (2003),
Blundell and Bond (2000) and other linear dynamic panel models as spe-
cial cases. We also compare the PLIML and dynamic GMM (generalized
method of moments) estimation methods and suggest an asymptotically
optimal modification of LIML under heteroscedastic disturbances among
individuals.

Keywords : Dynamic Panel Structural Equations, PLIML, Dynamic GMM,
Long Panel, Many Orthogonal Conditions, Forward Filtering, Backward Fil-
tering, Asymptotic Optimality, Individual Heteroscedasticity.

1 Introduction

Recently there has been a growing interest on dynamic panel econometric mod-

els in micro-econometrics. The main reason may be due to the fact that there

have been a number of panel data available and their analyses have been growing

in many applied fields of economics. Then the econometric methods of panel data

have been indispensable tools in econometrics (See Hsiao (2003), Arellano (2003)
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and Baltagi (2005) for instance.). However, there are still non-trivial statistical

problems of estimating dynamic panel econometric models to be investigated. In

particular, when there are lagged endogenous variables with individual effects and

the simultaneity effects in the structural equation of interest exist at the same

time, it has been known that the standard statistical methods including the GMM

(generalized method of moments) in the econometric literature or the estimat-

ing equation (EE) method in the statistics literature do not necessarily work well

due to the presence of individual effects, which causes some kind of the incidental

parameters when we have observations over a long time-horizon. Earlier investi-

gations on some aspect of the dynamic panel models were Anderson and Hsiao

(1981, 1982).

In this paper we propose a new econometric method called the panel limited

information maximum likelihood (PLIML) approach to the estimation of dynamic

panel structural equation models. It is actually an extension of the traditional

limited information maximum likelihood (LIML) method, which was originally

developed by Anderson and Rubin (1949, 1950). We intend to apply and extend

the LIML method to the estimation of dynamic panel structural models when

there are dynamic effects and endogenous variables with individual effects at the

same time. However, we need to modify the LIML method to handle the dynamic

panel models with individual effects and possibly many orthogonal conditions. It

is because the individual effects in panel structural equations cause a source of en-

dogeneity between the explanatory (or instrumental) variables and the explained

variables and we need to apply the filtering procedure to remove individual effects

in data sets. The PLIML estimation method proposed in this paper gives a con-

sistent estimator and it often attains the asymptotic efficiency bound for general

dynamic panel structural equation models, which have the Panel VARs as the re-

duced form even when the relative ratio T/N (where T is the time-horizon and

N is the number of individuals) can not be negligible. In macro-panel data or

long panel data T (the number of observations over time) can be substantial and

it is often important to estimate the dynamic effects in the structural equation of

interest. By using panel dimensions (N, T ) and the number of instruments K, the

approximations of the limiting distributions of estimators and test statistics based

on the standard asymptotics are often poor and we need another asymptotic the-

ory, which corresponds to the large-K asymptotics developed by Kunitomo (1980)

as an early study and it has been recently examined by Anderson, Kunitomo and

Matsushita (2005, 2008a,b).

In our framework of study we shall consider different ways of filtering proce-

dures before estimation systematically, namely, the forward-filtering explained by

Alvarez and Arellano (2003) and the backward-filtering explained by Hayakawa
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(2006, 2008). We shall show that the LIML estimation has an advantageous as-

pect when we use the forward-filtering and utilize many orthogonal conditions in

particular. Also we shall show that the usage of the backward-filtering for in-

struments can decrease the effects of a large number of possible instruments and

the doubly-filtered LIML becomes asymptotically less biased. In this situation

the fixed-N asymptotics to the approximation of the limiting distribution as the

first-order approximation is useful for practical applications.

In Section 2 we state the formulation of models and alternative estimation meth-

ods of unknown parameters in the dynamic panel structural equations with pos-

sibly many instruments and the filtering procedures. Then in Section 3 we give

the results on the asymptotic properties of the PLIML estimation method and its

asymptotic optimality. In Section 4 we shall discuss some finite sample properties

of the GMM and LIML estimators based on a set of Monte Carlo simulations.

Some concluding remarks will be given in Section 5. The proofs of our theorems

will be given in Section 6.

2 PLIML Approach to Dynamic Panel Struc-

tural Equations

2.1 Model

We consider the estimation problem of a dynamic panel structural equation with

individual effects in the form

y
(1)
it =

1+G2∑
j=2

β2jy
(j)
it +

1+G2∑
j=1

Qj∑
pj=1

γ1jpj
y

(j)
it−pj

+
L∑

l=1

γ1lx
(1)
itl + ηi + uit , (2.1)

where y
(j)
it (j = 1, ..., 1 + G2) are the endogenous variables in the system at

period t, x
(1)
itl (l = 1, ..., L) are the included exogenous variables, β2j, γ1jpj

, γ1l (j =

1, ..., 1 +G2; pj = 1, ..., Qj; l = 1, ..., L) are the unknown coefficients of the right-

hand side variables, ηi (i = 1, ..., N) are individual effects and uit are mutually

independent (over individuals and periods) disturbance terms with E(uit) = 0 and

E(u2
it) = σ2. In (2.1) we allow some coefficients can be zeros, and the original

sample size is NT (= n) for i = 1, · · · , N ; t = 1, · · · , T .

We rewrite the dynamic panel structural equation as

y
(1)
it = β

′

2y
(2)
it + γ

′

1z
(1)
it−1 + ηi + uit , (2.2)

where y
(1)
it and y

(2)
it (G2 × 1) are 1 + G2 endogenous variables, z

(1)
it−1 is the K1(=∑1+G2

j=1 Qj +L) vector of the included predetermined variables in (2.1), then γ1 and
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β2 are K1 × 1 and G2 × 1 vectors of unknown parameters. We use the notation

such that the vector z
(1)
it−1 consists of x

(1)
itl (l = 1, ..., L) and possibly the lagged

endogenous variables y
(j)
it−pj

in this representation.

We assume that the reduced form is written as

yit = Πzit−1 + πi + vit , (2.3)

where E(vit) = 0 and E(vitv
′
it) = Ω > 0 (a positive definite matrix). It can be

rewritten as the extended reduced form or the vectored AR(1) representation of

the reduced form

z∗it = Π∗z∗it−1 + π∗
i + v∗

it , (2.4)

yit = J′
1+G2

z∗it , z
(1)
it−1 = J′

K1
zit−1 , zit−1 = J′

Kz∗it−1 , (2.5)

where yit = (y
(1)
it ,y

(2)′

it )
′
is the (1 +G2) vector of endogenous variables, zit−1 is the

K×1 (K = K1 +K2) vector of predetermined variables at t which includes the K1

exogenous variables and lagged endogenous variables, Π and πi are a (1+G2)×K
coefficients matrix and a (1+G2)×1 individual effect vector, respectively. For the

equation (2.5), Π∗ is the K∗ ×K∗ autoregressive coefficients (K∗ = K +K3), π∗
i

and v∗
it are also K∗×1 individual effects and disturbances vector, respectively, the

K3-variables are excluded from (1+G2) reduced form equations. In our formulation

J′
1+G2

is an (1+G2)×K∗ selection matrix whose each element is one or zero, thus

the selection matrix J′
K1

and J′
K are defined in the same way. Also we prepare the

notation K∗, which means the number of the distinct autoregressive variables in

zit−1, therefore

K∗ ≤ K ≤ K∗ . (2.6)

We assume that the instrumental variables zit−1 are Ft−1-adapted, and Ft−1 is

the σ−field generated by {v∗
it−h,π

∗
i }∞h=1, then we shall use the notation Et[ . ] =

E [ . |Ft−1] for the conditional expectation operator. The relation between the

coefficients in (2.2) and (2.3) gives the condition (1,−β
′

2)Π = (γ
′
1,0

′
) and π21 =

Π22β2, where Π′
1 = (π11,Π12) is a K1 × (1 + G2) matrix, Π′

2 = (π21,Π22) is

a K2 × (1 + G2) matrix and the (K1 + K2) × (1 + G2) matrix of coefficients is

partitioned as

Π′ =

[
π11 Π12

π21 Π22

]
=
[
J

′

1+G2
Π∗JK1,K2

]′
, (2.7)

where J
′
K1,K2

is a K×K selection matrix for reordering columns of the correspond-

ing matrix Π∗ which is slightly different from J
′
K .
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Although we may call (2.3) and (2.4) as the reduced form, the predetermined

variables in zit−1 are correlated with unobserved variables (πi + vit) since

E [zit−1π
′
i] ̸= O (2.8)

in the general case, and this aspect makes the panel model consisting of (2.2)

and (2.3) different from the standard simultaneous equation models. We give

two examples of dynamic panel structural equations known in the econometric

literatures.

Example 1 : Blundell and Bond (2000) have considered the simple model of a

dynamic panel structural equation with two endogenous variables given by

y
(1)
it = β2y

(2)
it + γ1y

(1)
it−1 + ηi + uit (2.9)

y
(2)
it = γ2y

(2)
it−1 + δηi + vit , (2.10)

where the disturbance terms uit and vit are correlated. In this example K = K∗ =

K∗ = 2, K1 = 1 and G2 = 1. We notice that the equation (2.10) can be regarded

as a reduced form equation and the estimation problem of γ2 was considered by

Alvarez and Arellano (2003). They applied the forward-filter to data and proposed

to use all past values yis (s < t) at period t as instruments, i.e., the number of

instruments is T (T − 1)/2 (= rn). On the other hand, Hayakawa (2006, 2007) has

suggested to use the backward-filter to instruments, which will be defined shortly,

for estimation problem of (2.10) and its variant.

Example 2 : Our formulation includes the Panel Vector Autoregressive (Panel

VARs) model as the reduced form, which was suggested by Holtz-Eakin, Newey

and Rosen (1988). An example can be written as

y
(1)
it = β2y

(2)
it + γ11y

(1)
it−1 + γ12xit + ηi + uit , (2.11)

and the extended reduced form is defined by
y

(1)
it

y
(2)
it

y
(2)
it−1

xit+1

xit

 =


π∗

11 π∗
12 π∗

13 π∗
14 0

0 π∗
21 π∗

22 0 0

0 1 0 0 0

0 0 0 π∗
31 π∗

32

0 0 0 1 0




y

(1)
it−1

y
(2)
it−1

y
(2)
it−2

xit

xit−1

+


π
∗(1)
i

π
∗(2)
i

0

π∗
i

0

+


v
∗(1)
it

v
∗(2)
it

0

ϵ∗it+1

0

 ,(2.12)

where the first two rows of (2.12) are the Panel VARs model (1 + G2 = 2), and

xit is the included independent variable. The number of instruments are assigned

such that K = 4, K∗ = 5, K∗ = 3, K1 = 2, where xit−1 is the K3-variable and

K∗ = 3 follows from {y(1)
i. , y

(2)
i. , xi.}.
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There are important aspects of the problem of estimating equations with instru-

mental variables in the dynamic panel structural equations. First, the standard

statistical estimation methods do not necessarily have desirable properties because

of the presence of individual effects ηi (i = 1, · · · , N). In order to deal with this

problem, there have been several statistical procedures developed for the esti-

mating equations with individual effects. (See Hsiao (2003), Arellano (2003) and

Baltagi (2005) for the details.) Second, some of the known estimation procedures

based on the standard asymptotics (N → ∞, T < ∞) have substantial bias when

the panel models become dynamic in the sense that we have lagged endogenous

variables as explanatory variables. This is because even if we used the appropriate

filtering method to remove the individual effects, their influence cause the second-

order bias through the past variables and it becomes serious for a large T . Third,

although many previous studies has focused on specific reduced models, when we

have endogenous variables in the structural equations of interest, the standard

estimation methods have serious drawbacks as Akashi and Kunitomo (2010) have

discussed, for instance. Since we can sweep out the source of correlations among

the lagged endogenous variables and heterogeneity of individual by using the fil-

tering procedure, however, wet cannot remove the simultaneity at period t by that

procedure.

Instead of refining the traditional estimation methods, we shall develop a new

estimation procedure which may overcome these problems at the same time by

applying the panel limited information maximum likelihood (PLIML) estimation

method. The asymptotic properties of the LIML estimation method for estimat-

ing structural equations including its asymptotic optimality have been recently

investigated by Anderson et al. (2008a,b) when there are many instruments. We

shall extend their analysis to the PLIML estimation method in the dynamic panel

structural equations when the number of instruments increases as T , which may

be quite natural in the estimation problem of dynamic panel structural equations.

Before we apply the LIML estimation method, however, first we shall propose to

use the filtering procedure for our over-identified model, which is the data trans-

formation. There are two filtering procedures in both forward or/and backward

directions of time and remove their individual effects before estimation. We shall

focus on both the forward-filtering procedure and the double-filtering procedure

in our analysis.
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2.2 Instrumental Variables and Filtering Procedures

Let y
(1)
i = (y

(1)
it ), Y

(2)
i = (y

(2)′

it ) and Z
(1)
i(−1) = (z

(1)′

it−1) be T ×1, T ×G2 and T ×K1

matrices. We define the forward deviation operator Af , which is the (T − 1) × T

upper triangular matrix used by Alvarez and Arellano (2003) such that AfA
′

f =

IT−1, ι = (1, ..., 1)
′

and A
′

fAf = QT = IT − ιT ι
′
T/T . We apply the forward

deviation operator to the random variables of y
(1)
i , Y

(2)
i , and Z

(1)
i(−1), and denote

the resulting variables as y
(1,f)
i = (y

(1,f)
it ), Y

(2,f)
i = (y

(2,f)′

it ), and Z
(1,f)
i = (z

(1,f)′

it−1 ).

