
CIRJE Discussion Papers can be downloaded without charge from:

http://www.e.u-tokyo.ac.jp/cirje/research/03research02dp.html

Discussion Papers are a series of manuscripts in their draft form. They are not intended for

circulation or distribution except as indicated by the author. For that reason Discussion Papers may

not be reproduced or distributed without the written consent of the author.

CIRJE-F-624

Generating a Target Payoff Distribution
with the Cheapest Dynamic Portfolio:

an Application to Hedge Fund Replication

Akihiko Takahashi
University of Tokyo

Kyo Yamamoto
Graduate School of Economics, University of Tokyo

June 2009; Revised in March 2010



Generating a Target Payoff Distribution
with the Cheapest Dynamic Portfolio:

An Application to Hedge Fund Replication∗

Akihiko Takahashi and Kyo Yamamoto†

Graduate School of Economics, The University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan 113-0033

First draft: June 16, 2009
This version: March 8, 2010

Abstract

This paper provides a new hedge fund replication method with the
dynamic optimal portfolio. This is an extension of the methodology
developed by Kat and Palaro (2005) and Papageorgiou, Remillard and
Hocquard (2008) to multiple trading assets with both long and short
positions. It is applied to the replication of CS/Tremont managed fu-
tures index, which performed very well even under the subprime and
Lehman shocks. Empirical analyses show that the extension dramat-
ically improves the replication performance in practice. Especially,
the clone by multiple replicating tools enjoyed high returns under the
credit crisis by controlling exposures efficiently, while the replica by
the existing method incurred drawdown during the period. Moreover,
the replication with an estimation method that reflects trend following
strategy as the target brings correlated returns to the target.

∗The internet appendix is available at http://ssrn.com/abstract=1555442
†Corresponding author: ee077031@mail.ecc.u-tokyo.ac.jp
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1 Introduction

Recently, hedge fund replication products appeared in financial markets. In-
vestment banks and asset management companies have launched such prod-
ucts one after another. Some of these institutions developed replication tech-
niques collaborating with the pioneers in hedge fund research. (See, for ex-
ample, Géhin (2007). The emergence and methods of hedge fund clones
are described more in detail in Takahashi and Yamamoto (2010).) In addi-
tion, replication products overcome some demerits of hedge fund investing:
high cost, low transparency, and low liquidity. The importance of trans-
parency and liquidity has been recognized after subprime and Lehman shocks.
Therefore, these products have gained increased attention. Wallerstein et al.
(2010) examined the performances of existing hedge fund clone products.

As shown in Géhin (2007) and Wallerstein et al. (2010), many financial
firms offer the clones of various investment strategies. Most of replication
products are trying to replicate the performances of hedge funds in aggregate
basis. In other words, their replication targets are aggregate hedge fund
indices provided by HFR, CS/Tremont and so on. Others are trying to
replicate the performances of some specific alternative investment strategies
such as long/short equities, market-neutral, and so on. Replicators have been
developing their own original methods by employing highly sophisticated
models and statistical methods.

The methodologies for hedge fund replication can be categorized in the
following three approaches: rule-based, factor-based, and distribution repli-
cating approach. Rule-based approach mimics typical trading strategies that
are employed by hedge funds. The method of Duarte et al. (2007) can also
be regarded as rule-based fixed-income hedge fund clone techniques.

Factor-based clone tries to replicate risk exposures of the target fund.
If this method succeeded, then the return of the clone tracked that of the
target fund on month-to-month basis. Lo and Hasanhodzic (2007) and Fung
and Hsieh (2007a, 2007b) studied hedge fund replication by this approach.
The techniques of factor analysis for hedge funds that have been developed
from the late 1990s such as that of Fung and Hsieh (1997, 2000, 2001) and
Agarwal and Naik (2004) are directly applied to the replication.

Distribution replicating approach aims to replicate the distribution of
hedge fund returns. This approach allows tracking error on month-to-month
basis as long as a replicator delivers a similar return distribution to the repli-
cation target. This is a powerful approach when month-to-month replication
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with enough accuracy is difficult. Amin and Kat (2003) first tried the repli-
cation. However, an attractive character of the hedge fund returns is the low
dependency on returns of traditional asset classes. Further, Kat and Palaro
(2005) presented a modified method to replicate the dependence structure on
the investor’s existing portfolio, too. Kat and Palaro (2005) tried to replicate
the return distribution of the target hedge fund and its dependence struc-
ture on an investor’s existing portfolio through the dynamic trading of the
investor’s existing portfolio (proxied by a portfolio of stock index and bond
futures) and another asset (replicating tool). Papageorgiou et al. (2008) pro-
posed an alternative way to perform Kat-Palaro’s replication methodology
by utilizing a hedging scheme of options in an incomplete market.

Ideally, a clone is desired to track the return of the target almost com-
pletely like passive index funds, but it is of great difficult. We believe that
replicators should choose an approach suited to their replication targets and
satisfying investors’ needs. If investors want to access to hedge funds’ expo-
sures on markets, the replicator should adopt factor-based approach. When
investors want some return characteristics of an arbitrage strategy, the repli-
cator should simply implement such a investment strategy based on some
trading rules. If investors are attracted to hedge funds because of their distri-
butional characteristics and low dependency on their own existing portfolio,
distribution replication satisfies the needs.

Figure 1 shows the performances of CS/Tremont hedge fund indices by in-
vestment strategy from January 2007 to December 2009. Under the subprime
and Lehman shock, most strategies incurred large drawdown, but managed
futures funds enjoyed high returns. Therefore, this paper considers the repli-
cation of the managed futures index. Before that, what is managed futures?

Managed futures funds seek for attractive investment opportunities in
futures markets all over the world. They are employing dynamic trading
strategies including leverage and short sales to exploit them. Many of them
are trend follower utilizing technical analysis and system trading. In the
past financial crises, most managed futures funds earned profits by capturing
turning points of trends quickly and taking short positions. Then, what is
the suited approach to the replication of such a strategy?

First, suppose rule-based approach is adopted. Then, a replicator mimics
typical trading rules employed by managed futures funds on hearing basis. As
just mentioned, many managed futures funds adopt system trading based on
their own trading rules. Therefore, a rule-based managed futures replication
product end up with a fund that has no difference from an original managed
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Figure 1: Performances of CS/Tremont Hedge Fund Indices by In-
vestment Strategy (Jan 2007-Dec 2009). This figure shows the growth of net
asset values of CS/Tremont hedge fund indices by investment strategy in US dollar basis
from January 2007 to December 2009. The initial net asset values for all the strategies are
normalized to one at the end of December 2006. The hedge fund indices are downloadable
from the homepage of CS/Tremont or Bloomberg. This paper uses the data downloaded
from the homepage for the analysis.
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futures fund.
Next, how about factor-based approach? If we choose this approach, our

first task is finding factors that drive the return of the managed futures index.
However, it is difficult to find factors that explain the returns of managed
futures funds. (See, for example, Hakamada et al. (2007).) Therefore, its
factor-based replication is very tough or impossible.

Therefore, distribution replication becomes a powerful approach. As
shown in Figure 1, managed futures performed very well under the credit
crisis. Thus, their dependence structures on investors’ stock and bond port-
folios would also attract investors. The methodology proposed by Kat and
Palaro (2005) can replicate this character in theory. Figure 2 shows the per-
formances of CS/Tremont managed futures index and its clone based on their
methodology. Under Lehman shock, the replica incurred drawdown, while
the replication target earned profits. The reason of this failure is that the
method can trade only one replicating tool with only long position. Mainly,
the no-short sales constraint induced the drawdown. It is considered that
many managed futures funds captured the change of market trend and took
short positions. In addition, they invest in global futures markets, while
the clone can trade only one replicating tool. This restriction is also too
restrictive.

Amenc et al. (2008) pointed out the following two shortcomings of the
existing distribution replication methodology. The first problem is that “the
success of the method is merely related to a possible replication of long-
horizon returns, with no success in replicating their time-series properties.”
Secondly, they said “A serious concern also remains over the robustness of the
results, in particular those related to the difference in average returns with
respect to the choice of the reserve asset (that is referred to as replicating tool
in this paper) and sample period. As a result, the the investor is finally left
with the question of selecting/designing a well-diversified strategic and/or
tactical benchmark that could be used as a reserve asset so as to generate
the highest risk-adjusted return.” How to overcome these shortcomings?

This article extends the distribution replication methodology developed
by Kat and Palaro (2005) and Papageorgiou et al. (2008). The new
method can trade multiple assets, and take both of long and short positions.
Therefore, it reflects mentioned managed futures funds’ investment behav-
ior. When multiple replicating tools are tradable, there are infinitely many
payoffs that have the target distribution. This paper proposes to choose
the cheapest one among them. The cheapest payoff is replicated by the dy-
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Figure 2: Replication Performance of the Existing Distribution
Replication Method for CS/Tremont Managed Futures Index. This
figure shows the growth of the net asset values ($) of CS/Tremont managed futures index
and its clone by the existing method from January 2001 to December 2009. The replica-
tion is based on Kat and Palaro (2005) and Papagerogiou et al. (2008). The initial net
asset values are normalized to one at the end of December 2000.
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namic trading strategy of the investor’s portfolio and replicating tools. The
cheapest payoff is supported by utility maximization theory. It can be shown
that the dynamic trading strategy generating the cheapest payoff for some
distribution maximizes a von Neumann-Morgenstern utility. Dybvig (1988)
derived this result in equally probable finite space setting. See the internet
appendix for the proof in the continuous-time framework.

