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1 Introduction

Many definitions in matrix algebra, even of such central concepts as sym-
metry and orthogonality, are not standardized. Thus, some authors define
a symmetric matrix to be one that satisfies A′ = A, where A may be real
or complex; others (correctly in our view) require that A is real. In the for-
mer case, only the properties of real symmetric matrices follow from those
of Hermitian matrices. Similarly, some authors define an orthogonal matrix
as a square matrix satisfying A′A = I, irrespective of whether A is real or
complex.

The purpose of this note is to point out a number of these deviations,
to propose what we believe are the “right” definitions, and to highlight the
dangers of not following these definitions. We aim for a common-sense view-
point without too many idiosyncracies. To generalize a concept we try and
preserve the essential characteristics of the concept. To specialize we sim-
ply give a name to an important subclass. For example, in generalizing a
symmetric matrix from real to complex, the essential characteristics are only
preserved by a Hermitian matrix. In specializing, we call a real Hermitian
matrix symmetric. The class of complex matrices satisfying A′ = A does not
fit in this common-sense view. It is neither the right generalization (because
the essential characteristics of real symmetric matrices are lost) nor is it the
right specialization (because this class is not a subclass of the Hermitian
matrices and therefore does not share its properties).

We write a complex number u as u = a + ib, where a and b are real. The
complex conjugate of u is u∗ = a− ib. For a complex matrix U = A+iB, the
complex conjugate is U∗ = A′ − iB′, where we notice the transpose in the
generalization. For real matrices, the complex conjugate is the transpose.
Some care is required because the transpose enjoys some properties which
the complex conjugate does not have. In particular, while tr(A′) = tr(A)
for real matrices, it is not generally true that tr(U∗) = tr(U). Also, while
x′A′x = x′Ax for real A and x, it is not generally true that z∗U∗z = z∗Uz.

The following five definitions are without controversy. A square matrix
U is said to be

Hermitian if U∗ = U ;
skew-Hermitian if U∗ = −U ;
unitary if U∗U = I;
normal if U∗U = UU∗; and
idempotent if UU = U .

If the matrix happens to be real, we call the first three matrices symmetric,
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skew-symmetric, and orthogonal, respectively, while the last two matrices
continue to be called normal and idempotent. A symmetric matrix is sim-
ply a real Hermitian matrix, and all properties of Hermitian matrices apply
to symmetric matrices. Although real idempotent matrices are often sym-
metric, one should not require that an idempotent matrix is Hermitian, and
hence a real idempotent matrix is not necessarily symmetric.

In Sections 2 and 3 we discuss symmetry and orthogonality, respectively,
and present examples of why these concepts should only apply to real matri-
ces. In Section 4 we define the square root of a matrix, both for symmetric
and nonsymmetric real matrices. In Section 5 we discuss Hermitian and
quadratic forms. A lot of confusion still exists about the definition of matrix
derivatives, and this is taken up in Section 6. Section 7 concludes.

2 Symmetry

Any matrix satisfying A∗ = A is called Hermitian. Such a matrix is necessar-
ily square. A real Hermitian matrix is called symmetric. Hence, a symmetric
matrix is a real square matrix satisfying A′ = A.

Many authors define A to be symmetric when it satisfies the property
A′ = A, irrespective of whether A is real or complex. This is undesirable
as we shall argue below. We shall say that a complex matrix satisfying
A′ = A is complex-symmetric. Symmetric matrices are Hermitian and there-
fore share all properties of Hermitian matrices — an important and useful
fact. Symmetric matrices are also complex-symmetric and therefore share
all properties of complex-symmetric matrices, but this of little use because
complex-symmetric matrices hardly possess properties of interest.

To demonstrate our point, consider the matrix

A :=

(

1 i
i α

)

,

where α is real. This is a complex matrix satisfying A′ = A and hence it is
complex-symmetric. Its eigenvalues are found from the equation

(1 − λ)(α − λ) = −1,

so that

λ1,2 =
α + 1 ±

√

(α + 1)(α − 3)

2
.

The eigenvalues are both complex for −1 < α < 3 and they are both real
otherwise. Hence, the eigenvalues of a complex-symmetric matrix are not
necessarily real.
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The determinant is |A| = α + 1 so that A is nonsingular unless α = −1.
In the special case where α = −1, both eigenvalues are 0 and rk(A) = 1.
Hence, the rank of a complex-symmetric matrix is not necessarily equal to
the number of its nonzero eigenvalues.

