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Abstract

This paper investigates Zhou [4]’s money search model, where money is divisible, agents can
hold any amount of money, and production of goods is costly, and presents a sufficient condition,
expressed in terms of exogenously given parameters, for the existence of single-price equilibria.
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1 Introduction

In their influential paper, Kiyotaki and Wright [3] successfully constructed a matching

model where money has value as a medium of exchange. However, they made several

simplifying assumptions, such as indivisibility of money and an inventory constraint of

money holdings. This paper investigates Zhou [4]’s money search model, where money

is divisible, agents can hold any amount of money, and production of goods is costly,

and presents a sufficient condition, expressed in terms of exogenously given parameters,

for the existence of single-price equilibria.

In Kiyotaki and Wright [3], it is assumed that money is indivisible and that agents

can hold at most one unit of money. These assumptions crucially limit the applicability

of the model. Subsequently, Green and Zhou [1] presented a model where money

is divisible and agents can hold any amount of money, and show the existence of a

stationary equilibrium. However, agents can costlessly produce goods in their model.
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This assumption introduces an unrealistic feature of equilibria; there is no upper bound

of money holdings in stationary equilibria because of costless production.

Introducing production cost into Green and Zhou’s model, Zhou [4] eliminated the

unrealistic feature in the model. In other words, every single-price equilibrium has

an upper bound of money holdings beyond which agents are not willing to hold. She

also presented a sufficient condition, expressed in terms of endogenously determined

variables, for the existence of equilibria. However, it is next to impossible to convert

it into a condition in terms of exogenously given parameters, since we need to solve

high order polynomial equations. It is worthwhile noting that she could successfully

presented a sufficient condition, expressed in terms of exogenously given parameters,

only for a simple case: the case that the upper bound of money holdings is one unit.

The existence of the other type of single-price equilibria has not been shown yet.

In this paper, we present a sufficient condition, expressed in terms of exogenously

given parameters, for the existence of single-price equilibria with an arbitrary upper

bound of money holdings in Zhou’s model, and show that there always exists a region

of parameters in which there is a single-price equilibrium. As is known, it becomes too

hard to solve Bellman equations, as matching models with money become complicated.

Kamiya and Shimizu [2] suggested a way to overcome this difficulty in matching model

with divisible money. They showed that there generically exists a continuum of sta-

tionary equilibria in such models and at least one of the endpoints is typically easily

obtained. Thus following equilibria from the endpoint, we can analyze some properties

of equilibria. Following this line, we present a sufficient condition.

The plan of this paper is as follows. We present Zhou [4]’s model in Section 2 and

main results in Section 3.

2 The Model

We first present Zhou [4]’s model. There is a continuum of agents of which measure

is one. There are k ≥ 3 types of agents with equal fractions and the same number of

types of goods. Only one unit of indivisible and perishable good i can be produced

by a type i − 1 (mod k) agent with production cost c > 0. A type i agent obtains

utility u > 0 only when she consumes one unit of good i. We assume u > c. There is

completely divisible and durable fiat money of which nominal stock is M > 0. Time

is continuous, and pairwise random matchings take place according to Poisson process

with a parameter µ > 0. Let γ > 0 be the discount rate common to all agents.
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Since the consumption goods are perishable and there is no double coincidence of

wants, all trade should involve fiat money as a medium of exchange. Each agent is

characterized by her type and the amount of money she holds. We assume that, in any

matching, a partner’s type is observable, but not her money holding, and that an agent

knows the distribution of money holdings of the economy. Production and transaction

occur according to a seller-posting-price protocol as follows. When a type i agent who

has fiat money (potential buyer) meets a type i − 1 agent (potential seller) who can

produce the buyer’s desired consumption good, the seller posts an offer first. Then the

buyer decides to accept or reject it. Production and transaction occur if and only if

the offer is accepted.

We will focus on stationary equilibria where the strategy that agents with an iden-

tical money holding and an identical type choose is symmetric and time-invariant.

Therefore, we will hereafter discuss a generic type i.