Then, for example, we have

y
(2,f)
it = ct

[
y

(2)
it − 1

T − t
(y

(2)
it+1 + · · · + y

(2)
iT )
]

(2.13)

where c2t = (T − t)/(T − t+ 1) for t = 1, ..., T − 1, T ≥ 2.

By using the forward-filtered variables, we re-write for t = 1, · · · , T − 1 as

y
(1,f)
it = β

′

2y
(2,f)
it + γ

′

1z
(1,f)
it−1 + u

(f)
it , (2.14)

where u
(f)
i = (u

(f)
it ) is the transformed (T − 1)× 1 vector by u

(f)
i = Afui from the

T×1 disturbance vector ui = (uit), but also we have the relation that E [z
(1,f)
it u

(f)
it ] ̸=

0, consequently.

On the other hand, we can also apply the backward operator Ab, which is the

(T − 1) × T lower triangular matrix as used for Hayakawa (2006). The procedure

removes the individual effects from the instrumental variables. Then we denote

the transformed instrumental variables as Z
(b)
i(−1) = (z

(b)′

it−1) and we set

z
(1,b)
it−1 = bt

[
z

(1)
it−1 −

1

t
(z

(1)
it−2 + · · · + z

(1)
i0 + z

(1)
i(−1))

]
, (2.15)

where b2t = t/(t+ 1) for t = 1, ..., T − 1, and we include z
(1)
i(−1) in order to simplify

the notation of the index range.

We notice that the forward-filtering enables us to make the orthogonal conditions

and keeps the homogeneity of second-moments of the disturbances. The backward-

filtering removes the individual effects exactly from instrumental variables.

In our analysis we use two types of transformations on the instrumental vari-

ables, and the instrumental matrices at period t are defined by

Z
(a)
t =

 z
(a)
1(t−1) · · · z

(a)
N(t−1)

...
...

...

z
(a)
10 · · · z

(a)
N0


′

, Z
(b)
t =

(
z

(b)
1(t−1), · · · , z

(b)
N(t−1)

)′
, (2.16)

where z
(a)
it−1 is the K∗ × 1 vector such that z

(a)
it−1 = JK∗zit−1, where the selection

matrix JK∗ chooses the nearest lagged variables to t − 1 as each autoregressive
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variable. The reduction K to K∗ is needed to be full rank of (Z
(a)′

t Z
(a)
t ). Hence

Z
(a)
t is the N × (K∗t) and Z

(b)
t is the N × K matrix, we consider that these

instrumental choices correspond to the following methods,

(a) At period t we use all available lagged variables after applying the forward-

filtering to the structural equation as suggested by Alvarez and Arellano (2003),

(b) At period t we use the only lagged variables included in the reduced form after

applying the backward-filtering to all instruments.

In this formulation the orthogonal conditions at period t can be written as

E
[
z

(a)
is u

(f)
it

]
= 0 (0 ≤ s < t) , E

[
z

(b)
it−1u

(f)
it

]
= 0 . (2.17)

We consider the asymptotic sequences with respect to two panel dimensions,

that is, N and T in different ways. We define the number of orthogonal conditions

as rn and consider the ratio rn/n, that is, the ratio of the number of orthogonal

conditions rn to the total sample NT (= n) as two sequences of

(a)
K∗T (T − 1)

2NT
→

N,T→∞
ca = (

K∗

2
) lim

N,T→∞
(
T

N
) . (2.18)

(b)
K(T − 1)

N0T
→

T→∞
cb =

K

N0

, (2.19)

where we use the notation N0 to be a fixed integer. Then we shall consider the

asymptotic behaviors of estimators when these sequences of ratios can be reason-

able approximations as the large-K asymptotics under panel structural equation

models provided K < ∞, N0 < ∞. When the order of instruments is reduced to

O(T ), the doubly-filtered LIML estimator does not need the double asymptotics

N, T → ∞ and the number of individuals can be regarded as fixed N0 < ∞. The

double asymptotics could worsen some approximations on the limiting distribu-

tions of estimators, since it is constructed as a further approximation from the

fixed T or the fixed N asymptotics.

2.3 The LIML and GMM Estimation

Let y
(f)
t = (y

(1,f)
it ,y

(2,f)′

it )
′
be (1 +G2) vectors and

Y
(f)′

t =
(
y

(f)
1t , · · · ,y

(f)
Nt

)
, Z

(1,f)′

t =
(
z

(1,f)
1t , · · · , z(1,f)

Nt

)
,

be (1+G2)×N, and K1×N matrices of the forward-filtered variables, respectively.

By using these notations, we define two (1+G2 +K1)× (1+G2 +K1) matrices as

G(f) =
T−1∑
t=1

(
Y

(f)′

t

Z
(1,f)′

t−1

)
Mt

(
Y

(f)
t ,Z

(1,f)
t−1

)
, (2.20)
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and

H(f) =
T−1∑
t=1

(
Y

(f)′

t

Z
(1,f)′

t−1

)
[IN − Mt]

(
Y

(f)
t ,Z

(1,f)
t−1

)
, (2.21)

where Mt = M
(a)
t or M

(b)
t ,

M
(a)
t = Z

(a)
t (Z

(a)′

t Z
(a)
t )−1Z

(a)′

t , M
(b)
t = Z

(b)
t (Z

(b)′

t Z
(b)
t )−1Z

(b)′

t (2.22)

Then the LIML estimator θ̂
(.)

LI = (β̂
′

2.LI , γ̂
′

1.LI)
′

of (1,−β
′

2,−γ
′
1)

′
= (1,−θ′)′ is

defined by [
1

n
G(f) − λn

1

qn
H(f)

][
1

−θ̂
(.)

LI

]
= 0 , (2.23)

where n = N(T − 1), qn = n− rn and λn is the smallest root of∣∣∣∣ 1nG(f) − l
1

qn
H(f)

∣∣∣∣ = 0 . (2.24)

In the above definition we have used the notation θ̂
(.)

LI = θ̂
(a)

LI in the case of using

M
(a)
t and θ̂

(b)

LI in the case of using M
(b)
t .

The solution to (2.23) gives the minimum of the variance ratio

VRn =

[
1,−θ

′
]
G(f)

[
1

−θ

]
[
1,−θ

′]
H(f)

[
1

−θ

] . (2.25)

Similarly, we define the panel GMM (or two-stage least squares TSLS) estimator,

θ̂
(.)

GM = (β̂
′

2.GM , γ̂
′

1.GM)
′
of (1,−β

′

2,−γ
′
1)

′
= (1,−θ′)′ by

[0, IG2+K1 ]
T−1∑
t=1

[
Y

(f)′

t

Z
(1,f)′

t−1

]
Mt

[
Y

(f)
t ,Z

(1,f)
t−1

] [ 1

−θ̂
(.)

GM

]
= 0. (2.26)

and define θ̂
(a)

GM and θ̂
(b)

GM accordingly. It minimizes the numerator of the variance

ratio (2.25). The LIML and TSLS estimation methods were originally developed

by Anderson and Rubin (1949, 1950), and we modify them slightly to develop

the panel LIML and the panel GMM (or TSLS) methods for the dynamic panel

simultaneous equations models with individual effects.
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3 Asymptotic Properties of the LIML and GMM

Estimators

3.1 Asymptotic Distributions

We shall derive the limiting distributions of the LIML and the GMM estimators

when we have two sequences on N, T,K and rn. In order to do that we make

a set of assumptions on the moments of disturbsnces and the dynamics of the

underlying process.

(A1) {v∗
it} (i = 1, ..., N ; t = 1, ..., T ) are i.i.d. across time and individuals and

independent of π∗
i and z∗i0, with E [v∗

it] = 0, E [v∗
itv

∗′
it ] = Ω∗ and E [∥v∗

it∥8] exsits.

The random vectors π∗
i are i.i.d. across individuals.

(A2) The initial observation satisfies

zi0 = (IK∗ − Π∗)−1π∗
i + wi0 (i = 1, ..., N),

where wi0 is independent of π∗
i and i.i.d. with the steady state distribution of the

homogenous process such that we can represent wi0 =
∑∞

j=0 Π∗jv∗
i(0−j). All roots

λk of

|Π∗ − λIK∗| = 0 (3.27)

satisfy the stationarity condition |λk| < 1 (k = 1, ..., K∗).

The assumptions (A1) and (A2) are analogue to the conditions used by Alvarez

and Alrellano (2003). They imply that the underlying processes for {yit} are

stationary and we have sufficient moment conditions. To state our main theoretical

results in a concise way, we prepare some notations that E [vitv
′
it] = Ω, σ2 =

E [u2
it] = β′Ωβ, where β = (1,−β′

2)
′ and

u⊥
it = [0, IG2 ]

[
I1+G2 − Cov(vit, uit)

uit

σ2

]
, (3.28)

Φ∗ = D′J
′

KE [wi(t−1)w
′
i(t−1)]JKD , (3.29)

D = JK1,K2

[
Π2,

(
IK1

O

) ]
, J

′

K = [IK ,OK×K3 ] . (3.30)

By defining the underlying stationary process {wit} which satisfies

wit = Π∗wit−1 + v∗
it, (3.31)

then the conditions of (A1) and (A2) imply that it has a solution of stationary

vector process.

10



First, we consider the case (a) when we take the forward-filtering procedure and

then apply the LIML and the GMM estimation under the sequence of (a). We

denote Mt = M
(a)
t and in this case we have the next result whose proof will be in

Section 6.

Theorem 3.1 : Suppose Assumptions (A1) and (A2) hold. Consider the

double asymptotics N, T → ∞ and assume that 0 ≤ K∗ limN,T→∞(T/N) < 1.

(i) For ca = 0, 0 ≤ limN,T→∞(T 3/N) = da <∞,

√
NT

(
θ̂

(a)

GM − θ
)

d−→ N (b
(a)
0 , σ2Φ∗−1) , (3.32)

where

b
(a)
0 = (

d
1/2
a K∗

2
)Φ∗−1

(
J

′
G2

Ωβ

0

)
, J

′

G2
= [0, IG2 ] . (3.33)

(ii) For ca = 0, √
NT

(
θ̂

(a)

LM − θ
)

d−→ N (0, σ2Φ∗−1) . (3.34)

(iii) For 0 < ca ≤ 1/2,

√
NT

(
θ̂

(a)

LM − θ
)

d−→ N (b(a)
c ,Ψ∗(a)) (3.35)

and

Φ∗−1[σ2Φ∗ +

(
IG2

O

)
(c∗a[Ωσ

2 − Ωββ′Ω]22 + Ξ4)(IG2 ,O) + Ξ
(a)
3 + Ξ

(a)′

3 ]Φ∗−1,

where [ · ]22 is the (2,2)-th element (G2 ×G2 matrix) of the partitioned (1+G2)×
(1 +G2) matrix, c∗a = ca/(1 − ca),

Ξ
(a)′

3 =

(
1

1−ca
E[u2

itu
⊥
it ] limN,T→∞

1
NT

∑T−1
t=2 E [d

(a)′

t Wt−1]JD

O

)
, (3.36)

Ξ
(a)
4 = (

1

1 − ca
)2E [(u2

it − σ2)u⊥
itu

⊥′

it ]( lim
N,T→∞

1

NT

T−1∑
t=1

E [d
(a)′

t d
(a)
t ] − c2a),(3.37)

d
(a)
t = diag(M

(a)
t )ιN ,Wt−1 = (w1(t−1), ...,wN(t−1))

′ is theN×K∗ matrix consisting

of {wit} and

b(a)
c = −(

K∗

2
)1/2 c

1/2
a

(1 − ca)
Φ∗−1D′J

′

K(IK∗ − Π∗)−1E [v∗
ituit] , (3.38)

provided that Ξ
(a)
3 and Ξ

(a)
4 are well-defined.

11



When ca = 0, both the LIML and the GMM estimators are consistent and they

have the asymptotic normality. But the GMM estimator has an extra asymptotic

bias due to the presence of the endonenous variables. This result agree with

the one by Anderson et al. (2008b) for a linear structural equation model with

many instruments. The asymptotic bias due to the presence of forward-filtering is

similar to the one by Alvarez and Arellano (2003) for a simple dynamic regression

model. When ca > 0, however, the LIML estimator is still consistent and it has

the asymptotic normality while the GMM estimator is inconsistent.

Next, we apply the backward-filtering procedure to the set of instrumental vari-

ables including the lagged endogenous variables and reduce the number of orthog-

onal conditions as the sequence of (b). We take Mt = M
(b)
t . In the case (b) we

have the next result whose proof will be in Section 6.

Theorem 3.2 : Suppose Assumptions (A1) and (A2) hold. Let T → ∞ and

K/N = cb.