We further notice that

A∗A =

(

1 −i
−i α

) (

1 i
i α

)

=

(

2 i(1 − α)
−i(1 − α) 1 + α2

)

and

AA∗ =

(

1 i
i α

) (

1 −i
−i α

)

=

(

2 −i(1 − α)
i(1 − α) 1 + α2

)

.

Hence, the matrix A is not normal (it does not satisfy A∗A = AA∗) unless
α = 1. Since a matrix can be diagonalized if and only if it is normal, the
matrix A cannot be diagonalized unless α = 1.

We conclude that a complex-symmetric matrix need not have real eigen-
values, that its rank is not necessarily equal to the number of its nonzero
eigenvalues, and that is not necessarily possible to diagonalize the matrix.
Basically, none of the attractive properties of symmetric matrices holds for
complex-symmetric matrices. Therefore, in papers and especially in text-
books it seems more logical and less error-prone to let all symmetric matrices
be real by definition. The alternative is to refer to (almost) every symmetric
matrix as “real symmetric.”

3 Orthogonality

Any matrix B for which B∗B = BB∗ = I is said to be unitary. Alterna-
tively we can define B to be unitary if it is square and satisfies B∗B = I
(or BB∗ = I). A real unitary matrix is called orthogonal. Hence, an or-
thogonal matrix is a real square matrix satisfying B′B = I (or BB′ = I).
(Of course, an orthogonal matrix should have been named “orthonormal”
instead, because the columns are not merely orthogonal to each other; they
are also normalized. But the word seems too embedded in matrix language
to change it now.)

There also exist complex square matrices satisfying B′B = I. We will
call such matrices complex-orthogonal. Many authors call any square matrix
satisfying B′B = I orthogonal, which leads to many errors and is better
avoided.

The following example demonstrates the importance of letting the class of
orthogonal matrices be a subclass of the class of unitary matrices. Consider

4



the complex matrix

B :=

(

β i
−i β

)

,

where β is a real number. We notice that

B∗B =

(

β i
−i β

) (

β i
−i β

)

=

(

β2 + 1 2iβ
−2iβ β2 + 1

)

,

and that

B′B =

(

β −i
i β

) (

β i
−i β

)

=

(

β2 − 1 0
0 β2 − 1

)

.

Hence, B is unitary if and only if β = 0, while B is complex-orthogonal if
and only if β = ±

√
2.

The inner product of the two columns of B is given by

(

β
−i

)∗ (

i
β

)

= (β, i)

(

i
β

)

= 2iβ,

and hence the two columns are orthogonal to each other (the inner product
is zero) if and only if β = 0, that is, if and only if B is unitary. Hence, the
columns of a complex-orthogonal matrix are not necessarily orthogonal to
each other.

Next let β =
√

2, so that B is complex-orthogonal, and consider its
eigenvalues. The determinant of B is one; in fact the determinant of any
complex-orthogonal matrix equals ±1. But the eigenvalues of B are

√
2± 1,

and hence the eigenvalues of a complex-orthogonal matrix do not in general
have modulus one.

We conclude that a complex-orthogonal matrix does not necessarily have
columns that are orthogonal to each other, and need not have eigenvalues
with modulus one. Basically, none of the attractive properties of orthogonal
matrices hold for complex-orthogonal matrices. To call complex-orthogonal
matrices “orthogonal” is bound to lead to errors, and many textbooks —
also good ones — provide ample demonstrations of this point.

4 Square root

In mathematics (but not in high school mathematics) it is not uncommon
to say that any number y such that y2 = x is a square root of x. However,
the function

√
x is the inverse function of x = y2 for y ≥ 0. Hence there

is a difference between the phrase “square root of x” (not unique) and the
symbol

√
x (unique). If we accept this distinction, then any nonnegative real
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number x has two square roots, but only one nonnegative square root. This
square root is called the principal square root, is unique, and can thus be
written as

√
x.

We shall not adopt this distinction which can easily lead to errors. We
consider the square root y :=

√
x as a unique real-valued function defined

for all x ≥ 0 with values y ≥ 0. This is the most common usage. We show
first how the scalar square root function extends unambiguously to positive
semidefinite matrices. Next we consider nonsymmetric real matrices.

We start with the diagonal matrix

Λ =

(

4 0
0 9

)

≡ diag(4, 9).

There are four matrices which satisfy the equation D2 = Λ, namely

D1 := diag(−2,−3), D2 := diag(−2, 3),

D3 := diag(2,−3), D4 := diag(2, 3),

but only D4 is the square root of Λ compatible with our one-dimensional
definition given above. Hence, the matrix function Λ1/2 is uniquely defined
for any diagonal matrix with nonnegative elements on the diagonal.