Let η ∈ R+ denote an agent’s money holding. A strategy of type i agent is defined

as a pair of an offer strategy ω(η) : R+ → R+ and a reservation price strategy ρ(η) :

R+ → R+. The former is a price that a type i agent with money holding η offers

when she meets a potential buyer. A seller with money holding η offers ω(η). In

case that a value function is continuous from the right, it will be shown that by the

perfectness condition ρ gives the maximum price that a buyer is willing to defray for

the consumption good, and so it becomes a function rather than a correspondence. Of

course, since the reservation price cannot exceed the buyer’s money holdings, ρ should

satisfy the following feasibility condition:

ρ(η) ≤ η. (1)

Let H, the money holding distribution, be a distribution defined on R+. From H, the

stationary distribution of offer prices, Ω, and the stationary distribution of reservation

prices, R, are defined as follows.

Ω(x) = H{o|o ≤ x}, (2)

R(x) = H{r|r < x}. (3)

We define R to be continuous from the left.

Let V : R+ → R+ be a value function. That is V(η) is the maximum value of

discounted utility achievable by the agent’s current money holding η. At every moment,

a type i agent with money holding η meets a type i − 1 agent with probability µ/k.
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Transaction does not occur and money holding does not change if the partner’s offer

x exceeds the type i’s reservation price r. If partner’s offer price x is not more than

reservation price r, then transaction occurs and the type i agent derives utility u from

consumption and enters in the next trading opportunity with money holding η − x.

The probability that type i with money holding η meets a type i + 1 agent is also

µ/k. Transaction does not occur if the type i’s offer o is greater than the partner’s

reservation price. If type i’s offer o does not exceed the partner’s reservation price,

then transaction occurs and faces the next matching opportunity with money holding

η + o. Then, using γ, µ, Ω, and R, the Bellman equation for V(η) is given by

γV(η) =
µ

k
max
r∈[0,η]

∫ r

0

[u + V(η − x) − V(η)]dΩ(x) +
µ

k
max
o∈�+

[1 − R(o)][V(η + o) − c − V(η)].

(4)

Some remarks on V(η) as follows. V(η) is nonnegative, since an agent can always

choose r = 0, i.e., she can always refrain from purchase. V(η) is bounded above, since

consumption opportunities occur with 1/µ intervals on average and the utility should

be discounted.

In terms of V(η), it is optimal to accept offer o if u + V(η − o) ≥ V(η). The same

condition in terms of reservation price ρ is ρ(η) ≥ o. Then, in case that a value function

is continuous from the right, the perfectness condition with respect to reservation price

is as follows:

ρ(η) = max
{
r ∈ [0, η]

∣∣u + V(η − r) ≥ V(η)
}
. (5)

That is, type i’s reservation price is her full value for good i+1, and thus it is a function

of η. In order to assure that (5) is actually defined, we confine our attention to the

case that a value function is continuous from the right hereafter.

The economy is stationary if H is an initial stationary distribution of the process

induced by the optimal trading strategy (ω, ρ). Now we define the stationary equilib-

rium grounded on the above. We adopt stationary perfect Bayesian Nash equilibrium

as our equilibrium concept.

Definition 1 < H,R, Ω, ω, ρ,V >, where V is continuous from the right, is said to be

a stationary equilibrium if

1. H is stationary under trading strategies ω and ρ, and the distribution of offer

prices Ω and that of reservation prices R are derived from H by (2) and (3),
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2.
∫

ηdH = M , and

3. given the distributions H, R and Ω, the reservation price strategy ρ and the offer

strategy ω satisfy the feasibility condition (1) and the perfectness condition (5),

respectively, and the value function V , together with ρ and ω, solves the Bellman

equation (4). Therefore,

V(η) =
1

φ + 2

[∫ ρ(η)

0

{u + V(η − x)} dΩ(x) + {1 − Ω(ρ(η))} V(η)

+ R(ω(η))V(η) + {1 − R(ω(η))} {V(η + ω(η)) − c}
]

holds, where φ = kγ/µ.

Remark 1 The equilibrium concept in Zhou [4] is slightly different from ours. In addi-

tion to our equilibrium conditions, she requires “weak undominatedness” on equilibrium

strategies.

3 The Main Result

To begin with, we define the concept of a single-price equilibrium of which existence

we are going to show.