(i) For cb = 0 or N → ∞, 0 ≤ limN,T→∞(T/N) = db <∞,

√
NT

(
θ̂

(b)

GM − θ
)

d−→ N (b
(b)
0 , σ2Φ∗−1) , (3.39)

where

b
(b)
0 = (d

1/2
b K)Φ∗−1

(
JG2Ωβ

0

)
. (3.40)

(ii) For cb = 0 or N → ∞,

√
NT

(
θ̂

(b)

LM − θ
)

d−→ N (0, σ2Φ∗−1) . (3.41)

(iii) For 0 < cb < 1 or N = N0 is fixed,√
N0T

(
θ̂

(b)

LM − θ
)

d−→ N (0,Ψ∗(b)) (3.42)

and

Φ∗−1[σ2Φ∗ +

(
IG2

O

)
(c∗b[Ωσ

2 − Ωββ′Ω]22 + Ξ4)(IG2 ,O) + Ξ
(b)
3 + Ξ

(b)′

3 ]Φ∗−1,

where c∗b = cb/(1 − cb),

Ξ
(b)′

3 =

(
1

1−cb
E [u2

itu
⊥
it ] limT→∞

1
N0T

∑T−1
t=1 E [d

(b)′

t Wt−1]JKD

O

)
, (3.43)

Ξ
(b)
4 = (

1

1 − cb
)2E [(u2

it − σ2)u⊥
itu

⊥′

it ]( lim
T→∞

1

N0T

T−1∑
t=1

E [d
(b)′

t d
(b)
t ] − c2b) ,(3.44)

12



and d
(b)
t = diag(M

(b)
t )ιN , Wt−1 = (w1(t−1), ...,wN(t−1))

′ is the N × K∗ matrix

consisting of {wit}, provided that Ξ
(b)
3 and Ξ

(b)
4 are well-defined.

When cb = 0, both the LIML and the GMM estimators are consistent and they

have the asymptotic normality. But the GMM estimator has an extra asymptotic

bias. When cb > 0, however, the LIML estimator is also consistent and it has the

asymptotic normality while the GMM estimator is inconsistent.

We notice that Φ∗ are same in both our theorems, so that the backward-filtered

instruments can be considered as the optimal instruments in the double asymp-

totics. But when cb > 0 and the fixed-N or the large-K asymptotics holds, then

the second term of the asymptotic covariance becomes large, so that the large-K

improves the approximation of limiting distributions by capturing the number K

and possibly large fixed N0. On the other hand, the GMM estimator has the

asymptotic bias even when N → ∞. If N → ∞, the doubly filtered LIML has no

bias and attains the asymptotic efficiency bound σ2Φ∗−1, which is the standard

bound when π∗
i = 0 (i = 1, · · · , N) and T is a fixed integer.

In the general case, the asymptotic covariance of the LIML estimator depends

on the third and fourth order moments of disturbance terms vit. When the random

vectors are followed by the class of elliptically contoured distribution EC(Ω) (see

Section 2.7 of Anderson (2003)), for instance, we could simplify the explicit formula

considerably because the third order moments are zeros and there is a simple

expression on the fourth order moments. When the disturbances are normally

distributed in particular, Ξ3 = O and Ξ4 = O. In the more general cases we could

expect that the contributions from these terms are often negligible numerically.

If the third and fourth order components are negligible, we may compare the

asymptotic covariance by the magnitude of c∗a and c∗b. Although the relation of

ca > cb holds in the general cases, the relative efficiency of θ̂
(b)

LI to θ̂
(a)

LI depends

on the correct knowledge of the reduced form lag structure. In this sense θ̂
(a)

LI

may be regarded as the most conservative estimation method as to the choice of

instrumental variables.

3.2 An Asymptotic Bound and Optimality

For the estimation problem of the vector of structural parameters θ, it may be

natural to consider a set of statistics of two (1+G2 +K1)× (1+G2 +K1) random

matrices G(f) and H(f), and the bias corrected estimator caused by the forward

filtering such as the one proposed by Hahn and Kuersteiner (2002). We shall

consider a class of estimators which are some functions of these two matrices and

13



then we have some results on the asymptotic optimality under a set of assumptions.

Theorem 3.3 : In the panel structural equations model of (2.2) and (2.3),

define the class of consistent estimators for θ = (1,−β
′

2,−γ
′
1)

′
by(

β̂2

γ̂1

)
= ϕ(G(f) , H(f)) , (3.45)

where ϕ is continuously differentiable and its derivatives are bounded at the prob-

ability limits of random matrices (1/n)G(f)/n and (1/qn)H(f).

(i) Then either under the conditions of Theorem 3.1 or Theorem 3.2, as T → ∞
with ca = 0 or cb = 0,

√
NT

[(
β̂2 − β2

γ̂1 − γ1

)]
d−→ N (0,Ψ) , (3.46)

where

Ψ ≥ Ψ∗ (3.47)

and Ψ∗ is given in Theorem 3.1 and Theorem 3.2. The LIML estimator and the

bias-adjusted GMM estimator attain the asymptotic bound.

(ii) When 0 < ca < 1 or 0 < cb < 1 in Theorem 3.1 or Theorem 3.2, assume

Ξ
(·)
3 = O and Ξ

(·)
4 = O in addition to their conditions. Then

√
NT

[(
β̂2 − β2

γ̂1 − γ1

)
− 1√

NT
b(f)

]
d−→ N (0,Ψ) , (3.48)

where the asympptotic bias b(f) caused by the forward-filter depends on ϕ(G(f),H(f)).

The LIML estimator attains the asymptotic bound.

This is a result on the asymptotic efficiency bound for dynamic panel structural

equations. It can be regarded as an extension of Theorem 4 of Anderson et al.

(2008b) for the linear structural equations of the simultaneous equation systems.

The simple sufficient condition for Ξ
(·)
3 = O and Ξ

(·)
4 = O is the Gaussianity

of disturbances. These conditions in Theorem 3.3 can be further relaxed to the

Elliptically Contours (EC) distributions with an additional notation. Because of

individual effects in the panel structural equations and the filtering problem, there

are some complications on the asymptotic optimality of estimators beyond the

results of Anderson et al. (2008b).
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3.3 An Extension of PLIML with Heterocedasticity

One of important problems in panel econometric studies has been the hetero-

geneity among a large number of individuals in data sets. Then it is important to

investigate the effects of persistently heteroscedastic disturbances over individuals
4. Kunitomo (2008) has extended the LIML estimation to the case of heteroscadas-

tic disturbances in structural equation econometric models under the condition

1

N

N∑
i=1

Ωi
p−→ Ω , (3.49)

where Ωi is the covariance matrix of vit (i = 1, · · · , N ; t = 1, · · · , T ) and Ω is a

positive definite (constant) matrix. Hence we have

1

N

N∑
i=1

σ2
i

p−→ σ2 = β
′
Ωβ > 0 . (3.50)

In the present situation an asymptotically optimal modification of LIML (AOM-

LIML) estimation can be constructed as follows. For N × N matrices Mt =

(mt.ij) = Zt(Z
′
tZt)

−1Z
′
t, we construct Mt.m = (m∗

t.ij) and Qt.m = (q∗t.ij) = IN−Mt.m

such that m∗
t.ij = m∗

t.ij (i ̸= j) and m∗
t.ii − c = op(1) (i, j = 1, · · · , N) for c = ca or

c = cb. Then we define two (K1 + 1 +G2) × (K1 + 1 +G2) matrices 5 by

G(f.m) =
T−1∑
t=1

(
Y

(f)′

t

Z
(1,f)′

t−1

)
Mt.m

(
Y

(f)
t ,Z

(1,f)
t−1

)
, (3.51)

and

H(f.m) =
T−1∑
t=1

(
Y

(f)′

t

Z
(1,f)′

t−1

)
[IN − Mt.m]

(
Y

(f)
t ,Z

(1,f)
t−1

)
, (3.52)

where Mt = M
(a)
t or M

(b)
t .

By using G(f.m) and H(f.m), we define a class of asymptotically optimal modifi-

cations of the PLIML estimator (we call it as AOM-PLIML) such that θ̂MLI (=

(β̂
′

2.MLI)
′
, γ̂

′

1.MLI)
′
) of θ = (β

′

2,γ
′
1)

′
is the solution of[

1

n
G(f.m) − 1

qn
λnH

(f.m)

][
1

−θ̂MLI

]
= 0 , (3.53)

4The definitions of Weak Heteroscedasticity and Persistent Heteroscedasticity are given in
Kunitomo (2008).

5We impose the condition that G(f.m) is a positive definite matrix. If it were not positive
definite, we need to modify G(f) further although it would rarely occur. See Kunitomo (2008)
for the detail.
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where qn = n− rn (> 0) and λn is the (non-negative) smallest root of

|1
n
G(f.m) − l

1

qn
H(f.m)| = 0 . (3.54)

When N and T are large, the AOM-PLIML estimator is consistent and it has

the asymptotic normality under a set of assumptions. There are two important

consequences of this modification. First, the AOM-PLIML estimator may have

less bias than the LIML estimator. Second, the covariance matrix of the limiting

distribution of the LIML estimator has the form

Φ∗∗−1

[
Ψ∗

1 +

(
IG2

O

)
Ψ∗

2(c)(IG2 ,O)

]
Φ∗∗−1, (3.55)

where Φ∗∗, Ψ∗
1 and Ψ∗

2(c) are defined as in Theorem 1 of Kunitomo (2008).

It is important to notice that the quantities used for its limiting distribution need

more complex notations than the homoscedastic situation due to the possible (per-

sistent) heteroscedasticity while the resulting expressions are free from the third

and fourth moments of disturbance terms. Thus it may be useful to use the

AOM-PLIML estimation in some applications. Also Theorem 3.3 implies that it

attains an asymptotic bound in a class of estimators and it is not possible to im-

prove the AOM-LIML estimation. Since it may be straightforward to investigate

the asymptotic properties of the AOM-PLIML estimation as Kunitomo (2008), we

have omitted the detail. The finite sample properties of the AOM-LIML estimator

are currently under investigation.

4 On Finite Sample Properties

It is important to investigate the finite sample properties of estimators partly

because they are not necessarily similar to their asymptotic properties. One simple

example would be the fact that the exact moments of some estimators do not

necessarily exist. (In that case it may be meaningless to compare the exact MSEs

of alternative estimators and their Monte Carlo analogues.) Hence we need to

investigate the distribution functions of several estimators in a systematic way.

In our experiments we took Example 2 (K = 4, K∗ = 3, K∗ = 5, K1 = 2, G2 = 1)

in Section 2 as a typical example 6. In Example 2 we first set the unknown parame-

ters such as (β2, γ11) = (.5, .5), γ12 = .3, and (ω11, ω12, ω22) = (1.0, .3, 1.0), (1.5, 1.0, 1.0).

Also we control the variance of each components of πi as 1. Our experiments are

similar to the ones reported in Akashi (2008), and Akashi and Kunitomo (2010).

6We have used Example 1 in Akashi and Kunitomo (2010) to investigate the case of (a) in
more details. Example 1 can be regarded as a simple case of Example 2.
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Then we generate large number of normal random variables by simulations and

calculate the empirical distribution functions of the GMM and LIML estimators in

the normalized form. We repeat 5,000 replications for each case and the smoothing

technique to estimate the empirical distribution functions. The details of simu-

lations are similar to those explained by Anderson, Kunitomo and Matsushita

(2005, 2008a). We shall report only the results for (N, T ) = (100, 25), (100, 50)

and (200, 50) as the typical cases among a large number of our simulations.

We have examined the distribution functions of the LIML and GMM estimators

in two normalizations. The first one is in terms of
√
NT

σ

[
1/
√
ϕ11 0

0 1/
√
ϕ22

][
β̂2 − β2

γ̂1 − γ1

]
, (4.56)

where ϕ11 and ϕ22 are the (1,1)-th element and (2.2)-th element of Φ∗−1, respec-

tively. The second normalization is

√
NT

[
ψ

−1/2
11 0

0 ψ
−1/2
22

][(
β̂2 − β2

γ̂1 − γ1

)
− 1√

NT
b

]
, (4.57)

where b is the asymptotic bias term, ψ11 and ψ22 are the (1,1)-th element and

the (2,2)-th element of Ψ∗, respectively. We have chosen these standardizations

because of the forms for the limiting distribution of the LIML estimator in Theorem

3.1 and Theorem 3.2. We may call the classical case when c = 0 (c = ca or cb) and

c ̸= 0 as the general case.

Since Akashi and Kunitomo (2010) have given many figures on case of (a) with

the forward-filtering procedure, we only give some cases as Figures 9-12. We have

shown the estimated distribution functions of the GMM and the LIML estimators

of (β2, γ1) and we have confirmed the findings of Akashi and Kunitomo (2010) in

a more simple case. That is, the GMM estimator is badly biased when N and

T are large while the LIML estimator is almost median-unbiased. However, the

normalization by the limiting covariance matrix of the LIML estimator when c = 0

is not appropriate. This aspect can be easily observed because the circles in figures

are the standard normal distribution function N(0,1).

For the case of (b) with the backward-filtering procedure, we have shown the

estimated distribution functions of the GMM and LIML estimators of β2 and γ1 as

Figures 1-8 among many results. Form these figures first we can observe that the

GMM estimator is often biased when N and T are large while the LIML estimator

is almost median-unbiased. Then it may be important to notice that the bias

correction of the GMM estimator sometimes works well, but it is not always the

case. Secondly, the normalization by the limiting covariance matrix of the LIML

estimator when c = 0 is often not appropriate and we can see it because of the
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circles in figures as the standard normal distribution function N(0,1). Since the

normal approximations based on the general case c ̸= 0, it is important to use the

variance formulas in Section 3.

