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Abstract

The empirical best linear unbiased predictor (EBLUP) or the empirical Bayes
estimator (EB) in the linear mixed model is recognized useful for the small area es-
timation, because it can increase the estimation precision by using the information
from the related areas. Two of the measures of uncertainty of EBLUP is the estima-
tion of the mean squared error (MSE) and the confidence interval, which have been
studied under the second-order accuracy in the literature. This paper provides the
general analytical results for these two measures in the unified framework, namely,
we derive the conditions on the general consistent estimators of the variance compo-
nents to satisfy the third-order accuracy in the MSE estimation and the confidence
interval in the general linear mixed normal models. Those conditions are shown
to be satisfied by not only the maximum likelihood (ML) and restricted maximum
likelihood (REML), but also the other estimators including the Prasad-Rao and
Fay-Herriot estimators in specific models.

Key words and phrases: Best linear unbiased predictor, confidence interval, em-
pirical Bayes procedure, Fay-Herriot model, higher-order correction, linear mixed
model, maximum likelihood estimator, mean squared error, nested error regression
model, restricted maximum likelihood estimator, small area estimation.

1 Introduction

The linear mixed models (LMM) and the empirical best linear unbiased predictor (EBLUP)
or the empirical Bayes estimator (EB) induced from LMM have been studied for a long
time in the literature. Especially, they have been recognized in recent years as useful
tools in small area estimation. Small area refers to a small geographical area or a group
for which little information is obtained from the sample survey, and the direct estimator
based only on the data from a given small area is likely to be unreliable because only a few
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observations are available from the small area. To increase the precision of the estimate,
relevant supplementary information such as data from other related small areas is used
via suitable linking models. The typical models used for the small area estimation are the
Fay-Herriot model and the nested error regression model (NERM), and the model-based
estimates including EBLUP or EB are found very useful as illustrated by Fay and Herriot
(1979) and Battese, Harter and Fuller (1988). For a good review and account on this
topic, see Ghosh and Rao (1994), Rao (1999, 2003) and Pfeffermann (2002).

When EBLUP is used to estimate a small area mean based on real data, it is important
to assess how much EBLUP is reliable. One method for the purpose is to estimate
the mean squared error (MSE) of EBLUP, and asymptotically unbiased estimators of
the MSE with the second-order accuracy have been derived based on the Taylor series
expansion by Kackar and Harville (1984), Prasad and Rao (1990), Harville and Jeske
(1992), Datta and Lahiri (2000), Datta, Rao and Smith (2005) and Das, Jiang and Rao
(2004). For some recent results including jackknife and bootstrap methods, see Lahiri
and Rao (1995), Butar and Lahiri (2003), Hall and Maiti (2006a), Slud and Maiti (2006)
and Chen and Lahiri (2008). Another method for measuring uncertainty of EBLUP is to
provide a confidence interval based on EBLUP, and the confidence intervals which satisfy
the nominal confidence level with the second-order accuracy have been derived based on
the Taylor series expansion by Datta, Ghosh, Smith and Lahiri (2002), Basu, Ghosh and
Mukerjee (2003) and Kubokawa (2010). Recently, Hall and Maiti (2006b) and Chatterjee,
Lahiri and Li (2008) developed the method based on parametric bootstrap.

In this paper, we treat the problem of predicting the general linear combination of the
regression coefficients and the random effects in the general linear mixed model under the
normality assumption, and we construct the asymptotically unbiased estimator of MSE
of EBLUP and the confidence interval based on EBLUP, both of which guarantee the
third-order accuracy in the unified framework. The results obtained in this paper extend
the results given in the literature to the following four directions: (1) treating the two
problems of the MSE estimation and the confidence interval in the unified setup, (2) the
third-order accuracy, (3) the general LMM, and (4) the general consistent estimators of
unknown parameters embedded in the covariance matrices.

Concerning the points (1) and (2), the MSE estimation and the confidence intervals
have been treated separately in the literature, and the results given in the literature have
been derived under the second-order accuracy.

Concerning the point (3), Datta and Lahiri (2000) dealt with a general linear mixed
model where the covariance matrices of the random effects and the error terms are assumed
to be linear in the unknown parameters, denoted by θ. This assumption is reasonable
when the elements of θ are variance components, but it may be restrictive because the
covariance matrices are non-linear functions of θ when the random effects or error terms
have autoregressive structures like AR(1). This difference in the setup of the covariance
matrices appears in the bias of the restricted maximum likelihood estimator (REML) of
θ, namely, the second-order bias of REML vanishes when the covariance matrices are liner
in θ, but it does not vanish without the linearity assumption. Das, et al . (2004) handled
the general LMM without assuming the linearity of covariance matrices in θ and derived
the general asymptotically unbiased estimator of MSE with the second-order accuracy,
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where their estimators of θ are given as solutions of score-like equations which include
ML and REML.

In this paper, we consider the general consistent estimators of θ in the general LMM
without assuming that the covariance matrices are linear in θ. Then, we develop unified
conditions on the general consistent estimators of θ under which the derived estimator
estimates the MSE of EBLUP asymptotically unbiasedly with the third-order accuracy
and the constructed confidence interval based on EBLUP satisfies the nominal confidence
level with the third-order accuracy. A feature of this paper is that the Stein identity given
by Stein (1981) is used to evaluate the MSE of EBLUP, which enables us to generate the
general conditions on estimators of θ.

The paper is organized as follows: The main results on the MSE estimation and confi-
dence intervals are given in Section 2. The conditions and the results for the second-order
approximation are described in Subsection 2.2, and those for the third-order approxima-
tion are provided in Subsection 2.3. Two simple and instructive examples are given in
Subsection 2.4. The second-order and third-order expansions of ML and REML estimators
of θ are studied in in Section 3. The third-order approximations in the MSE estimation
and confidence intervals based on ML and REML are applied to some specific models
including the Fay-Herriot model, the nested error regression model and a basic area level
model proposed by Rao and Yu (1994) for combining the time-series and cross-sectional
data. The proofs of the main results are given in Section 4.

Finally, it should be remarked that the validity of the asymptotic expansions will not
be discussed here. All the results are based on major terms obtained by Taylor series
expansions as used in Datta and Lahiri (2000). To establish the validity in the third-
order approximation, we need more appropriate conditions like those given in Das, et al .
(2004) who gave the rigorous proofs in the second-order approximation.

2 MSE Estimation and Confidence Interval Based on

EBLUP

2.1 The model and notations

Consider the general linear mixed model

y = Xβ + Zv + ε, (2.1)

where y is an N × 1 observation vector of the response variable, X and Z are N × p and
N ×M matrices, respectively, of the explanatory variables, β is a p× 1 unknown vector
of the regression coefficients, v is an M×1 vector of the random effects, and ε is an N×1
vector of the random errors. Here, v and ε are mutually independently distributed as
v ∼ NM(0,G(θ)) and ε ∼ NN(0, R(θ)), where θ = (θ1, . . . , θq)

′ is a q-dimensional vector
of unknown parameters, and G = G(θ) and R = R(θ) are positive definite matrices.
Then, y has a marginal distribution NN(Xβ,Σ(θ)) for

Σ = Σ(θ) = R(θ) + ZG(θ)Z ′.
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Let a and b be p× 1 and M × 1 vectors of fixed constants, and suppose that we want
to estimate the scalar quantity µ = a′β + b′v. Since the conditional distribution of v
given y is given by

v|y ∼ NM

(
G(θ)Z ′Σ(θ)−1(y −Xβ), (G(θ)−1 + Z ′R(θ)−1Z)−1

)
, (2.2)

the conditional expectation E[µ|y] is written as

µ̂B(β,θ) =E[µ|y] = a′β + b′G(θ)Z ′Σ(θ)−1(y −Xβ)

=a′β + s(θ)′(y −Xβ), (2.3)

where s(θ) = Σ(θ)−1ZG(θ)b. This can be interpreted as the Bayes estimator of µ in the
Bayesian context. The generalized least squares estimator of β for given θ is given by

β̂(θ) = (X ′Σ(θ)−1X)−1X ′Σ(θ)−1y,

which is substituted into µ̂B(β,θ) to get the estimator

µ̂EB(θ) = µ̂B(β̂(θ), θ) = a′β̂(θ) + s(θ)′(y −Xβ̂(θ)). (2.4)

This estimator is the best linear unbiased predictor (BLUP) of µ. When an estimator

θ̂ = θ̂(y) is available for θ, we can estimate µ by the empirical (or estimated) best linear

unbiased predictor (EBLUP) µ̂EB(θ̂), which is also called an empirical Bayes estimator
in the Bayesian context. We give a higher order approximation to MSE of EBLUP, an
asymptotic unbiased estimator of the MSE and a confidence interval based on EBLUP
with higher order accuracy.

We here explain the notations used through the paper. Let C[k]
„ denote a set of k times

continuously differentiable functions with respect to θ. As partial derivatives with respect
to θ, we use the notations defined by

A(i)(θ) =∂iA(θ) =
∂A(θ)

∂θi

, A(ij)(θ) = ∂ijA(θ) =
∂2A(θ)

∂θi∂θj

,

A(ijk)(θ) =∂ijkA(θ) =
∂3A(θ)

∂θi∂θj∂θk

,
∂

∂θ
= (∂1, . . . , ∂q)

′ , ∇y =
∂

∂y
,

for matrices or vectors A(θ), where we use the same notations for scalars. For 0 ≤
i, j, k ≤ q, let λ1 ≤ · · · ≤ λN be the eigenvalues of Σ(θ) and let those of Σ(i)(θ), Σ(ij)(θ)
and Σ(ijk)(θ) be λi

a, λij
a and λijk

a for a = 1, . . . , N respectively, where |λi
1| ≤ · · · ≤ |λi

N |,
|λij

1 | ≤ · · · ≤ |λij
N | and |λijk

1 | ≤ · · · ≤ |λijk
N |.

2.2 Second-order approximation

[1] Approximation of MSE. We begin by the second-order approximation to MSE of
EBLUP. To this end, we assume the following conditions for large N and 1 ≤ i, j, k ≤ q:

(A1) The elements of X, Z, G(θ), R(θ), a and b are uniformly bounded, and p, q
and M are bounded. The matrix X ′Σ(θ)−1X is positive definite and X ′Σ(θ)−1X/N
converges to a positive definite matrix;
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(A2) (i) Σ(θ) ∈ C [2]
„ , and limN→∞ λ1 > 0, limN→∞ λN < ∞, limN→∞ |λi

N | < ∞ and

limN→∞ |λij
N | < ∞. (ii) s(θ) ∈ C [2]

„ , and (y−Xβ)′s(θ) = Op(1), (y−Xβ)′s(i)(θ) = Op(1),
(y −Xβ)′s(ij)(θ) = Op(1) and s(i)(θ)′s(j)(θ) = O(1).

(A3) θ̂ = θ̂(y) = (θ̂1, . . . , θ̂q)
′ is an estimator of θ which satisfies that θ̂(−y) = θ̂(y)

and θ̂(y + Xα) = θ̂(y) for any p-dimensional vector α.

(A4) θ̂ − θ is expanded as

θ̂ − θ = θ̂
∗
+ θ̂

∗∗
+ Op(N

−3/2), (2.5)

where θ̂
∗

= Op(N
−1/2) and θ̂

∗∗
= Op(N

−1). For θ̂
∗

= (θ̂∗1, . . . , θ̂
∗
q)
′, it is assumed that θ̂∗i

satisfies that (i) E[θ̂∗i ] = O(N−1) and (ii) s(j)(θ)′Σ(θ)∇yθ̂
∗
i = Op(N

−1).

The assumption (A1) implies that β̂(θ) − β = Op(N
−1/2), and (A1) and (A2) (i)

mean that β̂(i)(θ) = Op(N
−1/2) and β̂(ij)(θ) = Op(N

−1/2). Also, (A1) and (A2) imply

that µ̂EB(θ) ∈ C[2]
„ , µ̂EB

(i) (θ) = Op(1) and µ̂EB
(ij)(θ) = Op(1).

Under the above assumptions, we can derive the second-order approximation to MSE.
Define g1(θ), g2(θ) and g∗3(θ) by

g1(θ) =b′(G(θ)−1 + Z ′R(θ)−1Z)−1b,

g2(θ) =(a−X ′s(θ))′(X ′Σ(θ)−1X)−1(a−X ′s(θ)),

g∗3(θ) =tr
[(∂s(θ)′

∂θ

)
Σ(θ)

(∂s(θ)′

∂θ

)′
Cov (θ̂

∗
)
]
,

(2.6)

for Cov (θ̂
∗
) = E[(θ̂

∗ − E[θ̂
∗
])(θ̂

∗ − E[θ̂
∗
])′]. It can be seen that g1(θ) is rewritten as

g1(θ) = b′G(θ)b− s(θ)′Σ(θ)s(θ). (2.7)

Theorem 2.1 Assume the conditions (A1)-(A4). Then the MSE of µ̂EB(θ̂) is approxi-
mated as

MSE(θ, µ̂EB(θ̂)) = g1(θ) + g2(θ) + g∗3(θ) + O(N−3/2). (2.8)

All the proofs of theorems given in this section will be given in Section 4.

