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1. Introduction

Recently there has been a growing interest on dynamic panel econometric models

in econometrics. The main reason may be due to the fact that there have been a

number of panel data available and their analyses have been growing in many applied

fields of economics. Then the econometric methods of panel data are indispensable

tools in econometrics by now. (See Hsiao (2003) for instance.) However, there

are still non-trivial statistical problems of estimating dynamic panel econometric

models to be investigated. In particular, when there are lagged endogenous variables

with individual effects and the simultaneity effects in the structural equation of

interest exist at the same time, it has been known that the standard statistical

methods including the GMM (generalized method of moments) in the econometric

literatures or the estimating equation (EE) method in the statistics literatures do

not necessarily work well due to the individual effects and the incidental parameters

problem.

In this paper we propose a new econometric method called the conditional limited

information maximum likelihood (CLIML) approach to the estimation of dynamic

panel structural equation models. It is actually an extension of the traditional

limited information maximum likelihood (LIML) method, which was originally de-

veloped by Anderson and Rubin (1949, 1950). We intend to apply the LIML method

to the estimation of dynamic panel structural models when there are dynamic ef-

fects and endogenous variables with individual effects at the same time. However,

we need to modify the LIML method to handle the dynamic panel models with inci-

dental parameters and many orthogonal conditions. The CLIML estimation method

proposed in this paper gives a consistent estimator and it attains the asymptotic

efficiency for a large number of dynamic panel structural equation models when the

number of instrumental variables is large in the sense of Anderson and Kunitomo

(2006). We also discuss the finite sample properties of the CLIML estimator and

show that the finite sample bias of the CLIML estimator is small, which makes

the CLIML estimation quite different from the standard GMM estimation. Since
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the existence of the exact moments of the CLIML estimator is not guaranteed, we

need to conduct Monte Carlo experiments carefully. Once we notice the problem

precisely, however, it is possible to deal with this moment problem and it is easy to

modify the CLIML method without this problem if needed. We have obtained some

promising results of the finite sample properties of the CLIML estimator based on

Monte Carlo experiments.

In Section 2 we state the formulation of models and alternative estimation meth-

ods of unknown parameters in the dynamic panel structural equations with many

instruments. Then in Section 3 we give the results of the asymptotic properties of

the CLIML estimation method and its asymptotic optimality. In Section 4 we shall

discuss some modified methods of the CLIML method and in Section 5 we discuss

the finite sample properties of the CLIML estimator. Some concluding remarks will

be given in Section 6 and some details of the proofs of our theorems will be in Section

7. Also we shall give some figures in Appendix.

2. Conditional Limited Information Maximum Likelihood Ap-

proach to Dynamic Panel Structural Equations

We consider the estimation problem of a dynamic panel structural equation with

individual effects in the form

y
(1)
it =

1+G2∑
j=2

β2jy
(j)
it +

1+G2∑
j=1

β3jy
(j)
it−1+

k1∑
j=1

β4jz
∗(j)
it +ηi+uit (i = 1, · · · , N ; t = 1, · · · , T ),

(2.1)

where y
(j)
it (j = 1, · · · , 1 + G2) are the endogenous variables in the system, z

∗(j)
it (j =

1, · · · , k1) are the included exogenous variables, βl,j (l = 2, 3, j = 1, · · · , 1 + G2; l =

4, j = 1, · · · , k1) are the unknown coefficients of the right-hand side variables, ηi (i =

1, · · · , N) are individual effects (fixed or random) and uit are mutually independent

(over individuals) disturbance terms with E(uit) = 0 and E(u2
it) = σ2. In (2.1) we

allow some coefficients in β3j can be zeros and we denote the original sample size

n = NT .
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We rewrite the dynamic panel structural equation given by

y
(1)
it = β

′

2y
(2)
it + γ

′

1z
(1)
it + ηi + uit (i = 1, · · · , N ; t = 1, · · · , T ),(2.2)

where y
(1)
it and y

(2)
it (G2 × 1) are 1 + G2 endogenous variables, z

(1)
it is the K1 vector

of the included predetermined variables in (2.1), γ1 and β2 are K1 × 1 and G2 × 1

vectors of unknown parameters. We use the notation such that the vector z
(1)
it

consists of the variables y
(j)
it−1 and z

∗(j)
it (j = 1, · · · , 1+G2) and possibly other lagged

endogenous variables y
(j)
it−l (l = 1, · · · , p) in this representation.

We assume that the reduced form equation is

yit = Π
′
zit + π

′

0ηi + vit ,(2.3)

where yit = (y
(1)
it , y

(2)′

it )
′
is the (1+G2) vector of endogenous variables, zit is the K×

1 (n ≥ 3) vector of predetermined variables at t including the K1 exogenous variables

and the lagged endogenous variables, Π and π0 are a K× (1+G2) matrix and a 1×
(1+G2) vector of coefficients. We assume that the instruments zit are Ft−1−adapted,

and Ft−1 is the σ−field generated by vis (s ≤ t − 1) and zis (s ≤ t) and F0 is the

initial σ−field. (The individual effects ηi (1 = 1, · · · , N) and the initial conditions

yi0 are adapted to F0.) The predetermined variables in zit are correlated with yit

in the general case if the individual effects ηi (i = 1, · · · , N) are random; this aspect

makes the panel model consisting of (2.2) and (2.3) different from the standard

simultaneous equation models. The disturbance terms vit are mutually independent

over individuals with E(vit|Ft−1) = 0 (a.s.) and E(vitv
′
it|Ft−1) = Ω (a.s.).

The relation between the coefficients in (2.2) and (2.3) gives the condition

(1,−β
′

2)Π
′
= (γ

′
1,0

′
) and π21 = Π22β2, where Π1 = (π11,Π12) is a K1 × (1 + G2)

matrix, Π2 = (π21,Π22) is a K2 × (1 + G2) matrix and the (K1 + K2) × (1 + G2)

matrix of coefficients is partitioned as

Π =

 π11 Π12

π21 Π22

 .

We give several examples of panel structural equations known in the econometric

literatures.
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Example 1 ; Alvarez and Arellano (2003) have considered the estimation problem

of a simple dynamic model

yit = γyit−1 + ηi + uit (i = 1, · · · , N ; t = 1, · · · , T ),(2.4)

where |γ| < 1. They have applied the forward-filter 1 to the structural equation

of interest and proposed to use the orthogonal condition E(zisuit) = 0 (s ≤ t)

and zis = yis−1. Then the number of orthogonal restrictions they used is rn =

(T − 1)T/2 in their study. Recently Hayakawa (2006) has suggested that when we

use only the variables yit−1 and rn = T, we can recover an efficient information of

the unknown parameters in some sense. The model of Alvarez and Arellano (2003)

can be interpreted as the simple estimating equation in the sense that there is no

simultaneity occurred when G2 = 0 in (2.2).