From these figures we have shown, we have confirmed that the limiting normal

distributions approximate the finite sample distribution functions of the LIML

estimator quite well as Theorem 3.1 and Theorem 3.2 we have derived.

5 Conclusions

In this paper we have developed the panel limited information maximum like-

lihood (PLIML) approach for estimating dynamic panel simultaneous equation

models. When there are dynamic effects and lagged endogenous variables with

individual effects at the same time, the PLIML estimation method for the filtered

data does give not only the consistency, but also it has the asymptotic normality

and often attains the asymptotic efficiency bound when the order of orthogonal

conditions is large or many instruments in some sense.

The consistency of LIML method does not depend on specified panel asymptotics

and the total number of instruments as long as it is less than the total number

of observations. Since the approximation of its limiting distribution embodies the

influence of the number of instrumental variables automatically, our method gives

an unified approach for solving practical problems with panel data consisting of

various combination of N, T and K.

Furthermore, we have suggested a class of asymptotically optimal modification

of the PLIML estimator. Since it may improve the asymptotic properties of the

LIML estimator, we are currently investigating its finite sample properties.

In this paper we have examined the effects of possible filtering procedures. When

we use the forward-filtering, the GMM estimator is badly biased while the LIML

estimator is almost median-unbiased. If we use the backward-filtering to instru-

ments, the GMM estimator is often biased, but its magnitude can be significantly

reduced. This finding may lead to an interpretation that we should not use many

instruments and just use the GMM estimator with the backward-filtered instru-

ments in practical situations. However, it is the case only when we had known

the true lag-structure in advance. Since we often do not know the precise form of

lag structures in the simultaneous equations, it may be fair to conclude that the

LIML estimation has the asymptotic robustness in both cases of (a) and (b) while

the GMM estimation does not have such robustness.

Finally, as we have mentioned, in a companion paper to the present one Akashi

and Kunitomo (2010) have investigated the finite sample properties of alterna-

tive estimation methods, the WG (Within Groups), the GMM and the PLIML
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estimators in a simpler setting, based on a large set of Monte Carlo experiments.

Although they have used a particular case of dynamic panel simultaneous equa-

tions model and the formulation of forward filtering procedure, we have confirmed

that their results are quite relevant for more general panel structural equations as

we have referred in Section 4. Thus we conclude that the traditional LIML estima-

tion method is quite useful and relevant in dynamic panel econometric modeling.

6 Mathematical Details

In this section we give the proofs of Theorems in Section 3. The method of proofs

are similar to those used in Alvarez and Arellano (2003), Anderson, Kunitomo and

Matsushita (2008) and Akashi and Kunitomo (2010). When we use the generic

notations of (Mt,Nt, c, c∗), the relevant derivation is valid for the each case of

Mt = M
(a)
t and M

(b)
t under the corresponding asymptotics of Theorem 3.1 and

3 .2 , respectively. We shall use J
′
for J

′
K below for the sake of convenience.

Some derivations of the asymptotic properties of estimators have been given by

Akashi and Kunitomo (2010) when G2 = 1. Since it is straight-forward to extend

their analysis to the general cases, we shall freely refer to their results. The deriva-

tion of the asymptotic distribution of the GMM estimator is an example.

Derivations of Theorem 3.1 and 3.2 :

Since the derivations of our results are rather lengthy, we shall divide them into

several steps.

[ Step 1 ] : We drive the probability limit in Step 1 and then the limiting distri-

bution of the LIML estimator at the next step. Substitution of (2.14) into (2.20)

yields

G(f) = G(f,1) + G(f,2) + G(f,2)′ + G(f,3) , (6.58)

where

G(f,1) = D∗′
T−1∑
t=2

Z
(f)′

t−1MtZ
(f)
t−1D

∗ ,

G(f,2) = D∗′
T−1∑
t=2

Z
(f)′

t−1Mt(V
(f)
t ,O) ,

G(f,3) =
T−1∑
t=2

(
V

(f)′

t

O
)Mt(V

(f)
t ,O) ,

V
(f)′

t = (v
(f)
t1 , · · · ,v

(f)
tN ), v

(f)
tj (j = 1, · · · , N) are the corresponding forward-filtered
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disturbances of vtj, and a K × (1 +G1 +K1) matrix

D∗ = D
[

θ, IG2+K1

]
, (6.59)

First, we shall show that for Mt = M
(a)
t or M

(b)
t ,

1

n
G(f) p−→ G0 =

[
θ

′

IG2+K1

]
Φ∗
[

θ, IG2+K1

]
+ c

[
Ω O

O O

]
(6.60)

and
1

qn
H(f) p−→ H0 =

[
Ω O

O O

]
, (6.61)

where Φ∗ = D′J′E [wit−1w
′
it−1]JD = D′J′Γ0JD. By using the representation of(

Y
(f)′

t

Z
(1,f)′

t−1

)
=

(
θ′

IG2+K1

)
D′Z

(f)′

t−1 +

(
V

(f)′

t

O
′

)

= D∗′Z
(f)′

t−1 +

(
V

(f)′

t

O
′

)
(, say). (6.62)

Then we can show that

1

n
G(f,2) =

1

NT
D∗′

T−1∑
t=1

Z
(f)′

t−1Mt(V
(f)
t ,O)

p→ OG+K1 . (6.63)

It is because (1/
√
NT )

∑T−1
t=1 Z

(f)′

t−1MtV
(f)
t

p→ Op(1)+O(1) by the same arguments

as used for (1/
√
NT )

∑T−1
t=1 Z

(f)′

t−1Mtu
(f)
t

p→ Op(1) +O(1) in Kunitomo and Akashi

(2010).

We write

Z
(f)′

t−1 = ct[IK − 1

T − t
(

T−t∑
j=1

Π∗j)]W
′

t−1 − ctṼ
′

tT

= ΨtW
′

t−1 − ctṼ
′

tT (, say), (6.64)

and we further decompose (1/n)G(f,1) = (1/n)D∗′∑T−1
t=1 Z

(f)′

t−1MtZ
(f)
t−1D

∗ as

1

n

T−1∑
t=1

Z
(f)′

t−1MtZ
(f)
t−1 =

1

n

T−1∑
t=1

ΨtW
′

t−1MtWt−1Ψ
′

t −
1

n

T−1∑
t=1

ctΨtW
′

t−1MtṼtT

− 1

n

T−1∑
t=1

ctṼ
′

tTMtWt−1Ψ
′

t +
1

n

T−1∑
t=1

c2t Ṽ
′

tTMtṼtT . (6.65)
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Moreover, by using Lemma 3 and Lemma 4 in Step 4 and Step 5, and c2t =

1 − 1/(T − t+ 1) after some calculations, it is possible to show

1

n

T−1∑
t=1

ΨtW
′

t−1MtWt−1Ψ
′

t (6.66)

=
1

n

T−1∑
t=1

c2tW
′

t−1MtWt−1

− 1

n

T−1∑
t=1

c2t
T − t

W
′

t−1MtWt−1(
T−t∑
j=1

Π∗j)
′ − 1

n

T−1∑
t=1

c2t
T − t

(
T−t∑
j=1

Π∗j)W
′

t−1MtWt−1

+
1

n

T−1∑
t=1

(
ct

T − t
)2(

T−t∑
j=1

Π∗j)W
′

t−1MtWt−1(
T−t∑
j=1

Π∗j)
′

p→ E [wi(t−1)w
′

i(t−1)] .

The second and third terms of (6.65) have zero means and their variances to tend

to zeros. It is because

V ar[
1

n

T−1∑
t=1

cte
′

jΨtW
′

t−1MtṼtTek] (6.67)

=
1

N2T 2
|

T−1∑
t=1

T−1∑
s=1

ctcsE [(e
′

jΨtW
′

t−1MtṼtTek)(e
′

kṼsTMsWs−1Ψ
′

sej)]|

≤ 1

N2T 2

T−1∑
t=1

T−1∑
s=1

√
c2tE [(e

′
jΨtW

′
t−1MtṼtTek)2]

√
c2sE [(e

′
kṼsTMsWs−1Ψ

′

sej)2],

where ej (j, k = 1, ..., K) are j-th unit vector. Also we have

c2tE [(e
′

jΨtW
′

t−1MtṼtTek)
2] (6.68)

= c2t [e
′

kE [ṽitT ṽ
′

itT ]ek]E [e
′

jΨtW
′

t−1MtWt−1Ψ
′

tej]

≤ c2t [
1

(T − t)2
e

′

k

T−t∑
h=1

ΦhE [v∗
i0v

∗′
i0]Φ

′

hek][e
′

jΨtE [W
′

t−1Wt−1]Ψ
′

tej]

= N(
c2t

T − t
)2(e

′

k

T−t∑
h=1

ΦhE [v∗
i0v

∗′
i0]Φ

′

hek)

×(e
′

j[Ik −
1

T − t
(

T−t∑
h=1

Π∗h)]E [wi0w
′

i0][Ik −
1

T − t
(

T−t∑
h=1

Π∗h)′]ej)

= O(
N

T − t
),

because
∑T−t

h=1 e
′

kΦhE [v∗
i0v

∗′
i0]Φ

′

hek = O(T − t).
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Hence

V ar[
1

n0

T−1∑
t=1

cte
′

jΨtW
′

t−1MtṼtTek] ≤ 1

N2
0T

2

T−1∑
t=1

√
O(

N0

T − t
)

T−1∑
s=1

√
O(

N0

T − s
)

= O(
(
√
T )2

N0T 2
) . (6.69)

For the fourth term of (6.65), it expected value is given by

E [
1

n

T−1∑
t=1

c2te
′

jṼ
′

tTMtṼtTek] =
1

NT

T−1∑
t=1

c2tE [tr(MtEt[ṼtTeke
′

jṼ
′

tT ])]

=
1

NT

T−1∑
t=1

c2t tr(Mt)E [e
′

jṽitT ṽ
′

itTek]

= O(
1

NT

∑
t

tr(Mt)

T − t+ 1
) (6.70)

and it converges to zero in probability. Also its variance tends to zero in the same

way as for Υ
(k)
21n and Υ

(k)
22n in Step 3 below.

Next, we consider (1/n)G(f,3). By using the fact that Et[v
(f)
it v

(f)′

it ] = Ω, we have

E [
1

n

T−1∑
t=1

e
′

gV
(f)′

t MtV
(f)
t eh] =

1

NT
E [tr(MtV

(f)
t ehe

′

gV
(f)′

t )]

=
e

′
gΩeh

NT

T−1∑
t=1

tr(Mt)

→ c(e
′

gΩeh) (6.71)

as n→ ∞.

Moreover, by using V
(f)
t = (Vt − V̄tT )/ct, we have

1

NT

T−1∑
t=1

V
(f)′

t MtV
(f)
t =

1

NT

T−1∑
t=1

c−2
t V

′

tMtVt −
1

NT

T−1∑
t=1

c−2
t V

′

tMtV̄t (6.72)

− 1

NT

T−1∑
t=1

c−2
t V̄

′

tMtVt +
1

NT

T−1∑
t=1

c−2
t V̄

′

tMtV̄t.

Because of Lemma 1 of Step 3 below V ar[v
(g)′

t Mtv
(h)
t ] = O(t) and

Cov[v
(g)′

t Mtv
(h)
t ,v

(g)′
s Mtv

(h)
s ] = 0 for t ̸= s. Hence the variance of the first term

satisfies

V ar[
1

NT

T−1∑
t=1

e
′

gV
(f)′

t MtV
(f)
t eh] =

1

N2T 2

T−1∑
t=1

(1 +
1

T − t
)2 ×O(t) , (6.73)
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which converges to zero.

The second and third terms of the right-hand side of (6.72) can be evaluated

analogously as Υ
(k)
21n and Υ

(k)
22n, and their variances tend to zeros by using the similar

arguments.

We turn to show that 1/qnH
(f) p→ H0 by evaluating

1

n

T−1∑
t=1

(
Y

(f)′

t

Z
(1,f)′

t−1

)
(Y

(f)
t ,Z

(1,f)
t−1 ) (6.74)

= D∗′ 1

n

T−1∑
t=1

Z
(f)′

t−1Z
(f)
t−1D

∗ + D∗′ 1

n

T−1∑
t=1

Z
(f)′

t−1(V
(f)
t ,O)

+
1

n

T−1∑
t=1

(
V

(f)′

t

O′

)
Z

(f)
t−1D

∗ +
1

n

T−1∑
t=1

(
V

(f)′

t

O′

)
(V

(f)
t ,O).

