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Abstract 

 

This paper estimates univariate and multivariate conditional volatility and conditional 

correlation models of spot, forward and futures returns from three major benchmarks of 

international crude oil markets, namely Brent, WTI and Dubai, to aid in risk diversification. 

Conditional correlations are estimated using the CCC model of Bollerslev (1990), VARMA-

GARCH model of Ling and McAleer (2003), VARMA-AGARCH model of McAleer et al. 

(2009), and DCC model of Engle (2002). The paper also presents the ARCH and GARCH 

effects for returns and shows the presence of significant interdependences in the conditional 

volatilities across returns for each market. The estimates of volatility spillovers and 

asymmetric effects for negative and positive shocks on conditional variance suggest that 

VARMA-GARCH is superior to the VARMA-AGARCH model. In addition, the DCC model 

gives statistically significant estimates for the returns in each market, which shows that 

constant conditional correlations do not hold in practice. 

 

 

Keywords: Conditional correlations, crude oil spot prices, forward prices, futures prices, risk 

diversification. 
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1.  Introduction 

 

 Crude oil is arguably the world’s most influential physical commodity as it provides 

energy for all kinds of human activities in the form of refined energy products, such as 

liquefied petroleum gases (LPGs), gasoline and diesel. Consequently, crude oil is a 

dynamically traded commodity that affects many economies. For instance, Sadorsky (1999) 

found that oil price volatility shocks have asymmetric effects on the economy, namely 

changes in oil prices affect economic activity, but changes in economic activity have little 

impact on oil prices, so that oil price fluctuations have large macroeconomic impacts. Guo 

and Kliesen (2005) argued that changes in oil prices affect aggregate economic activity 

through changes in the dollar price of crude oil (relative price change), and increases in 

uncertainty regarding future price. 

Substantial research has been conducted on the volatility of spot, forward and futures 

prices. Models of crude oil price volatility can be univariate or multivariate. In the former 

case, Fong and See (2002) examined the temporal behaviour for daily returns for crude oil 

futures using a Markov switching model of conditional volatility. Lanza et al. (2006)  used 

the AR(1)-GARCH(1,1) and AR(1)-GJR(1,1) models to estimate conditional volatility based 

on forward and futures returns. Manera et al. (2006) used univariate ARCH and GARCH 

models to estimate spot and forward returns. Standard diagnostic tests also showed that the 

AR(1)-GARCH(1,1) and AR(1)-GJR(1,1) specifications were statistically adequate for both 

the conditional mean and conditional variance.  

Sadorsky (2006) investigated the forecast performance of a large number of models. 

The fitted model for heating oil and natural gas volatility was TGARCH, whereas GARCH 

was used for crude oil and unleaded gasoline volatility.  Lee and Zyren (2007) calculated 

historical volatility and GARCH models to compare the historical price volatility behaviour 

of crude oil, motor gasoline and heating oil in U.S. markets since 1990. They combined the 

shifting variable in GARCH and TARCH models to capture the response from changes in 

OPEC’s pricing behaviour.  Narayan and Narayan (2007) modelled crude oil price volatility 

using daily data by using the EGARCH model to gauge two features of crude oil price 

volatility, namely asymmetry and the persistence of shocks. 

For the multivariate conditional volatility model, Lanza et al. (2006) modelled 

conditional correlations in the WTI oil forward and future returns using the CCC model of 

Bollerslev (1990) and DCC model of Engle (2002). They found that DCC could vary 

dramatically, being negative in four of ten cases and close to zero in another five cases. Only 
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in the case of dynamic volatilities of the three-month and six-month future returns was the 

range of variation relatively narrow. Manera et al. (2006) estimated DCC in the returns for 

Tapis oil spot and one-month forward prices using CCC, VARMA-GARCH model of Ling 

and McAleer (2003), VARMA-AGARCH model of McAleer et al. (2009), and DCC, and 

also tested and compared volatility specifications.  

  Trojani and Audrino (2005) proposed a multivariate tree-structured DCC model by 

incorporating multivariate thresholds in conditional volatilities and correlations. They found 

in some Monte Carlo simulations that the model was able to capture GARCH-type dynamics 

and a complex threshold structure in conditional volatilities and correlations. In the empirical 

data for international equity markets, the estimated conditional volatilities were strongly 

influenced by GARCH and multivariate threshold effects. They concluded that conditional 

correlations were determined by simple threshold structures, whereas no GARCH-type 

effects could be identified. 

  The purpose of this paper is to estimate univariate and multivariate conditional 

volatility models for the returns on spot, forward and futures prices for Brent, WTI and Dubai 

to aid in risk diversification in crude oil markets. The remainder of the paper is organized as 

follows. Section 2 discusses the univariate and multivariate GARCH models to be estimated. 

Section 3 explains the data, descriptive statistics and unit root tests. Section 4 describes the 

empirical estimates and some diagnostic tests of the univariate and multivariate models. 

Section 5 provides some concluding remarks. 