[2] Approximated unbiased estimator of MSE. We next provide an asymptot-

ically unbiased estimator of MSE(θ, µ̂EB(θ̂)) with second-order accuracy. Define g11(θ)
and g12(θ) by

g11(θ) =
(∂g1(θ)

∂θ

)′
E[θ̂

∗
+ θ̂

∗∗
],

g12(θ) =
1

2
tr

[
B(θ)Cov (θ̂

∗
)
]
,

(2.9)

where the (i, j)-th element of B(θ) is given by

(B(θ))i,j = (b−Z ′s(θ))′(∂ijG(θ))(b−Z ′s(θ)) + s(θ)′(∂ijR(θ))s(θ). (2.10)
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It is noted that g12(θ) = 0 when G and R are matrices of linear functions of θ. Define

mse(θ̂, µ̂EB(θ̂)) by

mse(θ̂, µ̂EB(θ̂)) = g1(θ̂) + g#(θ̂), (2.11)

where
g#(θ) = g2(θ) + 2g∗3(θ)− g11(θ)− g12(θ). (2.12)

Since E[θ̂
∗
] = O(N−1) from the condition (A4), it is noted that g11(θ) = O(N−1), so that

g#(θ) = O(N−1). The following theorem shows that mse(θ̂, µ̂EB(θ̂)) is a second-order

unbiased estimator of the MSE of µ̂EB(θ̂) under the additional assumption:

(B1) For 1 ≤ i, j, k ≤ q, (i) g1(θ) ∈ C [3]
„ and ∂ig1(θ) = O(1), ∂ijg1(θ) = O(1) and

∂ijkg1(θ) = O(1), (ii) g#(θ) ∈ C [1]
„ and ∂ig

#(θ) = O(N−1).

Theorem 2.2 Assume the conditions (A1)-(A4) and (B1). Then,

E[mse(θ̂, µ̂EB(θ̂))] = MSE(θ, µ̂EB(θ̂)) + O(N−3/2). (2.13)

[3] Corrected confidence intervals. We construct a confidence interval of µ =
a′β+b′v which satisfies the nominal confidence level with the second-order accuracy. Let
mse(θ̂) = mse(θ̂, µ̂EB(θ̂)) = g1(θ̂) + g#(θ̂) for g# given in (2.12). Since mse(θ̂) is an

asymptotically unbiased estimator of the MSE of the empirical Bayes estimator µ̂EB(θ̂),
it is reasonable to consider the confidence interval of the form

IEB(θ̂) : µ̂EB(θ̂)± zα/2

√
mse(θ̂). (2.14)

However, the coverage probability P [µ ∈ IEB(θ̂)] cannot be guaranteed to be greater than
or equal to the nominal confidence coefficient 1−α. To address the problem, we consider
to adjust the significance point zα/2 as zα/2{1 + h(θ̂)} by using an appropriate correction

function h(θ̂). That is, the corrected confidence interval is described as

ICEB(θ̂) : µ̂EB(θ̂)± zα/2

[
1 + h(θ̂)

]√
mse(θ̂).

Here, we define the function h(θ) by

h(θ) =
z2

α + 1

8g1(θ)2
tr [

(∂g1(θ)

∂θ

)(∂g1(θ)

∂θ

)′
Cov (θ̂

∗
)]. (2.15)

The following theorem shows that ICEB(θ̂) satisfies the nominal confidence coefficient up
to the second-order under the additional assumption:

(C1) h(θ) ∈ C[1]
„ , ∂ih(θ) = O(N−1) for 1 ≤ i ≤ q.

Theorem 2.3 Assume the conditions (A1)-(A4), (B1) and (C1). Then,

P [µ ∈ ICEB(θ̂)] = 1− α + O(N−3/2). (2.16)
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2.3 Third-order approximation

We now show that all the results given in Theorems 2.1, 2.2 and 2.3 hold with third-order
accuracy under some additional assumptions. We here assume the following conditions:

(A5) (i) Σ(θ) ∈ C[3]
„ , and limN→∞ |λijk

N | < ∞. (ii) s(θ) ∈ C [3]
„ , and (y−Xβ)′s(ijk)(θ) =

Op(1) and s(i)(θ)′s(jk)(θ) = O(1).

(A6) θ̂ − θ can be further expanded as

θ̂ − θ = θ̂
∗
+ θ̂

∗∗
+ θ̂

∗∗∗
+ Op(N

−2), (2.17)

where θ̂
∗

= Op(N
−1/2), θ̂

∗∗
= Op(N

−1) and θ̂
∗∗∗

= Op(N
−3/2). It is assumed that

these satisfy the following: (i) E[θ̂∗i θ̂
∗
j θ̂
∗
k] = O(N−2) and E[θ̂∗i θ̂

∗∗
j ] = O(N−2) and (ii)

s(i)(θ)′Σ(θ)∇yθ̂
∗∗
j = Op(N

−3/2) and E[s(i)(θ)′Σ(θ){∇y∇′
yθ̂
∗
i }Σ(θ)s(j)(θ)θ̂∗j ] = O(N−2).

The assumptions (A1), (A2)(i) and (A5)(i) imply that β̂(ijk)(θ) = Op(N
−1/2). Also,

(A1), (A2) and (A5) imply that µ̂EB
(ijk)(θ) = Op(1).

Theorem 2.4 Assume the conditions (A1)-(A6). Then the MSE of µ̂EB(θ̂) is approxi-
mated as

MSE(θ, µ̂EB(θ̂)) = g1(θ) + g2(θ) + g∗3(θ) + O(N−2). (2.18)

To give an asymptotically unbiased estimator of MSE(θ, µ̂EB(θ̂)) with the third-order
accuracy, assume that

(B2) For 1 ≤ i, j, k, ` ≤ q, (i) g1(θ) ∈ C[4]
„ and ∂ijk`g1(θ) = O(1), (ii) g#(θ) ∈ C[2]

„ and

∂ijg
#(θ) = O(N−1) and (iii) E[θ̂

∗∗∗
] = Op(N

−2).

Theorem 2.5 Assume the conditions (A1)-(A6), (B1) and (B2). Then,

E[mse(θ̂, µ̂EB(θ̂))] = MSE(θ, µ̂EB(θ̂)) + O(N−2). (2.19)

Finally, assume that

(C2) h(θ) ∈ C[2]
„ and ∂ijh(θ) = O(N−1) for 1 ≤ i, j ≤ q.

Theorem 2.6 Assume the conditions (A1)-(A6), (B1), (B2), (C1) and (C2). Then,

P [µ ∈ ICEB(θ̂)] = 1− α + O(N−2). (2.20)

We conclude this subsection with some remarks.

Remark 2.1 When the covariance matrix Cov (θ̂
∗
) and the bias E[θ̂

∗
+ θ̂

∗∗
] are approx-

imated as Cov (θ̂
∗
) = C∗ + O(N−3/2) and E[θ̂

∗
+ θ̂

∗∗
] = b∗ + O(N−3/2), we can replace

Cov (θ̂
∗
) and E[θ̂

∗
+ θ̂

∗∗
] with C∗ and b∗, respectively, in Theorems 2.1 - 2.6.
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Remark 2.2 The model treated by Datta and Lahiri (2000) is yi = X iβ + Zivi + εi

for i = 1, . . . , k, where vi ∼ Nbi
(0,Gi(θ)), εi ∼ Nni

(0,Ri(θ)) and it is assumed that
Ri(θ) =

∑q
j=0 θjDijD

′
ij and Gi(θ) =

∑q
j=0 θjF ijF

′
ij for θ0 = 1 and known matrices Dij

and F ij. It is also assumed that the elements of Dij and F ij are uniformly bounded.
For the other notations, see Datta and Lahiri (2000). They provided the corresponding
results to Theorem 2.1 and 2.2. It can be seen that the conditions (A1)-(A3) satisfies
conditions (a), (b), (c), (d), (f) of Datta and Lahiri (2000) except the conditions that
sup1≤i≤k ni is bounded and that k → ∞, which are implicitly assumed in the condition
(A4) in this paper.

Remark 2.3 As mentioned below (2.9), the term g12(θ) = 2−1tr
[
B(θ)Cov (θ̂

∗
)
]

does

not appear under the condition

(A7) G(θ) and R(θ) are matrices of linear functions of θ,

since (B(θ))i,j = (b − Z ′s(θ))′(∂ijG(θ))(b − Z ′s(θ)) + s(θ)′(∂ijR(θ))s(θ). The model
of Datta and Lahiri (2000) satisfies the condition (A7). Since most models studied in the
literature satisfy (A7), the term g12(θ) has not explicitly appeared in the literature except
Das, et al . (2004), who treated the model with general covariance structures, and the term
g12(θ) is implicitly included by ∆2(σ) given in (4.5) of their paper.. When G(θ) or R(θ)
have time-series or longitudinal structures, however, the term g12(θ) cannot be ignored.
For this point, see Section 3.5. The models for analyzing time-series and cross-section
data have been actively and extensively studied in the literature. Of these, Rao and
Yu (1994) and Datta, Kahiri and Maiti (2002) have provided the explicit forms of MSE
estimators of EBLUP. Rao and Yu (2002) derived the MSE estimator in the case that the
AR(1) coefficient ρ is known, and used the plug-in estimator when ρ is unknown. Datta,
et al . (2002) treated a random walk model, namely the case of ρ = 1. Thus, the term
g12(θ) does not appear in these papers, although both handled time-series structures.

Remark 2.4 It is noted that the validity of the asymptotic expansions will not be dis-
cussed here. All the results in this paper are based on major terms obtained by Taylor
series expansions which is a similar method as used in Datta and Lahiri (2000). The
validity of the second-order approximations in MSE and its estimation has been shown
by Prasad and Rao (1990) for unbiased estimators of θ in some specific models, and by
Das, et al . (2004) for ML and REML in the general LMM. Although this paper provides
the third order approximations without the validity, we need more conditions and much
more steps for establishing the validity of the third-order approximations.

Remark 2.5 The corrected function h(θ) given in (2.15) includes g1(θ) in the denom-

inator, and this may cause the instability of the corrected confidence interval ICEB(θ̂)
near θ = 0. For example, as given in Example 2.2, we have g1(θ1, θ2) = θ1θ2/(θ1 + nsθ2)
in the nested error regression model, where θ1 and θ2, respectively, are the ‘within’ and
‘between’ components of variance, and ns is a sample size of a small area. When θ2 is close
to zero, the estimator θ̂2 and g1(θ̂1, θ̂2) take values near zero, which leads to the instability
of the confidence interval. One method for fixing this problem is to use the truncation of
the estimator θ̂2 as θ̂TR

2 = max{θ̂2, N
−2/3}, which was suggested in Kubokawa (2010), For

the practical use of ICEB(θ̂), we need such a modification of the estimator θ̂.
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2.4 Instructive examples

In this section, the results given in the previous sections are applied to specific models, and
the corresponding forms of the MSE estimators and the confidence intervals are derived.

Example 2.1 (Fay-Herriot model) As a simple basic area model, we consider the Fay-
Herriot model described by

yi = x′iβ + vi + εi, i = 1, . . . , k,

where k is the number of small areas, xi is a p × 1 vector of explanatory variables, β is
a p× 1 unknown common vector of regression coefficients, and vi’s and εi’s are mutually
independently distributed random errors such that vi ∼ N (0, θ) and εi ∼ N (0, di). Let
X = (x1, . . . , xk)

′, y = (y1, . . . , yk)
′, and let v and ε be similarly defined. Then, the

model is expressed in vector notations as y = Xβ + v + ε, and y ∼ N (Xβ,Σ) where
Σ = Σ(θ) = θIk +D for D = diag (d1, . . . , dk) and N = k. It is assumed that supi≥1 di <
∞, infi≥1 di > 0 and that k →∞.

When we want to estimate µs = x′sβ + vs, the vectors a and b used in Section 2
correspond to a = xs and b = (0, . . . , 0, 1, 0, . . . , 0)′ such that b′v = vs. The EBLUP or
empirical Bayes estimator of µs is written as

µ̂EB
s (θ̂) = x′sβ̂(θ̂) +

(
θ̂/(θ̂ + ds)

)
(ys − x′sβ̂(θ̂)),

and the functions g1(θ), g2(θ), g∗3(θ), g11(θ) and h(θ) are expressed as g1(θ) = θ(θ +ds)
−1,

g2(θ) = d2
s(θ + ds)

−2x′s(X
′Σ−1X)−1xs,

g∗3(θ) =d2
s(θ + ds)

−3V ar(θ̂∗),

g11(θ) =d2
s(θ + ds)

−2E[θ̂∗ + θ̂∗∗],

h(θ) =
z2

α + 1

8θ2(θ + ds)2
V ar(θ̂∗),

(2.21)

and g12(θ) = 0. In this model, the conditions (A2) and (A5) given hold, and the conditions
(A4) (ii) and (A6)(i) are rewritten as ∂θ̂∗/∂ys = Op(N

−1), ∂θ̂∗∗/∂ys = Op(N
−3/2) and

E[(∂2θ̂∗/∂y2
s)θ̂

∗] = O(N−2). Assume the conditions (A1), (A3), (A4) and (A6) and that

E[θ̂∗∗∗] = O(N−2), V ar(θ̂∗) ∈ C [2]
θ and E[θ̂∗ + θ̂∗∗] ∈ C [2]

θ . Then, we can obtain the
third-order approximations given in Theorems 2.4, 2.5 and 2.6.

[Prasad-Rao estimator] A simple estimator of θ is the unbiased estimator suggested
by Prasad and Rao (1990) given by θ̂U = (k − p)−1(y′W 0y − tr [DW 0]) for W 0 =
Ik −X(X ′X)−1X ′. In this case, θ̂U − θ = θ̂U∗ = (k − p)−1tr [W 0(yy′ − Σ)], and it is
easy to see that E[θ̂U∗] = 0 and V ar[θ̂U∗] = 2k−2trΣ2 + O(k−2) as described in Prasad
and Rao (1990). Since all the conditions other than (A1) are satisfied, from Remark 2.1,
we get the results in Theorems 2.4, 2.5 and 2.6 under (A1).

Example 2.2 (Nested error regression model(NERM)) The model we next han-
dle is the nested error regression model (NERM) given by

yij = x′ijβ + vi + εij, i = 1, . . . , k, j = 1, . . . , ni,
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where k is the number of small areas, N =
∑k

i=1 ni, xij is a p × 1 vector of explana-
tory variables, β is a p × 1 unknown common vector of regression coefficients, and vi’s
and εij’s are mutually independently distributed as vi ∼ N (0, σ2

v) and εij ∼ N (0, σ2).
Here, σ2

v and σ2 are referred to as, respectively, ‘between’ and ‘within’ components
of variance, and both are unknown. Let X i = (xi1, . . . , xi,ni

)′, X = (X ′
1, . . . , X

′
k)
′,

yi = (yi1, . . . , yi,ni
)′, y = (y′1, . . . , y

′
k)
′ and let ε be similarly defined. Let v = (v1, . . . , vk)

′

and Z = block diag(jn1
, . . . , jnk

) for jni
= (1, . . . , 1)′ ∈ Rni . Then, the model is ex-

pressed in vector notations as y = Xβ + Zv + ε. It is assumed that supi≥1 ni < ∞ and
that k →∞.