The expected values of the second and third terms of 1/(N0T )
∑

t E [Z
(f)′

t−1V
(f)
t ] =

1/T (IK−Π∗)−1E [v∗
itv

′
it]+O(1/N0T ) converge to zeros as T → ∞. We can establish

the mean squared convergence similarly. Moreover,

1

n

T−1∑
t=1

e′
jZ

(f)′

t−1Z
(f)
t−1ek =

1

N0T

N0∑
i=1

T∑
t=1

w
(j)
i(t−1)w

(k)
i(t−1) −

1

N0T

N0∑
i=1

1

T
ι′Tw

(j)
i(t−1)w

(k)′

i(t−1)ιT

p→ E [w
(j)
i(t−1)w

(k)
i(t−1)],

since we have (1/T )
∑T

t=1w
(j)
i(t−1)w

(k)
i(t−1)

p→ E [w
(j)
i(t−1)w

(k)
i(t−1)] and the second term

converges to 1/N0

∑N0

i=1(0 + op(1))2 = op(1) by using that (1/T )ι′Tw
(j)
i(t−1)

p→ 0.

Again by using the similar argument, we have that 1/n
∑T−1

t=1 V
(f)′

t V
(f)
t

p→ Ω.

Hence

1

qn
H(f) p→ 1

1 − c

[
plim

1

n

T−1∑
t=1

(
Y

(f)′

t

Z
(1,f)′

t−1

)
(Y

(f)
t ,Z

(1,f)
t−1 ) − G0

]
= H0. (6.75)

Therefore we have established that (1/n)G(f) p→ G0 and (1/qn)H(f) p→ H0.

[Step 2] : By using the convergence results in Step 1, we have∣∣∣∣∣Φθ + [c− (plimn→∞λn)]

[
Ω O

O O

]∣∣∣∣∣ = 0 , (6.76)

where

Φθ =

[
θ′

IG2+K1

]
Φ∗ [θ, IG2+K1 ] . (6.77)
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By the positive-definiteness of Φ∗, λn
p→ c, and we have that θ̂LI

p→ θ because

(2.23) gives

Φ∗(θ̂ − θ) = 0 + op(1) . (6.78)

Define G
(f)
1 =

√
n[(1/n)G(f)−G0],H

(f)
1 =

√
qn[(1/qn)H(f)−H0], λ

(f)
1n =

√
n[λn−c]

and b1 =
√
n[θ̂ − θ] . By substituting these variables into (2.23), it is asymptoti-

cally equivalent to

[G0 − cH0]

[
1

−θ

]
+

1√
n

[G
(f)
1 − λ

(f)
1n H0]

[
1

−θ

]
+

1√
n

[G0 − cH0]b1

− 1
√
qn

[cH
(f)
1 ]

[
1

−θ

]
= op(

1√
n

) . (6.79)

Then by using the relation of Φθ(1,−θ′)′ = 0, we have

Φθb1 = [G
(f)
1 − λ

(f)
1n H0 −

√
cc∗H

(f)
1 ]

[
1

−θ

]
+ op(1) . (6.80)

Multiplication of (6.79) from the left by (1,−θ) yields

λ
(f)
1n =

(1,−θ′)[G
(f)
1 −√

cc∗H
(f)
1 ](1,−θ′)′

(1,−θ′)H0(1,−θ′)′
+ op(1) . (6.81)

Also the multiplication of (6.80) from the left by (0, IG2+K1) and substitution for

λ
(f)
1n for (6.80) yields

Φ∗√n

[
β̂2LI − β2

γ̂1LI − γ1

]
(6.82)

= [0, IG2+K1 ]
[
G

(f)
1 − λ

(f)
1n H0 −

√
cc∗H

(f)
1

] [ 1

−θ

]
+ op(1)

= [0, IG2+K1 ]

[
I1+G2+K1 −

1

β′Ωβ

(
Ωβ

0

)
(1,−θ′)

]
[G

(f)
1 −

√
cc∗H

(f)
1 ]

[
1

−θ

]
+op(1) .
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Using the relations of (6.58), we have

[G
(f)
1 −

√
cc∗H

(f)
1 ]

[
1

−θ

]
(6.83)

=
1√
n
D∗′

T−1∑
t=1

Z
(f)′

t−1Mtu
(f)
t +

1√
n

[
T−1∑
t=1

(
V

(f)′

t

O

)
Mtu

(f)
t − rn

(
Ωβ

0

)]

−
√
cc∗
qn

D∗′
T−1∑
t=1

Z
(f)′

t−1[IN − Mt]u
(f)
t

−
√
cc∗
qn

[
T−1∑
t=1

(
V

(f)′

t

O

)
[IN − Mt]u

(f)
t − qn

(
Ωβ

0

)]
.

Also we use the relations
√
cc∗/

√
qn−c∗/

√
n = o(1) and [I1+G2−(1/σ2)Ωββ′]Ωβ =

0, then,

Φ∗√n

(
β̂2LI − β2

γ̂1LI − γ1

)
=

1√
n
D′

T−1∑
t=1

Z
(f)′

t−1Ntu
(f)
t +

1√
n

T−1∑
t=1

(
U

(⊥,f)′

t

O

)
Ntu

(f)
t

+op(1) . (6.84)

where

Nt = Mt − c∗(IN − Mt) =
1

1 − c
[Mt − cIN ] , (6.85)

U
(⊥,f)′

t = [0, IG2 ]

[
I1+G2 −

Ωββ
′

β
′
Ωβ

]
V

(f)′

t = (u
(⊥,f)
1t , ...,u

(⊥,f)
Nt ) . (6.86)

[ Step 3 ] : We evaluate the effects of the forward-filtering at this step and first

consider the case of Mt = M
(a)
t . Set the k-th unit vector ek = (0, ..., 0, 1, 0, ..., 0)′,

then using the relations of (2.5), (A2), and u
(f)
t = (ut − utT )/ct, we decompose

the first and second terms of (6.84) as follows, for k = 1, ..., K(= K1 + K2) and
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g = 1, ..., G2,

1√
n

T−1∑
t=1

e′
kZ

(f)′

t−1N
(a)
t u

(f)
t

=
1

1 − ca

[
(

1√
n

T−1∑
t=1

e′
kJ

′W
′

t−1Mtut − Υ
(k,a)
11n − Υ

(k,a)
12n ) − (Υ

(k,a)
21n − Υ

(k,a)
22n )

]

−c∗a(
1√
n

T−1∑
t=1

e′
kJ

′W
′

t−1ut − Υ
(k)
3n ) ,

1√
n

T−1∑
t=1

e′
gU

(⊥,f)′

t N
(a)
t u

(f)
t

=
1

1 − ca

[
(

1√
n

T−1∑
t=1

e′
gU

⊥′

t M
(a)
t ut +

1√
n

T−1∑
t=1

(
1

T − t
)e′

gU
⊥′

t M
(a)
t ut)

−c−2
t e′

gU
⊥′

t M
(a)
t ūtT − c−2

t e′
gŪ

⊥′

tTM
(a)
t ut + c−2

t e′
gŪ

⊥′

tTM
(a)
t ūtT

]
−c∗a(

1√
n

T−1∑
t=1

e′
gU

⊥′

t ut −
√
T

N

N∑
i=1

e′
gū

⊥
i ūi)

=
1√
n

T−1∑
t=1

e′
gU

⊥′

t N
(a)
t ut − Υ

(g,a)
4n , (6.87)

where

Υ
(k,a)
11n =

1√
n

T−1∑
t=1

e′
kJ

′W′
t−1M

(a)
t ūtT , (6.88)

Υ
(k,a)
12n =

1√
n

T−1∑
t=1

ct
T − t

e′
kJ

′W̃
′

t−1M
(a)
t u

(f)
t , (6.89)

Υ
(k,a)
21n =

1√
n

T−1∑
t=1

e′
kJ

′Ṽ
′

tTM
(a)
t ut, (6.90)

Υ
(k,a)
22n =

1√
n

T−1∑
t=1

e′
kJ

′Ṽ
′

tTM
(a)
t ūtT , (6.91)

Υ
(k)
3n =

√
T

N

N∑
i=1

e′
kJ

′w̄i(−1)ūi, (6.92)

Υ
(g,a)
4n =

1√
n

T−1∑
t=1

e′
gU

(⊥,f)′

t N
(a)
t u

(f)
t − 1√

n

T−1∑
t=1

e′
gU

⊥′

t N
(a)
t ut , (6.93)
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and

ūtT = (ut + · · · + uT )/(T − t+ 1), (6.94)

W̃
′

t−1 = (
T−t∑
j=1

Π∗h)W′
t−1 , Ṽ

′

tT =
1

T − t

T−t∑
j=1

ΦhV
∗′
T−h , (6.95)

V∗′
h = (v∗

1h, ...,v
∗
Nh) = (v

∗(1)
h , ...,v

∗(K)
h )′, (6.96)

Φh = (IK∗ − Π∗)−1(IK∗ − Π∗h), (6.97)

w̄i(−1) =
1

T

T−1∑
t=1

wi(t−1) , ūi =
1

T

T−1∑
t=1

uit , (6.98)

U⊥′

t = [0, IG2 ]

[
I1+G2 −

Ωββ
′

β
′
Ωβ

]
V

′

t = (u⊥
1t, ...,u

⊥
Nt) , (6.99)

Ū⊥
t = (U⊥

t + · · · + U⊥
T )/(T − t+ 1) , ū⊥

i =
1

T

T−1∑
t=1

u⊥
it , (6.100)

We shall show that the variances of (6.88) to (6.91) go to zeros. (The variances

of the terms Υ
(g,a)
4n and Υ

(g,b)
4n can be shown by the same argument of Akashi and

Kunitomo (2010).) For this purpose, prepare two lemmas. The proof of the first

one has been given in Akashi and Kunitomo (2010).

Lemma 1 : Let dt and ds be N × 1 vectors containing the diagonal elements

of Mt and Ms, respectively, such that tr(Mt) = d′
tιN , tr(Ms) = d′

sιN , d′
tds ≤

max{tr(Mt), tr(Ms)} and tr(MtMs) ≤ max{tr(Mt), tr(Ms)}. Then, for l ≥ r ≥
t, p ≥ q ≥ s, t ≥ s,

Cov[ϵ∗
′

l Mtϵ
∗∗
r , ϵ

∗′
p Msϵ

∗∗
q ] (6.101)

=


(m(3) +m(2))tr(MtMs) +m(0)E [d′

tds] if l = r = p = q,

E [ϵ∗2it ϵ
∗∗
it ]E [d′

tMsϵ
∗∗
q ] if l = r = p ̸= q < t,

m(3)tr(MtMs) if l = p ̸= r = q,

0 otherwise,

where |E [d′
tMsϵ

∗∗
q ]| ≤ (tr(Mt)tr(Ms)E [ϵ∗∗2it ])1/2,

m(1) = m(1)(ϵ∗t , ϵ
∗∗
t ) = E [ϵ∗2it ϵ∗∗2it ], (6.102)

m(2) = m(2)(ϵ∗t , ϵ
∗∗
t ) = (E [ϵ∗itϵ

∗∗
it ])2,

m(3) = m(3)(ϵ∗t , ϵ
∗∗
t ) = E [ϵ∗2it ]E [ϵ∗∗2it ],

m(0) = m(0)(ϵ∗t , ϵ
∗∗
t ) = m(1) − 2m(2) −m(3).
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Lemma 2 : For any k, j, T , we have

T∑
t=1

|e′
kΠ

∗tej| ≤ O(max
l,i

|e′
kCel||e′

iC
−1ej|) × max

m′,m′′
Jm′m′′T < +∞, (6.103)

where C satisfies Π∗ = CΛC−1, Jm′m′′T is a bounded positive constant and Λ

denotes a Jordan matrix.

We have the second lemma because for any multiplicitym(= m′) a corresponding

diagonal block’s element of Λt has the form
(

t
m′′

)
λt−m′′

m′ in each position m′′ above

the main diagonal, m′′ = 0, 1, ...,m − 1, and for any m′,m′′, Jm′m′′T =
∑T

t=m′′(
t

m′′

)
|λm′ |t−m′′

converges to a positive value as T → ∞.

Now we go back to the original derivation. First, it it straightforward to show

that V ar[Υ
(k)
3n ] → 0 as T → ∞ by the similar argument as used for Alvarez and

Arellano (2003).

Second, we have

V ar[Υ
(k,a)
11n ] =

1

NT

T−1∑
t=1

T−1∑
s=1

E [e′
kJ

′W′
t−1M

(a)
t ūtT ū′

sTM(a)
s Wt−1Jek]. (6.104)

For t ≥ s,

E [w
(k)′

t−1M
(a)
t ūtT ū′

sTM(a)
s w

(k)
s−1] =

E [u2
it]

(T − s+ 1)
E [w

(k)′

t−1M
(a)
t M(a)

s w
(k)
s−1] (6.105)

=
σ2

(T − s+ 1)
E [Es[w

(k)′

t−1]M
(a)
s w

(k)
s−1]

=
σ2

(T − s+ 1)
E [

K′∑
j=1

(e′
kJΠ

∗t−sej)w
(j)′

s−1M
(a)
s w

(k)
s−1] ,

where w
(k)′

t−1 = e′
kJW

′
t−1, w

(j)′

t−1 = e′
jW

′
t−1 and e′

kJ = e′
kJ

′, which is also an unit k-th

vector. The second equality of (6.105) is due to the fact that M
(a)
t M

(a)
s = M

(a)
s .