 

2. Econometric models 

2.1 Univariate conditional volatility models 

 

Following Engle (1982), consider the time series tttt yEy   )(1 , where )(1 tt yE   is 

the conditional expectation of ty  at 1t  time and t  is the associated error. The generalized 

autoregressive conditional heteroskedastity (GARCH) model of Bollerslev (1986) is given as 

follows: 

 t t th  ,       )1,0(~ Nt                                                   (1) 

2

1 1

 

 

   
p q

t j t j j t j

j j

h h                                                     (2) 
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where 0  , 0j  and 0j  are sufficient conditions to ensure that the conditional 

variance 0th  .  The parameter j  represents the ARCH effect, or the short run persistence 

of shocks to returns, and j  represents the GARCH effect, where j j   measures the 

persistence of the contribution of shocks to return i to long run persistence.  

Equation (2) assumes that the conditional variance is a function of the magnitudes of 

the lagged residuals and not their signs, such that a positive shock ( 0t ) has the same 

impact on conditional variance as a negative shock ( 0t ) of equal magnitude. In order to 

accommodate differential impacts on the conditional variance of positive and negative 

shocks, Glosten et al. (1992) proposed the asymmetric GARCH, or GJR model, which is 

given by 

   2

1 1

r s

t j j t j t j j t j

j j

h I h       

 

                                          (3) 

where 

0, 0

1, 0

it

it

it

I





 


 

is an indicator function to differentiate between positive and negative shocks. When 1r s  , 

sufficient conditions to ensure the conditional variance, 0th  , are 0  , 
1 0  ,

1 1 0    

and 
1 0  . The short run persistence of positive and negative shocks are given by 

1  and 

 11   , respectively. When the conditional shocks, 
t , follow a symmetric distribution, the 

short run persistence is 
1 1 2  , and the contribution of shocks to expected long-run 

persistence is 
1 1 12    . 

In order to estimate the parameters of model (1)-(3), maximum likelihood estimation 

is used with a joint normal distribution of 
t . However, when 

t  does not follow a normal 

distribution, or the conditional distribution is not known, quasi-MLE (QMLE) is used to 

maximize the likelihood function. 

Bollerslev (1986) showed the necessary and sufficient condition for the second-order 

stationarity of GARCH is 
1 1

1
r s

i i

i i

 
 

   . For the GARCH(1,1) model, Nelson (1991) 

obtained the log-moment condition for strict stationary and ergodicity as 

  2

1 1log 0tE    , which is important in deriving the statistical properties of the QMLE. 

For GJR(1,1), Ling and McAleer (2002a, 2002b) presented the necessary and sufficient 
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condition for  2

tE    as 
1 1 12 1     . McAleer et al. (2007) established the log-

moment condition for GJR(1,1) as    2

1 1 1log t tE I     
 

0 , and showed that it is 

sufficient for consistency and asymptotic normality of the QMLE. 

 

2.2 Multivariate conditional volatility models 

   

 The typical specification underlying the multivariate conditional mean and conditional 

variance in returns is given as follows: 

 1t t t ty E y F                                                          (4) 

t t tD   

where  1 ,...,t t mty y y  ,  1 ,...,t t mt     is a sequence of independently and identically 

distributed (i.i.d.) random vectors, 
tF  is the past information available to time t, 

 1 2 1 2

1 ,...,t mD diag h h , m is the number of returns, and nt ,...,1 , (see Li, Ling and McAleer 

(2002), McAleer (2005), and Bauwens et al. (2006)). The constant conditional correlation 

(CCC) model of Bollerslev (1990) assumes that the conditional variance for each return, 
ith , 

1,..,i m , follows a univariate GARCH process, that is  

2

, ,

1 1

r s

it i ij i t j ij i t j

j j

h h    

 

                                              (5) 

where 
ij  represents the ARCH effect, or short run persistence of shocks to return i, and 

ij  

represents the GARCH effect, or the contribution of shocks to return i to long run persistence, 

namely 
1

r

ij

j





 1

s

ij

j




 . 

 The conditional correlation matrix of CCC is    1t t t tE F E 
    , where  it   

for , 1,...,i j m . From (4), 
t t t t tD D    ,  

1 2
diag t tD Q , and  1t t tE F  


 

t t tQ D D   , where 
tQ  is the conditional covariance matrix. The conditional correlation 

matrix is defined as 1 1

t t tD Q D   , and each conditional correlation coefficient is estimated 

from the standardized residuals in (4) and (5). Therefore, there is no multivariate estimation 

involved for CCC, which involves m univariate GARCH models, except in the calculation of 

the conditional correlations. 
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Although the CCC specification in (5) is a computationally straightforward 

“multivariate” GARCH model, it assumes independence of the conditional variances across 

returns and does not accommodate asymmetric behaviour. In order to incorporate 

interdependencies, Ling and McAleer (2003) proposed a vector autoregressive moving 

average (VARMA) specification of the conditional mean in (4), and the following 

specification for the conditional variance: 

1 1

r s

t i t i j t j

i j

H W A B H  

 

   