We want to estimate the mean µs = x′sβ + vs of the s-th small area for xs =∑ns

j=1 xsj/ns. The vectors a and b used in Section 2 correspond to a = xs and b =

(0, . . . , 0, 1, 0, . . . , 0)′ such that b′v = vs. Also, θ = (θ1, θ2)
′ and Σ correspond to θ1 = σ2,

θ2 = σ2
v and Σ = block diag(Σ1, . . . ,Σk) for Σi = θ1Ini

+ θ2Jni
, Jni

= jni
j ′ni

, Ini
being

the ni×ni identity matrix. Since Σ−1
s = θ−1

1 (Ins−θ2/(θ1 +nsθ2)Jns) and Σ−1
s jns

= (θ1 +
nsθ2)

−1jns
, s(θ)′ is expressed as s(θ)′ = (θ2/(θ1+nsθ2)(0

′
n1

, . . . ,0′ns−1
, j ′ns

,0′ns+1
, . . . ,0′nk

)′

where 0nj
is the nj-dimensional zero vector such that 0′ = (0′n1

, . . . ,0′ns
, . . . ,0′nk

). From
this expression, ∂1s(θ) and ∂2s(θ) can be derived. Then, the EBLUP or empirical Bayes
estimator of µs is written as

µ̂EB
s (θ̂) = x′sβ̂(θ̂) +

(
nsθ̂2/(θ̂1 + nsθ̂2)

)
(ys − x′sβ̂(θ̂)),

and the functions g1(θ), g2(θ), g∗3(θ), g11(θ) and h(θ) are expressed as g1(θ) = θ1θ2(θ1 +
nsθ2)

−1, g2(θ) = θ2
1(θ1 + nsθ2)

−2x′s(X
′Σ−1X)−1xs,

g∗3(θ) =ns(θ1 + nsθ2)
−3(−θ2, θ1)Cov (θ̂

∗
)(−θ2, θ1)

′,

g11(θ) =(θ1 + nsθ2)
−2(nsθ

2
2, θ

2
1)E[θ̂

∗
+ θ̂

∗∗
],

h(θ) =
z2

α + 1

8(θ1θ2)2(θ1 + nsθ2)2
(nsθ

2
2, θ

2
1)Cov (θ̂

∗
)(nsθ

2
2, θ

2
1)
′,

(2.22)

and g12(θ) = 0. In this model, conditions (A2) and (A5) hold. It is also noted that in (A4)
and (A6), the conditions s(j)(θ)′Σ(θ)∇yθ̂

∗
i = Op(N

−1), s(i)(θ)′Σ(θ)∇yθ̂
∗∗
j = Op(N

−3/2)

and E[s(i)(θ)′Σ(θ){∇y∇′
yθ̂
∗
i }Σ(θ)s(j)(θ)θ̂∗j ] = O(N−2) are rewritten as ∇sθ̂

∗
i = Op(N

−1),

∇sθ̂
∗∗
i = Op(N

−3/2) and E[{∇s∇′
sθ̂
∗
i }θ̂∗j ] = O(N−2), respectively, for 1 ≤ i, j ≤ 2 and

∇s = ∂/∂ys. Assume the conditions (A1), (A3), (A4) and (A6) and that E[θ̂
∗∗∗

] =

O(N−2), Cov (θ̂
∗
) ∈ C [2]

„ and E[θ̂
∗

+ θ̂
∗∗

] ∈ C [2]
„ . Then, we can obtain the third-order

approximations given in Theorems 2.4, 2.5 and 2.6.

[Prasad-Rao estimator] Prasad and Rao (1990) suggested estimators based on
unbiased estimators of θ1 = σ2 and θ2 = σ2

v . Let S = y′(IN −X(X ′X)−1X ′)y and S1 =
y′(E−EX(X ′EX)−1X ′E)y where E = block diag(E1, . . . , Ek) for Ei = Ini

−n−1
i Jni

.
Then, unbiased estimators of θ1 and θ2 suggested by Prasad and Rao (1990) are

θ̂U
1 = S1/(N − k − p) and θ̂U

2 = {S − (N − p)θ̂U
1 }/N∗,

where N∗ = N − tr {(X ′X)−1
∑k

i=1 n2
i xix

′
i}. In this case, θ̂U

i − θi = θ̂U∗
i for i = 1, 2, and

it is easy to see that E[θ̂U∗
1 ] = 0, E[θ̂U∗

2 ] = 0, ∇iS1 = 2(Eiyi−EiX i(X
′EX)−1X ′Ey) =
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Op(1), ∇i∇′
iS1 = 2(Ei−EiX i(X

′EX)−1X ′
iEi) = O(1), ∇iS = 2(yi−X i(X

′X)−1X ′y) =
Op(1), ∇i∇′

iS = 2(Ini
−X i(X

′X)−1X i) = O(1), X ′∇yS1 = 0 and X ′∇yS = 0. Based
on these observations, we can check the conditions (A3), (A4) and (A6). From (5.4)-(5.6)

of Prasad and Rao (1990), Cov (θ̂
U∗

) can be approximated as

Cov (θ̂
U∗

) =
2θ2

1

N − k

(
1 −k/N

−k/N {k2 + (N − k)
∑k

i=1(1 + niθ2/θ1)
2}/N2

)
+ O(N−2).

Thus from Remark 2.1, we can get the corresponding results in Theorems 2.4, 2.5 and 2.6
under (A1).

3 ML and REML methods

3.1 Notations and assumptions

In this section, we derive higher order expansions described in (2.5) and (2.17) for the
ML and REML estimators of θ, and show that the conditions (A3), (A4) and (A6) are
satisfied, and the corresponding results given in Theorems 2.1 - 2.6 are provided.

For notational simplicity, we here omit (θ) in A(θ), Σ(θ) and others, and use the
vector and matrix notations coli(ai) and matij(bij) defined by

coli(ai) =




a1
...
aq


 , matij(bij) =




b11 · · · b1q
...

. . .
...

bq1 · · · bqq


 .

We here use the same notations as in Subsection 2.1. Also, for 0 ≤ i, j, k, `,m ≤ q, let
eigenvalues of Σ(ijk`) and Σ(ijk`m) be λijk`

a and λijk`m
a for a = 1, . . . , N respectively, where

|λijk`
1 | ≤ · · · ≤ |λijk`

N | and |λijk`m
1 | ≤ · · · ≤ |λijk`m

N |.
(M1) Let A2 = matij(tr [Σ(i)Σ

−1Σ(j)Σ
−1]). Assume that A2 is a q×q positive definite

matrix, and A2/N converges to a positive definite matrix.

(M2) Σ(θ) ∈ C [4]
„ , and limN→∞ |λijk`

N | < ∞.

(M3) Σ(θ) ∈ C [5]
„ , and limN→∞ |λijk`m

N | < ∞.

Under these conditions with the conditions (A1), (A2)(i) and (A5)(i), we derive the
second- and third-order expansions of ML and REML, which are defined as follows:

[1] ML method. The ML estimator θ̂
M

= (θ̂M
1 , . . . , θ̂M

q )′ of θ is defined as the

solution of the equations Li(θ̂
M

) = 0 for i = 1, . . . , q, where

Li(θ) = Li = y′(Σ−1 − P )Σ(i)(Σ
−1 − P )y − tr [Σ−1Σ(i)], (3.1)

for P (θ) = P = Σ−1X(X ′Σ−1X)−1X ′Σ−1. Since y′(Σ−1 − P )Σ(i)(Σ
−1 − P )y =

(y −Xβ)′(Σ−1 −P )Σ(i)(Σ
−1 −P )(y −Xβ), the condition (A3) is clearly satisfied and

we can put β = 0 without any loss of generality.
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[2] REML method. The REML estimator θ̂
R

= (θ̂R
1 , . . . , θ̂R

q )′ of θ is defined as the

solution of the equations LR
i (θ̂

R
) = 0 for i = 1, . . . , q, where

LR
i (θ) = y′(Σ−1 − P )Σ(i)(Σ

−1 − P )y − tr [(Σ−1 − P )Σ(i)]. (3.2)

It is clear that the condition (A3) is satisfied, and we can put β = 0 without any loss of
generality.

The consistency of the ML and REML has been studied by Sweeting (1980), Mardia
and Marshall (1984) and Cressie and Lahiri (1993). It can be seen that the conditions
of Theorem 2 in Mardia and Marshall (1984) are satisfied by (A1), (A2)(i), (A5)(i) and

(M1), so that we can see that θ̂
M − θ = Op(N

−1/2) and θ̂
R − θ = Op(N

−1/2).

To derive asymptotic expansions of ML and REML, the following equalities are useful:

E
[
tr [C1(yy′ −Σ)]tr [C2(yy′ −Σ)]

]
=2tr [C1ΣC2Σ],

E
[
tr [C1(yy′ −Σ)]tr [C2(yy′ −Σ)]tr [C3(yy′ −Σ)]

]
=8tr [C1ΣC2ΣC3Σ],

(3.3)

where C1, C2 and C3 are N ×N matrices and y ∼ N (0,Σ) for β = 0.

3.2 Expansions of ML and the corresponding results

We first derive the third-order expansion given in (2.17) for the ML estimator of θ under
the conditions (A1), (A2)(i), (A5)(i) and (M1)-(M3) where β = 0.

[1] Taylor series expansion of ML. From the Taylor series expansion of (3.1), it
is observed that

0 = Li(θ̂
M

) =Li(θ) +
∑

a

Li(a)(θ̂
M
a − θa) +

1

2

∑

a,b

Li(ab)(θ̂
M
a − θa)(θ̂

M
b − θb)

+
1

6

∑

a,b,c

Li(abc)(θ̂
M
a − θa)(θ̂

M
b − θb)(θ̂

M
c − θc)

+
1

24

∑

a,b,c,d

Li(abcd)(θ̃)(θ̂M
a − θa)(θ̂

M
b − θb)(θ̂

M
c − θc)(θ̂

M
d − θd), (3.4)

where θ̃ is a point satisfying ‖θ̃ − θ‖ ≤ ‖θ̂M − θ‖ for the Euclidean norm ‖ · ‖, and
Li(ab) = ∂abLi, Li(abc) = ∂abcLi and Li(abcd) = ∂abcdLi. Also,

∑
a,b,c,d means summation over

1 ≤ a, b, c, d ≤ q, and
∑

a,
∑

a,b and
∑

a,b,c are defined similarly. Since Li(abcd)(θ̃) = Op(N),

the last term is up to Op(N
−1). Then, the equality (3.4) is expressed as

0 =coli(Li) + matia(Li(a))(θ̂
M − θ) +

1

2
coli

(∑

a,b

Li(ab)(θ̂
M
a − θa)(θ̂

M
b − θb)

)

+
1

6
coli

(∑

a,b,c

Li(abc)(θ̂
M
a − θa)(θ̂

M
b − θb)(θ̂

M
c − θc)

)
+ Op(N

−1),
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which implies that

θ̂
M − θ ={matia(−Li(a))}−1

{
coli(Li) +

1

2
coli

(∑

a,b

Li(ab)(θ̂
M
a − θa)(θ̂

M
b − θb)

)

+
1

6
coli

(∑

a,b,c

Li(abc)(θ̂
M
a − θa)(θ̂

M
b − θb)(θ̂

M
c − θc)

)}
+ Op(N

−2). (3.5)

Thus, we need to evaluate each term in (3.5).

Since (Σ−1)(i) = −ΣΣ(i)Σ, Li is expressed as

Li =− y′{(Σ−1)(i) + Qi}y + tr [Σ(Σ−1)(i)]

=− tr [(Σ−1)(i)(yy′ −Σ)]− tr [Qiyy′], (3.6)

where Qi = Σ−1Σ(i)P + PΣ(i)Σ
−1 − PΣ(i)P . From (3.6), it is observed that

Li(a) =tr [Σ(a)(Σ
−1)(i)]− tr [(Σ−1)(ia)(yy′ −Σ)]− tr [Qi(a)yy′], (3.7)

Li(ab) =Biab − tr [(Σ−1)(iab)(yy′ −Σ)]− tr [Qi(ab)yy′], (3.8)

Li(abc) =Ciabc − tr [(Σ−1)(iabc)(yy′ −Σ)]− tr [Qi(abc)yy′], (3.9)

where Biab = ∂b{tr [Σ(a)(Σ
−1)(i)]}+tr [Σ(b)(Σ

−1)(ia)] and Ciabc = ∂c

{
∂b{tr [Σ(a)(Σ

−1)(i)]}+
tr [Σ(b)(Σ

−1)(ia)]
}

+ tr [Σ(c)(Σ
−1)(iab)]. From (3.6), Li is written as

coli(Li) = a1 − a0, (3.10)

where q × 1 vectors a1 and a0 are defined by

a1 = coli(−tr [(Σ−1)(i)(yy′ −Σ)]), a0 = coli(tr [Qiyy′]). (3.11)

It is noted that X ′Fy = Op(N
1/2) and tr [F (yy′ −Σ)] = Op(N

1/2) provided F satisfies
X ′FΣFX = O(N) and tr [FΣFΣ] = O(N), respectively, since E[{tr [F (yy′−Σ)]}2] =
tr [FΣFΣ] by the equality in (3.3). Hence from conditions (A1), (A2)(i) and (M1), it
follows that a1 = Op(N

1/2) and a0 = Op(1). From (3.7),

matia(−Li(a)) = A2 + A1 + A0, (3.12)

where q × q matrices A2, A1 and A0 are defined by

A2 = matia(−tr [Σ(a)(Σ
−1)(i)]), A1 = matia(tr [(Σ−1)(ia)(yy′ −Σ)]), (3.13)

and A0 = matia(tr [Qi(a)yy′]). It is noted that

(Σ−1)(ij) = Σ−1{Σ(i)Σ
−1Σ(j) + Σ(j)Σ

−1Σ(i) −Σ(ij)}Σ−1,

and
(tr [CD])2 ≤ tr [C2]tr [D2],
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for symmetric matrices C and D. Then from conditions (A1), (A2)(i) and (M1), it follows
that A2/N converges a positive definite matrix, and A1 = Op(N

1/2) and A0 = Op(1), so
that the inverse matrix of matia(−Li(a)) can be expanded as

{matia(−Li(a))}−1 = A−1
2 −A−1

2 A1A
−1
2 +A−1

2 (A1A
−1
2 A1−A0)A

−1
2 +Op(N

−5/2), (3.14)

where A−1
2 = O(N−1), A−1

2 A1A
−1
2 = Op(N

−3/2) and A−1
2 (A1A

−1
2 A1 − A0)A

−1
2 =

Op(N
−2). Similarly, from (3.8) and (3.9), Li(ab) and Li(abc) can be evaluated as

Li(ab) =Biab − tr [(Σ−1)(iab)(yy′ −Σ)] + Op(1),

Li(abc) =Ciabc + Op(N
1/2).