Definition 2 < H,R, Ω, ω, ρ,V > is said to be a single-price equilibrium (SPE) with

some price p > 0 if

1. it is a stationary equilibrium, and

2. with probability one, for a meeting between a buyer and a seller, either trade

occurs with price p or trade does not occur.

In what follows, we focus on a stationary distribution H such that its support is

the set {0, p, 2p, . . . } for some p > 0. Thus H can be expressed by hn = H({np}), n =

0, 1, . . . , the measure of the set of agents with money holding np. Of course, h satisfies∑
n hn = 1 and hn ≥ 0 for all n.

Now we are ready to present the main theorem.
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Theorem 1 Let N be an arbitrary positive integer. Then there exist a φ such that,

for any φ > φ,

(φ + 1)N <
φ(φ + 1)2N

(φ + 1)N − 1

holds, and for any u and c satisfying

(φ + 1)N <
u

c
<

φ(φ + 1)2N

(φ + 1)N − 1
, (6)

there exists a single-price equilibrium with some p > 0 in which the upper bound of

money holdings is Np, i.e, hN > 0 and hn = 0 for all n > N .

For a given N , we specify a strategy which is shown to be a single-price equilibrium

strategy as follows:

• a seller with η, 0 ≤ η < Np, offers p,

• a seller with η, η ≥ Np, offers ∞, i.e., she offers no trade, and

• the reservation price of a buyer with η, η ≥ p, is more than or equal to p.

Clearly, the upper bound of money holdings is Np, and the second condition for a

single-price equilibrium is satisfied. Thus it suffices to prove the existence of V and H

which, together with the above strategy, satisfy the first condition, i.e., the condition

for a stationary equilibrium.

Note that Zhou [4] and Kamiya and Shimizu [2] show the existence of a SPE with

N = 1. In this paper, we investigate SPEs with N ≥ 2 as well.

Below, we prove the existence of V and H which, together with the above strategy,

satisfy the condition for a stationary equilibrium. The proof is divided into the following
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five steps.

Step 1: Let Vn = V(np), n = 0, 1, . . . . Then (h0, . . . , hN) and (V0, . . . , VN ) should

satisfy the following equations in stationary equilibria:

F0 = h0 + · · · + hN − 1 = 0, (7)

Fn = hn−1(1 − h0) + hn+1(1 − hN ) − hn(1 − h0 + 1 − hN ) = 0, n = 1, . . . , N − 1,
(8)

G0 = V0 − 1

φ + 2
{(1 − h0)(V1 − c) + h0V0 + V0} = 0, (9)

Gn = Vn − 1

φ + 2
{(1 − h0)(Vn+1 − c) + h0Vn + (1 − hN )(u + Vn−1) + hNVn} = 0,

n = 1, . . . , N − 1,

(10)

GN = VN − 1

φ + 2
{VN + (1 − hN)(u + VN−1) + hNVN} = 0. (11)

The first equation (7) simply says that the total measure is one. The second equation

(8) is the condition for stationarity of money holdings distribution. The last three

equations (9), (10), and (11) are the Bellman equation, i.e., the condition that the

specified strategy indeed realizes the value.

The key is that the stationarity conditions for money holdings distribution at state

0 and N are redundant.1 For, from (7) and (8), we obtain

hn = h0

(
1 − h0

1 − hN

)n

, n = 1, . . . , N, (12)

and therefore, it is verified that it satisfies the stationary conditions for n = 0 and

n = N , i.e.,

h1(1 − hN ) − h0(1 − h0) = 0,

hN−1(1 − h0) − hN (1 − hN ) = 0.

Then the number of equations is one less than the number of variables. Thus if the

regularity condition holds, then the set of solution is one-dimensional.

Below, we prove the existence of (h0, . . . , hN) and (V0, . . . , VN ) satisfying the above

equations (7)-(11). Then we extend V = (V0, . . . , VN ) to V and show that they satisfy
1This feature holds in general. See Kamiya and Shimizu [2] for the details.
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all conditions for a stationary equilibrium.