Next consider a symmetric (hence real) matrix A. This matrix can be
diagonalized so that we can write A = SΛS ′, where S is orthogonal and
Λ is diagonal. In accordance with the usual definition of matrix functions
for symmetric matrices, we define A1/2 = SΛ1/2S ′. But Λ1/2 is only defined
as before if Λ has nonnegative diagonal elements. Hence, for any positive
semidefinite matrix A there exists a unique positive semidefinite matrix B
such that B2 = A; this unique matrix is the square root of A. If A is positive
definite (hence nonsingular), then the notation A−1/2 denotes the inverse of
A1/2 or the square root of A−1 — they are the same.

Can we also define a unique square root for nonsymmetric real matrices?
Yes, this is possible provided the eigenvalues are all positive. Consider a real
n× n matrix A with positive eigenvalues λ1, . . . , λn, not necessarily distinct.
Denote by Jm(λ) a Jordan block, that is, an m × m matrix of the form

Jm(λ) :=















λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . λ















.

(For m = 1 we let J1(λ) := λ.) Jordan’s decomposition theorem then guar-
antees the existence of a nonsingular n × n matrix T such that T−1AT = J ,
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where

J :=











Jn1
(λ1) 0 . . . 0
0 Jn2

(λ2) . . . 0
...

...
...

0 0 . . . Jnk
(λk)











with n1 + n2 + · · · + nk = n.
The square root of A can now be defined through its Jordan representation

A = TJT−1 as
A1/2 := TJ1/2T−1,

where J1/2 := diag
(

J
1/2
n1

(λ1), . . . , J
1/2
nk (λk)

)

and

J1/2
ni

(λi) :=











λ
1/2
i g1(λi) . . . gni−1(λi)

0 λ
1/2
i . . . gni−2(λi)

...
...

...

0 0 . . . λ
1/2
i











(1)

for i = 1, . . . , k. The functions gj are scaled derivatives of f(λ) := λ1/2 (see
Abadir and Magnus, 2005, Exercise 9.18), and specialize here to

gj(λ) :=
f (j)(λ)

j!
=

(

1/2

j

)

λ1/2−j , (2)

where the binomial coefficients are given as
(

1/2

j

)

=

∏j−1
i=0

(

1
2
− i

)

j!
,

and the empty product
∏

−1
i=0 equals one, by convention. For example, we

have




3 1 0
0 3 1
0 0 3





1/2

=
√

3





1 1/6 −1/72
0 1 1/6
0 0 1



 .

Notice that the reason we may apply the result in Abadir and Magnus (2005)
is that f(λ) := λ1/2 has a power series expansion that is summable (but not
necessarily convergent) for λ 6= 0.

This brings us to two further questions: what if λ = 0, and what if we
extend the definition to include real λ < 0 or complex λ?

First, for λ = 0 the matrix A1/2 may not exist. The simplest example is
the matrix J2(0), which has no square root because the matrix equation

X2 =

(

0 1
0 0

)
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has no solution. More generally, the matrix Jm(0) has no square root when
m > 1, because the matrix is nilpotent and its index is equal to its dimension.
(If a square matrix J of any dimension satisfies Jm−1 6= 0 and Jm = 0, then
J is nilpotent of index m.) Clearly, the square root of J1(0) = 0 exists. But
the square root exists also if we can pair a block like Jm(0) with another
block Jm(0) or Jm±1(0) in the decomposition of A. We illustrate the effect
of the latter pairing with

diag(J2(0), J1(0)) =





0 1 0
0 0 0
0 0 0



 .

This matrix can be transformed by a permutation matrix P and its transpose
(inverse) to P diag(J2(0), J1(0))P ′, thereby preserving the Jordan structure
A = TJT−1. Choosing

P =





1 0 0
0 0 1
0 1 0



 ,

the result of the transformation is a nilpotent matrix of index 2 whose square
root exists (since the index is less than the dimension) and is nilpotent of
index 3. More precisely, we find

(

P

(

J2(0) 0
0 J1(0)

)

P ′

)1/2

=





0 0 1
0 0 0
0 0 0





1/2

=





0 1 0
0 0 1
0 0 0



 = J3(0),

and hence




0 1 0
0 0 0
0 0 0





1/2

=





1 0 0
0 0 1
0 1 0









0 1 0
0 0 1
0 0 0









1 0 0
0 0 1
0 1 0



 =





0 0 1
0 0 0
0 1 0



 .