                                              (6) 

where  1 ,...,t t mtH h h  ,  2 2

1 ,...t mt   



, and W, 

iA  for 1,..,i r  and 
jB  for 1,..,j s  are 

m m  matrices. As in the univariate GARCH model, VARMA-GARCH assumes that 

negative and positive shocks have identical impacts on the conditional variance. In order to 

separate the asymmetric impacts of the positive and negative shocks, McAleer, Hoti and 

Chan (2009) proposed the VARMA-AGARCH specification for the conditional variance, 

namely 

1 1 1

r r s

t i t i i t i t i j t j

i i j

H W A C I B H    

  

     
 

                                (7) 

where 
iC  are m m  matrices for 1,..,i r , and  1diag ,...,t t mtI I I , where  










0,1

0,0

it

it

itI



 

If 1m , (6) collapses to the asymmetric GARCH, or GJR, model. Moreover, VARMA-

AGARCH reduces to VARMA-GARCH when 0iC   for all i. If 0iC   and 
iA  and 

jB  are 

diagonal matrices for all i and j, then VARMA-AGARCH reduces to the CCCmodel. The 

parameters of model (4)-(7) are obtained by maximum likelihood estimation (MLE) using a 

joint normal density. When 
t  does not follow a joint multivariate normal distribution, the 

appropriate estimator is QMLE. 

   Unless 
t  is a sequence of iid random vectors, or alternatively a martingale difference 

process, the assumption that the conditional correlations are constant may seen unrealistic. In 

order to make the conditional correlation matrix time dependent, Engle (2002) proposed a 

dynamic conditional correlation (DCC) model, which is defined as 

),0(~1 ttt Qy   ,     nt ,...,2,1                                 (8) 

, t t t tQ D D                                                          (9) 
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where  1diag ,...,t t ktD h h  is a diagonal matrix of conditional variances, and 
t  is the 

information set available to time t. The conditional variance, 
ith , can be defined as a 

univariate GARCH model as follows: 

, ,

1 1

p q

it i ik i t k il i t l

k l

h h    

 

    .                                  (10) 

  If 
t  is a vector of i.i.d. random variables, with zero mean and unit variance,  

tQ  in 

(9) is the conditional covariance matrix (after standardization, it it ity h  ). The 
it  are 

used to estimate the dynamic conditional correlations, as follows: 

   1/2 1/2( ( ) ( ( )t t t tdiag Q Q diag Q  
  
                                 (11) 

where the k k  symmetric positive definite matrix 
tQ  is given by 

1 2 1 1 1 2 1(1 )t t t tQ Q Q      
                                     (12) 

in which 
1  and 

2  are scalar parameters to capture the effects of previous shocks and 

previous dynamic conditional correlations on the current dynamic conditional correlation, 

and 
1  and 

2  are non-negative scalar parameters. As 
tQ
 
is conditional on the vector of 

standardized residuals, (12) is a conditional covariance matrix, and Q  is the k k  

unconditional variance matrix of 
t . For further details, and critique of the DCC model, see 

Caporin and McAleer (2009). 

 

3. Data  

 

  The data used in this paper are daily synchronous closing price of spot, forward and 

futures crude oil prices from three major crude oil markets, namely Brent, WTI and Dubai. 

The 4,659 price observations from 2 January 1991 to 10 November 2008 are obtained from 

the DataStream database service. The returns of crude oil prices i of market j at time t in a 

continuous compound basis are calculated as  , , , 1logij t ij t ij tr P P  , where 
,ij tP  and 

, 1ij tP 
 are 

the closing prices of crude oil price i of market j for days t  and 1t , respectively. The 

univariate and multivariate conditional volatility models are estimated using the EViews 6 

econometric software package. 

 The descriptive statistics for the crude oil returns series are summarized in Table 1. The 

sample mean is quite small, but the corresponding variance of returns is much higher. Both 

negative skewness and high kurtosis suggest that returns are not distributed normally. 
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Similarly, the null hypothesis of normality is also rejected for the sample return series by the 

Jarque-Bera(J-B) test lagrange multiplier statistics.  

 The logarithms of crude oil prices are plotted in Figure 1. It is clear that there is 

substantial clustering of volatilities, such that a turbulent trading day tends to be followed by 

another turbulent day, while a tranquil period tends to be followed by another tranquil period. 

 

[Insert Tables 1-2 here] 

[Insert Figure 1 here] 

 

  The empirical results of the unit root tests for the sample returns in each market are 

summarized in Table 2.  The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests 

are used to test for unit roots in the individual series. The large negative values in all cases 

indicate rejection of the null hypothesis at the 1% level, such that all returns are stationary. 

 

4. Empirical Results 

 

 Univariate estimates of the conditional volatilities, GARCH(1,1) and GJR(1,1), with 

different conditional mean equation models based on spot, forward and futures returns in 

each market, are given in Tables 3-5, which report the respective QMLE and the Bollerslev-

Woodridge (1992) robust t-ratios. The log-moment and second moment conditions are also 

presented to confirm the statistical properties of the estimates. The second moments of 

GARCH(1,1) and GJR(1,1), namely 
1 1   and 

1 1 12    , are less than 1, and the 

estimated log-moments of GARCH(1,1) and GJR(1,1), which are given as   2

1 1log tE    

and 
1(log(E  

 
  2

1 1))t tI    , respectively, are less than 0, so the QMLE are consistent 

and asymptotically normal (see McAleer (2005) and McAleer et al. (2007)). 