As will be shown, by the extension, the replication performance is dra-
matically improved in practice. Especially, the clone by the new method
performed very well even under the subprime and Lehman shocks. In other
words, the extension resolves the second concern that was pointed out by
Amenc et al. (2008). Moreover, the replication with an estimation method
that reflects trend following strategy as the target brings correlated returns
to the target to some extent. By reflecting the investment strategy of the
target in estimation of the trading assets’ price processes, the first problem
that was pointed out by Amenc et al. (2008) is relieved. In sum, the ex-
tension to multiple assets with long and short positions and the estimation
procedure with reflecting the investment strategy of the target overcome the
two shortcomings of the existing distribution replication method.

This paper is outlined as follows. The following section briefly reviews the
existing distribution replication methodology. Section 3 extends the method
to multiple replicating tools with long and short positions. Then, section 4
applies the new method to the replication of CS/Tremont managed futures
index. Finally, section 5 concludes this paper.

2 Review of existing distribution replication

methodology

Let us review the distribution replication methodology developed by Kat and
Palaro (2005) and Papageorgiou et al. (2008). Consider an investor who has
been investing in traditional assets such as stocks and bonds, and plans to
invest in a hedge fund. Assume that he is attracted to the hedge fund because
of its return distribution and the dependence structure on his portfolio. Kat
and Palaro (2005) proposed to replicate the return distribution of the hedge
fund and its dependence structure on the investor’s existing portfolio by the
dynamic trading strategy of the investor’s portfolio (proxied by a portfolio
of stock index and bond futures) and another asset (replicating tool).
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Let S0 be a risk-free asset, S1 be the investor’s existing portfolio, and S2

be a replicating tool. Assume that S1 is also tradable. Let 0 and T be the
start and terminal dates of the investment, respectively. (For example, they
are assumed to be the start and end of the month.) Although Papageorgiou
et al. (2008) assumed an incomplete market, this paper assume a complete
market. Suppose the financial assets follow stochastic differential equations
(SDEs)

dS0
t = rtS

0
t dt,

dS1
t = µ1

t S
1
t dt + σ11

t S1
t dW 1

t ,

dS2
t = µ2

t S
2
t dt + σ21

t S2
t dW 1

t + σ22
t S2

t dW 2
t ,

where W 1
t and W 2

t are independent Wiener processes, and rt, µi
t, and σij

t

(i, j = 1, 2) satisfy some measurability and integrability conditions. Normal-
ize initial asset values so that S0

0 = S1
0 = S2

0 = 1.
To replicate the joint return distribution of the target hedge fund and the

investor’s existing portfolio, we need to perform the following steps. First,
stochastic processes {S1

t }T
t=0 and {S2

t }T
t=0 are inferred. Following that, the

joint distribution of R1
T = log S1

T and R2
T = log S2

T is also obtained. Let RT

be the random variable that represents the log return of the target hedge
fund. Second, the joint distribution of the investor’s portfolio and hedge
fund returns

(
R1

T , RT

)
is estimated. This is the target joint distribution to

replicate. Third, the payoff function, which transforms the joint distribution
of

(
R1

T , R2
T

)
to that of

(
R1

T , RT

)
, is determined. Finally, the payoff is priced

and replicated through the dynamic trading of S1 and S2.
In the first step (inference of {S1

t }T
t=0 and {S2

t }T
t=0), Kat and Palaro (2005)

and Papageorgiou et al. (2008) modeled them by using Gaussian and non-
Gaussian distributions such as Gaussian mixtures, and selected the best fitted
one.

As hedge funds exhibit skewness and fat-tails, and are non-linearly related
to traditional asset classes, in the second step (estimation of (R1

T , RT )), Kat
and Palaro (2005) proposed to model R1

T and RT separately, and then connect
them by a copula. For hedge fund returns, it is desirable to use the distri-
bution class that can capture its skewness and fat-tails. For example, Kat
and Palaro (2005) and Papageorgiou et al. (2008) used Gaussian, Student-t,
Gaussian mixture and Johnson distributions. The Johnson distribution class
is often used for the analysis of non-normal behavior of hedge fund returns as
seen in Kaplan and Knowles (2004), Pérez (2004), and Passow (2005). Some

8



copulas can capture the asymmetric dependence structure flexibly. For ex-
ample, the Clayton copula has more dependence in the lower tail than in the
upper tail. This allows for the copula to capture the strong dependence in
bear markets and weak dependence in bull markets. For example, Mitchell
and Pulvino (2005) showed that risk arbitrage funds tend to exhibit a similar
dependence structure. See, for example, Joe (1997) or Nelsen (1999) for the
introduction to copula.

After estimating the parameters and selecting models of price processes of
the trading assets and the joint return distribution of the target hedge fund
and the investor’s existing portfolio, a payoff function should be determined.
Since the joint payoff distribution is replicated by the dynamic trading of
investor’s portfolio S1 and replicating tool S2, they created a payoff by a
function of S1

T and S2
T . They found function g̃ that satisfies the following

equation:

P
(
R1

T ≤ a, g̃
(
R1

T , R2
T

)
≤ b

)
= P(R1

T ≤ a,RT ≤ b) for any a, b,

or equivalently,

P
(
g̃
(
R1

T , R2
T

)
≤ b

∣∣R1
T = a

)
= P(RT ≤ b|R1

T = a) for any a, b.

Then, g̃(·, ·) is given by

g̃(a, b) = F−1
RT |a(FR2

T |a(b)),

where FRT |a and FR2
T |a are the conditional distribution functions of RT and

R2
T under R1

T = a. As a function of the asset prices, the payoff function is
represented as

ĝ(S1
T , S2

T ) = exp
{
g̃
(
log S1

T , log S2
T

)}
. (1)

If one obtained the payoff function, the replicating strategy encounters the
same problem with pricing and hedging of derivatives. The dynamic repli-
cating strategy is given by the delta-hedging strategy of the payoff ĝ(S1

T , S2
T ).

If the initial cost for the trading strategy is less (more) than one, then the
target payoff can be realized by a lower (higher) cost. The remaining (short-
age of) money is invested (funded) in the risk-free asset. This means that
the shape of the probability density function can be replicated, but the mean
return is higher (lower) than the target fund by the difference of the initial
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cost. In this case, the replicating tool does (does not) include greater invest-
ment opportunity than the target hedge fund. Note that the payoff function
ĝ(·, ·) is an increasing function with respect to the second argument. Then,
the delta-hedging strategy never takes a short position for S2. In pp. 17-18
of Kat and Palaro (2005), the authors claim that users of this method should
choose replicating tool S2 that includes the positive expected return factor
uncorrelated to the return of the investor’s portfolio. Then, the long position
for S2 is justified. Therefore, the choice of a replicating tool is crucial.

As just described, this methodology can replicate the shape of the prob-
ability density function, but cannot fit the mean. If you found a greater
investment opportunity than the target fund, the mean return would be su-
perior and vice versa. Therefore, the usage of only one asset is restrictive.
Papageorgiou et al. (2008) synthesized multiple assets to create one repli-
cating tool by equal-weighing, but there would be inefficiencies in the ad hoc
fixed weighted portfolio. The extension of the investment universe would
bring in higher mean returns.

3 Extension to Multiple Assets with Long

and Short Positions

This section extends the methodology described in the previous section to
multiple assets and both of long and short positions. Let S0 be a risk-free
asset, S1 be the investor’s existing portfolio, and S2, · · · , Sn be risky assets
(replicating tools). Suppose that the price processes of the financial risky
assets {Si

t}T
t=0 (i = 1, · · · , n) satisfy SDEs

dSi
t = µi

tS
i
tdt +

i∑
j=1

σij
t Si

tdW j
t (i = 1, · · · , n), (2)

where µi
t, and σij

t satisfy some measurability and integrability conditions
for any 1 ≤ j ≤ i ≤ n. All of the initial asset values are normalized, so
that S0

0 = · · · = Sn
0 = 1. The following notations by n-dimensional vectors

and a n × n matrix are introduced. St = (S1
t , · · · , Sn

t )′, µt = (µ1
t , · · · , µn

t )′,
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1⃗ = (1, · · · , 1)′, and

σt =

σ11
t O
...

. . .

σn1
t · · · σnn

t

 ,

where ′ represents transposition so that St, µt and 1⃗ are column vectors.
Suppose that σt is invertible almost surely. Then, there exists the unique
market price of risk

θt = σ−1
t (µt − rt1⃗).

In other words, the financial market is complete. The financial market is
denoted by M = (r, µ, σ).

In complete market M, the unique state price density process is given by

Ht = exp

{
−

∫ t

0

rudu − 1

2

∫ t

0

||θu||2du −
∫ t

0

θ′udWu

}
.

The no-arbitrage price of any FT -measurable payoff X is given by x =
E[HT X]. X can be replicated by a dynamic trading of the financial assets
with initial cost x. (See, for example, Karatzas and Shreve (1998).)

When multiple replicating tools are tradable, there are infinitely many
payoffs that have a target distribution. This paper proposes to choose the
cheapest one among them. Dybvig (1988) showed that the cheapest way to
attain a given payoff is by allocating terminal wealth in the reverse order of
the state price density in an equally probable finite state complete market.
The internet appendix proves that this claim is also valid in our setting
under some conditions. In the following, the cheapest payoffs that attain the
same marginal distribution and the same joint distribution with the investor’s
existing portfolio as the target hedge fund are presented.

First, let us see the cheapest payoff that has the same marginal distribu-
tion as the target hedge fund. Let ξ be the payoff of the target hedge fund
(i.e. RT = log ξ). For convenience, the minus logarithm state price density
process Lt is introduced:

Lt = − log Ht =

∫ t

0

rudu +
1

2

∫ t

0

||θu||2du +

∫ t

0

θ′udWu. (3)

Since Arrow-Debreu securities are tradable in complete market, this paper
propose to create a payoff using HT (or LT ). Let Fξ and FLT

denote the
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distribution functions of ξ and LT , respectively. Assume that Fξ is invertible
function. If X is defined as follows, X has the same distribution with ξ:

X = f(LT ), (4)

where
f(l) = F−1

ξ

(
FLT

(l)
)
.