Example 2 : Blundell and Bond (2000) have considered the estimation problem of

a dynamic panel structural equation with two endogenous variables given by

yit = βxit + γyit−1 + ηi + uit (i = 1, · · · , N ; t = 1, · · · , T )(2.5)

and

xit = αxit−1 + δηi + ϵit ,(2.6)

where the disturbance terms uit and ϵit are correlated, and we have the restrictions

|γ| < 1 and |α| < 1. They applied the standard GMM estimation by utilizing

the orthogonal conditions E(zitvit) = 0 and the instrumental variables are z
′
it =

(yit−1, xit−1). The number of orthogonal restrictions in their study is rn = 2T . We

may interpret this model as the structural equation when G2 = 1 if we take yit and xit

as the endogenous variables, and zit = (yit−1, xit−1) as the vector of predetermined

variables.

Example 3 : We maintain the structural equation of interest as (2.5). It may be

reasonable to change the second equation of Blundell and Bond (2000) slightly as

xit =
p∑

j=1

α∗
jyit−j +

q∑
j=1

αjxit−j + δηi + ϵit ,(2.7)

1 We shall discuss this procedure shortly.
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where p and q are some positive integers. The number of orthogonal restrictions

may be rn = (p + q)T or possibly many more as in Alvarez and Arellano (2003).

We may interpret this model as the structural equation when G2 = 1 if we take yit

and xit as the endogenous variables, and zit = (yit−1, · · · , yit−p, xit−1, · · · , xit−q) are

a vector of the predetermined variables.

There are several important aspects of the problem of estimating equations with

instrumental variables in the dynamic panel models. First the standard statistical

estimation methods do not necessarily have desirable properties because of the pres-

ence of incidental parameters ηi (i = 1, · · · , N). In many econometric applications

the number of observations over individuals are large and we have the situation that

there are many incidental parameters. In order to deal with this problem, there

have been several statistical procedures for the estimating equations with individual

effects developed. (See Hsiao (2003) for the details.) Second, some of the known

estimation procedures have substantial bias when the panel models become dynamic

in the sense that we have lagged explained variables as explanatory variables. In the

dynamic panel models, the number of orthogonal conditions becomes large when we

have a reasonable length of time series. But then it has been known that the bias

of the standard GMM estimation procedure becomes serious. Third, when we have

endogenous variables in the structural equations of interest, it has been also known

that the standard estimation methods have serious drawbacks.

Instead of refining the traditional estimation methods, we shall develop a new

estimation procedure which may overcome these problems at the same time by ap-

plying the conditional limited information maximum likelihood (CLIML) estimation

approach. The asymptotic properties of the LIML estimation method of structural

equation including its asymptotic optimality has been recently investigated by An-

derson and Kunitomo (2006), and Anderson, Kunitomo and Matsushita (2006) when

there are many instruments. We shall extend their analysis to the CLIML estima-

tion method when the number of instruments increases as the sample size, which

may be the common situation in the estimation problem of dynamic panel structural
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equation. Before we apply the CLIML estimation method, however, first we shall

propose to use the doubly filtered procedure, which is a data transformation in both

forward and backward directions of time and remove their individual effects before

estimation.

Let y
(1)
i = (y

(1)
it ), Y

(2)
i = (y

(2)′

it ) and Z
(1)
i = (z

(1)′

it ) be T × 1, T × G2 and T × K1

matrices. We define the forward deviation operator Af ((T −1)×T upper triangular

matrix 2 ) used by Alvarez and Arellano (2003) such that AfA
′
f = IT−1, 1 =

(1, · · · , 1)
′
and

A
′

fAf = QT = IT − 1T1
′

T .(2.8)

We apply the forward deviation operator to the random variables of y
(1)
i = (y

(1)
it ),

Y
(2)
i = (y

(2)′

it ), Z
(1)
i = (z

(1)′

it ), Zi = (z
′
it) and we denote the resulting variables as

y
(1,f)
i = (y

(1,f)
it ), Y

(2,f)
i = (y

(2,f)′

it ), Z
(1,f)
i = (z

(1,f)′

it ) and Z
(n,f)
i = (z

(f)′

it ) (n ≥ 3). By

using the forward-filtered variables, (2.2) becomes

y
(1,f)
it = β

′

2y
(2,f)
it + γ

′

1z
(1,f)
it + u

(f)
it (i = 1, · · · , N ; t = 1, · · · , T − 1),(2.9)

where u
(f)
i = (u

(f)
it ) is the transformed ((T − 1)× 1) vector by u

(f)
i = Afui from the

T × 1 disturbance vector ui = (uit).

On the other hand, we apply the backward deviation operator Ab ((T − 1) × T

lower triangular matrix 3 ), which satisfies AbA
′
b = IT−1, A

′
bAb = IT − 1T1

′
T , and it

removes the individual effects in the backward way instead of the forward way by

using Af . By applying this backward deviation operator to the (T − 1)×K matrix

of instrumental variables of Zi = (z
′
it), and we denote the transformed instrumental

variables as Z
(b)
i = (z

(b)′

it ) (i = 1, · · · , N ; t = 2, · · · , T ).

Then the orthogonal conditions can be given by

E
[
u

(f)
it z

(b)
is

]
= 0 (2 ≤ s ≤ t ≤ T − 1).(2.10)

2 The transformation from xit (i = 1, · · · , N) to x∗
it are defined by x∗

it = ct[xit − (1/(T −
t))(xit+1 + · · · + xiT )], c2

t = (T − t)/(T − t + 1) (t = 1, · · · , T − 1, T ≥ 2).
3 The transformation can be calculated by reversing the time indices of the corresponding vari-

ables from the future to the past.
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We notice that it is possible to use only the forward deviation operator and not to

use the backward deviation operator 4 and then we have the orthogonal conditions

of (2.10) with z
(b)
is . In the above representation the number of orthogonal restrictions

can be dependent on the sample size n = NT when T is large and it is dependent

on N . If we use the forward deviation operator and use all orthogonal conditions

available, rn = J(T − 1)(T − 2)/2 provided T ≥ 3 and J (≤ K) is the number

of instruments used 5 at each period t. Also it is possible to use only a subset of

orthogonal conditions such that

rn = J
T−1∑
t=2

(t − s(t)),(2.11)

where t − s(t) (t > s(t)) is the number of past observations used at period t. If

we take J = K and s(t) = t − 1, we only use the orthogonal condition with zit at

period t and it corresponds to the traditional LIML estimation. In the general case

we may call our method as the CLIML estimation because we can use a subset of

orthogonal conditions to the forward-filtered data or the doubly-filtered data after

transformations.