Similarly, if we can pair two blocks Jm(0) in the decomposition of A, then
the square root exists too. If all Jordan blocks having λ = 0 can be paired
in one of these two ways, with a leftover block (if any) of the form J1(0) = 0,
then the square root of the matrix will exist uniquely for all real λ ≥ 0.

Second, is it possible to extend the definition to include real λ < 0 or
complex λ? Yes, this is possible because the result of (1)–(2) is applicable
to all complex λ 6= 0, by analytic continuation of the binomial expansion.
One has to be careful here to choose the principal value of the square roots
in (1)–(2). For example, the principal values of

√
4 and

√
−4 are 2 and 2i,

respectively, and not −2 and −2i. This extension is applicable to complex
matrices, as well as real matrices with complex eigenvalues.
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5 Quadratic forms

For any complex matrix U and two conformable complex vectors x and y,
an expression of the form ϕ(x, y) := x∗Uy is called a sesquilinear form. The
matrix U need not be Hermitian; in fact, it need not be square. If the matrix
U is Hermitian, then the expression

ϕ(x, y) := x∗Hy

is called a Hermitian sesquilinear form, and we write H instead of U to
emphasize the nature of H . A Hermitian sesquilinear form is, in general,
a complex function. An important subclass of the Hermitian sesquilinear
forms are the functions ϕ(x, x) = x∗Hx, and these are called Hermitian
forms. Since H is Hermitian, we have (x∗Hx)∗ = x∗Hx. Hence, Hermitian
forms are real.

There is no complete agreement in the literature about these terms. A
sesquilinear (one-and-a-half times linear) form is linear in one argument and
conjugate-linear in the other. Some authors, especially when working solely
in a complex setting, refer to sesquilinear forms as bilinear forms, but a bilin-
ear (two times linear) form should be linear in both arguments. Conventions
also differ as to which argument should be linear in a sesquilinear form. We
take the first argument to be conjugate-linear and the second to be linear,
which appears to be the common convention in physics and matrix alge-
bra. Note also that some authors call x∗Hy a Hermitian form rather than a
Hermitian sesquilinear form.

If A is a real matrix and x and y are conformable real vectors, then the
scalar function x′Ay is called a bilinear form. For symmetric A, an expression
x′Ay is a symmetric bilinear form, and the special case x′Ax is a quadratic
form.

Now we have to decide whether symmetry of the matrix A is implicit in
the definition of a quadratic form or not. There are three good reasons why
symmetry should be included in the definition. First, we want a quadratic
form to be a special case of a Hermitian form, so that all results on Hermitian
forms apply to quadratic forms. Second, we want a quadratic form to be a
special case of a symmetric bilinear form, just as a Hermitian form is a
special case of a Hermitian sesquilinear form. In fact, and in contrast to the
complex case, the symmetric bilinear forms are in one-to-one correspondence
with (symmetric) quadratic forms, because

x′Ay =
1

2
((x + y)′A(x + y) − x′Ax − y′Ay) .

Third, all theorems about quadratic forms concern the case where A is sym-
metric.
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Most authors, however, do not include symmetry in the definition of a
quadratic form. Perhaps they find it counterintuitive to say that an expres-
sion like

(x1, x2)

(

1 −1
5 9

) (

x1

x2

)

is not a quadratic form. In practice, this is not a problem, because the matrix
A can always be taken to be symmetric, due to the fact that

x′Ax = x′

(

A + A′

2

)

x.

(Note that this trick does not work for complex matrices, because x∗Ux 6=
x∗U∗x, in general.) For example,

(x1, x2)

(

1 −1
5 9

) (

x1

x2

)

= (x1, x2)

(

1 2
2 9

) (

x1

x2

)

= x2
1 + 4x1x2 + 9x2

2.

Because of this fact, the function x′Ax is often called a quadratic form,
even when the matrix A is not symmetric. Perhaps it is best to say that
a quadratic form x′Ax is understood to mean that A is symmetric unless
stated explicitly otherwise.

A positive (semi)definite matrix, however, is always symmetric. This is
because a Hermitian matrix is positive (semi)definite if and only if x∗Hx > 0
(x∗Hx ≥ 0) and the requirement that H is Hermitian is essential; otherwise
x∗Hx is not real for all x. Hence the first displayed matrix above is not
positive definite, but the second (symmetric) matrix is, even though the
quadratic forms are the same.