(3.15)

Hence from (3.5), θ̂
M − θ can be approximated as

θ̂
M − θ =

{
A−1

2 −A−1
2 A1A

−1
2 + A−1

2 (A1A
−1
2 A1 −A0)A

−1
2 + Op(N

−5/2)
}

×
{

a1 − a0 +
1

2
coli

(∑

a,b

{
Biab − tr [(Σ−1)(iab)(yy′ −Σ)]

}
(θ̂M

a − θa)(θ̂
M
b − θb)

)

+
1

6
coli

(∑

a,b,c

Ciabc(θ̂
M
a − θa)(θ̂

M
b − θb)(θ̂

M
c − θc)

)}
+ Op(N

−2). (3.16)

[2] First- and second-order terms. From the approximation (3.16), it follows that

θ̂
M − θ = θ̂

M∗
+ Op(N

−1), where

θ̂
M∗

= A−1
2 a1 = A−1

2 coli(−tr [(Σ−1)(i)(yy′ −Σ)]). (3.17)

Using the approximations (3.15) and (3.17), we can see that

coli
(∑

a,b

Li(ab)(θ̂
M
a − θa)(θ̂

M
b − θb)

)
= b0 + Op(N

−1/2),

for
b0 = coli

(∑

a,b

Biabθ̂
M∗
a θ̂M∗

b

)
.

Hence from (3.16), it is seen that θ̂
M − θ = θ̂

M∗
+ θ̂

M∗∗
+ Op(N

−3/2), where

θ̂
M∗∗

=−A−1
2

{
a0 − b0

2
+ A1A

−1
2 a1

}
(3.18)

=A−1
2

{
−coli

(
tr [Qiyy′]

)
+ coli

(∑

a,b

Biabθ̂
M∗
a θ̂M∗

b

)
/2

}

−A−1
2 matia

(
tr [(Σ−1)(ia)(yy′ −Σ)]

)
θ̂

M∗
.

[3] Third-order term. To evaluate the approximation (3.16) up to Op(N
−2), we

observe that for (3.15),

coli
(∑

a,b

Li(ab)(θ̂
M
a − θa)(θ̂

M
b − θb)

)
=b0 + b−1 + Op(N

−1),

coli
(∑

a,b,c

Li(abc)(θ̂
M
a − θa)(θ̂

M
b − θb)(θ̂

M
c − θc)

)
=c−1 + Op(N

−1),
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for

b−1 =coli
(∑

a,b

Biab(θ̂
M∗
a θ̂M∗∗

b + θ̂M∗
b θ̂M∗∗

a )
)

− coli
(∑

a,b

tr [(Σ−1)(iab)(yy′ −Σ)]θ̂M∗
a θ̂M∗

b

)
,

c−1 =coli
(∑

a,b,c

Ciabcθ̂
M∗
a θ̂M∗

b θ̂M∗
c

)
.

Thus, the third-order term is given by

θ̂
M∗∗∗

= A−1
2

{b−1

2
+

c−1

6
+ A1A

−1
2 (a0 − b0

2
) + (A1A

−1
2 A1 −A0)θ̂

M∗}
. (3.19)

[5] Expansion of ML and the corresponding results. From these arguments,
under the conditions (A1), (A2)(i), (A5)(i), (M1)-(M3), we obtain the expansion

θ̂
M − θ = θ̂

M∗
+ θ̂

M∗∗
+ θ̂

M∗∗∗
+ Op(N

−2), (3.20)

where it is verified that θ̂
M∗

= Op(N
−1/2), θ̂

M∗∗
= Op(N

−1) and θ̂
M∗∗∗

= Op(N
−3/2).

Concerning the second-order expansion, using the same arguments as in above, we can
verify that

θ̂
M − θ = θ̂

M∗
+ θ̂

M∗∗
+ Op(N

−3/2), (3.21)

under the weaker conditions (A1), (A2)(i), (A5)(i), (M1)-(M2).

Proposition 3.1 (i) Assume the conditions (A1), (A2), (A5), (M1)-(M3). Then, the

conditions (A4), (A6), (B1), (B2), (C1) and (C2) are satisfied for θ̂
M

, and the third-

order expansion (3.20) is obtained. Especially, it is observed that Cov (θ̂
M∗

) = 2A−1
2 ,

E[θ̂
M∗

] = 0 and

E[θ̂
M∗∗

] =A−1
2 coli(tr [(X ′Σ−1X)−1X ′(Σ−1)(i)X])

+ A−1
2 coli(tr [A−1

2 mata,b(tr [Σ(ab)(Σ
−1)(i)])]). (3.22)

It is noted that E[θ̂
M∗∗

] = A−1
2 coli(tr [(X ′Σ−1X)−1X ′(Σ−1)(i)X]) when Σ or G and R

are matrices of linear functions of θ. Also, E[θ̂M∗∗∗
i ] = O(N−2), E[θ̂M∗

i θ̂M∗∗
j ] = O(N−2)

and E[θ̂M∗
i θ̂M∗

j θ̂M∗
k ] = O(N−2) for 1 ≤ i, j, k ≤ p.

(ii) Assume the conditions (A1), (A2), (A5)(i), (M1)-(M2). Then, the conditions (A4),
(B1) and (C1) are satisfied, and the second-order expansion (3.21) is obtained.

The proof is given in Section 4. From Proposition 3.1, the assumptions in Theorems
2.4, 2.5 and 2.6 are satisfied by the conditions (A1), (A2), (A5), (M1)-(M3), and we get

MSE(θ, µ̂EB(θ̂
M

)) =g1(θ) + g2(θ) + g∗3(θ) + O(N−2),

E[mse(θ̂
M

, µ̂EB(θ̂
M

))] =MSE(θ, µ̂EB(θ̂
M

)) + O(N−2),

P [µ ∈ ICEB(θ̂
M

)] =1− α + O(N−2),

15



where g1(θ), g2(θ) and g∗3(θ) are given in (2.6), and mse(θ̂
M

, µ̂EB(θ̂
M

)) and ICEB(θ̂
M

)
are defined around Theorems 2.2 and 2.3. Also from Proposition 3.1, the assumptions in
Theorems 2.1, 2.2 and 2.3 are satisfied by the conditions (A1), (A2), (A5)(i), (M1)-(M2),
and we get the corresponding results with the second-order approximation.

3.3 Expansion of REML and corresponding results

Concerning the expansions of REML defined in (3.2), we can use the same arguments as
in the above expansions of ML.

It is noted that LR
i given in (3.2) is rewritten as LR

i = −tr [(Σ−1)(i)(yy′ − Σ)] −
tr [Qi(yy′ −Σ)] or

coli(L
R
i ) = a1 − a∗0,

where a∗0 = coli(tr [Qi(yy′−Σ)]), and a1 is given in (3.11). Since the term LR
i(a) is given

by

LR
i(a) = tr [Σ(a)(Σ

−1)(i)]− tr [(Σ−1)(ia)(yy′ −Σ)] + tr [QiΣ(a)]− tr [Qi(a)(yy′ −Σ)],

the matricial expression matia(−LR
ia) can be written as

matia(−LR
i(a)) = A2 + A1 + A∗

0,

where A∗
0 = matia(−tr [QiΣ(a)]+tr [Qi(a)(yy′−Σ)]), and A1 and A2 are given in (3.12).

Similarly, LR
i(ab) and LR

i(abc) can be evaluated as LR
i(ab) = Biab − tr [(Σ−1)(iab)(yy′ −Σ)] +

Op(1) and LR
i(abc) = Ciabc + Op(N

1/2). From the same arguments as given in the previous

subsection, we can approximate θ̂
R

as

θ̂
R − θ = θ̂

R∗
+ θ̂

R∗∗
+ θ̂

R∗∗∗
+ Op(N

−2), (3.23)

under the same conditions as given in Proposition 3.1. Here, θ̂
R∗

, θ̂
R∗∗

and θ̂
R∗∗∗

are the

similar forms to θ̂
M∗

, θ̂
M∗∗

and θ̂
M∗∗∗

, respectively, where a0 and A0 are replaced with

a∗0 and A∗
0. Especially, θ̂

R∗
and θ̂

R∗∗
are given by

θ̂
R∗

=θ̂
M∗

= A−1
2 a1,

θ̂
R∗∗

=−A−1
2

{
a∗0 − b0/2 + A1A

−1
2 a1

}

=A−1
2

{
−coli

(
tr [Qi(yy′ −Σ

)
] + coli

(∑

a,b

Biabθ̂
M∗
a θ̂M∗

b

)
/2

}

−A−1
2 matia

(
tr [(Σ−1)(ia)(yy′ −Σ)]

)
θ̂

M∗
.

(3.24)

Then, we get the following proposition, whose proof is omitted, since it can be verified
based on the same arguments as in the proof of Proposition 3.1.

Proposition 3.2 (i) Assume the conditions (A1), (A2), (A5), (M1)-(M3). Then, the
conditions (A4), (A6), (B1), (B2), (C1) and (C2) are satisfied. Thus, the third-order
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expansion (3.23) is obtained, and the corresponding results to Theorems 2.4, 2.5 and 2.6

hold. Especially, it is observed that Cov (θ̂
R∗

) = Cov (θ̂
M∗

) = 2A−1
2 , E[θ̂

R∗
] = 0 and

E[θ̂
R∗∗

] = A−1
2 coli

(
tr [A−1

2 mata,b

(
tr [Σ(ab)(Σ

−1)(i)]
)
]
)
, (3.25)

where E[θ̂
R∗∗

] = 0 when Σ are matrices of linear functions of θ. Also, E[θ̂R∗∗∗
i ] =

O(N−2), E[θ̂R∗
i θ̂R∗∗

j ] = O(N−2) and E[θ̂R∗
i θ̂R∗

j θ̂R∗
k ] = O(N−2) for 1 ≤ i, j, k ≤ p.

(ii) Assume the conditions (A1), (A2), (A5)(i), (M1)-(M2). Then, the conditions (A4),
(B1) and (C1) are satisfied, and the second-order expansion and the corresponding results
to Theorems 2.1, 2.2 and 2.3 are obtained, where a0 is replaced with a∗0.

3.4 ML and REML in specific models

Example 3.1 (Fay-Herriot model and modified Fay-Herriot estimator) Consider
the model treated in Example 2.1.

[ML estimator] The ML estimator θ̂M is given as the solution of the equation
LM(θ̂M) = 0, where

LM(θ) = y′(Σ(θ)−1 − P (θ))2y − tr [Σ(θ)−1]

for P (θ) defined in (3.1). The conditions (A2)-(A6), (B1)-(B2), (C1)-(C2) and (M1)-
(M2) can be seen to be satisfied, and we get Theorems 2.4, 2.5 and 2.6, where a1 =
tr [Σ−2(yy′ −Σ)], A2 = tr [Σ−2], θ̂M∗ = a1/A2, and E[θ̂M∗] = 0, V ar[θ̂M∗] = 2/tr [Σ−2],
and E[θ̂M∗∗] = −tr [(X ′Σ−1X)−1X ′Σ−2X/tr [Σ−2].

[REML estimator] From (3.2), on the other hand, the REML estimator is given as
the solution of the equation LR(θ̂R) = 0, where

LR(θ) = y′(Σ(θ)−1 − P (θ))2y − tr [(Σ(θ)−1 − P (θ))].

From the arguments around (3.23), it can be seen that θ̂R∗ = a1/A2, and E[θ̂R∗] = 0,
V ar[θ̂R∗] = 2/tr [Σ−2], and E[θ̂R∗∗] = 0. Since all the conditions are satisfied, we get
Theorems 2.4, 2.5 and 2.6 under (A1).

[Modified Fay-Herriot estimator] The estimator suggested by Fay and Herriot
(1978) is given as the solution of the equation LFH(θ̂FH) = 0, where

LFH(θ) = y′(Σ(θ)−1 − P (θ))y − (k − p)

for P (θ) defined in (3.1). Here, we consider the general estimator θ̂m given as the solution
of the equation Lm(θ) = 0, where

Lm(θ) = y′(Σ(θ)−1 − P (θ))y − (k − p)−m(θ), (3.26)

and m(θ) is a function of θ with order m(θ) = O(1). To derive the expression corre-
sponding to (3.20) for θ̂m, the same arguments as in Subsection 3.2 are used. Espe-
cially, the terms corresponding to (3.10), (3.12) and (3.15) are expressed as follows: Since
Lm(θ) = tr [Σ−1(yy′ −Σ)]−m(θ)− tr [P (yy′ −Σ)], we can put

a1 = tr [Σ−1(yy′ −Σ)], a0 = tr [P (yy′ −Σ)] + m(θ).
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Let f (n)(θ) = ∂nf(θ)/∂θn for a function f(θ). Since −L
(1)
m (θ) = tr [Σ−1] + tr [Σ−2(yy′ −

Σ)] + tr [P (1)(yy′ −Σ)]− tr [P ] + m(1)(θ) and tr [P (1)Σ] = −tr [P ], we can put

A2 = tr [Σ−1], A1 = tr [Σ−2(yy′ −Σ)], A0 = tr [P (1)yy′] + m(1)(θ).