Let

Z
(n,b)
t =


z

(b)′

1s(t)+1 · · · z
(b)′

1t

...
...

...

z
(b)′

Ns(t)+1 · · · z
(b)′

Nt


be an N ×J(t− s(t)) matrix of the (backward) filtered instruments with 1 ≤ s(t) ≤
t (t = 2, · · · , T − 1). Also let y

(f)
t = (y

(1,f)
it ,y

(2,f)′

it )
′
be (1 + G2) vectors,

Y
(f)′

t =
(
y

(f)
1t , · · · ,y(f)

Nt

)
, Z

(1,f)′

t =
(
z

(1,f)
1t , · · · , z(1,f)

Nt

)
, Z

(n,f)′

t =
(
z

(n,f)
1t , · · · , z(n,f)

Nt

)
be (1 + G2) × N, K1 × N and K × N matrices of the (forward) filtered variables

(t = 1, · · · , T − 1), respectively. By using these notations, we define two (1 + G2 +

4 This procedure may be reasonable when T is greater than 2, but it is not large.
5 When there are many instruments of lagged endogenous variables as Example 3, we only use

a part of variables in (2.3) to form Z(n,b)
t and use (2.10). Alternatively, we should use a part of

orthogonal conditions of (2.10) in order to avoild degeneracy.
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K1) × (1 + G2 + K1) matrices by

G =
T−1∑
t=2

 Y
(f)′

t

Z
(1,f)′

t

 Z
(n,b)
t (Z

(n,b)′

t Z
(n,b)
t )−1Z

(n,b)′

t

(
Y

(f)
t ,Z

(1,f)
t

)
(2.12)

and

H =
T−1∑
t=2

 Y
(f)′

t

Z
(1,f)′

t

 [
IN − Z

(n,b)
t (Z

(n,b)′

t Z
(n,b)
t )−1Z

(n,b)′

t

] (
Y

(f)
t ,Z

(1,f)
t

)
,(2.13)

where we assume that 0 < J(T −2) < N and the [J(t−s(t))]× [J(t−s(t))] matrices

Z
(n,b)′

t Z
(n,b)
t (t = 2, · · · , T − 1) are non-singular (a.s.).

Then the CLIML estimator θ̂LI (= (1,−β̂
′

2.LI ,−γ̂
′

1.LI)
′
) of θ = (1,−β

′

2,−γ
′
1)

′
is

defined by [
1

n∗G − λn
1

qn

H

]
θ̂LI = 0 ,(2.14)

where n∗ = N(T − 2), qn = n∗ − rn (T ≥ 3, qn ≥ 2) and λn is the smallest root of∣∣∣∣∣ 1

n∗G − l
1

qn

H

∣∣∣∣∣ = 0 .(2.15)

The solution to (2.14) gives the minimum of the variance ratio

VRn =

[
1,−β

′

2,−γ
′
1

]
G


1

−β2

−γ2


[
1,−β

′

2,−γ
′
1

]
H


1

−β2

−γ2


.(2.16)

Similarly, we define the conditional GMM (or CTSLS) estimator (or the special case

of the GMM estimator) θ̂TS (= (1,−β̂
′

2.TS,−γ̂
′

1.TS)
′
) of θ = (1,−β

′

2,−γ
′
1)

′
by

[0, IG2+K1 ]
T−1∑
t=2

 Y
(f)′

t

Z
(1,f)′

t

 Z
(n,b)
t (Z

(n,b)′

t Z
(n,b)
t )−1Z

(n,b)′

t

[
Y

(f)
t ,Z

(1,f)
t

]


1

−β̂2.TS

−γ̂2.TS

 = 0.

(2.17)
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It minimizes the numerator of the variance ratio (2.16). The LIML and TSLS

estimation methods were originally developed by Anderson and Rubin (1949, 1950),

and we modify them slightly to develop the conditional LIML and the conditional

TSLS methods for the dynamic panel simultaneous equations models with individual

effects.

When we use only the forward-filter, the summation in G and H should run

from t = 1 to t = T − 1 instead of from t = 2 to t = T − 1. Then the sample size is

n∗ = N(T − 1).

3. Asymptotic Properties of the CLIML Method

We investigate the limiting distribution of the CLIML estimator under a set

of alternative assumptions when the number of orthogonal conditions rn can be

dependent on n and n → ∞ (as N, T → ∞). We consider the situation when

(I)
rn

n
−→ c (0 ≤ c < 1) .

Condition (I) controls that the number of orthogonal conditions is proportional

to the number of observations including the case when c = 0. Because we need

to estimate the covariance matrix of vit, we need the restriction c < 1. Let a

K × (G2 + K1) matrix

D =

Π2,

 IK1

O


 .

As the first condition on the non-centrality, we assume

(II)
1

n
D

′
[

T−1∑
t=2

Z
(n,f)′

t M
(b)
t Z

(n,f)
t

]
D

p−→ Φ∗
1 ,

where

M
(b)
t = Z

(n,b)
t (Z

(n,b)′

t Z
(n,b)
t )−1Z

(n,b)′

t(3.1)

and Φ∗
1 is a (G2 + K1) × (G2 + K1) positive definite matrix.

As the second condition on the non-centrality, we assume

(III)
1

qn

D
′
T−1∑
t=2

Z
(n,f)′

t

[
IN − M

(b)
t

]
Z

(n,f)
t D

p−→ Φ∗
2 ,
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and Φ∗
2 is a (G2 + K1) × (G2 + K1) non-negative definite matrix.

Condition (II) and Condition (III) control that the non-centrality is proportional

to the sample size and they may be quite natural conditions. If we further have

the condition Φ∗
2 = O, then the analysis would be greatly simplified and it could be

reasonable if we deal with the stationary processes 6 with respect to t. Since rn grows

with n, it may correspond to the case of many instruments in micro-econometric

literatures. These conditions on rn and the non-centrality are the maximal rates of

growing the number of incidental parameters in a sense.

It is also convenient to state our results in terms of E(vitv
′
it) = Ω (a.s.),

w
(2)
it = (0, IG2)

[
vit − Cov(vit, uit)

uit

σ2

]
(i = 1, · · · , N),(3.2)

and σ2 = β
′
Ωβ. Because uit = β

′
vit and (1, 0, · · · , 0) = β

′
+ (0,β

′

2) in (2.3) and

(2.3), we have a decomposition

vit =
1

σ2
Ωβuit +

[
IG2+1 −

1

σ2
Ωββ

′
]
vit(3.3)

=
1

σ2
Ωβuit +

 β
′

2

IG2

 w
(2)
it .