  The univariate GARCH estimates for Brent are given in Table 3. The coefficients in 

the mean equations in Panel 3a are not all statistically significant. The mean equation of 

AR(1)-GARCH(1,1) is significant only for forward returns, while ARMA(1,1)-GARCH(1,1) 

is significant in all returns series. In addition, the coefficient in the conditional variance 

equations for both AR(1)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) are all significant. 

Consequently, ARMA(1,1)-GARCH(1,1) is preferred to AR(1)-GARCH(1,1).  
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 In the case of the asymmetric GARCH(1,1) model in Panel 3b, only the coefficients in 

the mean equation for ARMA(1,1) are significant. The estimates of the asymmetric effect for 

the univariate model are not statistically significant, except for spot returns. 

  The results for univariate estimation of the WTI market are reported in Table 4. The 

robust t-ratios show that the ARMA(1,1)-GARCH(1,1) specification for all returns is 

statistically adequate in both the conditional mean and conditional variance equations, but the 

coefficients in the conditional mean equation of AR(1)-GARCH(1,1) are insignificant. The 

univariate GJR models are presented in Panel 4b in Table 4, where only the forward returns 

for ARMA-GARCH model are significant. However, asymmetry between negative and 

positive shocks on the conditional variance is not observed. 

  For the Dubai market in Table 5, the coefficients in the mean equation for  spot and 

forward returns in Panels 5a and 5b are significant only for AR(1)-GARCH(1,1) and AR(1)-

GJR(1,1). Panel 5a shows that the coefficients in the conditional variance equation for 

AR(1)-GARCH(1,1) are all statistically significant, whereas in Panel 5b, the conditional 

variance coefficients are significant only in spot returns.  These results show that there is an 

asymmetric effect between negative and positive shocks on the conditional variance. 

 

[Insert Tables 3-5 here] 

 

Table 6 presents the constant conditional correlations for the spot, forward and futures 

returns in each market using the CCC model based on univariate GARCH(1,1) estimates. 

Three returns in the Brent and WTI markets in Panels 6a and 6b provide six conditional 

correlations, while two returns in the Dubai market in Panel 6c give one conditional 

correlation. The highest estimated conditional correlation in the Brent market is 0.940, 

namely between the standardized shocks to the volatility of the spot and forward returns. In 

the case of the WTI market, the highest estimated conditional correlation for Brent is 0.883, 

namely between the standardized shocks to the volatility of spot and futures returns, and 

futures and forward returns. The conditional correlation between the shocks to spot and 

forward returns for the Dubai market is 0.936. 

 

[Insert Table 6 here] 

[Insert Figure 6 here] 
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  The estimates of the dynamic conditional correlations and the descriptive statistics for 

DCC across the shocks to returns in each market are presented in Table7, Panels 7a and 7b, 

respectively. Based on the Bollerslev and Wooldridge (1992) robust t-ratios, the estimates of 

the DCC parameters, 1̂  and 2̂ , in each market are always statistically significant. This 

indicates that the assumption of constant conditional correlation for all shocks to returns is 

not supported empirically. In addition, the mean of the dynamic conditional correlations of 

each pair is identical to the constant conditional correlation estimates reported in Table 6. The 

short run persistence of shocks on the dynamic conditional correlations is greatest for WTI at 

0.264, while the largest long run persistence of shocks to the conditional correlations is for 

Brent, namely 0.995 = 0.027 + 0.968. 

 

[Insert Tables 7-10 here] 

 

  The corresponding multivariate estimates for the VARMA(1,1)-GARCH and 

VARMA(1,1)-AGARCH models for each market are given in Tables 8-10. It is clear from 

Table 8,  Panel a,  that the forward returns are significant only for ARCH and GARCH, while 

the spot and futures returns are only significant for ARCH. Moreover, there are significant 

interdependences in the conditional volatility between spot and forward returns, and between 

spot and futures returns. The results in Panel b show that the ARCH and GARCH effects are 

significant in the conditional volatility model for spot, forward and futures returns. There are 

also significant interdependences in the conditional volatility between spot and futures 

returns. In addition, as the asymmetric effects for each return in Panel 8a are insignificant, if 

follows that VARMA-GARCH model dominates its asymmetric counterpart, VARMA-

AGARCH.  

  Table 9, Panel a, for Brent presents the VARMA-GARCH model, in which the ARCH 

and GARCH effects are significant in the conditional volatility model for spot, forward and 

futures returns. Also present are the spillover effects across the spot, forward and futures 

returns. In contrast, Panel 9b shows that the ARCH and GARCH effects are insignificant, 

except for the GARCH effect for forward returns. In addition, the asymmetric spillover 

effects for each of the returns is not statistically significant, such that VARMA-AGARCH is 

dominated by VARMA-GARCH. 