Since F−1
ξ and FLT

are increasing, payoff X increases in LT , and therefore
it is reverse order of state price density HT . Thus, X is the cheapest payoff
among the payoffs that have the same distribution as ξ.

The choice of the cheapest payoff for some marginal distribution can
be justified theoretically. It can be shown that the cost minimization for
a marginal payoff distribution is equivalent to a von Neumann-Morgenstern
utility maximization. Dybvig (1988) proved this claim in the equally probable
finite state setting. The internet appendix proves this claim in continuous-
time framework. This assertion ensures that our method is applicable to
not only hedge fund replication but also dynamic portfolio optimization in
investment management.

Next, let us create the cheapest payoff that has the same joint distribution
with the investor’s portfolio as the target hedge fund. Denote the conditional
distribution functions of ξ and LT under condition S1

T = s by Fξ|s and FLT |s
respectively. Assume that Fξ|s is invertible function for any s. If X is defined
as follows, (S1

T , X) has the same joint distribution with (S1
T , ξ):

X = g(S1
T , LT ), (5)

where
g(s, l) = F−1

ξ|s (FLT |s(l)).

Since F−1
ξ|s and FLT |s are increasing, payoff X increases in LT , and therefore

it is reverse order of state price density HT . Thus, X is the cheapest payoff
among the payoffs that have the same joint distribution with the investor’s
existing portfolio as ξ. See the internet appendix for the proof.

Let us see the dynamic portfolio that replicates the cheapest payoffs. Let
πi

t (i = 0, · · · , n) represent the money amount invested in asset i at time
t. n-dimensional vector πt is defined by πt = (π1

t , · · · , πn
t )′, which denotes

the portfolio of risky assets. Let x be the initial cost required to realize
the cheapest payoff XT for some payoff distribution. The initial cost x is
invested in the financial assets by a dynamic self-financing trading strategy
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to generate payoff XT . In other words, the portfolio value at time t, Xt,
satisfies

Xt = π0
t + π′

t1⃗,

for any t. In a differential form, this is

dXt = rtXtdt + π′
t(µt − rt1⃗)dt + π′

tσtdWt.

The dynamic portfolio can be obtained for the case of Markovian coef-
ficients concretely. (See the internet appendix.) Martingale method with
Malliavin calculus easily gives us the dynamic portfolio generating the pay-
offs. See, for example, Karatzas and Shreve (1998) for the basics of martin-
gale method, and Nualart (2006) for the introduction to Malliavin calculus.
As for the application of Malliavin calculus to the dynamic optimal portfolio,
see for example, Ocone and Karatzas (1991), Detemple et al. (2003, 2008),
and Takahashi and Yoshida (2004). This paper assumes that r, µ and σ are
deterministic functions of time t. Then, the dynamic replicating portfolios
are represented much simpler.

Proposition 1 Assume that r, µ and σ are deterministic functions of time
t. Then, in a complete market M, the dynamic portfolio generating payoff
f(LT ) is given by

πM
t = σ′(t)−1φM

t , (6)

where

φM
t =

θ(t)

Ht

Et[HT f ′(LT )]. (7)

The portfolio that attains payoff g(S1
T , LT ) is given by

πJ
t = σ′(t)−1φJ

t , (8)

where φJ
t = (φJ1

t , · · · , φJn
t ) is given by

φJ1
t =

θ1(t)

Ht

Et[HT g2(S
1
T , LT )] +

σ11(t)

Ht

Et[HT g1(S
1
T , LT )S1

T ], (9)

φJi
t =

θi(t)

Ht

Et[HT g2(S
1
T , LT )], for i = 2, · · · , n, (10)

where gi (i = 1, 2) represents the partial derivative of g with respect to the
i-th argument.
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Portfolios πM
t and πJ

t are obtained if the conditional expectations in equa-
tions (7), (9) and (10) are evaluated.

The interpretations for the optimal portfolio constituent factors are as
follows. As for πM

t , 1
Ht

Et[HT f ′(LT )] is the present value of the sensitivity of
the terminal payoff to the change of LT . This quantity corresponds to delta
in the option theory. The volume of the risky asset portfolio increases in
this quantity. This factor contributes to generating the target distribution.
In addition, the replicating strategy allocates the wealth to tradable assets
according to the market price of risk θi(t). Through this operation, the
cheapest strategy is realized. The difference of πJ

t from πM
t is the second term

in equation (9). This is the present value of the sensitivity of the terminal
payoff to the change of W 1

T . This term contributes to the generation of the
dependence structure on the investor’s existing portfolio.

For the case of constant coefficients, the computational burden to ob-
tain the dynamic replicating portfolio does not increase in the number of
replicating tools. To get the dynamic portfolio for the marginal distribution,
the conditional expectation in equation (7) needs to be evaluated. Then,
all we need is the distribution of LT under the information at time 0 and
t. Since LT follows one-dimensional Gaussian distribution, the conditional
expectation can be numerically computed by the Monte Carlo simulations or
one-dimensional numerical integration. To obtain the dynamic portfolio for
the joint distribution, we need conditional expectations in equations (9) and
(10). They can be numerically computed by the Monte Carlo simulations or
two-dimensional numerical integrations. This is because all we need are the
joint distributions of (W 1

T , LT ) under the information at time 0 and t. Since
Lt is given by equation (3), LT is represented as

LT =

∫ T

0

r(t)dt +
1

2

∫ T

0

||θ(t)||2dt +

∫ T

0

θ1(t)dW 1
t +

n∑
i=2

∫ T

0

θi(t)dW i
t .

The distributions of
∑n

i=2

∫ T

0
θi(t)dW i

t under the information at time 0 and

t are Gaussian distributions with means 0 and
∑n

i=2

∫ t

0
θi(u)dW i

u and vari-

ances
∑n

i=2

∫ T

0
{θi(u)}2du and

∑n
i=2

∫ T

t
{θi(u)}2du, respectively. Therefore,

the joint distributions of (W 1
T , LT ) can be described by two-dimensional

Gaussian distributions. Thus, the extension to multiple replicating tools does
not bring any disadvantage in the computation for the dynamic replicating
portfolios.
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4 Replication of CS/Tremont Managed Fu-

tures Index

Let us apply the new method to the replication of CS/Tremont managed
futures index. The monthly log return of the index is replicated. The repli-
cation performance is examined on in-sample and out-of-sample basis. This
paper uses the following investor’s existing portfolio and risky assets. Assume
that the investor’s existing portfolio is composed of 50% Japanese stocks
and 50% Japanese government bonds (JGB). Since these assets are traded
dynamically, TOPIX futures and long-term JGB futures were used as the
proxies. Both of them are listed on the Tokyo Stock Exchange. The S&P
500 futures, NYMEX WTI crude oil futures, COMEX gold futures, and JPY
against USD spot currency are used as replicating tools. It is considered that
managed futures funds invest in these assets. For the purpose of comparison,
the replication result of payoff (1) (i.e. the clone by the existing replication
method) is also shown. Here, the replicating tool is the equally weighted
portfolio of the four assets used by our method. All the data are obtained
from Bloomberg. The log returns on futures are calculated by rolling the
front contract. The front contract is rolled on the last trading day of the
maturity month. Our base currency is USD because that of the target in-
dex is also USD. Since TOPIX and JGB futures are denominated in JPY,
a currency hedge is applied. Accordingly, the log returns of these assets are
adjusted by the difference between the interest rates of USD and JPY. Libor
rates are used for the interest rates. This paper uses the same statistical
methodology as Papageorgiou et al. (2008). (Details are described in the
working paper version of the paper.)

4.1 In-sample Analysis

In this subsection, let us replicate the target index in an ideal situation where
the models and parameters of the target hedge fund return and trading risky
assets’ price processes are known and there are no transaction costs. The
replication performance in the period from January 2001 to December 2009
is examined. First, using the data of CS/Tremont managed futures index
in this period, estimate the monthly log return of the replication target.
The method is same as Papageorgiou et al. (2008). The best-fitted model
is chosen from a Gaussian mixture with m regimes (m = 1, 2, 3, 4, 5) and
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Johnson unbounded distribution. Here, we get the best-fitted model: mixture
of two Gaussian distribution N(−0.37%, 3.14%2) and N(4.60%, 1.07%2) with
probabilities 81% and 19%.

Next, the copula model between the monthly log returns of the replication
target and the investor’s portfolio is estimated. The best-fitted copula model
is selected from the Gaussian, Clayton, Frank and Gumbel. Here, we get the
best-fitted model: Gaussian copula with correlation −0.06.

Then, the stochastic processes of trading risky assets are estimated. In
this example, assume that they follow log-normal process. In other words,
all of the coefficients of (2) are constant. The parameters are estimated by
maximum likelihood. The parameter estimates and correlation matrix of
trading assets are described in Tables 1 and 2 respectively. The correlation
between the investor’s portfolio and the single replicating tool is 0.26.

Finally, the payoffs for the marginal and joint distributions ((4) and (5))
are replicated by the dynamic replicating portfolios (6) and (8) respectively.
The portfolio is rebalanced on daily basis. For the purpose of comparison,
payoff (1) is also replicated. This is the clone by the existing methodology.