Then the random variables uit and w
(2)
it (i = 1, · · · , N) are uncorrelated and

E(w
(2)
it w

(2)′

it ) =
1

σ2

[
Ωσ2 − Ωββ

′
Ω

]
22

,(3.4)

where [ · ]22 is the G2 × G2 right-lower corner sub-matrix. We are ready to state

that the CLIML estimator is consistent and asymptotically normal under a set of

reasonable conditions.

Theorem 3.1 : Let zit be a set of K×1 vector, which is Ft−1 adapted. Let also vit be

a vector of (1+G2)×1 martingale difference sequences such that E(vit|Ft−1) = 0 and

E(vitv
′
it|Ft−1) = Ω (a.s.). Suppose rn → ∞ and qn = n − rn → ∞ as N, T −→ ∞ .

In addition to Conditions (I), (II) and (III), we assume

(IV)
1

n
max

2≤t≤T−1
∥D′

Z
(n,∗)
t ∥2 p−→ 0 ,

6 If Z(n,f)
t − Z(n,b)

t = op(1), then Φ∗
2 = O. This condition holds automatically when there are

no individuals effects in the panel structural equation of interest.
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where Z
(n,∗)
t = Z

(n,f)
t M

(b)
t .

(i) For c = 0,

√
n

 β̂2.LI − β2

γ̂1.LI − γ1

 d−→ N(0,Ψ∗) ,(3.5)

where σ2 = β
′
Ωβ and

Ψ∗ = σ2Φ∗−1
1 .(3.6)

(ii) For 0 < c < 1, let Φ∗ = Φ∗
1 − cΦ∗

2 and we assume that Φ∗ is a non-singular

matrix. Furthermore, suppose that E [∥vit∥6] are bounded and there exist matrices

Ξ3.2 and Ξ4.2 such that

(V) Ξ3.2 =
[

1

1 − c

]2

plim
n→∞

D
′ 1

n

T−1∑
t=2

N∑
j=1

[
Z

(n,f)′

t

(
M

(b)
t − cIN

)]
·j

[
a

(t)
jj − c

]
E(u

(f)2
jt w

(f)′

jt ),

(VI) Ξ4.2 =
[

1

1 − c

]2

plim
n→∞

1

n

T−1∑
t=2

N∑
j=1

[
a

(t)
jj − c

]2
Γ

(t)
44.2 ,

where a
(t)
jj =

[
M

(b)
t

]
jj

, w
(f)
it = [0, IG2 ]

[
I1+G2 −

Ωββ
′

β
′
Ωβ

]
v

(f)
it , Γ

(t)
44.2 = E(u

(f)2
it w

(f)
it w

(f)′

it )−

E(u
(f)2
it )E(w

(f)
it w

(f)′

it ), v
(f)
it are the forward-filtered disturbances and [ · ]·j means the

j-th column of the corresponding matrix.

Then

√
n

 β̂2.LI − β2

γ̂1.LI − γ1

 d−→ N(0,Ψ∗) ,(3.7)

where

Ψ∗ = Φ∗−1

σ2Φ∗ + c∗σ
2Φ∗

2 + c∗

 IG2

O

 [
Ωσ2 − Ωββ

′
Ω

]
22

[IG2 ,O](3.8)

+Ξ3.2 + Ξ
′

3.2 + Ξ4.2

}
Φ∗−1

and c∗ = c/(1 − c).

In the general case, the asymptotic covariance (3.8) of the CLIML estimator

depend on the third and fourth order moments of disturbance terms vit = (v
(j)
it ).

12



When the random vectors are followed by the class of elliptically contoured distri-

bution EC(Ω) (see Section 2.7 of Anderson (2003)), for instance, we could simplify

(3.8) considerably because the third order moments are zeros and there is a sim-

ple expression on the fourth order moments. When the disturbances are normally

distributed in particular, Ξ3.2 = O and Ξ4.2 = O are automatically zeros.

Instead of making an assumption on the distributions of disturbance terms except

the existence of their moments, alternatively we utilize the condition

(VII) plim
n→∞

1

n

T−1∑
t=2

N∑
i=1

[
a

(t)
ii − c

]2
= 0

and a
(t)
ii =

[
M

(b)
t

]
ii
.

This condition is often satisfied in practical situations as shown by Anderson and

Kunitomo (2006). Then we can simplify the covariance-matrix in Theorem 3.1 as

the next theorem.

Theorem 3.2 : For the case of (ii) of Theorem 3.1, in addition to Conditions (I)-

(IV) and (VII), we assume that E [∥vit∥4] (i = 1, · · · , n) are bounded instead of the

6-th order moments. Then

√
n

 β̂2.LI − β2

γ̂1.LI − γ1

 d−→ N(0,Ψ∗)(3.9)

where

Ψ∗ = σ2Φ∗−1 + c∗Φ
∗−1Φ∗

2Φ
∗−1 + c∗Φ

∗−1
[
Ωσ2 − Ωββ

′
Ω

]
22

Φ∗−1(3.10)

and c∗ = c/(1 − c).

For the estimation problem of the vector of structural parameters θ, it may be

natural to consider a set of statistics of two (1 + G2 + K1)× (1 + G2 + K1) random

matrices G and H. We shall consider a class of estimators which are some functions

of these two matrices and then we have a new result on the asymptotic optimality

of the CLIML estimator under a set of assumptions. The proof is given in Section

13



7.

Theorem 3.3 : In the panel structural equations model of (2.2) and (2.3), assume

that Φ∗ = Φ∗
1 − cΦ∗

2 is a positive definite matrix. Define the class of consistent

estimators for θ = (1,−β
′

2,−γ
′
1)

′
by β̂2

γ̂1

 = ϕ(
1

n
G,

1

qn

H) ,(3.11)

where ϕ is continuously differentiable and its derivatives are bounded at the proba-

bility limits of random matrices G/n and H/qn in (2.12) and (2.13) as rn → ∞ (N

and T → ∞) and 0 ≤ c < 1. Furthermore, we assume that there exists a positive

constant d (d > 0) such that
∂Φ∗

∂ρij

= d
∂Φ∗

1

∂ρij

(3.12)

for any Φ∗
1 = (ρij). Then either under the conditions of (i) of Theorem 3.1, Corollary

3.1 or Theorem 3.2, as n → ∞

√
n

 β̂2.LI − β2

γ̂1.LI − γ1

 d−→ N(0,Ψ) ,(3.13)

where

Ψ ≥ Ψ∗ ,(3.14)

and Ψ∗ is given by (3.6) or (3.10), respectively.