Step 2: Next, we prove the existence of (V0, . . . , VN ) with (h0, . . . , hN ) = (1, 0, . . . , 0)

satisfying equations (7)-(11). Note that at (h0, . . . , hN ) = (1, 0, . . . , 0), M =
∫

ηdH =∑N
n=0 phn cannot be satisfied. Therefore, by showing the regularity and the one-

dimensional structure, we obtain (h0, . . . , hN) and (V0, . . . , VN ) satisfying equations

(7)-(11), where (h0, . . . , hN) is close to (1, 0, . . . , 0). It of course satisfies M =
∫

ηdH =∑N
n=0 phn for some p > 0.

First, substituting (h0, . . . , hN) = (1, 0, . . . , 0) into equations (9)-(11), we obtain

(V0, . . . , VN ) as follows:

Vn =
1

φ

{
1 − 1

(φ + 1)n

}
u, n = 0, . . . , N. (13)

Note that (V0, . . . , VN ) �= (0, . . . , 0), i.e., money has value.

Next, we show the regularity, i.e., the regularity of the Jacobian matrix of equations

(7)-(11) at (h0, . . . , hN) = (1, 0, . . . , 0). We can easily obtain

[
D(F0, . . . , FN−1)

D(h1, . . . , hN )

]
h0=1

=

∣∣∣∣∣∣∣∣∣∣

1 . . . . . . . . . . . . . . 1
−1 1 0 . . . . . . 0
0 −1 1 0 . . . 0
...
0 . . . . . . . . . −1 1

∣∣∣∣∣∣∣∣∣∣
= N,

and

[
D(G0, . . . , GN )

D(V0, . . . , VN )

]
h0=1

=

∣∣∣∣∣∣∣∣∣∣∣∣

φ
φ+2

0 . . . . . . . . . . . . . . 0

− 1
φ+2

φ+1
φ+2

0 . . . . . . . . 0

0 − 1
φ+2

φ+1
φ+2

0 . . . 0
...

0 . . . . . . . . . . . . . . − 1
φ+2

φ+1
φ+2

∣∣∣∣∣∣∣∣∣∣∣∣
=

φ(φ + 1)N

(φ + 2)N+1
.

Since ∂Fi/∂Vj = 0 for any i and j, we obtain the Jacobian as follows:[
D(F0, . . . , FN−1, G0, . . . , GN )

D(h1, . . . , hN , V0, . . . , VN)

]
h0=1

=

[
D(F0, . . . , FN−1)

D(h1, . . . , hN)

]
h0=1

×
[
D(G0, . . . , GN )

D(V0, . . . , VN )

]
h0=1

= N
φ(φ + 1)N

(φ + 2)N+1
�= 0.
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Therefore, by the inverse function theorem, there is a one-dimensional solution set

containing

((h0, . . . , hN),(V0, . . . , VN )) =(
(1, 0, . . . , 0),

(
0,

1

φ

{
1 − 1

(φ + 1)

}
u, . . . ,

1

φ

{
1 − 1

(φ + 1)N

}
u

))
.

Let the set be Θ. We consider ((h0, . . . , hN ), (V0, . . . , VN )) ∈ Θ as a function of h0 when

h0 is close to one.

Step 3: Next, we show that the solution ((h0, . . . , hN), (V0, . . . , VN )) ∈ Θ corresponding

to h0 = 1 − ε, where ε is a small positive number, satisfies hn ∈ (0, 1), n = 0, . . . , N .

From (12), we obtain

hN(1 − hN)N = h0(1 − h0)
N .

Differentiating both sides by h0, we obtain

dhN

dh0

[
(1 − hN )N − NhN (1 − hN )N−1

]
= (1 − h0)

N −Nh0(1 − h0)
N−1.

Then we obtain [
dhN

dh0

]
h0=1

= 0.