Then,
θ̂∗m = a1/A2 = tr [Σ−1(yy′ −Σ)]/tr [Σ−1].

Since L
(2)
m (θ) = 2tr [Σ−2]+2tr [Σ−3(yy′−Σ)]+Op(1) and L

(3)
m (θ) = −6tr [Σ−3]+Op(k

1/2),
we can put

b0 =2tr [Σ−2](θ̂∗m)2, c−1 = −6tr [Σ−3](θ̂∗m)3,

b−1 =4tr [Σ−2]θ̂∗mθ̂∗∗m + 2tr [Σ−3(yy′ −Σ)](θ̂∗m)2,

where θ̂∗∗m is defined by

θ̂∗∗m =(−a0 + b0/2)/A2 − (A1/A2)θ̂
∗
m

=− m(θ)

tr [Σ−1]
+

tr [Σ−2]

tr [Σ−1]
(θ̂∗m)2 − tr [Σ−2(yy′ −Σ)]

tr [Σ−1]
θ̂∗m.

Also, θ̂∗∗∗m can be derived as

θ̂∗∗∗m = A−1
2

{
b−1/2 + c−1/6 + A1A

−1
2 (a0 − b0/2) + (A2

1A
−1
2 − A0)θ̂

∗
m

}
.

Hence, E[θ̂∗m] = 0, V ar[θ̂∗m] = 2k/(tr [Σ−1])2 and

E[θ̂∗∗m ] = 2
ktr [Σ−2]− (tr [Σ−1])2

(tr [Σ−1])3
− m(θ)

tr [Σ−1]
, (3.27)

which were derived by Datta, et al . (2005) in the case of m(θ) = 0. That is, E[θ̂FH∗] = 0,
V ar[θ̂FH∗] = 2k/(tr [Σ−1])2 and E[θ̂FH∗∗] = 2{ktr [Σ−2] − (tr [Σ−1])2}/(tr [Σ−1])3. From
(3.27), we can vanish the second-order term in the bias of θ̂m by putting

m(θ) = 2k
tr [Σ−2]

(tr [Σ−1])2
− 2. (3.28)

Then, E[θ̂∗∗m ] = 0 while V ar[θ̂∗m] = V ar[θ̂FH∗] = 2k/(tr [Σ−1])2. It can be verified that
all the conditions are satisfied, and we get the results in Theorems 2.4, 2.5 and 2.6 under
(A1).

Example 3.2 (NERM) Consider the model treated in Example 2.2.

[ML estimator] The ML estimators θ̂
M

= (θ̂M
1 , θ̂M

2 )′ of (θ1, θ2)
′ are given as the

solutions of the equations L1(θ̂
M

) = 0 and L2(θ̂
M

) = 0, where L1(θ) and L2(θ) given in
(3.1) can be written as

L1(θ) =
1

θ2
1

k∑
i=1

‖yi −X iβ̂(θ)− niθ2

θ1 + niθ2

(yi − x′iβ̂(θ))ji‖2 −
k∑

i=1

ni

θ1

(1− θ2

θ1 + niθ2

),

L2(θ) =
k∑

i=1

n2
i

(θ1 + niθ2)2
{yi − x′iβ̂(θ)}2 −

k∑
i=1

ni

θ1 + niθ2

,

18



since Σ(1) = I and Σ(2) = block diag(Jn1 , . . . , Jnk
). In this model, the conditions (A2)-

(A6), (B1)-(B2), (C1)-(C2) and (M1)-(M3) are satisfied, so that the results stated in
Proposition 3.1 are established under (A1). Note that A2 and a1 given in (3.13) and
(3.10) can be written as

A2 =matij(tr [Σ(i)Σ
−1Σ(j)Σ

−1])

=

(
(N − k)θ−2

1 +
∑

i(θ1 + niθ2)
−2

∑
i ni(θ1 + niθ2)

−2∑
i ni(θ1 + niθ2)

−2
∑

i n
2
i (θ1 + niθ2)

−2

)
,

a1 =

( ∑
i tr [Σ−2

i (yiy
′
i −Σi)]∑

i j
′
iΣ

−1
i (yiy

′
i −Σi)Σ

−1
i ji

)
.

Then, θ̂
M∗

= A−1
2 a1, and E[θ̂

M∗
] = 0 and

Cov (θ̂
M∗

) =
2θ2

1

d(ψ)

( ∑k
i=1 n2

i γ
2
i −∑k

i=1 niγ
2
i

−∑k
i=1 niγ

2
i (N − k +

∑k
i=1 γ2

i )

)
,

where d(ψ) = (N − k +
∑k

i=1 γ2
i )

∑k
i=1 n2

i γ
2
i − (

∑k
i=1 niγ

2
i )

2 and γi = (1 + niψ)−1 for
ψ = θ2/θ1. It is easy to see that g∗3(θ) can be given by g∗3(θ) = 2Nnsθ1γ

3
s/d(ψ). Also

from (3.22), E[θ̂
M∗∗

] can be written as

E[θ̂
M∗∗

] =
θ1

d(ψ)

( −p
∑k

i=1 n2
i γ

2
i + (

∑k
i=1 niγi)c(ψ)

p
∑k

i=1 niγ
2
i − (N − k +

∑k
i=1 γi)c(ψ)

)
,

where c(ψ) = tr [(X ′Σ−1X)−1
∑k

i=1 n2
i γ

2
i xix

′
i]. These were obtained by Datta and Lahiri

(2000).

[REML estimator] The REML estimators θ̂
R

= (θ̂R
1 , θ̂R

2 )′ of (θ1, θ2)
′ are given as the

solutions of the equations LR
1 (θ̂

R
) = 0 and LR

2 (θ̂
R
) = 0, where LR

1 (θ) and LR
2 (θ) given in

(3.2) can be written as

LR
1 (θ) =L1(θ) + tr [(X ′Σ−1X)−1X ′Σ−2X],

LR
2 (θ) =L2(θ) + tr [(X ′Σ−1X)−1X ′Σ−1block diag(Jn1 , . . . , Jnk

)Σ−1X].

Then, it can be seen that θ̂
R∗

= A−1
2 a1 = θ̂

M∗
, and E[θ̂

R∗
] = 0, Cov (θ̂

R∗
) = Cov (θ̂

M∗
)

and E[θ̂
R∗∗

] = O(N−2) as shown in Datta and Lahiri (2000). Hence, we can get the
corresponding results in Proposition 3.1 under (A1).

3.5 A basic area level model for combining time-series and cross-
sectional data

Finally we consider a basic area level model proposed by Rao and Yu (1994) for combining
the time-series and cross-sectional data. This is an extension of the Fay-Herriot model
and is described by

yit = x′itβ + vi + uit + εit, i = 1, . . . , k, t = 1, . . . , T, (3.29)
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where k is the number of small areas, t is a time index, N = kT , xit is a p× 1 vector of
explanatory variables, β is a p×1 unknown common vector of regression coefficients. Here,
vi’s, uit’s and εit’s are mutually independent random variables such that vi ∼ N (0, σ2

v),
εit ∼ N (0, dit) and

uit = ρui,t−1 + eit, |ρ| < 1,

where eit ∼ N (0, σ2), and σ2
v , σ2 and ρ are unknown parameters. Let X i = (xi1, . . . , xi,T )′,

yi = (yi1, . . . , yi,T )′, and let ui and εi be similarly defined. Then, the model is expressed
in vector notations as

yi =X iβ + jT vi + ui + εi, i = 1, . . . , k,

=X iβ + Z0v
∗
i + εi,

for jT = (1, . . . , 1)′ ∈ RT , Z0 = (jT , IT ) and v∗i = (vi,u
′
i)
′, and it is seen that ui ∼

N (0, σ2Ψ(ρ)) and εi ∼ N (0, Di), where

Ψ(ρ) =
1

1− ρ2
mati,j(ρ

|i−j|) and Di = diag (di1, . . . , diT ).

Let θ1 = σ2
v , θ2 = σ2, θ3 = ρ and θ = (θ1, θ2, θ3)

′. Thus,

yi ∼ N (X iβ,Σi(θ)),

where for JT = jT j ′T and G0(θ) = block diag(θ1, θ2Ψ(θ3)), we have

Σi(θ) = Z0G0(θ)Z ′
0 + Di = θ1JT + θ2Ψ(θ3) + Di.

Letting X = (X ′
1, . . . , X

′
k)
′, y = (y′1, . . . , y

′
k)
′ and letting v∗ and ε be defined similarly,

we can express the model as y = Xβ+Zv∗+ε, where Z = IT ⊗Z0, Cov (v∗) = G(θ) =
Ik ⊗G0(θ) and Cov (ε) = R = block diag(D1, . . . , Dk). Then, y ∼ N (Xβ,Σ(θ)) for
Σ(θ) = ZG(θ)Z ′+R = block diag(Σ1(θ), . . . ,Σk(θ)). It is assumed that T is bounded,
supi≥1,t≥1 dit < ∞, infi≥1,t≥1 dit > 0 and that k →∞.

We consider to predict the currect mean of the s-th small area µsT = x′sT β +
vs + usT . The vectors a and b used in Section 2 correspond to a = xsT and b =
(0′T+1, . . . ,0T+1, b

′
s,0

′
T+1, . . . ,0

′
T+1)

′ for 0T+1 = (0, . . . , 0)′ ∈ RT+1 and bs = (1, 0, . . . , 0, 1)′ ∈
RT+1 such that b′v∗ = b′sv

∗
s = vs + usT . Then, the EBLUP of µsT is

µ̂EB
sT =x′sT β̂(θ̂) + b′sG0(θ̂)Z ′

0Σ
−1
s (θ̂)

{
ys −Xsβ̂(θ̂)

}

=x′sT β̂(θ̂) + s′s(θ̂)
{

ys −Xsβ̂(θ̂)
}

,

where s′s(θ) is expressed as

s′s(θ) =b′sG0(θ)Z ′
0Σ

−1
s (θ) = {θ1j

′
T + θ2c

′
TΨ(θ3)}Σ−1

s (θ)

={θ1j
′
T + θ2(θ

T−1
3 , . . . , θ3, 1)}Σ−1

s (θ),

for cT = (0, . . . , 0, 1)′ ∈ RT .
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From (2.9), the function g1(θ) is written as

g1(θ) = θ1 + θ2c
′
TΨ(θ3)cT − ss(θ)′Σs(θ)ss(θ),

and g2(θ) and g∗3(θ) are expressed as

g2(θ) =(x′sT − ss(θ)′Xs)(X
′Σ(θ)−1X)−1(xsT −X ′

sss(θ)),

g∗3(θ) =tr
[(∂ss(θ)′

∂θ

)
Σs(θ)

(∂ss(θ)′

∂θ

)′
Cov (θ̂

∗
)
]
.

It can be verified that the expressions of g1(θ) and g2(θ) are identical to those given by

Rao and Yu (1994) since c′TΨ(θ3)cT = (1− θ2
3)
−1. Since Ψ(θ3) = (1− θ2

3)
−1mati,j(θ

|i−j|
3 ),

it can be seen that

Ψ(3)(θ3) =
∂Ψ(θ3)

∂θ3

=
2θ3

1− θ2
3

Ψ(θ3) +
1

1− θ2
3

mati,j

(|i− j|θ|i−j|−1
3

)
,

Ψ(33)(θ3) =
∂2Ψ(θ3)

∂θ3∂θ3

=
2(1 + 3θ2

3)

(1− θ2
3)

2
Ψ(θ3) +

4θ3

(1− θ2
3)

2
mati,j

(|i− j|θ|i−j|−1
3

)

+
1

1− θ2
3

mati,j

(|i− j|(|i− j| − 1)θ
|i−j|−2
3

)
.

Then, ∂ss(θ)′/∂θ in g∗3(θ) can be derived by using the derivatives

∂

∂θ1

ss(θ)′ = ss(1)(θ)′ =
(
j ′T − ss(θ)′JT

)
Σ−1

s (θ),

∂

∂θ2

ss(θ)′ = ss(2)(θ)′ =
1

θ2

ss(θ)′(θ1JT + Ds)Σ
−1
s (θ),

∂

∂θ3

ss(θ)′ = ss(3)(θ)′ =θ2

(
c′T − ss(θ)′

)
Ψ(3)(θ3)Σ

−1
s (θ).

Also, g11(θ) and h(θ) in (2.9) and (2.15) are

g11(θ) =
(∂g1(θ)

∂θ

)′
E[θ̂

∗
+ θ̂

∗∗
],

h(θ) =
z2

α + 1

8g1(θ)2
tr [

(∂g1(θ)

∂θ

)(∂g1(θ)

∂θ

)′
Cov (θ̂

∗
)],

where the derivatives of g1(θ) are written as

∂g1(θ)

∂θ1

=1− 2ss(1)(θ)′Σs(θ)−1ss(θ) + ss(θ)′JT ss(θ),

∂g1(θ)

∂θ2

=c′TΨ(θ3)cT − 2ss(2)(θ)′Σs(θ)ss(θ) + ss(θ)′Ψ(θ3)ss(θ),

∂g1(θ)

∂θ3

=θ2c
′
TΨ(3)(θ3)cT − 2ss(3)(θ)′Σs(θ)ss(θ) + θ2ss(θ)′Ψ(3)(θ3)ss(θ).