The results reported in this section can be regarded as extensions of Theorem

1-Theorem 3 of Anderson and Kunitomo (2006) for the standard linear structural

equations model to the general panel structural equations model. In their case

Φ∗
2 = O and (3.12) is automatically satisfied. In the more general cases in the

LINEAR panel econometric models, however, the condition given by (3.12) may be

strong and it could be weaken in some situations.

4. Improving CLIML methods

14



In the estimation problem of structural equation methods, there have been

some discussions on improving the limited information maximum likelihood (LIML)

method. Anderson, Kunitomo and Morimune (1986) have investigated various types

of estimation methods. One important class of estimation methods is a class of mod-

ified LIML method including the one proposed by Fuller (1977). We consider the

class of modified CLIML estimators given by θ̂MLI (= (1,−β̂
′

2.MLI ,−γ̂
′

1.MLI)
′
) of

θ = (1,−β
′

2,−γ
′
1)

′
, which is the solution[

1

n
G − λ∗

n

1

qn

H

]
θ̂LI = 0 ,(4.1)

where λ∗
n = λn − a/n, a is a constant (0 ≤ a ≤ 4) and λn is the smallest root of

(2.14).

By using a set of Monte Carlo experiments, we have investigated the finite sample

properties of some modified estimators when the LIML estimator (a = 0), a = 4

(due to T.W. Anderson) and a = 1 (due to W. Fuller) in particular. Since the Fuller

modified LIML eatimator has finite moments in the simplest case, we have expected

that it improves the asymptotic bias of the LIML estimator. When we take a = 1,

we have found that the bias of the CLIML estimator is reduced in the sense of the

Monte Carlo expectation. However, we also find that the CLIML estimator is almost

median-unbiased around the true parameter values. When we take a = 4, the mean

squared errors (MSE) can be further reduced. These observations are similar to

those in the eariler studies on the finite sample properties of alternative estimators

in the simple structural equations without individual effects (see Anderson et al.

(1982, 1986)).

5. Finite Sample Properties of Alternative Estimators

There have been many studies on the finite sample properties of alternative es-

timators for the structural equation models. One common method often used has

been to conduct Monte Carlo experiments. However, there should be non-trivial

problem existed and it has been known in econometrics that the LIML estimator

does not possess any moments of positive integer order under a set of reasonable

15



assumptions. Therefore, instead of moments we need to investigate the exact cu-

mulative distributions of the CLIML estimator and its modifications directly in a

systematic way. The problem of non-existence of moments had been already dis-

cussed in the econometric literature, but it does not imply that the LIML estimator

should not be used and we should be careful for the loss function. One common

example in the statistics literatures is the estimation of the reciprocal of non-zero

Gaussian mean. (See Anderson et al. (2005) for the details.)

The evaluation method of the cdfs of estimators we have used in this study is

based on the simulation method. In order to describe our evaluation method, we use

the classical notation of Anderson et al. (2006) for the ease of comparison except the

sample size being n and we concentrate on the comparison of the estimators of the

coefficient parameter of the endogenous variable when G2 = 1 for the ease of inter-

pretation. To specify the exact distributions of estimators we use the key parameters

used by Anderson et. al. (2005) in the study of the finite sample properties of the

CLIML estimator. We have investigated the exact finite sample distributions of the

estimator normalized such that the limiting distribution is the standard normal in

Theorem 3.2 as

√
nΨ∗−1/2

 β̂2.LI − β2

γ̂1.LI − γ1

 .(5.1)

For the experiments we use Example 2 and Example 3 as typical cases. We have

the structural equation of interest in (2.5) and

xit =
q∑

j=1

αjxit−j + δηi + ϵit ,(5.2)

where we take q = 2, 5 and we take ρ = 0.3 as the correlation coefficient between

the disturbances uit and ϵit. We have investigated a number of cases and we give

only eight figures in Appendix. They show the distribution functions of the CLIML

estimator and the GMM estimator (or the CTSLS estimator) for β and γ in (2.5).

In figures all means the case when we use all available orthogonal conditions and

instruments while min means the case when we use a set of instruments only with

lag one. We have normalized the estimators by the limiting covariance matrices such

that the limiting distribution of the CLIML estimator is N(0,1) as Theorem 3.2.
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Because the true process of xit is AR(5), we can expected that the CLIML esti-

mator with all instruments gives a reasonable performance. One important finding

is that the GMM (or TSLS) estimator with many instruments has significant bias.

The speed of approaching to the limiting distribution N(0,1) of the CLIML estimator

is much faster than other estimators. These findings agree with the results reported

by Anderson et al. (2006). Additionally, we give some figures of the distribution

function of the Within-Group (WG) estimator in some cases. As we had expected,

its biases of the WG estimator are very large in comparison with other estimation

methods.

Although we have presented a limited number of figures from a large number of

our simulations, we have found several interesting observations. The finite sample

bias of the CLIML estimator is much more smaller than the corresponding GMM

estimator. The variance of the GMM estimator may be smaller than the CLIML

estimator, but the effects of finite sample bias dominates the MSE. As n grows, the

finite sample distribution of the CIML estimator approaches to the standard normal

distribution and its speed is much faster than the GMM estimator.

It is possible to use the CLIML method with the backward-filtered data to the

cases when T ≥ 3. When T is very small, however, it may be reasonable to use the

forward-filtered transformation only because ot the resulting small sample consid-

erations.

6. Conclusions

In this paper we have proposed to use the conditional limited information maxi-

mum likelihood (CLIML) approach for the estimation of dynamic panel simultaneous

equation models. When there are dynamic effects and lagged endogenous variables

with individual effects at the same time, the CLIML estimation method for the

doubly-filtered (or the forward-filtered) data does give not only a consistent esti-

mator, but also it attains the asymptotic efficiency when the number of orthogonal

conditions is large or many instruments in some sense.

We also develop some modified CLIML methods which improve the finite sam-
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ple properties of the standard CLIML estimation. We have given some persuasive

numerical results on the finite sample properties of the distribution functions of the

CLIML estimator based on a set of extensive Monte Carlo experiments. Because our

approach can be applied to the general panel simultaneous equations with dynamic

effects and individual effects, the CLIML method would be important for solving

practical problems with panel data.

There are several problems remained to be investigated on the estimation of

structural dynamic panel econometric models. Our approach can be extended to the

multivariate case and also the case with time specific effects. It is also important

to develop the test procedures in the dynamic panel structural equations model

and the choice procedure of instruments in estimation. They are currently under

investigation and the results will be reported in another occasion.

7 Mathematical Details

In section we give the proofs of Theorems in Section 3. The method of proofs are

similar to those used in Anderson and Kunitomo (2006).

