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Abstract

The empirical best linear unbiased predictor (EBLUP) or the empirical Bayes
estimator (EB) in the linear mixed model is recognized useful for the small area es-
timation, because it can increase the estimation precision by using the information
from the related areas. Two of the measures of uncertainty of EBLUP is the estima-
tion of the mean squared error (MSE) and the confidence interval, which have been
studied under the second-order accuracy in the literature. This paper provides the
general analytical results for these two measures in the unified framework, namely,
we derive the conditions on the general consistent estimators of the variance compo-
nents to satisfy the third-order accuracy in the MSE estimation and the confidence
interval in the general linear mixed normal models. Those conditions are shown
to be satisfied by not only the maximum likelihood (ML) and restricted maximum
likelihood (REML), but also the other estimators including the Prasad-Rao and
Fay-Herriot estimators in specific models.

Key words and phrases: Best linear unbiased predictor, confidence interval, em-
pirical Bayes procedure, Fay-Herriot model, higher-order correction, linear mixed
model, maximum likelihood estimator, mean squared error, nested error regression
model, restricted maximum likelihood estimator, small area estimation.

1 Introduction

The linear mixed models (LMM) and the empirical best linear unbiased predictor (EBLUP)
or the empirical Bayes estimator (EB) induced from LMM have been studied for a long
time in the literature. Especially, they have been recognized in recent years as useful
tools in small area estimation. Small area refers to a small geographical area or a group
for which little information is obtained from the sample survey, and the direct estimator
based only on the data from a given small area is likely to be unreliable because only a few
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observations are available from the small area. To increase the precision of the estimate,
relevant supplementary information such as data from other related small areas is used
via suitable linking models. The typical models used for the small area estimation are the
Fay-Herriot model and the nested error regression model (NERM), and the model-based
estimates including EBLUP or EB are found very useful as illustrated by Fay and Herriot
(1979) and Battese, Harter and Fuller (1988). For a good review and account on this
topic, see Ghosh and Rao (1994), Rao (1999, 2003) and Pfeffermann (2002).

When EBLUP is used to estimate a small area mean based on real data, it is important
to assess how much EBLUP is reliable. One method for the purpose is to estimate
the mean squared error (MSE) of EBLUP, and asymptotically unbiased estimators of
the MSE with the second-order accuracy have been derived based on the Taylor series
expansion by Kackar and Harville (1984), Prasad and Rao (1990), Harville and Jeske
(1992), Datta and Lahiri (2000), Datta, Rao and Smith (2005) and Das, Jiang and Rao
(2004). For some recent results including jackknife and bootstrap methods, see Lahiri
and Rao (1995), Butar and Lahiri (2003), Hall and Maiti (2006a), Slud and Maiti (2006)
and Chen and Lahiri (2008). Another method for measuring uncertainty of EBLUP is to
provide a confidence interval based on EBLUP, and the confidence intervals which satisfy
the nominal confidence level with the second-order accuracy have been derived based on
the Taylor series expansion by Datta, Ghosh, Smith and Lahiri (2002), Basu, Ghosh and
Mukerjee (2003) and Kubokawa (2010). Recently, Hall and Maiti (2006b) and Chatterjee,
Lahiri and Li (2008) developed the method based on parametric bootstrap.

In this paper, we treat the problem of predicting the general linear combination of the
regression coefficients and the random effects in the general linear mixed model under the
normality assumption, and we construct the asymptotically unbiased estimator of MSE
of EBLUP and the confidence interval based on EBLUP, both of which guarantee the
third-order accuracy in the unified framework. The results obtained in this paper extend
the results given in the literature to the following four directions: (1) treating the two
problems of the MSE estimation and the confidence interval in the unified setup, (2) the
third-order accuracy, (3) the general LMM, and (4) the general consistent estimators of
unknown parameters embedded in the covariance matrices.

Concerning the points (1) and (2), the MSE estimation and the confidence intervals
have been treated separately in the literature, and the results given in the literature have
been derived under the second-order accuracy.

Concerning the point (3), Datta and Lahiri (2000) dealt with a general linear mixed
model where the covariance matrices of the random effects and the error terms are assumed
to be linear in the unknown parameters, denoted by #. This assumption is reasonable
when the elements of @ are variance components, but it may be restrictive because the
covariance matrices are non-linear functions of @ when the random effects or error terms
have autoregressive structures like AR(1). This difference in the setup of the covariance
matrices appears in the bias of the restricted maximum likelihood estimator (REML) of
0, namely, the second-order bias of REML vanishes when the covariance matrices are liner
in @, but it does not vanish without the linearity assumption. Das, et al. (2004) handled
the general LMM without assuming the linearity of covariance matrices in @ and derived
the general asymptotically unbiased estimator of MSE with the second-order accuracy,

2



where their estimators of 8 are given as solutions of score-like equations which include
ML and REML.

In this paper, we consider the general consistent estimators of 6 in the general LMM
without assuming that the covariance matrices are linear in 8. Then, we develop unified
conditions on the general consistent estimators of @ under which the derived estimator
estimates the MSE of EBLUP asymptotically unbiasedly with the third-order accuracy
and the constructed confidence interval based on EBLUP satisfies the nominal confidence
level with the third-order accuracy. A feature of this paper is that the Stein identity given
by Stein (1981) is used to evaluate the MSE of EBLUP, which enables us to generate the
general conditions on estimators of 6.