6 Matrix derivatives

If f is an m× 1 vector function of an n× 1 vector x, then the derivative (or
Jacobian matrix) of f is the m × n matrix

Df(x) :=
∂f(x)

∂x′
,

the elements of which are the partial derivatives ∂fi(x)/∂xj , i = 1, . . . , m,
j = 1, . . . , n. There is no controversy about this definition. All mathematics
texts define vector derivatives in this way. Since we wish to call on results
from the mathematics literature, we should not deviate from the standard
definition.
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Thus, when y = Ax, then ∂y/∂x′ = A (when A is a matrix of constants).
Also, for a scalar function ϕ(x), the derivative ∂ϕ(x)/∂x′ is a row vector,
not a column vector.

The definition of matrix derivatives is not generally treated in mathemat-
ics texts, but it should be a generalization of the vector case. Consider an
m × p matrix function F of an n × q matrix of variables X. Clearly, the
derivative is a matrix containing all mpnq partial derivatives. But how are
these partial derivatives organized? We shall argue in this section that this
can only be done in one way, namely by stacking the elements of the function
F and by stacking the elements of the argument X. Since the vec-operator is
the commonly used stacking operator, we use the vec-operator. There exist
other stacking operators (for example, by organizing the elements row-by-
row rather than column-by-column), and these could be used equally well as
long as this is done consistently. A form of stacking, however, is essential
in order to preserve the notion of “derivative.” We note in passing that all
stacking operations are in one-to-one correspondence with each other and
connected through permutation matrices. For example, the row-by-row and
column-by-column stacking operations are connected through the commuta-
tion matrix. There is therefore little advantage in developing the theory of
matrix calculus for more than one stacking operation.

Thus we define

DF (X) :=
∂ vec F (X)

∂(vec X)′
,

which is an mp × nq matrix. The definition of vector derivative is a special
case of the more general definition of matrix derivative, as of course it should.
The definition implies that, if F is a function of a scalar x (n = q = 1), then
DF (x) = ∂ vec F (x)/∂x, an mp × 1 column vector. Also, if ϕ is a scalar
function of a matrix X (m = p = 1), then Dϕ(X) = ∂ϕ(X)/∂(vec X)′,
a 1 × nq row vector. The choice of ordering the partial derivatives is not
arbitrary. For example, the derivative of the scalar function ϕ(X) = tr(X)
is not Dϕ(X) = In (as is often stated), but Dϕ(X) = (vec In)′.

To define matrix derivatives correctly is important, because a derivative
is not just a collection of partial derivatives. In particular, we want to be
able to use a chain rule, we want to interpret the rank of a derivative, and
we want to use its determinant in transformation theorems. This is only
possible with a correct definition of matrix derivative, as the discussion and
examples below will demonstrate.

Let us consider an alternative arrangement of the partial derivatives. If
F = (fij) is an m × p matrix function of a scalar x, then one may define an
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expression

δF (x)

δx
:=







∂f11(x)
∂x

. . .
∂f1p(x)

∂x
...

...
∂fm1(x)

∂x
. . . ∂fmp(x)

∂x






,

which has the same dimension as F . Since this is not the derivative of F
(which is an mp× 1 column vector), we use a different notation: δ instead of
∂, and we call the expression not a derivative but a derisative. If X = (xst)
is a matrix of dimension n × q, then we may extend this definition to the
derisative of a matrix with respect to a matrix as

δF (X)

δX
:=







δF (X)
δx11

. . . δF (X)
δxn1

...
...

δF (X)
δx1q

. . . δF (X)
δxnq






,

where we note the transposition of the indexing. The resulting matrix is of
order mq × np. The derisative δf(x)/δx of a vector with respect to a vector
is equal to the derivative Df(x) = ∂f(x)/∂x′. In fact, this is the reason why
the indexing is transposed in the above formula. One might therefore think
that both definitions generalize vector calculus to matrix calculus, and that
the choice is a matter of taste. This, however, is not the case. Although both
definitions contain all partial derivatives, their dimensions are different and
their properties are completely different. Only one definition (the derivative)
generalizes the concept of a derivative; the other just contains the partial
derivatives, but has no useful properties. This fact is well documented; see
Pollock (1985) and Magnus and Neudecker (1985, 1988), but the derisative
still exists prominently. Since this is an important issue, we give below four
reasons why the derisative is not a derivative.

First, consider the identity function F (X) = X. One would expect that
the derivative of this function is the identity matrix, and of course we have
DF (X) = I. But the derisative of the identity function is not the identity
matrix. For example, when X has dimension 2 × 2, we find

δF (X)

δX
=









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









.