Proof of Theorem 3.1 :

[ Step 1 ] Substitution of (2.3) and (2.9) into (2.12) yields

G = G(1) + G(2) + G(2)′ + G(3) ,(7.1)

where

G(1) = D∗′
T−1∑
t=2

Z
(n,f)′

t Z
(n,b)
t (Z

(n,b)′

t Z
(n,b)
t )−1Z

(n,b)′

t Z
(n,f)
t D∗ ,

G(2) = D∗′
T−1∑
t=2

Z
(n,f)′

t Z
(n,b)
t (Z

(n,b)′

t Z
(n,b)
t )−1Z

(n,b)′

t (V
(f)
t ,O) ,

G(3) =
T−1∑
t=2

(
V

(f)′

t

O
)Z

(n,b)
t (Z

(n,b)′

t Z
(n,b)
t )−1Z

(n,b)′

t (V
(f)
t ,O) ,
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V
(f)′

t = (v
(f)
t1 , · · · ,v(f)

tN ), v
(f)
tj (j = 1, · · · , N) are the corresponding forward-filtered

disturbances of vtj, and a K × (1 + G1 + K1) matrix

D∗ =

Π,

 IK1

O


 .

Then by Conditions (I)-(III) as n −→ ∞ (N, T → ∞),

1

n
G

p−→ G0 =

 (β
′

2,γ
′
1)

IG2+K1

 Φ∗
1


 β2

γ1

 , IG2+K1

 + c

 Ω O

O O

(7.2)

and

1

qn

H
p−→ H0 =

 (β
′

2,γ
′
1)

IG2+K1

 Φ∗
2


 β2

γ1

 , IG2+K1

 +

 Ω O

O O

 .(7.3)

Then we have∣∣∣∣∣∣∣[Φ1 − (plimn→∞λn)Φ2] − [c − (plimn→∞λn)]

 Ω O

O O


∣∣∣∣∣∣∣ = 0 ,(7.4)

where

Φ1 =

 (β
′

2, γ
′
1)

IG2+K1

 Φ∗
1


 β2

γ1

 , IG2+K1

 ,Φ2 =

 (β
′

2, γ
′
1)

IG2+K1

 Φ∗
2


 β2

γ1

 , IG2+K1

 .

By setting Φ∗ = Φ∗
1 − cΦ∗

2 (which is nonsingular) and Φ = Φ1 − cΦ2, we find that

λn
p→ c, β̂LI

p→ β and γ̂1.LI
p→ γ1 as n → ∞ because Φ (= Φ1 − cΦ2) satisfies

Φ


1

−β2

−γ1

 = 0 .(7.5)

Define G1 and H1 by G1 =
√

n[(1/n)G − G0], H1 =
√

qn[(1/qn)H − H0], λ1n =
√

n[λn − c] and

b1 =
√

n

 β̂LI − β

− (γ̂1.LI − γ1)

 .
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By substituting these random variables into (2.14), it is asymptotically equivalent

to

[G0 − c H0]


1

−β2

γ1

 +
1√
n

[G1 − λ1nH0]


1

−β2

−γ1

 +
1√
n

[G0 − c H0]b1

− 1
√

qn

[cH1]


1

−β2

−γ1

 = op(
1√
n

) .

Then by using (7.4), we have

[Φ1 − cΦ2]


0

β̂2.LI − β2

γ̂1.LI − γ1

 = [G1 − λ1nH0 −
√

cc∗H1]


1

−β2

−γ1

 + op(1) .(7.6)

Multiplication of (7.6) from the left by (β
′
,−γ

′
1) = (1,−β

′

2,−γ
′
1) yields

λ1n =

[
1,−β

′

2,−γ
′
1

] [
G1 −

√
cc∗H1

] [
1,−β

′

2,−γ
′
1

]′

[
1,−β

′

2,−γ
′
1

]
H0

[
1,−β

′

2,−γ
′
1

]′ + op(1) .(7.7)

Also the multiplication of (7.6) from the left by (0, IG2+K1) and substitution for λ1n

from (7.6) yields

Φ∗√n

 β̂2.LI − β2

γ̂1.LI − γ1



= [0, IG2+K1 ] [G1 − λ1nH0 −
√

cc∗H1]


1

−β2

−γ1

 + op(1)

= [0, IG2+K1 ]

I1+G2+K1 −
1

β
′
Ωβ

 Ωβ

0

 (1,−β
′

2,−γ
′

1))

 [G1 −
√

cc∗H1]


1

−β2

−γ1


+op(1) .
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By using the similar arguments of Anderson and Kunitomo (2006) to the present

situation, we have

[G1 −
√

cc∗H1]


1

−β2

−γ1

(7.8)

=
1√
n
D∗′

T−1∑
t=2

Z
(n,f)′

t Z
(n,b)
t (Z

(n,b)′

t Z
(n,b)
t )−1Z

(n,b)′

t u
(f)
t

+
1√
n

T−1∑
t=2

 V
(f)′

t

O

 Z
(n,b)
t (Z

(n,b)′

t Z
(n,b)
t )−1Z

(n,b)′

t u
(f)
t − rn(

Ωβ

O
)


−
√

cc∗
1

√
qn

D
′
T−1∑
t=2

Z
(n,f)′

t [IN − Z
(n,b)
t (Z

(n,b)′

t Z
(n,b)
t )−1Z

(n,b)′

t ]u
(f)
t

−
√

cc∗
1

√
qn

T−1∑
t=2

(
V

(f)′

t

O
)[IN − Z

(n,b)
t (Z

(n,b)′

t Z
(n,b)
t )−1Z

(n,b)′

t ]u
(f)
t − qn(

Ωβ

O
)

 ,

where u
(f)′

t = (u
(f)
1t , · · · , u(f)

Nt ) and rn + qn = n.

[ Step 2 ] When c = 0, both third and fourth terms of (7.8) are zeros, and the

second term of (7.8) converges to zeros. Then by using the central limit theorem for

martingale differences, we have the result.

[ Step 3 ] We consider the case when 0 < c < 1. We use the relations
√

cc∗/
√

qn −
c∗/

√
n = o(1) and set

N
(b)
t = M

(b)
t − c∗(IN − M

(b)
t ) ∼ 1

1 − c

[
M

(b)
t − cIN

]
.(7.9)

Then

Φ∗√n

 β̂2.LI − β2

γ̂1.LI − γ1

 =
1√
n
D

′
T−1∑
t=2

Z
(n,f)′

t N
(b)
t u

(f)
t +

1√
n

T−1∑
t=2

W
(f)′

t N
(b)
t u

(f)
t

= A1n + A2n (, say) ,

where

W
(f)′

t = [0, IG2 ]

[
I1+G2 −

Ωββ
′

β
′
Ωβ

]
V

(f)′

t = (w
(f)
1t , · · · ,w(f)

Nt ) .
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Then we can evaluate the asymptotic variance-covariance terms of the CLIML esti-

mator. We first notice that

[
N

(b)
t

]2
= M

(b)
t + c2

∗(IN − M
(b)
t )

and

E [A1nA
′

1n] =
1

n
D

′
T−1∑
t=2

Z
(n,f)′

t

[
M

(b)
t + c2

∗(IN − M
(b)
t )

]
Z

(n,f)
t D .