  Table 10 presents the VARMA-GARCH and VARMA-AGARCH estimates for 

Dubai. It is clear that the ARCH and GARCH effects for spot and forward returns are 
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significant, and there is a significant display of interdependences in the conditional 

volatilities between the spot and forward returns. In Panel 10b, the ARCH and GARCH 

effects are statistically significant only for forward returns, but the ARCH effect is significant 

for spot returns. There is also the presence of interdependences between spot and forward 

returns, while the asymmetric spillover effects for each of the returns is  insignificant. 

Consequently, VARMA-GARCH is preferred to VARMA-AGARCH. 

 

5. Conclusion 

 

  This paper estimated four multivariate volatility models, namely CCC, DCC, 

VARMA-GARCH and VARMA-AGARCH, for the spot, forward and futures returns for 

three major benchmark international crude oil markets,  namely Brent, WTI and Dubai. The 

returns for the period 2 January 1991 to 10 November 2008 were estimated using  

multivariate conditional volatility and conditional correlation models. Both the univariate 

ARCH and GARCH components of the GARCH(1,1) and GJR(1,1) models were significant 

for all returns, whereas most of the estimated asymmetric effects for GJR(1,1) were not 

significant.  

  The calculated constant conditional correlations across the conditional volatilities of 

returns using the CCC model were high. The paper also presented the ARCH and GARCH 

effects for returns, and significant interdependences in the conditional volatilities across 

returns in each market. The estimates of volatility spillovers and asymmetric effects for 

negative and positive shocks on the conditional variances suggested that the VARMA-

GARCH model was superior to the asymmetric VARMA-AGARCH. In addition, the 

estimates of the DCC model for returns in each market were statistically significant. In short, 

constant conditional correlations were not supported in the empirical examples. Such 

estimates of the dynamic conditional correlations of shocks to returns associated with spot, 

forward and futures prices can be used as an aid to risk diversification in crude oil markets.  
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Table 1. Descriptive statistics for crude oil price returns 

Returns Mean Max Min S.D. Skewness Kurtosis Jarque-Bera 

rbresp 0.043 15.164 -12.601 2.347 -0.0007 5.341 686.6157 

rbrefor 0.043 12.044 -12.534 2.146 -0.141 4.939 480.941 

rbrefu 0.043 12.898 -10.946 2.212 -0.124 4.934 476.538 

rwtisp 0.043 15.873 -13.795 2.412 -0.129 6.479 1524.764 

rwtifor 0.042 13.958 -12.329 2.316 -0.182 5.204 625.414 

rwtifu 0.043 14.546 -12.939 2.349 -0.151 6.318 1390.425 

rdubsp 0.043 14.705 -12.943 2.199 -0.179 5.844 1029.861 

rdubfor 0.040 13.767 -12.801 2.115 -0.308 5.718 973.0103 

rtapsp 0.038 11.081 -10.483 2.000 -0.183 5.373 722.053 

rtapfor 0.038 12.071 -12.869 2.076 -0.289 5.567 867.187 
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Table 2. Unit root tests for returns 

Returns 

ADF test  Phillips-Perron test 

None Constant 
Constant 

and Trend 
None Constant 

Constant 

and Trend 

rbresp -54.264* -54.274* -54.265* -54.301* -54.298* -54.291* 

rbrefor -57.076* -57.092* -57.083* -57.088* -57.100* -57.091* 

rbrefu -57.944* -57.958* -57.949* -57.901* -57.919* -57.909* 

rwtisp -41.065* -41.079* -41.073* -55.652* -55.677* -55.667* 

rwtifor -56.618* -56.626* -56.617* -56.697* -56.715* -56.705* 

rwtifu -55.872* -55.881* -55.872* -56.011* -56.030* -56.020* 

rdubsp -59.130* -59.145* -59.135* -59.090* -59.129* -59.119* 

rdubfor -59.664* -59.677* -59.667* -59.542* -59.573* -59.564* 

rtapsp -59.059* -59.072* -59.062* -58.955* -58.956* -58.947* 

rtapfor -59.949* -59.961* -59.951* -59.747* -59.775* -59.766* 

Note: * significant at 1%.
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Table 3. Univariate volatility models of crude oil returns for Brent  

 

 