Second, the “product rule” for derisatives is often stated as

δ(FG)(X)

δX
=

δF (X)

δX
G(X) + F (X)

δG(X)

δX
.
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Just looking at the dimensions of the matrices, it is immediately clear that
this rule cannot hold in general: a matrix sum is only defined when the two
matrices have the same dimensions, and a matrix product requires that the
number of columns in one matrix equals the number or rows in the other.
The product rule for derisatives is therefore only defined when X is a scalar.
But then the result is in fact true. In general, whether the argument X is a
scalar or a matrix, we have

d(FG) = (d F )G + F (d G),

the product rule for differentials. Applying the vec-operator gives

d vec(FG) = (G′ ⊗ Im) d vec F + (Ir ⊗ F ) d vec G,

assuming that F has m rows and that G has r columns. Then,

∂ vec(FG)

∂(vec X)′
= (G′ ⊗ Im)

∂ vec F

∂(vec X)′
+ (Ir ⊗ F )

∂ vec G

∂(vec X)′
,

so that we obtain the correct product rule for derivatives as

D(FG)(X) = (G′ ⊗ Im)DF (X) + (Ir ⊗ F )DG(X).

Third, let us consider the chain rule, obviously an essential ingredient without
which matrix calculus cannot exist. If F (m×p) is differentiable at X (n×q),
and G (l × r) is differentiable at Y = F (X), then the composite function
H(X) := G(F (X)) is differentiable at X, and

DH(X) = (DG(Y ))(DF (X)).

This is the correct chain rule. By analogy, the “chain rule” for derisatives is
typically stated as

δH(X)

δX
=

δG(Y )

δY

δF (X)

δX
.

Again, there is a problem with the dimensions, because the product is only
defined when p = q = r. But even with this restriction the rule is wrong.
Consider the case where all matrices are square of order two. Then the “chain
rule” for derisatives reads





δH(X)
δx11

δH(X)
δx21

δH(X)
δx12

δH(X)
δx22



 =





δG(Y )
δy11

δG(Y )
δy21

δG(Y )
δy12

δG(Y )
δy22









δF (X)
δx11

δF (X)
δx21

δF (X)
δx12

δF (X)
δx22



 .

In particular, we should have

δH(X)

δx11

=
δG(Y )

δy11

δF (X)

δx11

+
δG(Y )

δy21

δF (X)

δx12

,
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and specializing further:

∂h11

∂x11
=

∂g11

∂y11

∂f11

∂x11
+

∂g12

∂y11

∂f21

∂x11
+

∂g11

∂y21

∂f11

∂x12
+

∂g12

∂y21

∂f21

∂x12
.

But this is not true. The correct chain rule is given by

∂h11

∂x11
=

∂g11

∂y11

∂f11

∂x11
+

∂g11

∂y21

∂f21

∂x11
+

∂g11

∂y12

∂f12

∂x11
+

∂g11

∂y22

∂f22

∂x11
.

Finally, let us consider a transformation from a 2 × 2 matrix X to a 2 × 2
matrix Y = F (X). We want to know whether this transformation is singular
or nonsingular, and we want to know the Jacobian of the transformation, that
is, the absolute value of the determinant of the derivative DF (X). Suppose
that the derivative at a particular value of X is given by

C1 :=
∂ vec F (X)

∂(vec X)′
=









4 2 2 1
1 1 γ 1
2 0 2 0
0 1 0 2









,

where we leave γ free for the moment. The corresponding derisative is then
given by

C2 :=
δF (X)

δX
=









4 2 2 0
1 0 1 1
2 2 1 0
γ 0 1 2









.

The determinants of C1 and C2 are |C1| = 6γ − 2 and |C2| = −2γ, respec-
tively, and are therefore not equal (unless γ = 1/4). If γ = 1/3 then the
transformation is singular (|C1| = 0), but |C2| is nonzero, so that the de-
risative does not provide the correct information. If γ = 0, then |C2| = 0,
but the transformation is in fact nonsingular (|C1| is nonzero).

In summary: a derisative is not a derivative, and there exists not a single
reason for using it.

7 Conclusion

In this note we have discussed a number of problems in defining standard
concepts in matrix algebra. Apart from the fact that it is undesirable that
standard concepts like symmetry and orthogonality are defined differently
by different authors, we argue that some definitions are unnatural and error-
prone, and thus better avoided. Some other definitions are simply wrong and
therefore must be avoided.
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