By using the i − th unit vector e
′
i = (0, · · · , 0, 1, 0, · · · , 0),

E [A1nA
′

2n] =
1

n
D

′
T−1∑
t=2

Z
(n,f)′

t N
(b)
t E

[
u

(f)
t u

(f)′

t N
(b)
t W

(f)
t

]

=
1

n
D

′
T−1∑
t=2

Z
(n,f)′

t N
(b)
t

N∑
i=1

N∑
j=1

eie
′

iE [u
(f)2
it N

(b)
t ejw

(f)′

jt ]

=
[

1

1 − c

]2 1

n
D

′
T−1∑
t=2

[
N∑

i=1

Z
(n,f)′

t (M
(b)
t − cIN)]·i[a

(t)
ii − c]E [u

(f)2
it w

(f)′

it ] ,

and

E [A2nA
′

2n] =
1

n

T−1∑
t=2

E
{
W

(f)′

t N
(b)
t [σ2IN + (u

(f)
t u

(f)′

t − σ2IN)]N
(b)
t W

(f)
t

}
.

Then the first term converges

1

n

T−1∑
t=2

tr(N
(b)
t )σ2E

[
w

(f)
it w

(f)′

it

]
−→ c∗E

[
w

(2)
it w

(2)′

it

]
(7.10)

as n → ∞ because we have

1

n

T−1∑
t=2

tr(M
(b)
t ) + c∗

1

n

T−1∑
t=2

tr(IN − M
(b)
t ) =

rn

n
+

qn

n
c2
∗ −→ c∗

as n → ∞. For any vector b, the second term becomes

b
′ 1

n

T−1∑
t=1

E
[
W

(f)′

t N
(b)
t (u

(f)
t u

(f)′

t − σ2IN)N
(b)
t W

(f)
t

]
b(7.11)

=
1

n

T−1∑
t=2

N∑
j=1

(e
′

jN
(b)
t ej)

2E
[
(u

(f)2
it − σ2)(w

(f)′

jt b)2
]

=
[

1

1 − c

]2 1

n

T−1∑
t=2

N∑
j=1

(e
′

jM
(b)
t ej)

2E
[
(u

(f)2
it − σ2)(w

(f)′

jt b)2
]
−→ b

′
Ξ4.2b
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as n → ∞ by using the similar calculations as E(A1nA
′
2n).

Finally, by using the Lyapounov-type martingale central limit theorem, we have the

asymptotic normality of (7.10) with the asymptotic covariance matrix Ψ∗. This

proves the second part of Theorem 3.1.

Q.E.D.

Proof of Theorem 3.2 :

Let

Ξn
4.2 =

[
1

1 − c

]2 1

n

T−1∑
t=2

N∑
j=1

[
a

(t)
jj − c

]2
Γ

(t)
44.2(7.12)

and Ξ
(n)
3.2 be defined by Conditions (V) and (VI) of Theorem 3.1 without their limits.

Since E [u
(f)2
it w

(f)
jt ] and E [u

(f)2
it w

(f)
jt w

(f)′

jt ] are bounded, Condition (VII) implies that

Ξ
(n)
4.2

p−→ 0 as n → ∞, which in turn leads to Ξ
(n)
3.2

p−→ 0 as n → ∞.

Q.E.D.

Proof of Theorem 3.3 :

Without the loss of generality, we consider the case when K1 = 0 and γ1 = 0. We set

the vector of true parameters β
′
= (1,−β

′

2) = (1, β2, · · · , β1+G2). Then an estimator

of the vector β2 is composed of

β̂i = ϕi(
1

n
G,

1

qn

H) (i = 2, · · · , 1 + G2) .(7.13)

For the estimator to be consistent, we need the conditions

βi = ϕi


 β

′

2

IG2

 Φ∗
1 (β2, IG2) + c Ω,

 β
′

2

IG2

 Φ∗
2 (β2, IG2) + Ω

 (i = 2, · · · , 1+G2)

(7.14)

as identities with respect to parameters β2, Φ∗
1, Φ∗

2 and Ω .

First, we consider the role of Ω in (7.11). By differentiating (7.11) with respect

to ωij (i, j = 1, · · · , 1 + G2), we have the condition

c
∂ϕk

∂gij

= − ∂ϕk

∂hij

(k = 2, · · · , 1 + G2; i, j = 1, · · · , 1 + G1)(7.15)
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evaluated at the probability limit of (7.11). Let two (1 + G2) × (1 + G2) matrices

T
(k)
1 =

(
∂ϕk

∂gij

)
= (τ

(k)
ij ) (k = 2, · · · , 1 + G2; i, j = 1, · · · , 1 + G2)(7.16)

and T
(k)
2 =

(
∂ϕk

∂hij

)
evaluated at the probability limits of (7.11). Then the condition

in (7.13) implies

c T
(k)
1 + T

(k)
2 = O .(7.17)

We write two (1 + G2) × (1 + G2) matrices Φ1 (= (θij)) and Φ2 as

Φ1 =

 β
′

2

IG2

 Φ∗
1 (β2, IG2) =

 β
′

2Φ
∗
1β2 β

′

2Φ
∗
1

Φ∗
1β2 Φ∗

1


and

Φ2 =

 β
′

2

IG2

 Φ∗
2 (β2, IG2) =

 β
′

2Φ
∗
2β2 β

′

2Φ
∗
2

Φ∗
2β2 Φ∗

2

 ,

where we denote Φ∗
1 = (ρml) (m, l = 2, · · · , 1 + G2), (Φ∗

1β2)l =
∑1+G2

j=2 βjρlj (l =

2, · · · , 1 + G2), (β
′

2Φ
∗
1)m =

∑1+G2
i=2 βiρim (m = 2, · · · , 1 + G2), and β

′

2Φ
∗
1β2 =∑1+G2

i,j=2 ρijβiβj .