For the function g12(θ) in (2.9), it is given by

g12(θ) =
1

2
tr

[
B(θ)Cov (θ̂

∗
)
]
,
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where the (i, j)-th element of B(θ) is given by (bs −Z ′
0ss(θ))′(∂ijG0(θ))(bs −Z ′

0ss(θ)).
It is here noted that ∂11G0(θ) = ∂12G0(θ) = ∂13G0(θ) = ∂22G0(θ) = 0, ∂23G0(θ) =
block diag(0,Ψ(3)(θ3)) and ∂33G0(θ) = block diag(0, θ2Ψ(33)(θ3)). Also note that bs −
Z ′

0ss(θ) =
(
1 − {θ1j

′
T + θ2c

′
TΨ(θ3)}Σ−1

s (θ)jT , c′T − {θ1j
′
T + θ2c

′
TΨ(θ3)}Σ−1

s (θ)
)
. Thus,

it is observed that B11 = B12 = B13 = B22 = 0 and

B23 =
(
c′T − {θ1j

′
T + θ2c

′
TΨ(θ3)

)
Σ−1

s (θ)}Ψ(3)(θ3)
(
c′T − {θ1j

′
T + θ2c

′
TΨ(θ3)}Σ−1

s (θ)
)′

,

B33 =
(
c′T − {θ1j

′
T + θ2c

′
TΨ(θ3)}Σ−1

s (θ)
)
θ2Ψ(33)(θ3)

(
c′T − {θ1j

′
T + θ2c

′
TΨ(θ3)}Σ−1

s (θ)
)′

.

In this model, Σ(θ) is not linear in θ3, so that the function g12(θ) cannot be ignored.

Hence, we can compute the requested functions provided Cov (θ̂
∗
) and E[θ̂

∗
+ θ̂

∗∗
] can

be derived for estimator θ̂ of θ.

[REML estimator] We use the REML estimator θ̂
R

= (θ̂R
1 , θ̂R

2 , θ̂R
3 )′ defined in (3.2),

which is the solution of the equations LR
i (θ̂

R
) = 0 for i = 1, 2, 3, where

LR
i (θ) = y′(Σ−1 − P )Σ(i)(Σ

−1 − P )y − tr [(Σ−1 − P )Σ(i)].

Here,
Σ(1) = Ik ⊗ JT , Σ(2) = Ik ⊗Ψ(θ3), Σ(3) = Ik ⊗ θ2Ψ(3)(θ3),

since Σ`(1)(θ) = JT , Σ`(2)(θ) = Ψ(θ3) and Σ`(3)(θ) = θ2Ψ(3)(θ3) for Σ`(θ) = θ1JT +

θ2Ψ(θ3) + D`. From Proposition 3.2, it follows that Cov (θ̂
R∗

) = 2A−1
2 and E[θ̂

R∗
] = 0,

where A2 = mati,j(tr [Σ(i)Σ
−1Σ(j)Σ

−1]) can be computed by using

tr [Σ(i)Σ
−1Σ(j)Σ

−1] =
k∑

`=1

tr [Σ`(i)Σ
−1
` Σ`(j)Σ

−1
` ].

Finally, we need to compute the expectation E[θ̂
R∗∗

] given by

E[θ̂
R∗∗

] = −A−1
2 coli(tr [A−1

2 mata,b(tr [Σ(ab)Σ
−1Σ(i)Σ

−1])]).

Since Σ`(11) = Σ`(12) = Σ`(13) = Σ`(22) = 0, Σ`(23) = Ψ(3)(θ3) and Σ`(33) = θ2Ψ(33)(θ3), it
can be seen that

tr [A−1
2 mata,b(tr [Σ(ab)Σ

−1Σ(i)Σ
−1])]

=2A23
2

k∑

`=1

tr [Ψ(3)(θ3)Σ
−1
` Σ`(i)Σ

−1
` ] + A33

2

k∑

`=1

tr [θ2Ψ(33)(θ3)Σ
−1
` Σ`(i)Σ

−1
` ],

where Aij
2 denotes the (i, j)-th element of A−1

2 .

The conditions (A2), (A5), (M2) and (M3) can be seen to be satisfied. Assuming the
conditions (A1), (M1), supi≥1,t≥1 dit < ∞, infi≥1,t≥1 dit > 0 and that T is bounded and
k →∞, we can see that the results of Proposition 3.2 hold, namely, we obtain the results
given in Theorems 2.4-2.6.
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4 Proofs

Proof of Theorems 2.1 and 2.4. We begin by proving Theorem 2.4, namely, the
third-order approximation given in (2.18) under the conditions (A1)-(A6).

Following Prasad and Rao (1990) and Datta and Lahiri (2000), the MSE of µ̂EB(ψ̂)

can be written as MSE(θ, µ̂EB(ψ̂)) = E[{µ̂B(β,θ) − µ}2] + E[{µ̂EB(θ) − µ̂B(β,θ)}2] +

E[{µ̂EB(θ̂)− µ̂EB(θ)}2], and the first two terms are expressed as

E[{µ̂B(β,θ)− µ}2] =b′(G(θ)−1 + Z ′R(θ)−1Z)−1b = g1(θ),

E[{µ̂EB(θ)− µ̂B(β,θ)}2] =(a−X ′s(θ))′(X ′Σ(θ)−1X)−1(a−X ′s(θ)) = g2(θ).

Let g3(θ) = E[{µ̂EB(θ̂)− µ̂EB(θ)}2]. From the Taylor series expansion, it follows that

µ̂EB(θ̂) =µ̂EB(θ) +
∑

i

µ̂EB
(i) (θ)(θ̂i − θi) +

1

2

∑
i,j

µ̂EB
(ij)(θ)(θ̂i − θi)(θ̂j − θj)

+
1

6

∑

i,j,k

µ̂EB
(ijk)(θ̃)(θ̂i − θi)(θ̂j − θj)(θ̂k − θk), (4.1)

where θ̃ is a point satisfying ‖θ̃ − θ‖ ≤ ‖θ̂ − θ‖ for the Euclidean norm ‖ · ‖, and

µ̂EB
(i) (θ) = ∂µ̂EB(θ)/∂θi and µ̂EB

(ij)(θ) and µ̂EB
(ijk)(θ̃) are defined similarly. Also

∑
i,j,k means

summation over 1 ≤ i, j, k ≤ q, and
∑

i and
∑

i,j are defined similarly.

For notational simplicity, hereafter we omit (θ) in µ̂EB(θ), β̂(θ), β̂(i)(θ), s(θ) and

others. Since µ̂EB
(ijk)(θ̃) = Op(1) from (A1), (A2) and (A5), note that

∑
i,j,k µ̂EB

(ijk)(θ̃)(θ̂i −
θi)(θ̂j − θj)(θ̂k − θk) = Op(N

−3/2). Then, g3(θ) can be estimated as

g3(θ) =E
[∑

i,j

µ̂EB
(i) µ̂EB

(j) (θ̂i − θi)(θ̂j − θj) +
∑

i,j,k

µ̂EB
(ij)µ̂

EB
(k) (θ̂i − θi)(θ̂j − θj)(θ̂k − θk)

]

+ O(N−2). (4.2)

It is observed that

µ̂EB
(i) =(a−X ′s)′β̂(i) − s′(i)X(β̂ − β) + s′(i)(y −Xβ),

µ̂EB
(ij) =(a−X ′s)′β̂(ij) − s′(ij)X(β̂ − β) + s′(ij)(y −Xβ)

− s′(i)Xβ̂(j) − s′(j)Xβ̂(i),

and that β̂(i) = Op(N
−1/2) and β̂(ij) = Op(N

−1/2) from (A1) and (A2). These facts are
used to evaluate g3(θ) as

g3(θ) =E
[∑

i,j

s′(i)(y −Xβ)s′(j)(y −Xβ)(θ̂i − θi)(θ̂j − θj)

+ 2
∑
i,j

s′(i)(y −Xβ)
{
(a−X ′s)′β̂(j) − s′(j)X(β̂ − β)

}
(θ̂i − θi)(θ̂j − θj)

+
∑

i,j,k

s′(k)(y −Xβ)s′(ij)(y −Xβ)(θ̂i − θi)(θ̂j − θj)(θ̂k − θk)
]

+ O(N−2).
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Since θ̂ − θ is expanded as θ̂ − θ = θ̂
∗
+ θ̂

∗∗
+ θ̂

∗∗∗
+ Op(N

−2) from (A6), g3(θ) can be
further approximated as

g3(θ) =
∑
i,j

E[s′(i)(y −Xβ)s′(j)(y −Xβ)(θ̂∗i θ̂
∗
j + 2θ̂∗i θ̂

∗∗
j )]

+ 2
∑
i,j

E[s′(i)(y −Xβ)
{
(a−X ′s)′β̂(j) − s′(j)X(β̂ − β)

}
θ̂∗i θ̂

∗
j ]

+
∑

i,j,k

E[s′(k)(y −Xβ)s′(ij)(y −Xβ)θ̂∗i θ̂
∗
j θ̂
∗
k] + O(N−2)

=I1 + 2I2 + I3 + O(N−2). (say) (4.3)

To estimate the first term I1, we use the following Stein identity given by Stein (1973)
for y ∼ NN(Xβ,Σ):

E[(y −Xβ)′g(y)] = E[∇′
y{Σg(y)}], (4.4)

where g(y) = (g1(y), . . . , gN(y))′ is an absolutely continuous function and ∇y is the
differential operator defined by ∇y = ∂/∂y. For example, let A be an N × N matrix
independent of y, and let a(y) be a scalar function which is twice-differentiable with
respect to y. Then the Stein identity is used to get that

E[u′Au a(y)] =E[∇′
y{ΣAu a(y)}]

=tr [ΣA]E[a(y)] + E[u′A′Σ∇ya(y)],

for u = y −Xβ. Applying the Stein identity to the second term gives that

E[u′A′Σ∇ya(y)] = E[∇′
y{ΣA′Σ∇ya(y)}] = E[tr [ΣAΣ∇y∇′

ya(y)]],

which yields the useful equality

E[u′Aua(y)] = tr [ΣA]E[a(y)] + tr [ΣAΣE[∇∇′a(y)]]. (4.5)

Using the Stein identity, we can see that

I1 =
∑
i,j

E
[∇′

y

{
Σs(i)s

′
(j)(y −Xβ)(θ̂∗i θ̂

∗
j + 2θ̂∗i θ̂

∗∗
j )

}]

=
∑
i,j

tr
{
Σs(i)s

′
(j)

}
E

[
θ̂∗i θ̂

∗
j + 2θ̂∗i θ̂

∗∗
j

]
+

∑
i,j

E
[
(y −Xβ)′s(i)s

′
(j)Σ∇y(θ̂

∗
i θ̂
∗
j )

]

+ 2
∑
i,j

E
[
(y −Xβ)′s(i)s

′
(j)Σ∇y(θ̂

∗
i θ̂
∗∗
j )

]

=I11 + I12 + 2I13. (say)

Since E[θ̂∗i ] = O(N−1) and E[θ̂∗i θ̂
∗∗
j ] = O(N−2) from (A4) and (A6), it can be seen that

I11 = tr
[(∂s′

∂θ

)
Σ

(∂s′

∂θ

)′
Cov (θ̂

∗
)
]

+ O(N−2) ≡ g∗3(θ) + O(N−2).
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For I12, the Stein identity is applied again to rewrite it as

I12 =
∑
i,j

E[∇′
y

{
Σs(j)s

′
(i)Σ∇y(θ̂

∗
i θ̂
∗
j )] =

∑
i,j

tr
[
Σs(j)s

′
(i)ΣE[∇y∇′

y(θ̂
∗
i θ̂
∗
j )]

]

=2
∑
i,j

s′(i)ΣE[(∇y∇′
yθ̂
∗
i )θ̂

∗
j + (∇yθ̂

∗
i )(∇′

yθ̂
∗
j )]Σs(j),

which is of order O(N−2) as seen from the condition (A4) and (A6) (ii). Also,

I13 =
∑
i,j

E
[
(y −Xβ)′s(i)s

′
(j)Σ{(∇yθ̂

∗
i )θ̂

∗∗
j + (∇yθ̂

∗∗
j )θ̂∗i

]
,

which is of order O(N−2) from (A4) and (A6)(ii).

The similar arguments can be used to evaluate the other terms. For I2, it is observed
that

I2 =
∑
i,j

E
[∇′

y

{
Σs(i)

[
(a−X ′s)′β̂(j) − s′(j)X(β̂ − β)

]
θ̂∗i θ̂

∗
j

}]

=
∑
i,j

E
[
s′(i)Σ∇y

{[
(a−X ′s)′β̂(j) − s′(j)X(β̂ − β)

]
θ̂∗i θ̂

∗
j

}]

=
∑
i,j

s′(i)Σ
{
∂j

{
Σ−1X(X ′Σ−1X)−1

}
(a−X ′s)−Σ−1X(X ′Σ−1X)−1X ′s(j)

}
E[θ̂∗i θ̂

∗
j ]

+
∑
i,j

E
[
s′(i)Σ

{
(∇yθ̂

∗
i )θ̂

∗
j + (∇yθ̂

∗
j )θ̂

∗
i

}{
(a−X ′s)′β̂(j) − s′(j)X(β̂ − β)

}]
,

which is of order O(N−2) as seen from (A1), (A2) and (A4), since β̂(j) = Op(N
−1/2) and

β̂ − β = Op(N
−1/2).

Finally, I3 can be evaluated as

I3 =
∑

i,j,k

E[∇′
y

{
Σs(k)s

′
(ij)(y −Xβ)θ̂∗i θ̂

∗
j θ̂
∗
k

}
]

=
∑

i,j,k

E[s′(k)Σ∇y

{
(y −Xβ)′s(ij)θ̂

∗
i θ̂
∗
j θ̂
∗
k

}
]

=
∑

i,j,k

s′(k)Σs(ij)E[θ̂∗i θ̂
∗
j θ̂
∗
k]

+
∑

i,j,k

E[s′(k)Σ
{
(∇yθ̂

∗
i )θ̂

∗
j θ̂
∗
k + (∇yθ̂

∗
j )θ̂

∗
kθ̂
∗
i + (∇yθ̂

∗
k)θ̂

∗
i θ̂
∗
j

}
(y −Xβ)′s(ij)], (4.6)

which is of order O(N−2) as seen from (A2) and (A4). Hence it is concluded that

MSE(θ, µ̂EB(θ̂)) = g1(θ) + g2(θ) + g∗3(θ) + O(N−2), and the proof of Theorem 2.4 is
complete.