Figure 3 shows the performances of the target index and replicating
strategies. The replication by single replicating tool incurred large draw-
down under Lehman shock. This failure is crucial in the replication of a
managed futures index, because one of attractive characters of the strategy
is high performance under financial crises. Our new methods succeeded in
overcoming the failure, and performed very well. They outperformed the
target index. Here, note that no transaction cost is assumed and that the
performance of the target index is after deduction of management and per-
formance fees, while those of replications are not. In out-of-sample analysis
in the next subsection, we take into account transaction costs and fees. The
marginal distribution clone outperformed the joint distribution replica. This
is because replicating strategy (6) is the cheapest strategy for the target pay-
off distribution. Trading strategy (8) requires additional cost to replicate the
same dependence structure on the investor’s portfolio as the target index.

Table 3 shows the summary statistics of the target and replicated log
returns. The target index exhibits a little negative skew and negative ex-
cess kurtosis. The clones by multiple assets succeeded in reproduce these
characters, while the single replicating tool brought very high kurtosis be-
cause of the negative tail event. As for dependency on the investor’s existing
portfolio, the target index has correlation −0.10. Since the replicating tools
have low correlations with the investor’s portfolio, the marginal distribu-
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tion clone has correlation −0.02. The joint distribution replica resulted in
correlation −0.11. The correlation with the investor’s portfolio was success-
fully replicated by paying some costs. The clone by single replicating tool
has high correlation 0.47, because it incurred large loss in Lehman shock.
Two sample Kolmogorov-Smirnov tests were performed to test whether the
replications generated the same return distribution as the target index. As
already mentioned, the mean returns are different from the target by initial
costs of the replicating strategy. Therefore, the tests were implemented for
demeaned time-series data. The p-values are 0.30 and 0.49 for the marginal
and joint distributions with multiple replicating tools, while that for the
existing method is 0.17. In sum, all of the statistics were dramatically im-
proved by the extension to multiple replicating tools with long and short
positions. Although this example replicated the distributional properties of
CS/Tremont managed futures index (i.e. Gaussian mixtures and Gaussian
copula), the internet appendix shows that our method can generate various
distributions and dependencies by simulation analyses.

4.2 Out-of-Sample Analysis

In this subsection, let us consider the replication in more realistic situation.
In the previous subsection, it is assumed that the all of the models and
parameters are known and that there are no transaction costs. However,
in the real world, we do not know the true model and parameters of the
target index return and trading asset prices, and there exist transaction costs.
Therefore, we estimate parameters and select models using the available data
at each trading date. The transaction costs are assumed to be 1 basis point
for the sale and purchase of all assets, and assumed our management fee is 2%
per year. The replication procedures are performed in the same manner as in
the previous subsection except parameter estimations and model selections.

The model parameters are estimated using available data at each trading
date. For example, consider the parameter estimation for the replication in
January 2003. At that time, the data from January 2003 to December 2009
is not available. Therefore, the parameters are estimated using the data
before December 2002 in practice. This subsection performs the parameter
estimation and model selection using the past data at that time.

In the estimation of the target monthly log return distribution and copula
between the monthly log return of the target index and the investor’s existing
portfolio, the monthly data from January 1995 are used. The estimation
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procedure is same as the previous subsection. The parameter estimations
and model selections are performed for every month.

In the inference of the trading assets’ price processes, the daily data from
1999 are utilized. First let us consider the same estimation procedure as the
previous subsection. In other words, parameters are estimated by maximum
likelihood. The parameters are assumed to be constant during one month,
and they are updated at month start.

Then, the replicating strategies are performed. Figure 4 and Table 4
show the replication results. The clones by multiple replicating tools were
incurred drawdown under Lehman shock. This failure is because the maxi-
mum likelihood estimation for trading asset price processes could not capture
the structural break of the market. Therefore, the replicating strategy could
not control market exposures efficiently. However, managed futures got profit
by capturing the structural break quickly and taking short positions.

Next, consider the replication by another estimation method with cap-
turing market trends. In the inference of the trading assets’ price processes,
take latest data into account more heavily. Here, let us use exponentially
weighted moving average method. Let {ri

n}N
n=1 be the time-series data of

daily log-return of asset i. Suppose ri
1 is the last sample data and ri

N is the
oldest sample. The variance of asset i is estimated by

V ar(ri) =
N∑

k=1

λk−1∑N
n=1 λn−1

ri
k

2
.

The covariances are estimated in the same way. The drift coefficient µi is
estimated by

µi =
N∑

k=1

λk−1∑N
n=1 λn−1

ri
k +

1

2

√
V ar(ri).

Here, the decay factor λ is assumed to be 0.99. Then, the half value period
is 68 days. The parameters are assumed to be constant during one month,
and they are updated at month start.

Figure 5 shows the performances of the target and the replicating strate-
gies. Both of the clones by multiple replicating tools performed very well even
under the Lehman shock. The estimation method succeeded in capturing the
turning point of the market trend, and the replicating strategies earned prof-
its by taking short position. Figure 6 illustrates that the clones by multiple
replicating tools succeeded in the replication of the joint distribution with
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the investor’s existing portfolio. Especially, the returns in October 2008 are
very close to the target. On the other hand, the replica by single replicating
tool incurred large loss in the month. This is because the replicating strategy
cannot take short position even if the expected return of the replicating tool
is negative.

The clone for the marginal distribution outperforms that for the joint
distribution as in the in-sample analysis. The reason is also same. The
replication of the dependency on the investor’s portfolio requires additional
cost. Let us see more in detail. The returns are different especially in 2005.
The most significant difference of the trading strategy is the second term
in equation (8). By this term, the dependency on the investor’s portfolio is
created. Figure 7 shows the replicating portfolios for the marginal and joint
distributions, and Figure 8 shows the performance of the investor’s portfolio.
The replicating strategy for the marginal distribution heavily weighed on the
investor’s portfolio in 2005 to enjoy the Japanese bull market trend. On the
other hand, that for the joint distribution takes position on the investor’s
portfolio not so much to realize low correlation with the investor’s portfolio.
Therefore, the clone for the joint distribution could not earn profits from the
Japanese bull market.

Table 5 exhibits the summary statistics of the target and replicated
monthly log returns. The mean returns of the clones by multiple replicating
tools are higher than the target. This means that the replication products
succeeded in delivering the returns of managed futures at lower cost. If the
performance fee is assumed to be 20%, the clones have close return level to
the managed futures index. Standard deviations are very close to the target.
Skews and kurtosis are close to zero and three, respectively, like the target,
while the replication by single replicating tool end up with much higher kur-
tosis. The dependency on the investor’s existing portfolio is also replicated
successfully. The target correlation is −0.10. The clone for joint distribu-
tion has the correlation with the investor’s portfolio −0.06, while that by the
single replicating tool is 0.48. Since we replicate the target with reflecting
the trading strategy of the target (i.e. trend following strategy), the clones
exhibit correlated returns to the target to some extent. The correlations of
replicas for marginal and joint distributions with the target are 0.56 and 0.58
respectively. The correlated returns are also confirmed in Figure 9. On the
other hand, the clone by single replicating tool has low correlation to the
target.

In sum, on out-of-sample basis, the parameter estimation for trading
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asset price processes is crucial for the replication performance. The repli-
cation with maximum likelihood estimation did not work. However, the
estimation method with reflecting trend following strategy, that is exponen-
tially weighted moving average method, resulted in very good replication
performance. The empirical example showed that the extension to multi-
ple replicating tools with long and short positions improved the replication
performance substantially in practice.

5 Conclusion

This article developed a new hedge fund replication method with the dynamic
optimal portfolio by extending Kat and Palaro (2005) and Papageorgiou et
al. (2008) to multiple trading assets with both long and short positions.
It generates a target payoff distribution by the cheapest dynamic portfolio.
The cheapest payoff is theoretically supported by continuous-time version of
the payoff distribution pricing model developed by Dybvig (1988). It can be
shown that the cost minimization for some distribution is equivalent to the
maximization of a von Neumann-Morgenstern utility. The dynamic replicat-
ing strategy is obtained by martingale method with Malliavin calculus.

The method was applied to the replication of CS/Tremont managed fu-
tures index. The replication performances were examined on in-sample and
out-of-sample basis. Empirical results showed that the extension to multiple
replicating tools with long and short positions dramatically improved the
replication performance in practice. Especially, the new replication method
got high returns in Lehman shock as the replication target while the repli-
cation based on the existing method incurred a large loss during this period.
Moreover, the replication with an estimation method that reflects trend fol-
lowing strategy as the target brings correlated returns to the target to some
extent. The extension to multiple assets with long and short positions and
the estimation procedure with reflecting the investment strategy of the tar-
get overcome the two shortcomings of the existing distribution replication
method that were pointed out by Amenc et al. (2008). (They are quoted in
pp. 5.)

The implementation for the Markovian coefficients case including a
stochastic volatility model as well as a stochastic interest rate model is a
challenging task. Also, the application of our method to creating new at-
tractive trading strategies is a next research topic.
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Investor’s JPY/USD Clude Gold S&P Single
Portfolio Oil 500 Replicating Tool

µi 4.06% 2.68% 16.07% 14.50% 0.56% 8.17%
Std. Dev. 13.33% 10.95% 42.24% 19.23% 22.05% 14.76%

Table 1: Parameter Estimates of the Trading Assets. This table shows
the estimated parameters of the trading assets’ price processes. They are assumed to
be log-normal processes. The parameters are estimated by maximum likelihood using
the data during January 2001-December 2009. The investor’s portfolio is assumed to be
equally weighted portfolio of TOPIX and Japanese government bond futures.