By differentiating each components of Φ1 with respect to βj (j = 1, · · · , G2), we

have
∂Φ1

∂βj

= (
∂θlm

∂βj

) ,(7.18)

where ∂θ11

∂βj
= 2

∑1+G2
i=2 ρjiβi (j = 2, · · · , 1 + G2),

∂θ1m

∂βj
= ρjm (m = 2, · · · , 1 + G2),

∂θl1

∂βj
= ρlj (l = 2, · · · , 1 + G2), and ∂θlm

∂βj
= 0 (l,m = 2, · · · , 1 + G2) .

By using the same arguments to Φ2, the condition (7.13) implies

tr

[
T

(k)
1 (

∂Φ1

∂βj

− c
∂Φ2

∂βj

)

]
= δk

j ,(7.19)

where we define δk
k = 1 and δk

j = 0 (k ̸= j) .

Define a (1 + G2) × (1 + G2) partitioned matrix

T
(k)
1 =

 τ
(k)
11 τ

(k)′

2

τ
(k)
2 T

(k)
22

 .(7.20)
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Then (7.17) is represented as

2τ
(k)
11 [Φ∗

1 − cΦ∗
2]β + 2[Φ∗

1 − cΦ∗
2]τ

(k)
2 = ϵk ,(7.21)

where ϵ
′
k = (0, · · · , 0, 1, 0, · · · , 0) with 1 in the k-th place and zeros in other elements.

By the assumption that Φ∗ = Φ∗
1 − c Φ∗

2 is positive definite, we solve (7.19) as

τ
(k)
2 =

1

2
Φ∗−1ϵk − τ

(k)
11 β2 .(7.22)

Further by differentiating Φ1 with respect to ρij, we have

∂Φ1

∂ρii

= (
∂θlm

∂ρii

) ,(7.23)

where ∂θ11

∂ρii
= β2

i , ∂θ1m

∂ρii
= βi (m = i), 0 (m ̸= i) , ∂θl1

∂ρii
= βi (l = i), 0 (l ̸= i) and

∂θlm

∂ρii
= 1 (l = m = i), 0 (otherwise).

For i ̸= j
∂Φ1

∂ρij

= (
∂θlm

∂ρij

) ,(7.24)

where ∂θ11

∂ρij
= 2βiβj , ∂θ1m

∂ρij
= βj (m = i), βi (m = j), 0 (m ̸= i, j) , ∂θl1

∂ρij
= βj (l =

i), βi (l = j), 0 (l ̸= i, j) , and ∂θlm

∂ρij
= 1 (l = i,m = j or l = j,m = i), 0 (otherwise)

for (2 ≤ l,m ≤ 1 + G2) .

Then under the condition (3.13) we have the representation

tr

(
T

(k)
1

∂Φ1 − cΦ2

∂ρij

)
=


d[β2

i τ
(k)
11 + 2τ

(k)
1i βi + τ

(k)
ii ] (i = j)

d[2βiβjτ
(k)
11 + 2τ

(k)
1j βi + 2τ

(k)
1i βj + 2τ

(k)
ij ] (i ̸= j)

.(7.25)

Under the assumption of Theorem 3.3 we have the relation as

τ
(k)
11 β2β

′

2 + τ
(k)
2 β

′

2 + β2τ
(k)′

2 + T
(k)
22 = O(7.26)

and then we have the representation

T
(k)
22 = −τ

(k)
11 β2β

′

2 − τ
(k)
2 β

′

2 − β2τ
(k)′

2

= τ
(k)
11 β2β

′

2 −
1

2

[
Φ∗−1ϵkβ

′

2 + β2ϵ
′

kΦ
∗−1

]
.
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Let

S = G1 −
√

cc∗H1 =

 s11 s
′
2

s2 S22

 .(7.27)

Since ϕ( · ) is differentiable and its first derivatives are bounded at the true param-

eters by assumption, the linearized estimator of βk in the class of our concern can

be represented as

1+G2∑
g,h=1

τ
(k)
gh sgh = τ

(k)
11 s11 + 2τ

(k)′

2 s2 + tr
[
T

(k)
22 S22

]
= τ

(k)
11 s11 +

(
ϵ
′

kΦ
∗−1 − 2τ

(k)
11 β

′

2

)
s2 + tr

[(
τ

(k)
11 β2β

′

2 − Φ∗−1ϵkβ
′

2

)
S22

]
= τ

(k)
11

[
s11 − 2β

′

2s2 + β
′

2S22β2

]
+ ϵ

′

kΦ
∗−1(s2 − S22β2)

= τ
(k)
11 β

′
Sβ + ϵ

′

kΦ
∗−1(s2,S22)β .

Let

τ 11 =


τ

(2)
11

...

τ
(1+G2)
11

(7.28)

and we consider the asymptotic behavihor of the normalized estimator
√

n(β̂2−β2)

as

ê =
[
τ 11β

′
+ (0,Φ∗−1)

]
Sβ .(7.29)

Since the asymptotic variance-covariance matrix of Sβ has been obtained by the

proof of Theorem 3.1, we have

E
[
ê ê

′]
=

[
(τ 11 +

1

σ2
(0,Φ∗−1)Ωβ)β

′
+ (0,Φ∗−1)(IG2+1 −

Ωββ
′

β
′
Ωβ

)

]

×E [Sββ
′
S] ×

[
(τ 11 +

1

σ2
(0,Φ∗−1)Ωβ)β

′
+ (0,Φ∗−1)(IG2+1 −

Ωββ
′

β
′
Ωβ

)

]′

= Ψ∗ + E
[
(β

′
Sβ)2

] [
σ2τ 11 + (0,Φ∗−1)Ωβ

] σ2τ
′

11 + β
′
Ω

 0
′

Φ∗−1


 + o(1) ,

where Ψ∗ has been given by Theorem 3.1.

This covariance matrix is the sum of a positive semi-definite matrix of rank 1 and a
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positive definite matrix. It has a minimum if

τ 11 = − 1

σ2
(0,Φ∗−1)Ωβ .(7.30)

Hence we have completed the proof of Theorem 3.3.

Q.E.D.

APPENDIX : Some Figures

In Figures the cdf of alternative estimators for β and γ of (2.5) with (5.2) are shown

in their standardized term, that is, (5.1). We give the distribution functions of the

LIML, GMM, and the WG(within-group) estimators. For the comparative purpose

we give the standard normal distribution as the bench mark for each case.
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Figure 1: β : AR(5), N=100, T=10
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Figure 2: γ : AR(5), N=100, T=10
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Figure 3: β : AR(5), N=200, T=17
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Figure 4: γ : AR(5), N=200, T=17
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Figure 5: β : AR(2), N=100, T=10
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Figure 6: γ : AR(2), N=100, T=10
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Figure 7: β : AR(2), N=200, T=17
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Figure 8: γ : AR(2), N=200, T=17