Panel 3b. AR(1)-GJR(1,1) and ARMA(1,1)-GJR(1,1) estimates 

zReturns 
Mean equation Variance equation Log- 

Moment 

Second 

moment 
AIC SIC 

c AR(1) MA(1) ̂  ̂  ̂  ̂  

Spot 0.023 

0.803 

0.025 

1.594 

 0.035 

3.317  

0.031 

3.139  

0.031 

2.249  

0.947 

118.816  

-0.0031 0.994 4.262 4.270 

 0.022 

0.794 
-0.799 

-5.190  

0.816 

5.520  

0.030 

3.039  

0.029 

3.076  

0.029 

2.225  

0.951 

121.227  

-0.0026 0.995 4.261 4.271 

Forward 0.032 

1.277 

-0.033 

-1.960 

 0.032 

3.564  

0.043 

3.035  

0.012 

0.755 
0.944 

102.014  

-0.0031 0.993 4.103 4.111 

 0.032 

1.371 
0.597 

3.249  

-0.632 

-3.556  

0.031 

3.438  

0.043 

3.095  

0.011 

0.751 
0.945 

101.950  

-0.0029 0.994 4.102 4.111 

Futures 0.036 

1.402 

-0.019 

-1.200 

 0.035 

3.752  

0.065 

4.952  

-0.014 

-0.898 
0.935 

118.747  

-0.0029 0.993 4.141 4.150 

 0.035 

1.482 
0.742 

4.448  

-0.765 

-4.765  

0.033 

3.644  

0.063 

4.988  

-0.012 

-0.874 
0.937 

118.017  

-0.0027 0.994 4.141 4.150 

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and 

Wooldridge (1992) robust t- ratios.  

(2) Entries in bold are significant at 5%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel 3a. AR(1)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) estimates 

Returns 
Mean equation Variance equation Log- 

Moment 

Second 

moment 
AIC SIC 

c AR(1) MA(1) ̂  ̂  ̂  

Spot 0.042 

1.468 

0.026 

1.648 

 0.035 

3.395  

0.050 

5.847  

0.944 

110.768  

-0.0043 0.994 4.265 4.272 

 0.041 

1.452 
-0.807 

-5.601  

0.825 

5.964  

0.031 

3.112  

0.048 

5.629  

0.947 

110.849  

-0.0037 0.995 4.264 4.273 

Forward 0.038 

1.491 
-0.032 

-1.978  

 0.032 

3.657  

0.050 

5.897  

0.943 

110.737  

-0.0046 0.993 4.103 4.109 

 0.038 

1.575 
0.608 

3.365  

-0.642 

-3.681  

0.031 

3.523  

0.049 

5.799  

0.944 

109.983  

-0.0043 0.993 4.102 4.110 

Futures 0.028 

1.059 

-0.021 

-1.291 

 0.034 

3.760  

0.057 

7.451  

0.937 

126.898  

-0.0048 0.994 4.142 4.149 

 0.029 

1.175 
0.736 

4.459  

-0.760 

-4.787  

0.032 

3.653  

0.056 

7.275  

0.938 

125.755  

-0.0046 0.994 4.141 4.149 
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Table 4. Univariate volatility models of crude oil returns for WTI  

 

 

Panel 4b. AR(1)-GJR(1,1) and ARMA(1,1)-GJR(1,1) estimates 

Returns 

Mean equation Variance equation Log- 

Momen

t 

Second 

momen

t 

AIC SIC 
c AR(1) MA(1) ̂  ̂  ̂  ̂  

Spot 0.029 

1.005 

-0.016 

-0.916 

 0.055 

3.306  

0.067 

3.865  

-0.012 

-0.656 
0.931 

80.209  

-0.0039 0.992 4.346 4.354 

 0.029 

0.999 

-0.362 

-1.080 

0.356 

1.057 
0.054 

3.193  

0.067 

3.842  

-0.013 

-0.697 
0.931 

79.394  

-0.0038 0.992 4.346 4.356 

Forward 0.027 

0.988 

-0.022 

-1.383 

 0.039 

3.671  

0.048 

3.673  

0.011 

0.769 
0.939 

112.825  

-0.0031 0.993 4.246 4.254 

 0.026 

0.947 
-0.555 

-2.177  

0.543 

2.118  

0.035 

3.444  

0.047 

3.573  

0.010 

0.709 
0.941 

112.522  

-0.0028 0.993 4.246 4.255 

Futures 0.029 

1.049 

-0.001 

-0.049 

 0.041 

3.748  

0.050 

4.038  

0.014 

1.018 
0.936 

105.812  

-0.0030 0.993 4.250 4.258 

 0.028 

1.027 

-0.520 

-1.004 

0.529 

1.027 
0.037 

3.554  

0.049 

3.965  

0.013 

0.965 
0.938 

106.468  

-0.0027 0.994 4.250 4.259 

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and 

Wooldridge (1992) robust t- ratios. (2) Entries in bold are significant at the 95% level 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel 4a. AR(1)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) estimates 

Returns 
Mean equation Variance equation Log- 

Moment 

Second 

moment 
AIC SIC 

c AR(1) MA(1) ̂  ̂  ̂  

Spot 0.0212 

0.683 

-0.017 

-0.986 

 0.055 

3.363  

0.061 

5.634  

0.931 

83.514  

-0.0063 0.992 4.346 4.353 

 0.024 

0.965 
0.842 

9.754  

-0.871 

-11.201  

0.050 

3.296  

0.059 

5.586  

0.933 

86.009  

-0.0057 0.992 4.344 4.352 

Forward 0.033 

1.216 

-0.022 

-1.367 

 0.040 

3.711  

0.055 

6.810  

0.937 

116.961  

-0.0050 0.992 4.246 4.253 

 0.032 

1.160 
-0.572 

-2.327  

0.561 

2.265  

0.037 

3.489  

0.053 

6.633  

0.940 

117.146  

-0.0045 0.993 4.246 4.254 

Futures 0.037 

1.330 

-3.43E-05 

-0.002 

 0.041 

3.812  

0.058 

6.203  

0.935 

107.793  

-0.0051 0.993 4.250 4.257 

 0.037 

1.342 
-0.957 

-30.672  

0.959 

31.052  

0.042 

3.884  

0.059 

6.273  

0.934 

107.696  

-0.0053 0.993 4.251 4.259 
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Table 5. Univariate volatility models of crude oil returns for Dubai 