For the proof of Theorem 2.1, the same arguments as given above are used. Especially,
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g3(θ) can be evaluated as

g3(θ) =
∑
i,j

E
[
µ̂EB

(i) µ̂EB
(j) (θ̂i − θi)(θ̂j − θj)] + O(N−3/2)

=E
[∑

i,j

s′(i)(y −Xβ)s′(j)(y −Xβ)(θ̂i − θi)(θ̂j − θj) + O(N−3/2)

=
∑
i,j

E[s′(i)(y −Xβ)s′(j)(y −Xβ)(θ̂∗i θ̂
∗
j )] + O(N−3/2).

Then the Stein identity can be applied to the above expectation and it is rewritten as

g3(θ) =
∑
i,j

E
[∇′

y

{
Σs(i)s

′
(j)(y −Xβ)(θ̂∗i θ̂

∗
j )

}]
+ O(N−3/2)

=
∑
i,j

tr
{
Σs(i)s

′
(j)

}
E

[
θ̂∗i θ̂

∗
j

]
+

∑
i,j

E
[
(y −Xβ)′s(i)s

′
(j)Σ∇y(θ̂

∗
i θ̂
∗
j )

]
+ O(N−3/2)

=g∗3(θ) + O(N−3/2),

which proves Theorem 2.1.

Proof of Theorems 2.2 and 2.5. We shall prove Theorem 2.5. It is noted that g2(θ̂)

and g∗3(θ̂) are of order Op(N
−1), while g1(θ̂) = Op(1). Since g1(θ̂) is not a second-order

unbiased estimator of g1(θ), we need to approximate the expectation E[g1(θ̂)]. From the

Taylor expansion of g1(θ̂) around θ̂ = θ, it follows that

E[g1(θ̂)] =g1(θ) +
∑

i

{∂ig1(θ)}E[θ̂i − θi] +
1

2

∑
i,j

{∂ijg1(θ)}E[(θ̂i − θi)(θ̂j − θj)]

+
1

6

∑

i,j,k

{∂ijkg1(θ)}E[(θ̂i − θi)(θ̂j − θj)(θ̂k − θk)]

+
1

24

∑

i,j,k,`

{∂ijk`g1(θ̃)}E[(θ̂i − θi)(θ̂j − θj)(θ̂k − θk)(θ̂` − θ`)],

where θ̃ is a point satisfying ‖θ̃−θ‖ ≤ ‖θ̂−θ‖. Since g1(θ) ∈ C[4]
„ and ∂ijk`g1(θ) = O(1),

it can be further approximated as

E[g1(θ̂)] =g1(θ) +
∑

i

{∂ig1(θ)}E[θ̂∗i + θ̂∗∗i + θ̂∗∗∗i ]

+
1

2

∑
i,j

{∂ijg1(θ)}E[θ̂∗i θ̂
∗
j + θ̂∗i θ̂

∗∗
j + θ̂∗j θ̂

∗∗
i ]

+
1

6

∑

i,j,k

{∂ijkg1(θ)}E[θ̂∗i θ̂
∗
j θ̂
∗
k] + O(N−2). (4.7)

Let g11(θ) =
∑

i{∂ig1(θ)}E[θ̂∗i + θ̂∗∗i ]. Note that ∂ig1(θ) = O(1), ∂ijg1(θ) = O(1) and

∂ijkg1(θ) = O(1). Since E[θ̂∗i θ̂
∗∗
j ] = O(N−2) and E[θ̂∗∗∗i ] = O(N−2) from (A6) and (B2),
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it follows that

E[g1(θ̂)] = g1(θ) + g11(θ) +
1

2

∑
i,j

{∂ijg1(θ)}E[θ̂∗i θ̂
∗
j ] + O(N−2). (4.8)

To evaluate the third term in the r.h.s. of (4.8), we express g1(θ) as g1(θ) = b′Gb −
(Σs)′Σ−1(Σs). Then,

∂jg1(θ) = b′{∂jG}b− {∂jΣs}′s− s′{∂jΣs}+ s′{∂jΣ}s,

which leads to

∂ijg1(θ) =b′{∂ijG}b− {∂ijΣs}′s− {∂jΣs}′{∂is} − s′{∂ijΣs} − {∂is}′{∂jΣs}
+ {∂is}′{∂jΣ}s + s′{∂ijΣ}s + s′{∂jΣ}{∂is}

=− [{∂is}′Σ{∂js}+ {∂js}′Σ{∂is}
]

+
[
b′{∂ijG}b + s′{∂ijΣ}s− b′{∂ijG}′Z ′s− s′Z{∂ijG}b

]
,

since Σs = ZGb. Note that b′{∂ijG}b + s′{∂ijΣ}s − b′{∂ijG}′Z ′s − s′Z{∂ijG}b =
(b−Z ′s(θ))′(∂ijG(θ))(b−Z ′s(θ)) + s(θ)′(∂ijR(θ))s(θ) which is equal to (B(θ))i,j for
B(θ) defined in (2.10). Thus, the third term can be expressed as

1

2

∑
i,j

{∂ijg1(θ)}E[θ̂∗i θ̂
∗
j ] = −g∗3(θ) + g12(θ), (4.9)

where g12(θ) is defined in (2.9). Hence from (4.8), it can be seen that

E[g1(θ̂)] = g1(θ) + g11(θ)− g∗3(θ) + g12(θ) + O(N−2) (4.10)

Now we can evaluate the expectation of g#(θ̂) as

E[g#(θ̂)] =g#(θ) +
∑

i

{∂ig
#(θ)}E[(θ̂i − θi)]

+
1

2

∑
i,j

E[{∂ijg
#(θ̃)}(θ̂i − θi)(θ̂j − θj)], (4.11)

where θ̃ is a point satisfying ‖θ̃ − θ‖ ≤ ‖θ̂ − θ‖. Since g#(θ) ∈ C[2]
„ , ∂ig

#(θ) = O(N−1),

∂ijg
#(θ̃) = Op(N

−1) and E[θ̂i − θi] = O(N−1), it can be seen that E[g#(θ̂)] = g#(θ) +
O(N−2), so that from (4.10)

E[mse(θ̂, µ̂EB(θ̂))] = E[g1(θ̂)] + g#(θ) + O(N−2) = g1(θ) + g2(θ) + g∗3(θ) + O(N−2),

and the proof of Theorem 2.5 is complete. Theorem 2.2 can be similarly proved.

Proof of Theorems 2.3 and 2.6. From (2.2), the conditional distribution of µ given
y is given by

µ|y ∼ N (µ̂B(β,θ), g1(θ)),
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where µ̂B(β, θ) = a′β + s(θ)′(y − Xβ), and g1(θ) = b′(G(θ)−1 + Z ′R(θ)−1Z)−1b as

given in (2.6). Then, the coverage probability of ICEB(θ̂) is written as

P [µ ∈ ICEB(θ̂)] =P [−z + G(−z) <
µ− µ̂B(β,θ)√

g1(θ)
< z + G(z)]

=E[Φ(z + G(z))− Φ(−z + G(−z))], (4.12)

where G(z) = U + zV for

U ={µ̂EB(θ̂)− µ̂B(β, θ)}/
√

g1(θ),

V ={[1 + h(θ̂)]

√
mse(θ̂)−

√
g1(θ)}/

√
g1(θ).

(4.13)

It is noted that G(z) = Op(N
−1/2) as seen below. Then, Φ(z + G(z)) is evaluated as

Φ(z + G(z)) =Φ(z) + G(z)φ(z) +
G2(z)

2
φ′(z) +

G3(z)

6
φ′′(z)

− 1

6

∫ z+G(z)

z

(z + G(z)− x)3φ′′′(x)dx

=Φ(z) +

{
G(z)− z

2
G2(z) +

z2 − 1

6
G3(z)

}
φ(z)

− 1

6

∫ z+G(z)

z

(z + G(z)− x)3(3− x2)xφ(x)dx.

It can be verified that
∫ z+G(z)

z
(z + G(z) − x)3(3 − x2)xφ(x)dx = Op(N

−2). From (4.12),
it follows that

P [µ ∈ ICEB(θ̂)] = 1− α + φ(z)H(θ) + O(N−2),

where

H(θ) = E
[
G(z)−G(−z)− z

2
{G(z)2 + G(−z)2}+

z2 − 1

6
{G(z)3 −G(−z)3}],

which can be rewritten as

H(θ) = zE
[
2V − (U2 + z2V 2) +

z2 − 1

3
(3U2V + z2V 3)

]
. (4.14)

We thus need to show that H(θ) = O(N−2). To this end, we shall verify that E[2V −
(U2 + z2V 2)] = O(N−2) and E[3U2V + z2V 3] = O(N−2).

It is noted that U is rewritten as U = {µ̂EB(θ̂) − µ̂EB(θ)}/
√

g1(θ) + {µ̂EB(θ) −
µ̂B(β,θ)}/

√
g1(θ). Since µ̂EB(θ) − µ̂B(β,θ) = (a′ − s′X)(β̂(θ) − β), from Kackar and

Harville (1984), it follows that µ̂EB(θ)−µ̂B(β, θ) is independent of θ̂ and µ̂EB(θ̂)−µ̂EB(θ).

Using the result given in Theorem 2.4, we can evaluate E[U2] and E[U2t(θ̂)] for function
t(·) as

E[U2] =E[{µ̂EB(θ̂)− µ̂EB(θ)}2]/g1(θ) + E[{µ̂EB(θ)− µ̂B(β,θ)}2]/g1(θ)

={g∗3(θ) + g2(θ)}/g1(θ) + O(N−2),

E[U2t(θ̂)] =E[{µ̂EB(θ̂)− µ̂EB(θ)}2t(θ̂)]/g1(θ) + g2(θ)E[t(θ̂)]/g1(θ). (4.15)
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Also, note that

2V + V 2 = (2 + V )V ={1 + h(θ̂)}2mse(θ̂)/g1(θ)− 1

={g1(θ̂)− g1(θ)}/g1(θ) + Op(N
−1). (4.16)

Since h(θ) = O(N−1) and g#(θ) = O(N−1), it is seen that

E[2V + V 2] =E[mse(θ̂)]/g1(θ)− 1 + 2E[h(θ̂)g1(θ̂)]/g1(θ) + O(N−2)

={g∗3(θ) + g2(θ)}/g1(θ) + 2E[h(θ̂)g1(θ̂)]/g1(θ) + O(N−2).

These observations are used to show that

E[2V − (U2 + z2V 2)] =E[(2V + V 2)− U2 − (1 + z2)V 2]

=2E[h(θ̂)g1(θ̂)]/g1(θ)− (1 + z2)E[V 2] + O(N−2)

=2h(θ)− (1 + z2)E[V 2] + O(N−2), (4.17)

where in the third equality we used the same arguments as in (4.11) for evaluating

E[h(θ̂)g1(θ̂)] under (C1) and (C2).

We now estimate the term E[V 2]. Since

V
√

g1(θ) = {
√

g1(θ̂)−
√

g1(θ)}+ f(θ̂) (4.18)

for f(θ) = (1 + h(θ))
√

mse(θ)−
√

g1(θ)}, we write g1(θ)E[V 2] as

g1(θ)E[V 2] =E[{
√

g1(θ̂)−
√

g1(θ)}2] + E[{f(θ̂)}2] + 2E[{
√

g1(θ̂)−
√

g1(θ)}f(θ̂)]

=I1 + I2 + 2I3. (say)

Noting that

√
g1(θ̂) =

√
g1(θ) +

∑
i

{∂i

√
g1(θ)}(θ̂i − θi) +

1

2

∑
i,j

{∂ij

√
g1(θ)}(θ̂i − θi)(θ̂j − θj)

+
1

6

∑

i,j,k

{∂ijk

√
g1(θ̃)}(θ̂i − θi)(θ̂j − θj)(θ̂k − θk), (4.19)

we can see that

I1 =E
[∑

i,j

{∂i

√
g1(θ)}{∂j

√
g1(θ)}(θ̂i − θi)(θ̂j − θj)

+
∑

i,j,k

{∂k

√
g1(θ)}{∂ij

√
g1(θ)}(θ̂i − θi)(θ̂j − θj)(θ̂k − θk)

]
+ O(N−2)

=E
[∑

i,j

{∂i

√
g1(θ)}{∂j

√
g1(θ)}(θ̂∗i θ̂∗j + 2θ̂∗i θ̂

∗∗
j ) +

∑

i,j,k

{∂k

√
g1(θ)}{∂ij

√
g1(θ)}θ̂∗i θ̂∗j θ̂∗k

]

+ O(N−2),
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which can be approximated as I1 =
∑

i,j{∂i

√
g1(θ)}{∂j

√
g1(θ)}E[θ̂∗i θ̂

∗
j ] + O(N−2). Since

f(θ̂) can be expressed as

f(θ̂) =
g#(θ̂)√

mse(θ̂) +

√
g1(θ̂)

+ h(θ̂)

√
mse(θ̂),

g#(θ̂) = Op(N
−1) and h(θ̂) = Op(N

−1), it is easy to see that f(θ̂) = Op(N
−1), and

I2 = E[{f(θ̂)}2] = O(N−2). For I3, noting that f(θ̂) = f(θ) +
∑

i(∂if(θ̃))(θ̂i − θi),

from (4.19), it follows that I3 = f(θ)
∑

i(∂i

√
g1(θ))E[θ̂i − θi] + O(N−2) = O(N−2) since

f(θ) = O(N−1). Hence from (4.17), we get that

E[2V − (U2 + z2V 2)] = 2h(θ)− 1 + z2

4g1(θ)2
tr [

(∂g1(θ)

∂θ

)(∂g1(θ)

∂θ

)′
Cov (θ̂

∗
)] + O(N−2),

which has order O(N−2) from the definition of h(θ) given in (2.15).