By using the relations that for any s, j, k, |E [w
(j)′

s−1M
(a)
s w

(k)
s−1]| ≤ (E [(w

(j)′

0 w
(j)
0 )(w

(k)′

0
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w
(k)
0 )])1/2 and (E [(w

(j)′

0 w
(j)
0 )(w

(k)′

0 w
(k)
0 )])1/2 = O(N),

V ar[Υ
(k,a)
11n ] ≤ σ2 maxj{(E [(w

(j)′

0 w
(j)
0 )(w

(k)′

0 w
(k)
0 )])1/2}

N

× 1

T

[
T−1∑
t=1

T−1∑
s=1

1

T − s+ 1

K∗∑
j=1

|e′
kJΠ

∗|t−s|ej|

]

=
O(1)

T
[(

1

T
+ · · · + 1

2
) + 2

K∗∑
j=1

S
(k,j)
T ]

=
O(log T )

T
, (6.106)

where

S
(k,j)
T =

1

T
(|e′

kJΠ
∗ej| + · · · + |e′

kJΠ
∗T−2ej|)

+
1

T − 1
(|e′

kJΠ
∗ej| + · · · + |e′

kJΠ
∗T−3ej|) + · · · + 1

3
|e′

kJΠ
∗ej|

≤ (
1

3
+ · · · + 1

T
)(|e′

kJΠ
∗ej| + · · · + |e′

kJΠ
∗T−2ej|) = O(log T ) ,

since (6.103). Next,

V ar[Υ
(k,a)
12n ] =

1

NT
V ar[

T−1∑
t=1

ct
T − t

w̃
(k)′

t−1M
(a)
t u

(f)
t ] (6.107)

=
σ2

NT

T−1∑
t=1

c2t
(T − t)2

E [w̃
(k)′

t−1M
(a)
t w̃

(k)
t−1]

≤ σ2

NT

T−1∑
t=1

c2t
(T − t)2

E [w̃
(k)′

t−1w̃
(k)
t−1]

=
σ2

NT

T−1∑
t=1

c2tN

(T − t)2

[
e′

kJ
′(

T−t∑
h=1

Π∗h)E [wi0w
′
i0](

T−t∑
h=1

Π∗h)′Jek

]
≤ N

N

σ2λmax{E [wi0w
′
i0]}

T

T−1∑
t=1

1

(T − t)2
e′

kJ
′(

T−t∑
h=1

Π∗h)(
T−t∑
h=1

Π∗h)′Jek

=
O(1)

T
.

where w̃
(k)′

t−1 = e′
kJ

′W̃
′
t−1, and λmax stands for the largest eigenvalue of E [wi0w

′
i0].

The last inequality follows from that c2t < 1 and the boundness of (
∑T−t

h=1 Π∗h) for

any t, T .

Turning to evluate the variance of Υ
(k,a)
21n , in view of Lemma 1 the only non zero

terms to be considered are given by the quantities a
(k,j,a)
0n and a

(k,j,a)
1n (j = 1, ..., K ′)
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which are defined by

V ar[Υ
(k,a)
21n ] =

1

NT
V ar[

T−1∑
t=1

1

T − t

T−t∑
h=1

K∗∑
j=1

(e′
kJΦhej)e

′
jV

∗′
T−hM

(a)
t ut](6.108)

=
1

NT

[ K∗∑
j=1

V ar[
T−1∑
t=1

ṽ
∗(k,j)′

tT M
(a)
t ut]

+
K∗∑
i,j

Cov[
T−1∑
t=1

ṽ
∗(k,i)′

tT M
(a)
t ut,

T−1∑
t=1

ṽ
∗(k,j)′

tT M
(a)
t ut]

]
=

K∗∑
j=1

(a
(k,j,a)
0n + a

(k,j,a)
1n ) +

1

NT

K∗∑
i,j

Cov[., .] ,

where

ṽ
∗(k,j)′

tT =
1

T − t

T−t∑
h=1

(e′
kJΦhej)e

′
jV

∗′
T−h , (6.109)

a
(k,j,a)
0n =

1

NT

T−1∑
t=1

1

(T − t)2

[
(e′

kJΦT−tej)
2V ar[u′

tM
(a)
t v

∗(j)
t ] +

· · · + (e′
kJΦ1ej)

2V ar[u′
tM

(a)
t v

∗(j)
T−1]

]
,

a
(k,j,a)
1n =

2

NT

T−2∑
t=1

[(e′
kJΦT−t−1ej)

2Cov[u′
tM

(a)
t v

∗(j)
t+1 ,u

′
t+1M

(a)
t+1v

∗(j)
t+1 ]

(T − t)(T − t− 1)
+

· · · +
(e′

kJΦ1ej)
2Cov[u′

tM
(a)
t v

∗(j)
T−1,u

′
T−1M

(a)
T−1v

∗(j)
T−1]

(T − t)

]
.

By using Lemma 1 and the boundness of (e′
kJΦhej)

2, we have

a
(k,j,a)
0n ≤ 1

NT

T−1∑
t=1

tr(M
(a)
t )

(T − t)2

[
(e′

kJΦT−tej)
2
[
m(3)(ut,v

∗(j)
t ) +m(2)(ut,v

∗(j)
t )

+ |m(0)(ut,v
∗(j)
t )|

]
+
[
(e′

kJΦT−t−1ej)
2 + · · · + (e′

kJΦ1ej)
2
]
m(3)(ut,v

∗(j)
t )

]
≤ O(1)

NT

T−1∑
t=1

t

(T − t)2

[[
m(3)(ut,v

∗(j)
t ) +m(2)(ut,v

∗(j)
t )

+ |m(0)(ut,v
∗(j)
t )|

]
+(T − t− 1)m(3)(ut,v

∗(j)
t )

]
= O(

1

NT

∑
t

t

T − t
) = O(

log T

N
) ,

where m(l)(ut,v
∗(j)
t ) (l = 0, 2, 3) are defined in the same way to (6.102).
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Moreover, from the fact that |E [d′
t+jM

(a)
t ut]| ≤ O(tr(M

(a)
t+j)), we find

|a(k,j,a)
1n | =

2

NT

∣∣∣T−2∑
t=1

(e′
kJΦT−t−1ej)

2O(E [d′
t+1M

(a)
t ut])

(T − t)(T − t− 1)

+ · · · +
(e′

kJΦ1ej)
2O(E [d′

T−1M
(a)
t ut])

(T − t)

∣∣∣
≤ O(1)

NT

T−2∑
t=1

1

(T − t)
(

t+ 1

T − t− 1
+…+

T − 1

1
)

≤ O(1)

NT
(
1

2
+…+

1

T − 1
)[T (

1

2
+…+

1

T − 1
) + 1] = O(

(log T )2

N
) .

since (log T )2/N ∼ c(log T )2/T . Finally, we consider the variance of Υ
(k,a)
22n ,

V ar[Υ
(k,a)
22n ] =

1

NT
V ar[

T−1∑
t=1

1

T − t

T−t∑
h=1

K∗∑
j=1

(e′
kJΦhej)e

′
jV

∗′
T−hM

(a)
t ūtT ]

=
1

NT

[ K∗∑
j=1

V ar[
T−1∑
t=1

ṽ
∗(k,j)′

tT M
(a)
t ūtT ] +

K∗∑
i,j

Cov[., .]
]
.

By the same arguments as used for the derivations of Lemma 1, we have

V ar[ṽ
∗(k,j)′

tT M
(a)
t ūtT ] =

[
m(3)(ṽ

∗(k,j)
tT , ūtT ) +m(2)(ṽ

∗(k,j)
tT , ūtT )

]
tr(M

(a)2
t )

+m(0)(ṽ
∗(k,j)
tT , ūtT ) E [d

(a)′

t d
(a)
t ]

≤ tr(M
(a)
t )
[
m(1)(ṽ

∗(k,j)
tT , ūtT ) +m(3)(ṽ

∗(k,j)
tT , ūtT )

]
,

where d
(a)′

t ιN = tr(M
(a)
t ). The inequality follows from that E[d

(a)′

t d
(a)
t ] ≤ tr(M

(a)
t )

and m(1)(ṽ
(k,j)
tT , ūtT ) −m(2)(ṽ

∗(k,j)
tT , ūtT ) ≥ 0.

Then,

m(3)(ṽ
∗(k,j)
tT , ūtT ) = V ar[

1

T − t
(e′

kJΦT−tejv
∗(j)
it + · · · + e′

kJΦ1ejv
∗(j)
iT−1)]

× V ar[
1

T − t+ 1
(uit + · · · + uiT )]

= O((
1

T − t
)2) ,

since (v
∗(j)
it , uit) is independent from (v

∗(j)
is , uis), if s ̸= t. Similarly,

m(1)(ṽ
∗(k,j)
tT , ūtT ) =

1

(T − t)2(T − t+ 1)2
E [(e′

kJΦT−tejv
∗(j)
it + · · · + e′

kJΦ1ejv
∗(j)
iT−1)

2

× (uit + · · · + uiT )2] = O(
1

(T − t)2
) .
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Therefore, for any j,

V ar[ṽ
∗(k,j)′

tT M
(a)
t ūtT ] = O(

t

(T − t)2
) . (6.110)

From this result and againg by using the arguments as Alvarez and Arellano (2003),

we conclude that

V ar[Υ
(k,a)
22n ] = O(

(log T )2

N
) . (6.111)

[ Step 4 ] : Now we turn to evaluate the limiting distribution of the LIML

estimator in the case of using the backward-filtered instruments. We replace M
(b)
t

for M
(a)
t , then define Υ

(k,b)
11n ,Υ

(k,b)
12n ,Υ

(k,b)
21n and Υ

(k,b)
22n , accordingly. We first notice

that the order of V ar[Υ
(k,.)
12n ] can be free with Mt, and those of Υ

(k,b)
21n and Υ

(k,b)
22n are

reduced by the fact that tr(M
(b)
t ) = O(1). For instance, V ar[Υ

(k,b)
12n ] = O( 1

T
),

V ar[Υ
(k,b)
21n ] = O(

(log T )2

N0T
), V ar[Υ

(k,b)
22n ] = O(

(log T )2

N0T
) . (6.112)

In order to evaluate V ar[Υ
(k,b)
11n ], we prepare the next lemma, which is a general-

ization of the corresponding one by Hayakawa (2006).

Lemma 3 : Define the N×1 vectors of erros of the population linear projection

of Wt−1J on Z
∗(b)
t J,

E
(b)
t = [ϵ

(1,b)
t , ..., ϵ

(K,b)
t ] = Wt−1J − Z

∗(b)
t J[γ

∗(1,b)
t , ...,γ

∗(K,b)
t ], (6.113)

where Z
∗(b)
t = [z

∗(b)
1(t−1), ..., z

∗(b)
N(t−1)]

′, Z
∗(b)
t J = Z

(b)
t and γ

∗(k,b)
t is defined by

[γ
∗(1,b)
t , ...,γ

∗(K,b)
t ] = (b2t lim

t→∞
J′E [z

∗(b)
it−1z

∗(b)′
it−1]J)−1J′E [z

∗(b)
it−1w

′

it−1]J.

Then, for k = 1, ..., K,

E [ϵ
(k,b)2
it ] = O(

1

t
) . (6.114)

Therefore, for any M∗
t such that M∗

tM
(b)
t = M

(b)
t ,

1

N0T

T−1∑
t=1

J′W′
t−1M

∗
tWt−1J

p→ J′E [wi(t−1)w
′
i(t−1)]J = J′Γ0J . (6.115)

Proof : By using (2.14) and (3.29), we observe

E [z
∗(b)
it−1w

′

it−1] = bt[Γ0 −
1

t
Γ0Π

∗′(IK∗ − Π∗′)−1(IK∗ − Π∗′t+1)]

= bt[Γ0 +O(
1

t
)], (6.116)
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and then we can show that

E [z
∗(b)
it−1z

∗(b)′
it−1] = b2t [Γ0 +O(

1

t
)] . (6.117)

Thus we find that limt→∞ E [z
∗(b)
i(t−1)z

∗(b)′
i(t−1)] = Γ0 and then

E [ϵ
(b)
it ϵ

(b)′

it ]

= J′E [wit−1w
′
it−1]J − 2J′E [wit−1z

∗(b)′
it−1]J(b2tJ

′Γ0J)−1J′E [z
∗(b)
it−1w

′
it−1]J

+J′E [wit−1z
∗(b)′
it−1]J(b2tJ

′Γ0J)−1J′E [z
∗(b)
it−1z

∗(b)′
it−1]J(b2tJ

′Γ0J)−1J′E [z
∗(b)
it−1w

′
it−1]J

= J′Γ0J − J′Γ0J +O(
1

t
) ,

where ϵ
(b)
it = (ϵ

(1,b)
it , ..., ϵ

(K,b)
it )′. By using the fact that (IN − M∗

t )Z
∗(b)
t J = O and

W′
t−1M

∗
t Wt−1 = W′

t−1Wt−1 − E
(b)′

t (IN − M∗
t )E

(b)
t , we have

1

N0T

T−1∑
t=1

E [ϵ
(k,b)′

t (IN0 − M∗
t )ϵ

(k,b)
t ] ≤ 1

T

T−1∑
t=1

E [ϵ
(k,b)2
it ] =

O(log T )

T
. (6.118)

Then the convergence in probability of (6.118) is valid by the Markov inequal-

ity. For j ̸= k, we apply the Cauchy-Schwarz inequality and we have that

(1/N0T )
∑

t W
′
t−1Wt−1

p→ Γ0 as T → ∞. Q.E.D.