Applying this argument recursively, we obtain the higher order derivatives of hN with

respect to h0 as follows:[
dihN

d(h0)i

]
h0=1

=

{
0 if i < N,

(−1)N (N)! if i = N.
(14)

Then for n = 1, . . . , N − 1,[
di

d(h0)i

{(
1 − h0

1 − hN

)n}]
h0=1

=

{
0 if i < n,

(−1)n(n)! if i = n

hold, and therefore, again from (12), we obtain[
dihn

d(h0)i

]
h0=1

=

{
0 if i < n,

(−1)n(n)! if i = n.
(15)

By Taylor’s theorem, (14) and (15) imply

hn = (1 − h0)
n + o(1 − h0)

n ≥ 0, n = 1, . . . , N,

9



where o denotes Landau’s “ou”. This assures that when h0 is slightly smaller than 1,

hn > 0, n = 1, . . . , N , hold. Thus M =
∫

ηdH =
∑N

n=0 phn is satisfied for some p > 0.

Step 4: Next, we extend ((V0, . . . , VN ), (h0, . . . , hN)) ∈ Θ to (V , H). Clearly, defining

hn = 0 for n = N + 1, N + 2, . . . , we obtain H. By the strategy specified above, the

Bellman equation for n = N + 1, N + 2, . . . , is as follows.

Vn =
1

φ + 2
{Vn + (1 − hN )(u + Vn−1) + hNVn} , n = N + 1, N + 2, . . . . (16)

Then Vn for n = N + 1, N + 2, . . . , can be obtained recursively. Note that in case of

(h0, h1, . . . , hN ) = (1, 0, . . . , 0),

Vn =
1

φ

{
1 − 1

(φ + 1)n

}
u, n = N + 1, N + 2, . . . . (17)

Let �x	 denote the integer part of a real number x, and the value function V(η) is

defined as

V(η) = V (�η/p	).

Step 5: Lastly, we search for a sufficient condition for the incentive of choosing the

specified strategy with (V , H) obtained in Step 4. Below, we present a sufficient con-

dition in case that h0 is slightly smaller than 1. There are four cases.

Case 1: Incentive for agents with ip to offer p instead of ∞ for i = 0, . . . , N − 1.

A necessary and sufficient condition is

I i
1∞ = [(1 − h0)(Vi+1 − c) + h0Vi] − Vi ≥ 0.

Note that ((h0, . . . , hN ), (V0, . . . , VN )) ∈ Θ is a function of h0 when h0 is close to one,

then [
I i
1∞
]
h0=1

= 0, and[
dI i

1∞
dh0

]
h0=1

=

[
−(Vi+1 − Vi − c) + (1 − h0)

dVi+1

dh0
− (1 − h0)

dV0

dh0

]
h0=1

= − [Vi+1 − Vi − c]h0=1

hold. By Taylor’s theorem, the condition is equivalent to

I i
1∞(h0) = [Vi+1 − Vi − c]h0=1 (1 − h0) + o(1 − h0) ≥ 0. (18)
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Then substituting (13) into the first term of the RHS, it is positive for all i if and only

if

u

c
> (φ + 1)N .

Thus if this condition is satisfied, then the incentive is satisfied for h0 = 1 − ε, where

ε > 0 is small enough.

Case 2: Incentive for agents with ip to offer p instead of jp for i = 0, . . . , N − 1 and

j = 2, . . . , N .

Since the money holdings of agents who can accept jp are at least jp, then a sufficient

condition is

I i
1j = [(1 − h0)(Vi+1 − c) + h0Vi] −

[
N∑

k=j

hk(Vi+j − c) +

(
1 −

N∑
k=j

hk

)
Vi

]
≥ 0.

Then from (14) and (15), [
I i
1j

]
h0=1

= 0, and[
dI i

1j

dh0

]
h0=1

= − [Vi+1 − Vi − c]h0=1

hold. By Taylor’s theorem, the above condition is equivalent to

I i
1j(h0) = [Vi+1 − Vi − c]h0=1 (1 − h0) + o(1 − h0) ≥ 0. (19)

Then substituting (13) into the first term of the RHS, it is positive for all i if and only

if

u

c
> (φ + 1)N .

Thus if this condition is satisfied, then the incentive is satisfied for h0 = 1 − ε, where

ε > 0 is small enough.

Before investigating Case 3, we prove the following lemma:

Lemma 1 For i = N, N + 1, . . . , and j = 1, 2, . . . , N ,

0 < Vi+j+1 − Vi+1 < Vi+j − Vi

unless hN = 1.
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Proof:

From (16), we obtain

Vn =
1 − hN

φ
u −

(
1 − hN

φ + 1 − hN

)n−N (
1 − hN

φ
u − VN

)
, n = N, N + 1, . . . .