Finally, we need to show that E[3U2V + z2V 3] = O(N−2) or (3/2)E[U2(2V + V 2)]−
(3/2)E[U2V 2] + z2E[V 3] = O(N−2). From (4.1), (4.2), (4.15) and (4.16), it can be seen
that

E[U2(2V + V 2)] =E
[∑

i,j,k

µ̂EB
(i) µ̂EB

(j) {∂kg1(θ)}(θ̂i − θi)(θ̂j − θj)(θ̂k − θk)
]
/g1(θ) + O(N−2)

=
∑

i,j,k

E[s′(i)(y −Xβ)s′(j)(y −Xβ){∂kg1(θ)}θ̂∗i θ̂∗j θ̂∗k]/g1(θ) + O(N−2),

which can be shown to be O(N−2) similarly to (4.6). From (4.18) and (4.19), it can
be verified that E[U2V 2] = O(N−2) and E[V 3] = O(N−2). Therefore, the third-order
approximation given in (2.20) is proved.

For the proof of Theorem 2.3, from (4.14), it is noted that

H(θ) = zE
[
2V − (U2 + z2V 2)

]
+ O(N−3/2),

so that we need to show that E[2V − (U2 + z2V 2)] = O(N−3/2). This can be shown by
using the same arguments as used above.

Proof of Proposition 3.1. We shall prove part (i) of Proposition 3.1, and the proof

of part (ii) is omitted. In this proof, we omit the index M in θ̂
M

, θ̂
M∗

and others for the
sake of simplicity. Since θ̂∗i is written as θ̂∗i = −∑

a Aia
2 tr [(Σ−1)(a)(yy′ − Σ)] where Aij

2

is the (i, j)-th element of the inverse matrix A−1
2 = (Aij

2 ), it is easy to see that E[θ̂∗i ] = 0
and

E[θ̂∗i θ̂
∗
j ] =

∑

a,b

Aia
2 Ajb

2 E[tr [(Σ−1)(a)(yy′ −Σ)]tr [(Σ−1)(b)(yy′ −Σ)]]

=2
∑

a,b

Aia
2 Ajb

2 (A2)ab = 2Aij
2 ,
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where tr [(Σ−1)(a)Σ(Σ−1)(b)Σ] = −tr [(Σ−1)(a)Σ(b)] = (A2)ab. Thus,

Cov (θ̂
∗
) = matij(E[θ̂∗i θ̂

∗
j ]) = 2A−1

2 . (4.20)

Similarly,

E[θ̂∗i θ̂
∗
j θ̂
∗
k] =

∑

a,b,c

Aia
2 Ajb

2 Akc
2 E

[
tr [(Σ−1)(a)(yy′ −Σ)]

× tr [(Σ−1)(b)(yy′ −Σ)]tr [(Σ−1)(c)(yy′ −Σ)]
]

=8
∑

a,b,c

Aia
2 Ajb

2 Akc
2 tr [(Σ−1)(a)Σ(Σ−1)(b)Σ(Σ−1)(c)Σ] = O(N−2).

For E[θ̂∗∗i ], it is noted that

θ̂∗∗i =
∑

j

Aij
2

{
−tr [QjΣ]− tr [Qj(yy′ −Σ)] +

∑

a,b

Bjabθ̂
∗
aθ̂
∗
b/2

+
∑

a,b

tr [(Σ−1)(ja)(yy′ −Σ)]Aab
2 tr [(Σ−1)(b)(yy′ −Σ)]

}
, (4.21)

so that from (4.20),

E[θ̂∗∗i ] =
∑

j

Aij
2

{−tr [QjΣ] +
∑

a,b

Aab
2 Bjab + 2

∑

a,b

Aab
2 tr [(Σ−1)(ja)Σ(Σ−1)(b)Σ]

}
.

Since tr [(Σ−1)(ja)Σ(Σ−1)(b)Σ] = −tr [(Σ−1)(ja)Σ(b)], it is observed that

∑

a,b

Aab
2 Bjab + 2

∑

a,b

Aab
2 tr [(Σ−1)(ja)Σ(Σ−1)(b)Σ] =

∑

a,b

Aab
2 tr [Σ(ab)(Σ

−1)(j)],

so that
E[θ̂∗∗i ] =

∑
j

Aij
2

{−tr [QjΣ] +
∑

a,b

Aab
2 tr [Σ(ab)(Σ

−1)(j)]
}
,

which can be also expressed as (3.22), since tr [QiΣ] = −tr [(X ′Σ−1X)−1X ′(Σ−1)(i)X].

For E[θ̂∗∗i θ̂∗k], from (4.21), θ̂∗∗i θ̂∗k is written as

θ̂∗∗i θ̂∗k =
∑

j

Aij
2

{−tr [QjΣ]θ̂∗k − tr [Qj(yy′ −Σ)]θ̂∗k +
∑

a,b

Bjabθ̂
∗
aθ̂
∗
b θ̂
∗
k/2

−
∑

a,b,c

Aab
2 Akc

2 tr [(Σ−1)(ja)(yy′ −Σ)]tr [(Σ−1)(b)(yy′ −Σ)]tr [(Σ−1)(c)(yy′ −Σ)]
}
.

It is noted that E[tr [Qj(yy′ −Σ)]θ̂∗k] = −2
∑

a Aka
2 tr [QjΣ(Σ−1)(a)Σ] = O(N−1), Bjab =

O(N), E[θ̂∗aθ̂
∗
b θ̂
∗
k] = O(N−2) and

E[Aab
2 Akc

2 tr [(Σ−1)(ja)(yy′ −Σ)]tr [(Σ−1)(b)(yy′ −Σ)]tr[(Σ−1)(c)(yy′ −Σ)]]

= 8Aab
2 Akc

2 tr [(Σ−1)(ja)Σ(Σ−1)(b)Σ(Σ−1)(c)Σ] = O(N−1),
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so that
E[θ̂∗∗i θ̂∗k] = O(N−2).

We shall show that E[θ̂∗∗∗i ] = O(N−2) for θ̂∗∗∗i given in (3.19). Note that BiabE[θ̂∗aθ̂
∗∗
b ] =

O(N−1), E[tr [(Σ−1)(iab)(yy′ − Σ)]θ̂∗c θ̂
∗
d] = O(N−1) and CiabcE[θ̂∗aθ̂

∗
b θ̂
∗
c ] = O(N−1). The

i-th element of E[A1A
−1
2 (a0 − b0/2)] is

∑

a,b

E[tr [(Σ−1)(ia)(yy′ −Σ)]Aab
2

{
tr [QbΣ] + tr [Qb(yy′ −Σ)]−

∑

c,d

Bbcdθ̂
∗
c θ̂
∗
d

}
],

which can be shown to be of order O(N−1). Similarly, the i-th element of E[(A1A
−1
2 A1−

A0)θ̂
∗
] is

∑

c,d

E[
{∑

a,b

tr [(Σ−1)(ia)(yy′ −Σ)]Aab
2 tr [(Σ−1)(bc)(yy′ −Σ)]

− tr [Qi(c)Σ]− tr [Qi(c)(yy′ −Σ)]
}

Acd
2 tr [(Σ−1

(d)(yy′ −Σ)]],

which is of order O(N−1). Thus, it is concluded that

E[θ̂∗∗∗i ] = O(N−2).

Finally, we check the conditions (A4) (ii) and (A6)(ii). Since ∇yθ̂
∗
j = −2

∑
a Aja

2 (Σ−1)(a)y,

it follows that s′(i)Σ∇yθ̂
∗
j = −2

∑
a Aja

2 s′(i)Σ(Σ−1)(a)y, which is of order Op(N
−1) from

the conditions (A2) and (M1). Since ∇y∇′
yθ̂
∗
j = −2

∑
a Aja

2 (Σ−1)(a), it is observed that

E[s′(i)Σ{∇y∇′
yθ̂
∗
j}Σs(i)θ̂

∗
k]

=− 2
∑

a

Aja
2 s′(i)Σ(Σ−1)(a)Σs(i)E[θ̂∗k] = 0.

From (4.21), it can be seen that

∇yθ̂
∗∗
j =− 2

∑
i

Aji
2 Qiy −

∑

i,a,b,c

Aji
2 Biab

{
Aac

2 (Σ−1)(c)yθ̂∗b + Abc
2 (Σ−1)(c)yθ̂∗a

}

+ 2
∑

i,a,b

Aji
2 Aab

2

{
(Σ−1)(ia)ytr [(Σ−1)(b)(yy′ −Σ)]

+ (Σ−1)(b)ytr [(Σ−1)(ia)(yy′ −Σ)]
}
,

which shows that s′(i)Σ∇yθ̂
∗∗
j = Op(N

−3/2) from the conditions (A2) and (M1). Thus,

the conditions (A4)(ii) and (A6)(ii) are satisfied. Therefore, the proposition is proved.

Acknowledgments. This research was supported in part by Grant-in-Aid for Sci-
entific Research Nos. 19200020 and 21540114 from Japan Society for the Promotion of
Science.

32



References

[1] Basu, R., Ghosh, J.K., and Mukerjee, R. (2003). Empirical Bayes prediction inter-
vals in a normal regression model: higher order asymptotics. Statist. Prob. Letters,
63, 197-203.

[2] Battese, G.E., Harter, R.M. and Fuller, W.A. (1988). An error-components model
for prediction of county crop areas using survey and satellite data. J. Amer. Statist.
Assoc., 83, 28-36.

[3] Butar, F.B. and Lahiri, P. (2003). On measures of uncertainty of empirical Bayes
small-area estimators. J. Statist. Plan. Inf., 112, 63-76.

[4] Chatterjee, S., Lahiri, P., and Li, H. (2008). Parametric bootstrap approximation to
the distribution of EBLUP and related prediction intervals in linear mixed models.
Ann. Statist., 36, 1221-1245.

[5] Chen, S. and Lahiri, P. (2008). On mean squared prediction error estimation in
small area estimation problems. Commun. Statist.-Theory Methods, 37, 1792-1798.

[6] Cressie, N. and Lahiri, S.N. (1993). The asymptotic distribution of REML estima-
tors. J. Multivariate Analysis, 45. 217-233.

[7] Das, K., Jiang, J. and Rao, J.N.K. (2004). Mean squared error of empirical predictor.
Ann. Statist., 32, 818-840.

[8] Datta, G.S., Ghosh, M., Smith, D.D. and Lahiri, P. (2002). On an asymptotic
theory of conditional and unconditional coverage probabilities of empirical Bayes
confidence Intervals. Scandinavian J. Statist., 29, 139-152.

[9] Datta, G.S. and Lahiri, P. (2000). A unified measure of uncertainty of estimated
best linear unbiased predictors in small area estimation problems. Statist. Sinica,
10, 613-627.

[10] Datta, G., Lahiri, P. and Maiti, T. (2002). Empirical Bayes estimation of median
income of four-person families by state using time series and cross-sectional data.
J. Statist. Plan. Inf., 102, 83-97.

[11] Datta, G.S., Rao, J.N.K. and Smith, D.D. (2005). On measuring the variability of
small area estimators under a basic area level model. Biometrika, 92, 183-196.

[12] Fay, R.E. and Herriot, R. (1979). Estimates of income for small places: An ap-
plication of James-Stein procedures to census data. J. Amer. Statist. Assoc., 74,
269-277.

[13] Ghosh, M. and Rao, J.N.K. (1994). Small area estimation: An appraisal. Statist.
Science, 9, 55-93.

[14] Hall, P. and Maiti, T. (2006a). Nonparametric estimation of mean-squared predic-
tion error in nested-error regression models. Ann. Statist., 34, 1733-1750.

33



[15] Hall, P. and Maiti, T. (2006b). On parametric bootstrap methods for small area
prediction. J. Royal Statist. Soc., 68, 221-238.

[16] Harville, D.A. and Jeske, D.R. (1992). Mean squared error of estimation or predic-
tion under a general linear model. J. Amer. Statist. Assoc., 87, 724-731.

[17] Jiang, J., Lahiri, P. and Wan, S. (2002). A unified jackknife theory for empirical
best prediction with M-estimation. Ann. Statist., 30, 1782-1810.

[18] Kackar, R.N. and Harville, D.A. (1984). Approximations for standard errors of
estimators of fixed and random effects in mixed linear models. J. Amer. Statist.
Assoc., 79, 853-862.

[19] Kubokawa, T. (2010). Correction of empirical Bayes confidence intervals in nested
error regression models. J. Korean Statist. Soc., 39, 221-236.

[20] Lahiri, P. and Rao, J.N.K. (1995). Robust estimation of mean squared error of small
area estimators. J. Amer. Statist. Assoc., 90, 758-766.

[21] Mardia K.V. and Marshall, R.J. (1984). Maximum likelihood estimation of models
for residual covariance in spatial regression. Biometrika, 71, 135-146.

[22] Pfeffermann, D. (2002). Small area estimation - new developments and directions.
Int. Statist. Rev., 70, 125-143.

[23] Prasad, N.G.N. and Rao, J.N.K. (1990). The estimation of the mean squared error
of small-area estimators. J. Amer. Statist. Assoc., 85, 163-171.

[24] Rao, J.N.K. (1999). Some recent advances in model-based small area estimation.
Survey Methodology, 25, 175-186.

[25] Rao, J.N.K. (2003). Small Area Estimation. Wiley, New Jersey.

[26] Rao, J.N.K. and Yu, M. (1994). Small-area estimation by combining time-series and
cross-sectional data. Canadian J. Statist., 22, 511-528.

[27] Slud, E.V. and Maiti, T. (2006). Mean-squared error estimation in transformed
Fay-Herriot models. J., 68, 239-257.

[28] Stein, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann.
Statist., 9, 1135-1151.

[29] Sweeting, T.J. (1980). Uniform asymptotic normality of the maximum likelihood
estimator. Ann. Statist., 8, 1375-1381.

34