Investor’s JPY/USD Clude Gold S&P
Portfolio Oil 500

Investor’s Portfolio 1.00
JPY/USD 0.27 1.00
Clude Oil 0.13 0.06 1.00

Gold 0.08 -0.13 0.24 1.00
S&P 500 0.24 0.14 0.16 -0.04 1.00

Table 2: Correlation Matrix of the Trading Assets. This table shows
the correlation matrix of the trading assets. They are estimated using the data during
January 2001-December 2009. The investor’s portfolio is assumed to be equally weighted
portfolio of TOPIX and Japanese government bond futures.
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Figure 3: Performances of the Target and Replicated Strategies Us-
ing Data during the Sample Period. This figure shows the growth of the net
asset values ($) of the target and its three clones from January 2001 to December 2009. The
model parameters are estimated using data during the period. The target is CS/Tremont
managed futures index. “Multiple Marginal” represents the clone for the marginal distri-
bution by multiple replicating tools. “Multiple Joint” represents the clone for the joint
distribution with the investor’s existing portfolio by multiple replicating tools. The in-
vestor’s portfolio is assumed to be equally weighted portfolio of TOPIX and Japanese
government bond futures. Replicating tools are S&P 500 futures, NYMEX WTI crude oil
futures, COMEX gold futures, and JPY against USD spot currency. “Single Joint” rep-
resents the clone for the joint distribution with the investor’s existing portfolio by single
replicating tool, which is the equally weighted portfolio of the four replicating tools. The
initial net asset values for all the strategies are normalized to one at the end of December
2000.

25



Target
Multiple Multiple Single
Marginal Joint Joint

Mean 0.57% 0.89% 0.84% 0.58%
Std. Dev. 3.48% 2.89% 3.01% 2.94%

Mean/Std. Dev. 0.16 0.31 0.28 0.20
Skew -0.17 -0.33 -0.17 -1.63

Kurtosis 2.50 2.95 2.56 11.22
Correlation with

-0.10 0.02 -0.11 0.47
investor’s portfolio
Correlation with

0.27 0.29 0.10
the target

K-S test p-value 0.74 0.85 0.19

Table 3: Summary Statistics of the Target and Replicated Log Re-
turns Using Data during the Sample Period. This table shows the sum-
mary monthly statistics of the target and replicated log returns from January 2001 to
December 2009. The model parameters are estimated using data during the period. The
target is CS/Tremont managed futures index. “Multiple Marginal” represents the clone
for the marginal distribution by multiple replicating tools. “Multiple Joint” represents the
clone for the joint distribution with the investor’s existing portfolio by multiple replicating
tools. The investor’s portfolio is assumed to be equally weighted portfolio of TOPIX and
Japanese government bond futures. Replicating tools are S&P 500 futures, NYMEX WTI
crude oil futures, COMEX gold futures, and JPY against USD spot currency. “Single
Joint” represents the clone for the joint distribution with the investor’s existing portfolio
by single replicating tool, which is the equally weighted portfolio of the four replicating
tools. K-S test p-value represents p-value of two-sample Kolmogorov-Smirnov test with
the target. In the test, demeaned time-series data are used.
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Figure 4: Performances of the Target and Replicated Strategies Us-
ing Past Data with Maximum Likelihood. This figure shows the growth of
the net asset values ($) of the target and its three clones from January 2001 to December
2009. The model parameters for trading assets are estimated using the available data at
each trading date with maximum likelihood. The target is CS/Tremont managed futures
index. “Multiple Marginal” represents the clone for the marginal distribution by multiple
replicating tools. “Multiple Joint” represents the clone for the joint distribution with the
investor’s existing portfolio by multiple replicating tools. The investor’s portfolio is as-
sumed to be equally weighted portfolio of TOPIX and Japanese government bond futures.
Replicating tools are S&P 500 futures, NYMEX WTI crude oil futures, COMEX gold
futures, and JPY against USD spot currency. “Single Joint” represents the clone for the
joint distribution with the investor’s existing portfolio by single replicating tool, which is
the equally weighted portfolio of the four replicating tools. The initial net asset values for
all the strategies are normalized to one at the end of December 2000.
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Target
Multiple Multiple Single
Marginal Joint Joint

Mean 0.57% 0.27% 0.38% 0.44%
Std. Dev. 3.48% 3.09% 3.00% 3.64%

Mean/Std. Dev. 0.16 0.09 0.13 0.12
Skew -0.17 -1.03 -0.36 -2.78

Kurtosis 2.50 6.83 4.68 21.65
Min -9.01% -14.38% -11.86% -24.19%
Max 8.28% 6.62% 8.52 % 7.86%

Correlation with
-0.10 0.44 0.14 0.52

investor’s portfolio
Correlation with

0.10 0.17 0.09
the target

K-S test p-value 0.32 0.52 0.19

Table 4: Summary Statistics of the Target and Replicated Log Re-
turns Using the Past Data with Maximum Likelihood. This table shows
the summary monthly statistics of the target and replicated log returns from January 2001
to December 2009. The model parameters for trading assets are estimated using the avail-
able data at each trading date with maximum likelihood. The target is CS/Tremont
managed futures index. “Multiple Marginal” represents the clone for the marginal distri-
bution by multiple replicating tools. “Multiple Joint” represents the clone for the joint
distribution with the investor’s existing portfolio by multiple replicating tools. The in-
vestor’s portfolio is assumed to be equally weighted portfolio of TOPIX and Japanese
government bond futures. Replicating tools are S&P 500 futures, NYMEX WTI crude oil
futures, COMEX gold futures, and JPY against USD spot currency. “Single Joint” rep-
resents the clone for the joint distribution with the investor’s existing portfolio by single
replicating tool, which is the equally weighted portfolio of the four replicating tools. K-S
test p-value represents p-value of two-sample Kolmogorov-Smirnov test with the target.
In the test, demeaned time-series data are used.
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Figure 5: Performances of the Target and Replicated Strategies Us-
ing Past Data with Exponentially Weighted Moving Average. This
figure shows the growth of the net asset values ($) of the target and its three clones from
January 2001 to December 2009. The model parameters for trading assets are estimated
using the available data at each trading date with exponentially weighted moving average.
The target is CS/Tremont managed futures index. “Multiple Marginal” represents the
clone for the marginal distribution by multiple replicating tools. “Multiple Joint” repre-
sents the clone for the joint distribution with the investor’s existing portfolio by multiple
replicating tools. The investor’s portfolio is assumed to be equally weighted portfolio of
TOPIX and Japanese government bond futures. Replicating tools are S&P 500 futures,
NYMEX WTI crude oil futures, COMEX gold futures, and JPY against USD spot cur-
rency. “Single Joint” represents the clone for the joint distribution with the investor’s
existing portfolio by single replicating tool, which is the equally weighted portfolio of the
four replicating tools. The initial net asset values for all the strategies are normalized to
one at the end of December 2000.
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Figure 6: Joint Distributions with the Investor’s Existing Portfolio
of the Target and its Clones. This figure shows the joint distributions with the
investor’s portfolio of the target and its three clones. The sample period is from January
2001 to December 2009. The horizontal axis is the log return of investor’s portfolio, and
the vertical axes are those of the target and clones. The target is CS/Tremont managed
futures index. The investor’s portfolio is assumed to be equally weighted portfolio of
TOPIX and Japanese government bond futures. Panel A represents the joint distribution
of the target with the investor’s portfolio. Panel B is that of the clone for the marginal
distribution by multiple replicating tools. Panel C shows that of the clone for the joint
distribution by multiple replicating tools. Replicating tools are S&P 500 futures, NYMEX
WTI crude oil futures, COMEX gold futures, and JPY against USD spot currency. Panel
D represents the joint distribution of the clone for the joint distribution with the investor’s
existing portfolio by single replicating tool, which is the equally weighted portfolio of the
four replicating tools. The big black circles represent the samples in October 2008.
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Figure 7: Weights of the Replicating Strategies by Multiple Repli-
cating Tools on the Investor’s Portfolio. This figure shows weights of the
replicating strategies by multiple replicating tools on the investor’s existing portfolio from
January 2001 to December 2009. “Marginal” represents the clone for the marginal dis-
tribution and “Joint” represents the clone for the joint distribution with the investor’s
existing portfolio. The investor’s portfolio is assumed to be equally weighted portfolio of
TOPIX and Japanese government bond futures.
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Figure 8: Performance of the Investor’s Portfolio. This figure shows the
growth of the net asset value ($) of the investor’s portfolio from January 2001 to December
2009. The investor’s portfolio is assumed to be equally weighted portfolio of TOPIX and
Japanese government bond futures. The initial net asset value is normalized to one at the
end of December 2000.
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Target
Multiple Multiple Single
Marginal Joint Joint

Mean 0.57% 1.00% 0.76% 0.53%
Std. Dev. 3.48% 3.64% 3.45% 3.11%

Mean/Std. Dev. 0.16 0.28 0.22 0.17
Skew -0.17 0.52 0.40 -0.83

Kurtosis 2.50 3.51 3.31 6.89
Min -9.01% -6.19% -6.84% -14.50%
Max 8.28% 13.11% 10.09% 7.18%