Turning to evaluate the order of V ar[Υ
(k,b)
11n ],

V ar[Υ
(k,b)
11n ] =

1

N0T

T−1∑
t=1

T−1∑
s=1

E [e′
kJ

′W′
t−1M

(b)
t ūtT ū′

sTM(b)
s Wt−1Jek]. (6.119)

For t ≥ s and k = 1, ..., K,

E [w
(k)′

t−1M
(b)
t ūtT ū′

sTM(b)
s w

(k)
s−1] (6.120)

=
E [u2

it]

(T − s+ 1)
E [w

(k)′

t−1M
(b)
t M(b)

s w
(k)
s−1]

=
σ2

(T − s+ 1)

[
E [w

(k)′

t−1(IN0 − M(b)
s )ϵ

(k,b)
s−1 ] − E [w

(k)′

t−1w
(k)
s−1]

−E [ϵ
(k,b)′

t−1 (IN0 − M
(b)
t )(IN0 − M(b)

s )ϵ
(k,b)
s−1 ] + E [ϵ

(k,b)′

t−1 (IN0 − M
(b)
t )w

(k)
s−1]
]
,

where we have used the decomposition w
(k)′

h−1M
(b)
h = w

(k)′

h−1 − ϵ
(k,b)′

h [IN0 − M
(b)
h ] for

h = t, s.

For the second term of the last equality, we have E [w
(k)′

t−1w
(k)
s−1] = E [Es[w

(k)′

t−1]w
(k)
s−1].

Thus the corresponding order is equal to O(V ar[Υ
(k,a)
11n ]) = O(log T/T ). Hence for
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the first term we have the same result. As for the third term

|E [ϵ
(k,b)′

t−1 (IN0 − M
(b)
t )(IN0 − M(b)

s )ϵ
(k,b)
s−1 ]| ≤ (E [ϵ

(k,b)′

t−1 ϵ
(k,b)
t−1 ϵ

(k,b)′

s−1 ϵ
(k,b)
s−1 ])1/2

=
( N0∑

i=1

E [ϵ
(k,b)2
i(t−1)ϵ

(k,b)2
i(s−1)] +

N0∑
i,j,i̸=j

E [ϵ
(k,b)2
i(t−1)][ϵ

(k,b)2
j(s−1)]

)1/2

≤ [O(
N0

ts
) +O(

N0(N0 − 1)

ts
)]1/2

= O(N0
1√
t

1√
s
),

where the first equality is due to independence of random variables ϵ
(k,b)2
i(t−1). Then at

the second inequality we have applied Lemma 3 and the Cauchy-Schwarz inequality

as

|E [ϵ
(k,b)2
i(t−1)ϵ

(k,b)2
i(s−1)]| ≤ (E [ϵ

(k,b)4
i(t−1)])

1/2(E [ϵ
(k,b)4
i(t−1)])

1/2 = O(
1

t2
)1/2O(

1

s2
)1/2 .

Thus

1

N0T

T−1∑
s=1

2
T−1∑
t≥s

σ2

T − s+ 1
|E [ϵ

(k,b)′

t−1 (IN0 − M
(b)
t )(IN0 − M(b)

s )ϵ
(k,b)
s−1 ]|

≤ N0O(1)

N0T

T−1∑
s=1

2
T−1∑
t≥s

1

T − s+ 1

1√
t

1√
s

≤ O(1)

T

T−1∑
s=1

1

T − s+ 1

T−1∑
t=1

1√
t

= O(
(log T )

√
T

T
) .

For the fourth term of last equality of (6.120), we have the same order by the

similar arguments. Hence, we find that

V ar[Υ
(k,b)
11n ] = O(

log T√
T

) . (6.121)

[ Step 5 ] : We shall drive the relevant asymptotic covariance and bias at this

step. First, we prepare the next lemma, which is useful for deriving an explicit

asymptotic covariance formula for the case (a).

Lemma 4 : Let (µ
(1)
i , ..., µ

(k)
i , ..., µ

(K∗)
i )′ = µi = [IK∗ − Π∗]−1π∗

i and Mµ =

[µ1, ...,µN ]′. Define the N × 1 vectors of errors of the population linear projection

of MµJ on Z
(a)
t ,

E
(a)
t = [ϵ

(1,a)
t , ..., ϵ

(K,a)
t ] = MµJ − Z

(a)
t [γ

∗(1,a)
t , ...,γ

∗(K,a)
t ], (6.122)
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where for k = 1, ..., K, h = 1, ..., t we take each K∗t× 1 coeficient vector γ
∗(k,a)
t =

(γ
∗(k,a)′

t1 , ...,γ
∗(k,a)′

th , ...,γ
∗(k,a)′

tt )′ as γ
∗(k,a)
thl = 1

t
(if l = k , ) and γ

∗(k,a)
thl = 0 , (if l ̸= k ,),

where γ
∗(k,a)
th = (γ

∗(k,a)
th1 , ..., γ

∗(k,a)
thl , ...,γ

∗(k,a)
thK∗

)′. Then, for k = 1, ..., K,

E [ϵ
(k,a)2
it ] = O(

1

t
) . (6.123)

Therefore,

1

NT

T−1∑
t=1

J′W′
t−1M

(a)
t Wt−1J

p→ J′E [wi(t−1)w
′
i(t−1)]J = J′Γ0J . (6.124)

Proof : For k = 1, ..., K, by using the fact z∗i(h−1) = wi(h−1) + µi ,

ϵ
(k,a)
it = µ

(k)
i −

t∑
h=1

z
(a)′

i(h−1)γ
∗(k,a)
th (6.125)

= (µ
(k)
i − 1

t

t∑
h=1

µ
(k)
i ) − 1

t

t∑
h=1

w
[k]
i(h−1) ,

since by the construction of theK∗-variables, there is one variable in each z
(a)
i(h−1) (h =

1, ..., t) such that l = k. (For convenience we use the notation that w
[k]
i(h−1) is

the k−th element of wi(h−1).) Therefore, E [ϵ
(k,a)2
it ] = V ar[(1/t)

∑t
h=1w

[k]
i(h−1)] =

O(1/t).

Moreover,

J′W′
t−1M

(a)
t Wt−1J = J′W′

t−1Wt−1J − E
(a)′

t (IN − M
(a)
t )E

(a)
t , (6.126)

the equality follows from the facts that Wt−1J = Z∗
t−1J−Z

(a)
t [γ

∗(1,a)
t , ...,γ

∗(K,a)
t ]−

E
(a)
t , and (IN −M

(a)
t )(Z∗

t−1J−Z
(a)
t [γ

∗(1,a)
t , ...,γ

∗(K,a)
t ]) = ON×K since M

(a)
t Z∗

t−1J =

Z∗
t−1J and we define an N × K∗ matrix Z∗

t−1 = (z∗
′

t−1). The rest of the proof is

established by the same arguments used for Lemma 3. Q.E.D.

Then we can re-write (6.84) as

1√
n
D′

T−1∑
t=1

Z
(f)′

t−1Ntu
(f)
t +

1√
n

T−1∑
t=1

(
U

(⊥,f)′

t

O

)
Ntu

(f)
t

=
1√
n
D′

T−1∑
t=1

J
′
W

′

t−1Ntut +
1√
n

T−1∑
t=1

(
U⊥′

t

O

)
Ntut +O(1) + op(1)

=
1√
n
D′

T−1∑
t=1

J
′
W

′

t−1ut +
1√
n

T−1∑
t=1

(
U⊥′

t

O

)
Ntut +O(1) + op(1)

= A1n + A2n +O(1) + op(1) , (say, ) (6.127)
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where the first equality is due to the result of Step 2. The second equality follows

from that Nt = IN − (1 + c∗)(IN − Mt) and

V ar[
1√
n

T−1∑
t=1

e′
kJW

′

t−1(IN − Mt)ut] =
E [u2

it]

NT

T−1∑
t=1

E
[
ϵ(k,.)′(IN − Mt)ϵ

(k,.)
]

≤ O(1)

T

T−1∑
t=1

E [ϵ
(k,.)2
it ]

=
O(log T )

T
,

where ϵ
(k,.)
it = ϵ

(k,a)
it or ϵ

(k,a)
it , and the last equality is due to Lemma 3 and Lemma

4.

Then we can evaluate the asymptotic variance-covariance terms of the LIML

estimator. We immedeately have

E [A1nA
′

1n] =
Et[u

2
it]

NT
D

′E
[T−1∑

t=2

J
′
W

′

t−1Wt−1J
]
D −→ σ2Φ∗ , (6.128)

By using the i-th unit vector ei (i = 1, ..., N),

E [A1nA
′

2n] =
( 1

NT
D

′
T−1∑
t=2

E
[
J

′
W

′

t−1Et

[
utu

′

tNtU
⊥
t

]]
,O
)

=
( 1

NT
D

′
T−1∑
t=2

E

[
J

′
W

′

t−1

N∑
i=1

N∑
j=1

eie
′

iEt[u
2
itNteju

⊥′

jt ]

]
,O
)

−→
(

lim
T→∞

1

NT
D

′
T−1∑
t=2

E
[
J

′
W

′

t−1dt

]
E [u2

itu
⊥′

it ](
1

1 − c
),O

)
,

since for any i, j, Et[u
⊥
jtuit] = 0 and E [W

′
t−1c∗IN ] = 0. We use the decomposition

E [A2nA
′

2n] =
1

NT

T−1∑
t=2

E
[
U⊥′

t Nt[σ
2IN + (utu

′

t − σ2IN)]NtU
⊥
t

]
.

Then the first term converges

1

NT

T−1∑
t=2

tr(N2
t )σ

2E
[
u⊥

itu
⊥′

it

]
−→ c∗σ

2E
[
u⊥

itu
⊥′

it

]
, (6.129)

because we have N2
t = Mt + c2∗(IN − Mt) and

1

n

T−1∑
t=2

tr(Mt) + c2∗
1

n

T−1∑
t=2

tr(IN − Mt) =
rn

n
+
qn
n
c2∗ −→ c∗ . (6.130)
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For any vector t, the second term becomes

t
′ 1

NT

T−1∑
t=1

E
[
U⊥′

t Nt(utu
′

t − σ2IN)NtU
⊥
t

]
t (6.131)

=
1

NT

T−1∑
t=2

N∑
j=1

E
[
(e

′

jNtej)
2Et

[
(u2

it − σ2)(u⊥′

it t)2
]]

−→ t
′
Ξ4t

by using the similar calculations as E [A1nA
′
2n].

Next, we shall evaluate the asymptotic bias of LIML estimator, and first notice

that E [Υ
(g,a)
4n ] = E [Υ

(g,b)
4n ] = 0 in (6.93) by using the fact that for any i, j, s, t,

Et[u
⊥
itujs] = 0. So that in the case of Mt = M

(a)
t , we can evaluate the asymptotic

bias as follow

b(a) = Φ∗−1D′ lim
N,T→∞

1√
NT

T−1∑
t=1

E
[
Z

(f)′

t−1(
1

1 − ca
)(M

(a)
t − caIN)u

(f)
t

]
. (6.132)

For the term
∑T−1

t=1 E
[
Z

(f)′

t−1u
(f)
t

]
= −(N/T )J

′E
[
W′

i(−1)ιT ι′Tui

]
, we have

E
[
W′

i(−1)ιT ι′Tui

]
(6.133)

= E
[
(wi0,Π

∗wi0 + v∗
i1 , ..., Π∗T−1wi0 + · · · + v∗

i(T−1))ιT ι′Tui

]
=

T−1∑
h=1

T−1−h∑
j=0

Π∗jE [v∗
ituit]

= T (IK∗ − Π∗)−1E [v∗
ituit]

−(IK∗ − Π∗)−1[IK∗ + Π∗(IK∗ − Π∗)−1(IK∗ − Π∗T−1)]E [v∗
ituit] .

For the term
∑T−1

t=1 E
[
Z

(f)′

t−1M
(a)
t u

(f)
t

]
=
∑T−1

t=1 −J
′E
[
ctṼ

′
tTM

(a)
t u

(f)
t

]
,

E
[
ctṼ

′

tTM
(a)
t u

(f)
t

]
(6.134)

=
K∗t

T − t+ 1

[
ΦT−tE [v∗

ituit] −
1

T − t
(ΦT−t−1 + · · · + Φ1)E [v∗

ituit]
]

=
K∗t

T − t+ 1
(IK∗ − Π∗)−1

[
(IK∗ − Π∗T−t) − IK∗

+(
1

T − t
)[IK∗ + Π∗(IK∗ − Π∗)−1(IK∗ − Π∗T−t−1)]

]
E [v∗

ituit]

=
K∗t

T − t+ 1
(IK∗ − Π∗)−1

[
Π∗T−t + (

1

T − t
)(IK∗ − Π∗)−1(IK∗ − Π∗T−t)

]
E [v∗

ituit]

=
K∗t

T − t+ 1
(IK∗ − Π∗)−2

[
−(IK∗ − Π∗)Π∗T−t + (

1

T − t
)(IK∗ − Π∗T−t)

]
E [v∗

ituit]

= tK∗(IK∗ − Π∗)−2

×
[ 1

T − t
(IK∗ − Π∗T−t) − 1

T − t+ 1
(IK∗ − Π∗T−t+1)

]
E [v∗

ituit],
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thus

T−1∑
t=1

E
[
Z

(f)′

t−1M
(a)
t u

(f)
t

]
(6.135)

= −K∗(IK∗ − Π∗)−2
[
(T − 1)(IK∗ − Π∗) +O(log T )

]
E [v∗

ituit].