Note that
(

1−hN

φ
u − VN

)
is strictly positive. Therefore we obtain

Vi+j+1 − Vi+1 =

(
1 − hN

φ + 1 − hN

)i+1−N
[
1 −

(
1 − hN

φ + 1 − hN

)j
](

1 − hN

φ
u − VN

)
> 0,

(Vi+j − Vi) − (Vi+j+1 − Vi+1) =(
1 − hN

φ + 1 − hN

)i−N (
φ

φ + 1 − hN

)[
1 −

(
1 − hN

φ + 1 − hN

)j
](

1 − hN

φ
u − VN

)
> 0.

Case 3: Incentive for agents with ip to offer ∞ instead of jp for i = N, . . . and

j = 1, . . . , N .

Since the money holdings of agents who accept jp are at least jp, a sufficient con-

dition is

I i
∞j = Vi −

[
N∑

k=j

hk(Vi+j − c) +

(
1 −

N∑
k=j

hk

)
Vi

]

=

(
N∑

k=j

hk

)
[c − (Vi+j − Vi)] ≥ 0.

By Lemma 1, as long as we consider an equilibrium with h0 = 1 − ε for small positive

ε, it suffices to show

IN
∞j =

(
N∑

k=j

hk

)
[c − (VN+j − VN )] ≥ 0, j = 1, . . . , N.

Then from (14) and (15),

[
IN
∞j

]
h0=1

=

[
dIN

∞j

dh0

]
h0=1

= · · · =

[
dj−1IN

∞j

d(h0)j−1

]
h0=1

= 0, and

[
djIN

∞j

d(h0)j

]
h0=1

=

[
djhj

d(h0)j
(c − (VN+j − VN ))

]
h0=1

= (−1)jj! [c − (VN+j − VN )]h0=1 .
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hold. By Taylor’s theorem, the condition implies

IN
∞j(h0) = [c − (VN+j − VN )]h0=1 (1 − h0)

j + o(1 − h0)
j ≥ 0. (20)

Then substituting (17) into the first term of the RHS, it is positive for all j if and only

if

c − 1

φ(φ + 1)N

{
1 − 1

(φ + 1)N

}
u > 0,

which is equivalent to

u

c
<

φ(φ + 1)2N

(φ + 1)N − 1
.

Thus if this condition is satisfied, then the incentive is satisfied for h0 = 1 − ε, where

ε > 0 is small enough.

Case 4: Incentive for agents with ip to accept an offer p for i = 1, . . . .

For h0 = 1 − ε where ε > 0 is small enough, this is easily verified since

[u + Vi−1 − Vi]h0=1 =

{
1 − 1

(φ + 1)i

}
u > 0

hold.

From the above arguments on incentive conditions, if (6) holds, then, at η =

0, p, . . . , Np, . . . , all incentive conditions are satisfied for h0 = 1 − ε, where ε > 0

is small enough. Note that we can take positive ε, since there is a finite number of

conditions in (18), (19), and (20). The incentives at η /∈ {0, p, . . . , Np, . . . } can be

easily checked.

By Steps 1-5, we have shown that there exists a single-price equilibrium with the upper

bound Np if (6) holds. In case of N = 1, this condition becomes

(φ + 1) <
u

c
< (φ + 1)2.

Thus we can choose φ = 0. In case of N ≥ 2, if

φ(φ + 1)2N − (φ + 1)2N + (φ + 1)N = (φ + 1)N
{
(φ + 1)N (φ − 1) + 1

}
> 0 (21)

13



is satisfied, then there is a nonempty set of parameters satisfying (6). We define φ as

the largest solution of the equation

(φ + 1)N (φ − 1) + 1 = 0.

It is easily verified that such φ exists and φ ∈ (0, 1) for N ≥ 2. Since the LHS of (21)

goes to ∞ as φ → ∞, then for any φ > φ there exists a non-empty region of u/c such

that there exists a single-price equilibrium with the upper bound Np.
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