Correlation with
-0.10 -0.02 -0.06 0.48

investor’s portfolio
Correlation with

0.56 0.58 0.19
the target

K-S test p-value 0.52 0.41 0.52

Table 5: Summary Statistics of the Target and Replicated Log Re-
turns Using the Past Data with Exponentially Weighted Moving
Average. This table shows the summary monthly statistics of the target and replicated
log returns from January 2001 to December 2009. The model parameters for trading assets
are estimated using the available data at each trading date with exponentially weighted
moving average. The target is CS/Tremont managed futures index. “Multiple Marginal”
represents the clone for the marginal distribution by multiple replicating tools. “Multiple
Joint” represents the clone for the joint distribution with the investor’s existing portfolio
by multiple replicating tools. The investor’s portfolio is assumed to be equally weighted
portfolio of TOPIX and Japanese government bond futures. Replicating tools are S&P
500 futures, NYMEX WTI crude oil futures, COMEX gold futures, and JPY against
USD spot currency. “Single Joint” represents the clone for the joint distribution with
the investor’s existing portfolio by single replicating tool, which is the equally weighted
portfolio of the four replicating tools. K-S test p-value represents p-value of two-sample
Kolmogorov-Smirnov test with the target. In the test, demeaned time-series data are used.
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Figure 9: Joint Distributions of the Clones with the Target. This figure
shows the joint distributions the clones with the target. The sample period is from January
2001 to December 2009. The horizontal axis is the log return of the target, and the vertical
axes are those of the clones. The target is CS/Tremont managed futures index. Panel A
represents the joint distribution of the target and the clone for the marginal distribution
by multiple replicating tools. Panel B is that of the clone for the joint distribution by
multiple replicating tools. Replicating tools are S&P 500 futures, NYMEX WTI crude oil
futures, COMEX gold futures, and JPY against USD spot currency. Panel C shows the
joint distribution of the clone for the joint distribution with the investor’s existing portfolio
by single replicating tool, which is the equally weighted portfolio of the four replicating
tools. The big black circles represent the samples in October 2008.
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Internet Appendix
for

Generating a Target Payoff Distribution
with the Cheapest Dynamic Portfolio:

An Application to Hedge Fund Replication

Akihiko Takahashi and Kyo Yamamoto

A Mathematical Setting of the Financial

Market

This section describes the financial market with mathematically technical
conditions. Let us begin with a complete probability space (Ω,F , P) on which
is given a n-dimensional standard Brownian motion Wt = (W 1

t , · · · ,W n
t )′,

0 ≤ t ≤ T , where ′ represents transposition so that Wt is a column vector.
W0 = 0 is satisfied almost surely. Let {FW

t }0≤t≤T be the filtration generated
by Wt. This paper uses the augmented filtration

Ft = σ(FW
t ∪N ) for any t < T,

where N denotes P-null subsets of FW
T .

Suppose that the price processes of the financial assets Si (i = 0, · · · , n),
{Si

t}T
t=0, follow stochastic differential equations (SDEs)

dS0
t = rtS

0
t dt,

dSi
t = µi

tS
i
tdt +

i∑
j=1

σij
t Si

tdW j
t (i = 1, · · · , n),

1



where rt, µi
t, and σij

t are progressively measurable and satisfy∫ T

0

|rt|dt < ∞ a.s.,∫ T

0

|µi
t|dt < ∞ a.s.,∫ T

0

(σij
t )2dt < ∞ a.s.

for any 1 ≤ j ≤ i ≤ n. Suppose that σt is invertible almost surely. Then,
there exists the unique market price of risk

θt = σ−1
t (µt − rt1⃗).

In other words, the financial market is complete. The financial market is
denoted by M = (r, µ, σ).

In complete market M, the unique state price density process is given by

Ht = exp

{
−

∫ t

0

rudu − 1

2

∫ t

0

||θu||2du −
∫ t

0

θ′udWu

}
.

The no-arbitrage price of any FT -measurable payoff X is given by x =
E[HT X]. X can be replicated by a dynamic trading of the financial assets
with initial cost x. (See, for example, Karatzas and Shreve (1998).)

B The Payoff for a Target Marginal Distri-

bution

The payoff that attains a target probability distribution with the minimum
cost is presented here. Let ξ be FT -measurable random variable that has
the target payoff distribution. In this paper, it is assumed that ξ is positive,
and has a continuous strictly increasing distribution function. Theorem 1 in
Dybvig (1988) shows that the cheapest way to obtain a given distribution is
by allocating terminal wealth in the reverse order of the state price density in
an equally probable finite state setting. For convenience, the minus logarithm
state price density process Lt is introduced:

Lt = − log Ht =

∫ t

0

rudu +
1

2

∫ t

0

||θu||2du +

∫ t

0

θ′udWu. (B.1)
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Let Fξ and FLT
denote the distribution functions of ξ and LT , respectively.

Assume that FLT
is also continuous and strictly increasing. If X is defined

as follows, X has the same distribution with ξ:

X = f(LT ), (B.2)

where
f(l) = F−1

ξ

(
FLT

(l)
)
.

The next theorem asserts that X is the unique cheapest payoff among the
random variables that has the same distribution with ξ.

Theorem B.1 Assume ξ is a positive FT -measurable random variable, and
Fξ and FLT

are continuous and strictly increasing. In a complete market M,
the unique cheapest payoff X that has the same distribution with ξ is given
by equation (B.2).

Proof. First, let us show that the cheapest way to obtain a target distri-
bution is by allocating terminal wealth in the reverse order of the state price
density. Reverse order of the state price density is mathematically defined
as follows. Let Z be a random variable. For ω∗ ∈ Ω, define UZ(ω∗) as

UZ(ω∗) = {ω : HT (ω) < HT (ω∗)} ∩ {ω : Z(ω) < Z(ω∗)},

and let
VZ = ∪ω∗∈ΩUZ(ω∗).

Z is reverse order of the state price density if

P(VZ) = 0.

Assume that FT -measurable random variable Z has the same distribution
with ξ, and is not the reverse order of the state price density. Then, there
exist a−

1 < a+
1 ≤ a−

2 < a+
2 such that

HT (ω1) < HT (ω2) for any (ω1, ω2) ∈ A1 × A2, (B.3)

where A1 = {a−
1 < Z < a+

1 }, A2 = {a−
2 < Z < a+

2 }, and P(A1) = P(A2) > 0.
Z is not reverse order of HT on A1 ∪ A2.

The following discussion shows that a payoff cheaper than Z can be cre-
ated without changing the distribution by switching the values on A1 and
A2. Let p±i = P(Z ≤ a±

i ), I1 = (p−1 , p+
1 ] and I2 = (p−2 , p+

2 ]. Define Z ′ as

Z ′ = G(Fξ(Z)),

3



where function G is defined as

G(p) =


F−1

ξ (p) on (0, 1) \ (I1 ∪ I2),

F−1
ξ (p + p−2 − p−1 ) on I1,

F−1
ξ (p + p−1 − p−2 ) on I2.

Here, note that p+
1 − p−1 = p+

2 − p−2 . Then, Z ′ has the same distribution with
ξ. This is because equation

P(Z ′ ≤ a) = Fξ(a), (B.4)

holds for any a > 0, as shown in the following. For 0 < a ≤ a−
1 ,

P(Z ′ ≤ a) = Fξ(a).

For a ∈ (a−
1 , a+

1 ],

P(Z ′ ≤ a) = P(Z ′ ≤ a−
1 ) + P(a−

1 < Z ′ ≤ a)

= P(Z ≤ a−
1 ) + P(a−

1 < G(Fξ(Z)) ≤ a)

= p−1 + P(Fξ(a
−
1 ) < Fξ(Z) + p−2 − p−1 ≤ Fξ(a))

= Fξ(a).

The same arguments prove that equation (B.4) holds for any a in other
intervals.

The difference of cost is given by

E[HT Z] − E[HT Z ′] = E[HT (Z − Z ′)1A2 ] − E[HT (Z ′ − Z)1A1 ].

Since Z ′ is created by switching the values of Z ′ on A1 and A2, (Z − Z ′)1A2

and (Z ′ − Z)1A1 have the same distribution. Noting inequality (B.3), it is
obtained that

E[HT Z] − E[HT Z ′] > 0.

From above the discussion, Z ′ has the same distribution with ξ with
cheaper cost than Z. Therefore, to obtain the same distribution with ξ at
time T , the terminal wealth should be in the reverse order of the state price
density. Since X is reverse order of HT , X is one of the cheapest payoffs that
have the same distribution with ξ.

Next, let us prove the uniqueness. Let X ′ be the random variable that has
the same distribution with ξ, and is reverse order of HT . Then, P (VX′) = 0.
For any ω∗ ∈ Ω \ VX′ ,

P{ω : LT (ω) ≤ LT (ω∗)} = P{ω : X ′(ω) ≤ X ′(ω∗)}.
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Therefore,
FLT

(LT (ω∗)) = Fξ(X
′(ω∗)).

By operating F−1
ξ on the both sides of the equation,

F−1
ξ (FLT

(LT (ω∗))) = X ′(ω∗).

Hence, X ′ = X. 2

C A Theoretical Support of the Cheapest

Payoff

The dynamic trading strategy generating payoff X defined by (B.2) attains
the given payoff distribution with the minimum cost. The next theorem
asserts that the cost minimization is equivalent to an expected utility max-
imization. Theorem 2 in Dybvig (1988) is the equally probable finite state
setting version of the theorem. To state the theorem in continuous-time
framework, Inada condition is required for the utility function. Rogers (2009)
derives a similar result independently.

Theorem C.1 Assume ξ is a positive FT -measurable random variable, and
Fξ and FLT

are continuous and strictly increasing. If X is the cheapest
payoff that has the same distribution with ξ ( i.e. X is defined by equation
(B.2)), then, in a complete market M, there exists a strictly increasing and
strictly concave von Neumann-Morgenstern utility function u(·) such that
(a) limz→+0 u′(z) = +∞, (b) limz→+∞ u′(z) = 0, and the dynamic trading
strategy that attains payoff X is the optimal investment strategy for u(·).

Conversely, if a dynamic trading strategy maximizes a strictly increas-
ing and strictly concave von Neumann-Morgenstern utility function u(·) that
satisfies conditions (a) and (b), it attains the cheapest payoff for some dis-
tribution.