 

 

Panel 5b. AR(1)-GJR(1,1) and ARMA(1,1)-GJR(1,1) estimates 

Returns 

Mean equation Variance equation Log- 

Momen

t 

Second 

momen

t 

AIC SIC 
c AR(1) MA(1) ̂  ̂  ̂  ̂  

Spot 0.036 

1.478 
-0.067 

-4.162  

 0.046 

3.391  

0.031 

2.874  

0.030 

2.412  

0.944 

107.349  

-0.0045 0.99 4.153 4.162 

 0.038 

1.610 

0.323 

1.800 
-0.393 

-2.246  

0.042 

3.405  

0.031 

2.907  

0.029 

2.457  

0.944 

107.267  

-0.0045 0.999 4.153 4.163 

Forward 0.039 

1.659 
-0.069 

-4.334  

 0.040 

3.758  

0.038 

3.152  

0.024 

1.866 
0.939 

105.081  

-0.0045 0.989 4.064 4.072 

 0.040 

1.829 

0.387 

2.445  
-0.458 

-2.996  

0.039 

3.745  

0.038 

3.249  

0.024 

1.878 
0.940 

105.641  

-0.0044 0.99 4.063 4.073 

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and 

Wooldridge (1992) robust t- ratios.  

(2) Entries in bold are significant at 5%. 

 

 

 

Panel 5a. AR(1)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) estimates 

Returns 
Mean equation Variance equation Log- 

Moment 

Second 

moment 
AIC SIC 

c AR(1) MA(1) ̂  ̂  ̂  

Spot 0.053 

2.162  

-0.064 

-4.122  

 0.045 

3.384  

0.052 

6.448  

0.938 

106.264  

-0.0059 0.99 4.156 4.163 

 0.053 

2.286  

0.329 

1.776 
-0.397 

-2.197  

0.044 

3.386  

0.052 

6.397  

0.938 

106.082  

-0.0059 0.99 4.156 4.164 

Forward 0.052 

2.206  

-0.068 

-4.344  

 0.039 

3.691  

0.054 

6.885  

0.937 

113.271  

-0.0057 0.991 4.065 4.072 

 4.072 

2.367  

0.399 

2.529  

-0.469 

3.084  

0.038 

3.659  

0.054 

6.833  

0.937 

113.141  

-0.0056 0.991 4.064 4.073 
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Table 6. Constant conditional correlations (CCC) based on GARCH(1,1) 

Panel 6a: Brent 

Returns rbresp rbrefor rbrefu 

rbresp 1.000   

rbrefor 0.940 1.000  

rbrefu 0.784 0.783 1.000 

 
Panel 6b: WTI 

Returns rwtisp rwtifor rwtifu 

rwtisp 1.000   

rwtifor 0.837 1.000  

rwtifu 0.883 0.883 1.000 

 
Panel 6c: Dubai 

Returns rdubsp rdubfor 

rdubsp 1.000  

rdubfor 0.936 1.000 
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Table 7. Dynamic conditional correlations (DCC) based on GARCH(1,1) 

Panel 7a. Estimates of Q   

Returns 
1̂  2̂  

rbresp_rbrefor_rbrefu 0.027 

5.140 

0.968 

135.802 

rwtisp_rwtifor_rwtifu 0.264 

9.544 

0.446 

14.070 

rdubsp_rdubfor 0.095 

3.321 

0.894 

26.858 

Note: Two entries for each parameters are their respective estimate and robust t-ratio. 

 

 

Panel 7b. Descriptive statistics 

Returns Mean Max Min S.D. Skewness Kurtosis 

rbresp_rbrefor 0.939 0.991 0.648 0.041 -2.315 11.474 

rbresp_rbrefu 0.782 0.951 0.267 0.113 -1.077 3.803 

rbrefor_rbrefu 0.785 0.957 0.272 0.113 -1.087 3.861 

rwtisp_rwtifor 0.837 0.989 -0.346 0.113 -3.894 25.590 

rwtisp_rwtifu 0.883 0.995 -0.423 0.099 -4.625 32.601 

rwtifor_rwtifu 0.882 0.992 -0.272 0.093 -4.705 35.334 

rdubsp_rdubfor 0.941 0.998 -0.131 0.106 -4.135 24.456 
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Table 8. VARMA-GARCH and VARMA-AGARCH models for Brent 