Therefore, we obtain

b(a) = − lim
N,T→∞

(
K∗

1 − ca

T√
NT

− ca
1 − ca

N√
NT

)Φ∗−1D′J
′
(IK′ − Π∗)−1E [v∗

ituit]

= −
K∗
√

lim(T/N)

2 −K∗ lim(T/N)
Φ∗−1D′J

′
(IK∗ − Π∗)−1E [v∗

ituit]. (6.136)

Similarly, we consider the case of Mt = M
(b)
t ,

T−1∑
t=1

E [Z
(f)′

t−1M
(b)
t u

(f)
t ] (6.137)

= −KJ
′
(IK∗ − Π∗)−2

[
(IK∗ − Π∗) − (1/T )(IK∗ − Π∗T )

]
E [v∗

ituit].

Hence, regardless of whether N0 → ∞ or fixed, we have non bias

b
(b)
0 = − lim

T→∞
(
K

1 − cb

1√
N0T

− cb
1 − cb

N0√
N0T

)Φ∗−1D′J
′
(IK∗ − Π∗)−1E [v∗

ituit]

= 0 . (6.138)

[ Step 6 ] : We now turn to consider the asymptotic covariance matrix and the

bias of the GMM estimator in some case. If c = 0, the normalized GMM estimator

are asymptotically equivalent to

G0

√
n(θ̂GM − θ)

=
1√
n
D′

T−1∑
t=1

J
′
W

′

t−1ut +
1√
n

T−1∑
t=1

(
J′

G2
V′

t

O

)
Mtut + op(1) ,

where J′
G2

= [0,IG2 ]. For any G2 × 1 vector t and tG = JGt, by using lemma 1

V ar
[ 1√

n

T−1∑
t=1

t′GV′
tMtut

]
=

1

NT

T−1∑
t=1

V ar[t′GV′
tMtut]

= O(c) . (6.139)

Thus in both cases Mt = M
(a)
t and M

(b)
t , the asymptotic variance-covariance

matrix becomes G−1
0 (σ2Φ∗)G−1

0 = σ2Φ∗−1. Also under the condition
∑

t tr(Mt)
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/(
√
NT ) <∞, the asymptotic bias is given by

b(.) = lim
N,T→∞

[ 1√
NT

T−1∑
t=1

tr(Mt)
]
Φ∗−1

(
J′

G2
E [vituit]

0

)
. (6.140)

[ Step 7 ] : Finally, we consider the asymptotic normality of the LIML estimator.

(The asymptotic normality of the GMM estimator in some case can be proven in

the same way.) Define the (G2 +K1) × 1 martingale difference sequence by

AtN = A1tN + A2tN =
1√
N

[
D′J

′
N∑

i=1

wi(t−1)ut +

(
U⊥′

t

O

)
Ntut

]
, (6.141)

then A1n + A2n = (1/
√
T )
∑

t(A1tN + A2tN). Then (1/n)
∑

t W
′
t−1(Wt−1, ιN)

p→ (Γ0,0), the independence of uit from Ft−1, and the same arguments as used for

the asymptotic covariance evaluation, for any vector t and any N ,

1

T

T−1∑
t=1

E
[
t′AtNA′

tNt|Ft−1

]
p→ 1

T

T−1∑
t=1

E
[
t′AtNA′

tNt
]
, (6.142)

as T → ∞. Moreover, for some constant ∆′ and any t, N ,

E
[
[t′(A1tN + A2tN)]4

]
< ∆′ . (6.143)

This is so because E
[
[t′A1tN ]4

]
< ∞ and E

[
[(c∗/

√
N)t′(U⊥′

(IN − Mt)ut)]
4
]
< ∞

by the similar arguments as used for the following Lemma 5. Thus the Lyapounov

conditions hold for both cases Mt = M
(a)
t and M

(b)
t .

Lemma 5 : For any G2 × 1 vector t and any t, N , there is a positive constant

∆ such that

E
[
[(

1√
N

)t′U⊥′

t Mtut]
4
]
< ∆ . (6.144)

Proof : Define t
(t)
i = t′U⊥′

t ei, m
(t)
ij = e′

iMtej and re-write u
(t)
j = ujt, then

Et

[
[t′U⊥′

t Mtut]
4
]

=
N∑

i,i′,i′′,i′′′

N∑
j,j′,j′′,j′′

m
(t)
ij m

(t)
i′j′m

(t)
i′′j′′m

(t)
i′′′j′′′Et[t

(t)
i t

(t)
i′ t

(t)
i′′ t

(t)
i′′′u

(t)
j u

(t)
j′ u

(t)
j′′u

(t)
j′′′ ]

= E [titi′ti′′ti′′′ujuj′uj′′uj′′′ ]
∑
Ih

m
(t)
ij m

(t)
i′j′m

(t)
i′′j′′m

(t)
i′′′j′′′ +O(N2) (6.145)
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where the second equality follows from that the homogeneity of vit over i, t, and

the fact that E [tiuj] = 0, |mij| ≤ 1 for any i, j, t. Hence we shall check that the

summation over the following index set Ih becomes also O(N2). In order to define

Ih, put the terms which has more than three products of the moments

α1 = E [titi′ujuj′ ]E [ti′′ti′′′ ]E [uj′′uj′′′ ] , α2 = E [titi′ti′′ti′′′ ]E [ujuj′ ]E [uj′′uj′′′ ] ,

α3 = E [titi′ ]E [ti′′ti′′′ ]E [ujuj′uj′′uj′′′ ] , α4 = E [titi′ ]E [ti′′ti′′′ ]E [ujuj′ ]E [uj′′uj′′′ ] ,

α5 = E [tiujuj′ ]E [ti′ti′′ti′′′ ]E [uj′′uj′′′ ] , α6 = E [titi′uj′′′ ]E [ti′′ti′′′ ]E [ujuj′uj′′ ] ,

α7 = E [titi′uj]E [ti′′ti′′′uj′ ]E [uj′′uj′′′ ] , α8 = E [titi′ ]E [ti′′ujuj′ ]E [ti′′′uj′′uj′′′ ] .

Thus define the set Ih = {{i, i′, i′′, i′′′, j, j′, j′′, j′′}| E [titi′ti′′ti′′′ujuj′uj′′uj′′′ ] = αh}.
From the fact that M2

t = Mt, we have m
(t)
ij = m

(t)
ji , and

N∑
j

m
(t)
ij m

(t)
ji′ = m

(t)
ii′ ,

N∑
i,j

m
(t)
i,j ≤ N , (6.146)

where the inequality can be shown by using the similar arguments as used for

Lemma 3 in Anderson et al. (2008b). In effect, using these properties we can

obtain three types order O([tr(Mt)]
2), O(tr(Mt)N), and O(N2) for

∑
Ih

. Then

the total number of the patterns which belong to some order type is finite, hence

we may conclude
∑

Ih
= O(N2).

This is so because for h = 1, ..., 4, we have the conditions i = i′ and i′′ = i′′′

regardless i = i′′ or i ̸= i′′, and also j = j′, j′′ = j′′′. Then
∑

Ih
is reduced to the

double summation

N∑
i=i′,i′′=i′′′,j=j′,j′′=j′′′

m
(t)
ij m

(t)
i′j′m

(t)
i′′j′′m

(t)
i′′′j′′′ =

N∑
i=i′,i′′=i′′′

m
(t)
ii′m

(t)
i′′i′′′ = [tr(Mt)]

2 .(6.147)

For h = 5, ..., 8, we can have the type of conditions that i = i′, i′′ = i′′′ or

j = j′, j′′ = j′′′, and at least j = j′ or i = i′, thus the summation is reduced to

the triple summation. By using (6.146),

N∑
i=i′,i′′=i′′′,j=j′,j′′,j′′′

m
(t)
ij m

(t)
i′j′m

(t)
i′′j′′m

(t)
i′′′j′′′ =

N∑
j=j′,j′′,j′′′

m
(t)
jj′m

(t)
j′′j′′′ = Ntr(Mt).(6.148)

For any N, t, it holds that tr(Mt)/N < 1 and then the existence of 8-th order

moment ensures (6.144). Q.E.D.

Proof of Theorem 3.3 :

The method of proof of Theorem 3.3 is essentially the same as the one used by

Anderson et al. (2008b). Hence it should be short and we treat the case when
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K1 = 0 and γ1 = 0 for the simplicity. We set the vector of true parameters β
′
=

(1,−β
′

2) = (1, β2, · · · , β1+G2). Then an estimator of the vector β2 is composed of

β̂i = ϕi(
1

n
G(f),

1

qn
H(f)) (i = 2, · · · , 1 +G2) . (6.149)

For the estimator to be consistent, we need the conditions

βi = ϕi

[(
β

′

2

IG2

)
Φ∗ (β2, IG2) + c Ω, Ω

]
(i = 2, · · · , 1 +G2) (6.150)

as identities with respect to parameters β2,Φ
∗, and Ω . Then the proof of Theorem

4 of Anderson et al. (2008b) implies the next result.

Lemma 6 : Let β̂2 be a consistent estimator in the class of (3.42). For ϕ = (ϕk),

let also

τ 11 =

 τ
(2)
11
...

τ
(1+G2)
11

 , (6.151)

where τ
(k)
11 = ∂ϕk

∂g11
(k = 2, · · · , 1 +G2) . Then

ê =
√
n(β̂2 − β2)

=
[
τ 11β

′
+ (0,Φ∗−1)

]
S(f)β + op(1) (6.152)

where S(f) = G
(f)
1 −√

cc∗H
(f)
1 .

When ca = 0 or cb = 0, for instance, the asymptotic variance-covariance matrix

of S(f)β has been obtained by Theorem 3.1 and Theorem 3.2 as the corresponding

cases. Then

E
[
ê ê

′
]

=

[
(τ 11 +

1

σ2
(0,Φ∗−1)Ωβ)β

′
+ (0,Φ∗−1)(IG2+1 −

Ωββ
′

β
′
Ωβ

)

]

×E [S(f)ββ
′
S(f)] ×

[
(τ 11 +

1

σ2
(0,Φ∗−1)Ωβ)β

′
+ (0,Φ∗−1)(IG2+1 −

Ωββ
′

β
′
Ωβ

)

]′

= Ψ∗ + E
[
(β

′
S(f)β)2

] [
σ2τ 11 + (0,Φ∗−1)Ωβ

] [
σ2τ

′

11 + β
′
Ω

(
0

′

Φ∗−1

)]
+ o(1) ,
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where Ψ∗ has been given by Theorem 3.1 and Theorem 3.2.

This covariance matrix is the sum of a positive semi-definite matrix of rank 1 and

a positive definite matrix. It has a minimum if

τ 11 = − 1

σ2
(0,Φ∗−1)Ωβ . (6.153)

Hence we have completed the proof of Theorem 3.3 for the case of ca = 0 or cb = 0.

Other cases in Theorem 3.1 and Theorem 3.2 can be treated in the same way.

Q.E.D.
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APPENDIX : Some Figures

In Figures the distribution functions of the GMM and the LIML estimators are shown with

the large sample normalization (i.e. the case of c = 0) and the large-K normalization (i.e. the

case of c > 0). The limiting distributions for the LIML estimator in the large-K asymptotics are

N2(0, I2) and its marginal distributions are N(0, 1) as n → ∞, which are denoted as ”o”. For

the sake of comparisons, the distribution functions of the GMM estimator are normalized in the

same way and presented in figures. The parameters of our settings and the details of numerical

computation method are similar to those explained in Anderson et al. (2005, 2008a), Akashi

(2008), Akashi and Kunitomo (2010).
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Figure 1: β2 : N = 100, T = 25, cb = 4
100
, (ω11, ω12) = (1.0, 0.3)
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Figure 2: γ11 : N = 100, T = 25, cb = 4
100
, (ω11, ω12) = (1.0, 0.3)
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Figure 3: β2 : N = 100, T = 50, cb = 4
100
, (ω11, ω12) = (1.0, 0.3)
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Figure 4: γ11 : N = 100, T = 50, cb = 4
100
, (ω11, ω12) = (1.0, 0.3)
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Figure 5: β2 : N = 100, T = 25, cb = 4
100
, (ω11, ω12) = (1.5, 1.0)
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Figure 6: γ11 : N = 100, T = 25, cb = 4
100
, (ω11, ω12) = (1.5, 1.0)
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Figure 7: β2 : N = 100, T = 50, cb = 4
100
, (ω11, ω12) = (1.5, 1.0)
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Figure 8: γ11 : N = 100, T = 50, cb = 4
100
, (ω11, ω12) = (1.5, 1.0)
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Figure 9: β2 : N = 100, T = 25, ca = 3
2
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Figure 10: γ11 : N = 100, T = 25, ca = 3
2
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, (ω11, ω12) = (1.0, 0.3)
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Figure 11: β2 : N = 200, T = 50, ca = 3
2
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Figure 12: γ11 : N = 200, T = 50, ca = 3
2
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