Proof. Let x be the initial cost for payoff X (i.e. x = E[HT X].). Since X
is defined by equation (B.2), HT = exp[−f−1(X)]. exp[−f−1(·)] is a positive
strictly decreasing function. Define u(·) as

u(z) = λ

∫ z

0

exp[−f−1(ζ)]dζ,

5



where λ is a positive number. Then, u(·) is strictly increasing and strictly
concave. It is also satisfied that limz→+0 u′(z) = +∞ and limz→+∞ u′(z) = 0.
Moreover, u′(X) = λHT . This is the first order condition of the optimality
for von Neumann-Morgenstern utility u(·). (See, for example, Karatzas and
Shreve (1998).) Budget constraint x = E[HT u′−1(λHT )] is also satisfied.

Conversely, assume a dynamic trading strategy with initial cost x′ gen-
erating payoff X ′ maximizes a strictly increasing and strictly concave von
Neumann-Morgenstern utility u(·) satisfying conditions (a) and (b). Then,
it is satisfied that u′(X ′) = λ′HT for some λ′ > 0. Therefore, X ′ is reverse
order of HT . By the argument in the proof of theorem B.1, the strategy
attains the cheapest payoff among random variables whose distribution is
same with X ′. 2

D The Payoff for a Target Joint Distribution

with the Investor’s Portfolio

Many investors consider the payoff distribution of a fund together with its
dependence structure on the returns of their existing portfolio, which is very
important in practice because it can crucially affect the risk-return profile.
Therefore, let us consider the cheapest payoff generating a target joint dis-
tribution with the investor’s portfolio. Let ξ be a positive FT -measurable
positive random variable. Denote the conditional distribution functions of ξ
and LT under condition S1

T = s by Fξ|s and FLT |s respectively. Assume that
Fξ|s and FLT |s are continuous and strictly increasing for any s > 0. If X is
defined as follows, (S1

T , X) has the same joint distribution with (S1
T , ξ):

X = g(S1
T , LT ), (D.1)

where
g(s, l) = F−1

ξ|s (FLT |s(l)).

The next theorem asserts that X is the unique cheapest payoff among the
random variables whose joint distributions with S1

T are same as ξ.

Theorem D.1 Assume ξ is a positive FT -measurable random variable, and
Fξ|s and FLT |s are continuous and strictly increasing for any s > 0. In a
complete market M, the unique cheapest payoff X among the random vari-
ables whose joint distributions with S1

T are same with ξ is given by equation
(D.1).
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Proof. The basic idea is same with the proof of theorem B.1. Let Z be
a random variable whose joint distributions with S1

T is same with (S1
T , ξ).

Define SZ ⊂ R+ and B1
Z ⊂ Ω as

SZ = {s : Z is not reverse order of HT under the condition S1
T = s},

B1
Z = {ω : S1

T (ω) ∈ SZ}.

Assume P(B1
Z) > 0. For any s ∈ SZ , there exist as−

1 < as+
1 ≤ as−

2 < as+
2 such

that
HT (ω1) < HT (ω2) for any (ω1, ω2) ∈ As

1 × As
2, (D.2)

where As
1 = {S1

T = s, as−
1 < Z < as+

1 }, As
2 = {S1

T = s, as−
2 < Z < as+

2 },
and P(As

1|S1
T = s) = P(As

2|S1
T = s) > 0. Let ps±

i = P(Z ≤ as±
i |S1

T = s),
Is
1 = (ps−

1 , ps+
1 ] and Is

2 = (ps−
2 , ps+

2 ]. Introduce random variable Z ′ defined by

Z ′ =

{
G1(S1

T , Fξ|S1
T
(Z)) on B1

Z ,

Z on Ω \ B1
Z ,

where G1 is defined as

G1(s, p) =


F−1

ξ|s (p) for p ∈ (0, 1) \ (Is
1 ∪ Is

2),

F−1
ξ|s (p + ps−

2 − ps−
1 ) for p ∈ Is

1 ,

F−1
ξ|s (p + ps−

1 − ps−
2 ) for p ∈ Is

2 .

Here, note that ps+
1 − ps−

1 = ps+
2 − ps−

2 . Then, (S1
T , Z ′) has the same distribu-

tion with (S1
T , Z), and Z ′ is cheaper than Z, because of the same argument in

the proof of theorem B.1. Therefore, in order to obtain the cheapest payoff
whose joint distribution with S1

T is same with (S1
T , ξ), the terminal wealth

should be the reverse order of HT under the condition that S1
T is known.

Therefore, X defined by equation (D.1) is the cheapest payoff.
Next, let us prove the uniqueness. Suppose that X ′ is a random variable

whose joint distribution with S1
T is same with (S1

T , ξ), and is the reverse
order of HT under the condition that S1

T is known. Then, P(B1
X′) = 0. For

s ∈ R+ \ SZ and ω∗ ∈ {S1
T = s}, define U s

X′(ω∗) as

U s
X′(ω∗) = {ω : ST (ω) = s,HT (ω) < HT (ω∗), and X ′(ω) < X ′(ω∗)},

and let
V s

X′ = ∪ω∗∈{S1
T =s}U

s
X′(ω∗),
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CX′ = (Ω \ B1
X′) \ (∪s∈SX′V

s
X′).

Then, P(V s
X′|S1

T = s) = 0. Since it is satisfied that

P(∪s∈SX′V
s
X′) =

∫
SX′

P(V s
X′|S1

T = s)FS1
T
(ds) = 0,

P(CX′) = 1. For any s ∈ R+ \ SZ and ω∗ ∈ CX′ ,

P{ω : LT (ω) ≤ LT (ω∗)|S1
T = s} = P{ω : X ′(ω) ≤ X ′(ω∗)|S1

T = s}.

Therefore,
FLT |s(LT (ω∗)) = Fξ|s(X

′(ω∗)).

By operating F−1
ξ|s on both of the sides of the equation,

F−1
ξ|s (FLT |s(LT (ω∗))) = X ′(ω∗).

Hence, X ′ = X. 2

E Derivation of the Dynamic Replicating

Portfolios

For the case of the Markovian coefficients, the concrete expression for the
dynamic replicating portfolios can be obtained. Suppose that a k-dimensional
state variable Yt follows SDE

dYt = µY (Yt)dt + σY (Yt)dWt (E.1)

and rt, µt, and σt can be described by differentiable functions of state variable
Yt: rt = r(Yt), µt = µ(Yt), and σt = σ(Yt). The following proposition gives
the dynamic portfolios generating the payoffs.

Proposition E.1 Assume that r, µ and σ are functions of Yt following SDE
(E.1). Then, in a complete market M, the dynamic portfolio generating
payoff f(LT ) is given by

πM
t = σ′(t)−1φM

t , (E.2)

where

φM
t = Xtθt +

1

Ht

E[HT{f ′(LT ) − XT}DLT
|Ft]. (E.3)
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DLT
is given by

DLT
=

∫ T

t

∂r(Ys)At,sσ
Y (Yt)ds +

∫ T

t

n∑
j=1

θj(Ys)∂θj(Ys)At,sσ
Y (Yt)ds

+

∫ T

t

n∑
j=1

∂θ(Ys)At,sσ
Y (Yt)dW j

s + θ(Yt)
′,

where At,s is a k × k-valued unique solution of the SDE

dAt,s =
n∑

i=1

∂σY
i (Ys)At,sdW i

s

with an initial condition At,t = I. σY
i (·) and I denotes i-th row of matrix

σY (·) and the k × k identity matrix, respectively.
The portfolio that attains payoff g(S1

T , LT ) is given by

πJ
t = σ′(t)−1φJ

t , (E.4)

where

φJ
t = Xtθt +

1

Ht

E[HT g1(S
1
T , LT )DS1

T
+HT{g2(S

1
T , LT )−XT}DLT

|Ft]. (E.5)

gi (i = 1, 2) represents the partial derivative of g with respect to the i-th
argument. DS1

T
is given by

DS1
T

= S1
T

∫ T

t

{∂µ1(Ys) − σ11(Ys)∂σ11(Yu)}At,sσ
Y (Yt)ds

+ S1
T

∫ T

t

∂σ11(Ys)At,sσ
Y (Yt)dW 1

s

+ (S1
T σ11(Yt), 0, · · · , 0).

Proof. By the argument in Karatzas and Shreve (1998), πt is described as

πt = σ′
t
−1

(
Xtθt +

ψt

Ht

)
, (E.6)

where ψt is given by the martingale representation:

Mt = E[HT XT |Ft] = x +

∫ t

0

ψ′
udWu.
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Applying Clark-Ocone formula (See, for example, pp. 46 in Nualart (2006)),
ψt is given by

ψt = E[Dtη|Ft], (E.7)

where η = HT XT and Dt denotes Malliavin derivative: Dtη =
(D1tη, · · · ,Dntη).

To generate the marginal payoff distribution, XT = f(LT ). Then, Dtη
can be calculated as

Dtη = (DtHT )XT + HT f ′(LT )DtLT . (E.8)

For generating the joint distribution with the investor’s portfolio, XT =
g(S1

T , LT ). Then, Dtη can be calculated as

Dtη = (DtHT )XT + HT g1(S
1
T , LT )DtS

1
T + HT g2(S

1
T , LT )DtLT , (E.9)

where gi (i = 1, 2) represents the partial derivative of g with respect to i-th
argument.

For generating the marginal distribution, to obtain ψt, it is necessary to
calculate DtHT and DtLT . To obtain the joint distribution with the investor’
s portfolio, the calculation of DtS

1
T is needed. DtHT , DtLT and DtS

1
T are

calculated as
DtHT = −HTDtLT ,

DtLT =

∫ T

t

∂r(Ys)DtYsds +

∫ T

t

n∑
j=1

θj(Ys)∂θj(Ys)DtYsds

+

∫ T

t

n∑
j=1

∂θ(Ys)DtYsdW j
s + θ(Yt)

′,

DtS
1
T = S1

T

∫ T

t

{∂µ1(Ys) − σ11(Ys)∂σ11(Yu)}DtYsds

+ S1
T

∫ T

t

∂σ11(Ys)DtYsdW 1
s

+ (S1
T σ11(Yt), 0, · · · , 0).