Panel a. VARMA(1,1)-GARCH(1,1) 

Returns   bresp  
brefor  

brefu  bresp  
brefor  

brefu  

rbresp 0.034 

(4.085) 

0.018 

(1.735) 

-0.011 

(-0.509) 
0.049 

(3.163) 

0.962 

(79.990) 

0.005 

(0.231) 
-0.028 

(-2.140) 

rbrefor 0.215 

(1.390) 

-0.019 

(-0.690) 

-0.033 

(-1.377) 
0.147 

(4.703) 

0.407 

(3.179) 

-0.164 

(-0.882) 
0.487 

(2.777) 

rbrefu -0.002 

(-0.079) 
-0.040 

(-9.420) 

0.071 

(3.656) 

0.046 

(2.465) 

0.095 

(3.252) 

-0.026 

(-0.472) 
0.854 

(16.441) 

 

 

Panel b.VARMA(1,1)-AGARCH(1,1) 
 

   

Returns   bresp  
brefor  

brefu    
bresp  

brefor  
brefu  

rbresp 0.030 

3.870 

0.001 

0.129 

-0.011 

-0.535 

0.048 

3.336 

0.026 

2.395 

0.967 

101.050 

0.005 

0.229 

-0.027 

-2.155 

rbrefor 0.105 

1.934 

-0.014 

-0.619 

-0.017 

-0.436 

0.105 

3.608 

0.032 

0.929 

0.160 

2.379 

0.644 

5.101 

0.043 

0.760 

rbrefu 0.012 

0.630 

-0.031 

-2.677 

0.057 

2.654 

0.049 

2.466 

-0.011 

-0.626 

0.062 

2.624 

-0.031 

-0.711 

0.897 

21.709 

Notes: Entries in bold are significant at 5%. 
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Table 9. VARMA-GARCH and VARMA-AGARCH models for WTI 

Panel a. VARMA(1,1)-GARCH(1,1) 

Returns   rwtisp  
wtifor  

wtifu  wtisp  
wtifor  

wtifu  

rwtisp 0.005 

(0.062) 

0.041 

(0.818) 
0.113 

(2.331) 

-0.016 

(-0.279) 
0.640 

(4.001) 

0.202 

(1.184) 

0.058 

(0.643) 

rwtifor 0.026 

(5.365) 

-0.006 

(-1.311) 
0.020 

(1.976) 

0.031 

(2.669) 

0.009 

(1.452) 
0.979 

(186.055) 

-0.036 

(-4.697) 

rwtifu -0.010 

(-0.179) 

-0.013 

(-1.851) 

0.064 

(1.829) 

0.038 

(1.075) 

0.046 

(1.534) 

0.141 

(0.876) 
0.728 

(4.583) 

 

 

Panel b.VARMA(1,1)-AGARCH(1,1)
 

    

Returns   wtisp  
wtifor  

wtifu    
wtisp  

wtifor  
wtifu  

rwtisp -0.007 

(-0.078) 

0.012 

(0.314) 
0.119 

(2.395) 

-0.011 

(-0.195) 

0.045 

(0.843) 
0.607 

(3.805) 

0.237 

(1.349) 

0.058 

(0.596) 

rwtifor 0.026 

(5.641) 

-0.004 

(-0.960) 

0.017 

(1.277) 
0.029 

(2.448) 

0.006 

(0.743) 

0.007 

(1.178) 
0.979 

(185.808) 

-0.035 

(-4.502) 

rwtifu -0.008 

(-0.146) 

-0.012 

(-1.760) 

0.062 

(1.757) 

0.029 

(0.676) 

0.023 

(0.658) 

0.041 

(1.380) 

0.146 

(0.978) 
0.727 

(4.948) 

Notes: Entries in bold are significant at 5%. 
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Table 10. VARMA-GARCH and VARMA-AGARCH models for Dubai 

Panel a. VARMA(1,1)-GARCH(1,1) 

Returns   dubsp  
dubfor  dubsp  

dubfor  

rdubsp 0.035 

(6.403) 

0.004 

(0.524) 
0.051 

(4.672) 

0.976 

(106.169) 

-0.038 

(-4.757) 

rdubfor 0.093 

(1.070) 

0.050 

(1.069) 

0.012 

(0.260) 

0.220 

(0.598) 

0.665 

(1.526) 

 

 

Panel b.VARMA(1,1)-AGARCH(1,1)
 

  

Returns   dubsp  
dubfor    

dubsp  
dubfor  

rdubsp 0.032 

(5.510) 

-0.011 

(-1.123) 
0.051 

(5.409) 

0.021 

(2.421) 

0.975 

(106.637) 

-0.031 

(-3.650) 

rdubfor 0.084 

(1.653) 

0.040 

(0.884) 

0.002 

(0.052) 

0.037 

(1.164) 

0.139 

(1.016) 
0.758 

(4.639) 

Notes: Entries in bold are significant at 5%. 
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Figure 1 

Returns of daily spot, forward and futures returns for Brent, WTI and Dubai 
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Figure 2  

Dynamic conditional correlations 
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