In this case, DtYs can be calculated concretely. Let At,s be a k × k-valued
unique solution of the SDE

dAt,s =
n∑

i=1

∂σY
i (Ys)At,sdW i

s
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with initial condition At,t = I, where σY
i (·) denotes i-th row of matrix σY (·),

and I is the k × k identity matrix. DtYs is represented as

DtYs = At,sσ
Y (Yt). (E.10)

(See, for example, pp. 126 in Nualart (2006).) Therefore, the proposition is
obtained. 2

Proposition 1 in the main text can be directly derived from this proposi-
tion.

F Simulation Analysis

This section investigates the dynamics of portfolios and their realized re-
turn distributions through simulation analyses. The target joint distribu-
tions with the investor’s existing portfolio are generated by dynamic trading
of an investor’s existing portfolio S1 and four assets S2, · · · , S5. In this sec-
tion, the coefficients for the stochastic process of the investor’s portfolio and
the replicating tools are assumed as constants. Let us set the parameters
to the estimated values for the assets used in the main text. r = 0.02,
µ = (0.0668, 0.0304, 0.1644, 0.1405,−0.0424)′, and

σ =


0.1221
0.0134 0.1011 O
0.0506 0.0004 0.3778
0.0189 −0.04864 0.0444 0.1727
0.0592 0.0373 0.0108 −0.0154 0.1976

 .

Then, θ = (0.3836, 0.0524, 0.3309, 0.5856,−0.4132)′. Note that the market
price of risk for the investor’s portfolio is positive and relatively high. Suppose
that the initial wealth of the investor is 1. If the initial cost for the trading
strategy is less (more) than 1, then the target payoff can be realized by a
lower (higher) cost and so the remaining (shortage of) money is invested
(funded) in the risk-free asset.

The target joint distributions are generated by the simulated path of
S1, · · · , S5 for 300 months. The portfolio is rebalanced on a daily basis.
In the following, let us consider all the combinations of the two marginal
distributions and three dependence structures with the investor’s existing
portfolio. The benchmark distribution is Gaussian. The Johnson distribu-
tion can create skewness and fat-tails. As for dependencies, the benchmark is
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the Gaussian copula. The Clayton and Gumbel copulas can generate asym-
metric dependencies. Moreover, different parameter sets are implemented in
a combination of a distribution and a copula.

First, we generate the payoff, X, such that (log S1
T , log X) are bivariate

Gaussian distributions, as benchmark cases. The target mean and standard
deviation of log return are 1.5% and 5.77%, respectively. Then, the annual log
return is normally distributed with a mean of 18% and standard deviation of
20%. As for the dependence structure with the investor’s portfolio, consider
the following three correlations: ρ = −0.75, 0, and 0.75.

Table 1 and Figures 1-3 confirm that the bivariate Gaussian distributions
are successfully realized. Note that the statistics for the realized returns in
table 1 are not those for the realized sample of log X, but those for realized
log return with an initial cost of 1. Therefore, the realized mean returns
are affected by the initial costs. The mean return increases in correlation
because the initial cost decreases in correlation. The weights on W 1

t (which
represents the investor’s portfolio risk factor) are 0 and negative for the cases
of ρ = 0 and −0.75, respectively, which means the zero and short positions
for the risk factor that brings a positive expected return. Thus, the initial
cost becomes high. The right-hand side figures that exhibit weights on the
assets show that the strategy takes the short, zero, and long positions of
S1 for the case of ρ = −0.75, 0, and 0.75, respectively. Since the dynamic
portfolio generates the log-normal return with the log-normal process, the
portfolio weights do not change with the passage of time.

Secondly, generate the log returns that have skewness and fat-tails. Con-
sider the Johnson unbounded distribution to model higher moments. The
distribution function is given by

F (a) = N

(
α + βh

(a − γ

δ

))
,

where α and β are shape parameters, γ and δ are location and scale param-
eters respectively, N(·) is the distribution function of the standard normal
distribution, and h(·) is the following function:

h(z) = log
(
z +

√
z2 + 1

)
.

Consider the following two parameter sets for (α, β, γ, δ): p1=(1.2, 1.475,
0.0686, 0.047) and p2=(−1.2, 1.475, −0.0386, 0.047). For both cases, the
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annual mean logarithmic return and volatility are 18% and 20%, and the
excess kurtosis is 10. For the cases of p1 and p2, the skews are −2 and
2, respectively. The dependence structure with the investor’s portfolio is a
Gaussian copula with the correlation ρ = 0, to enable comparison with the
benchmark case.

From Figures 4 and 5, the joint distributions seem to be generally real-
ized by the dynamic trading strategies. However, tail events heavily depend
on the sample. Some negative tail events for Johnson(p1) were successfully
generated, but positive tail sample for Johnson(p2) did not realize. Then, the
skewness and kurtosis for Johnson(p2) were smaller than the target, which
can be confirmed by table 1. Note that the mean and standard deviation are
also crucially affected by the tail sample. If even one positive tail event oc-
curred, the statistics came closer to the target. Let us examine the dynamic
optimal portfolio. For the case of Johnson(p1), the portfolio is leveraged to
realize a negative tail return if the process Lt starts to decline. Conversely,
the portfolio is scaled down, when Lt increases. On the other hand, for
Johnson(p2) case, the opposite strategy is taken. The portfolio is scaled up
if the process Lt starts to go up, and it is scaled down when Lt goes down.
Through these operations, skewness and fat-tails are generated. It is also
seen that the weights in the risky asset portfolio do not change with the
passage of time.

Next, we generate asymmetric dependences with investor’s portfolio. To
this end, let us consider the Clayton and Gumbel copulas. The copula func-
tions for Clayton and Gumbel are given by

CClayton(u1, u2) = (u−α
1 + u−α

2 )−1/α,

CGumbel(u1, u2) = exp[−{(− log u1)
β + (− log u2)

β}1/β],

respectively. The parameters are set to α = 6 and β = 4. The Clay-
ton copula has more dependence in the lower tail, and the Gumbel copula
has more dependence in the upper tail. The target marginal distribution is
N(0.015, 0.05772).

Figures 6 and 7 confirm that the two dependence structures are success-
fully achieved. Let us observe the dynamics of the portfolio for the Clayton
copula. The figures on the right show that the weight on S1 continues to
be high in the lower tail event to realize strong dependence, whereas it is
reduced in the upper tail event to decrease the dependency. The dynamics of
the portfolio for the Gumbel copula have the opposite character to those for
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the Clayton copula case. The weight on S1 increases in the upper tail event
to exhibit a strong dependence. It decreases in the lower tail event to show
independence. The mean returns for these dependences are lower than the
Gaussian copula with ρ = 0 and 0.75 cases. This is because the strategies
for the Clayton and Gumbel copulas realize the lower and the upper tails,
respectively, by heavily weighing on W 1

t in order to generate the asymmetric
dependences. This restricts the exposure to the other risk factors. On the
other tails, the strategies reduce the weights on W 1

t . Because of the restric-
tions on the accessibility to the risk factors, the initial costs are relatively
high.

Finally, Figures 8-11 show that the combinations of the Johnson distribu-
tion and the Clayton or Gumbel copula can also be generated. Then, both
of the marginal distributions of the log returns and dependence structures
are asymmetric. For the case of Johnson(p1) and Clayton copula, the target
marginal distribution has a negative skewness, and the dependence is stronger
in the lower tail. To realize this character, when the investor’s portfolio starts
to decline, the weight on S1 increases with high leverage. Conversely, for the
Johnson(p2) and Gumbel copula case, the target distribution has a positive
skewness, and the dependence is stronger in the upper tail. Therefore, if the
investor’s portfolio goes up, the weight on S1 increases with high leverage.
For the other cases, the fatter tails of the target marginal distributions are
lowly dependent on the investor’s portfolio. Hence, the weights on S1 are
not so high.

In summary, it was confirmed that this method could generate various
distributions and dependencies. To generate skewness or fat-tails, the total
volume of the risky asset portfolio is adjusted accordingly. The weight on S1

affects the dependence structure with the investor’s existing portfolio. This
method gives us a recipe to attain a target distribution and dependency.
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Figure 1: N(0.015,0.05772) and Gaussian copula with ρ = −0.75. Left:
Scatter plot of the target and generated log returns against the investor’s portfolio. The
upper figure represents the sample points extracted from the joint distribution of the target
and investor’s portfolio log returns. The lower figure plots the generated log returns by
the optimal dynamic trading strategy against log return of the investor’s portfolio. Right:
Weights of the dynamic optimal portfolio for each of the situation described on the top of
the figure. The composition is same for Figures 2-11.
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Figure 2: N(0.015,0.05772) and Gaussian copula with ρ = 0.

Figure 3: N(0.015,0.05772) and Gaussian copula with ρ = 0.75.
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Figure 4: Johnson(p1) and Gaussian copula with ρ = 0.

Figure 5: Johnson(p2) and Gaussian copula with ρ = 0.
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Figure 6: N(0.015,0.05772) and Clayton copula with α = 6.

Figure 7: N(0.015,0.05772) and Gumbel copula with β = 4.

20



Figure 8: Johnson(p1) and Clayton copula with α = 6.

Figure 9: Johnson(p2) and Clayton copula with α = 6.
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Figure 10: Johnson(p1) and Gumbel copula with β = 4.

Figure 11: Johnson(p1) and Gumbel copula with β = 4.
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