The paper is organized as follows: The main results on the MSE estimation and confi-
dence intervals are given in Section 2. The conditions and the results for the second-order
approximation are described in Subsection 2.2, and those for the third-order approxima-
tion are provided in Subsection 2.3. Two simple and instructive examples are given in
Subsection 2.4. The second-order and third-order expansions of MLL and REML estimators
of @ are studied in in Section 3. The third-order approximations in the MSE estimation
and confidence intervals based on ML and REML are applied to some specific models
including the Fay-Herriot model, the nested error regression model and a basic area level
model proposed by Rao and Yu (1994) for combining the time-series and cross-sectional
data. The proofs of the main results are given in Section 4.

Finally, it should be remarked that the validity of the asymptotic expansions will not
be discussed here. All the results are based on major terms obtained by Taylor series
expansions as used in Datta and Lahiri (2000). To establish the validity in the third-
order approximation, we need more appropriate conditions like those given in Das, et al.
(2004) who gave the rigorous proofs in the second-order approximation.

2 MSE Estimation and Confidence Interval Based on
EBLUP

2.1 The model and notations

Consider the general linear mixed model
y=XpB+ Zv +e, (2.1)

where y is an N x 1 observation vector of the response variable, X and Z are N X p and
N x M matrices, respectively, of the explanatory variables, 3 is a p x 1 unknown vector
of the regression coefficients, v is an M x 1 vector of the random effects, and € is an N x 1
vector of the random errors. Here, v and € are mutually independently distributed as
v ~ Ny (0,G(0)) and € ~ Ny (0, R(0)), where 8 = (04, ...,0,)" is a g-dimensional vector
of unknown parameters, and G = G(0) and R = R(0) are positive definite matrices.
Then, y has a marginal distribution Ny (X3, X(0)) for

> =X(0) = R(0) + ZG(0)Z'.
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Let a and b be p x 1 and M x 1 vectors of fixed constants, and suppose that we want
to estimate the scalar quantity p = a’@3 + b'v. Since the conditional distribution of v
given y is given by

vly ~ Ny (G(0)Z'E(0)" (y — XB), (G(0)"' + Z'R(6)"'2)7"), (2.2)
the conditional expectation E[u|y| is written as
1%(8,0) =Elulyl = a'8 + b'G(0)2'S(0) ' (y — X )
=a'B+s(0)(y — XB), (2.3)

where s(0) = 3(0) "' ZG(0)b. This can be interpreted as the Bayes estimator of y in the
Bayesian context. The generalized least squares estimator of 3 for given 0 is given by

BO) = (X'S(6)' X) ' X'=(6) 'y,
which is substituted into (3, 0) to get the estimator

aPE(0) = 1% (B(0),0) = a/B(9) + s(8)' (y — XB(9)). (2.4)

This estimator is the best linear unbiased predictor (BLUP) of . When an estimator
0= a(y) is available for 8, we can estimate p by the empirical (or estimated) best linear
unbiased predictor (EBLUP) ZZEB(a), which is also called an empirical Bayes estimator
in the Bayesian context. We give a higher order approximation to MSE of EBLUP, an
asymptotic unbiased estimator of the MSE and a confidence interval based on EBLUP
with higher order accuracy.

We here explain the notations used through the paper. Let ngl denote a set of k£ times
continuously differentiable functions with respect to 8. As partial derivatives with respect
to 8, we use the notations defined by

0A(0 0*A(6
4(0)=0.40) = "2 4 0) = 0,4(0) = LAC)
K] 7 7
_ _ 0°A(6) 0 _ : .
Aijiy(0) =01 A(0) = m, 0= (O1,...,0)), V,= @7

for matrices or vectors A(@), where we use the same notations for scalars. For 0 <
i,j,k < q,let Ay < -+ < Ay be the eigenvalues of 3(0) and let those of X;)(0), X(;;(0)

and X (0) be A, A7 and AJF for a = 1,..., N respectively, where [A{] < -+ < [Ay],
AT <o < XF ] and [AF] < < AR

2.2 Second-order approximation

[1] Approximation of MSE. We begin by the second-order approximation to MSE of
EBLUP. To this end, we assume the following conditions for large N and 1 <1,k < ¢:

(A1) The elements of X, Z, G(6), R(0), a and b are uniformly bounded, and p, ¢
and M are bounded. The matrix X'3(0)"'X is positive definite and X'¥(0)"' X /N
converges to a positive definite matrix;



(A2) () 3(6) € ¢, and th_,C>o A1 > 0, imy oo Ay < 00, limy_o [Ay]| < oo and

limy oo | A < o0. <u> 5(0) € CfY. amd (y—XB)'s(6) = 0,(1), (y—XB)'5(8) = O,(1).
(y — XB)'5((6) = 0,(1) and 5,(8)'s(;,(0) = O(1).
)

(A3) 6 = 0(y
and 8(y + X a) = 0(y) for any p-dimensional vector a.

(A4) 0 — 0 is expanded as

= (64,...,6,) is an estimator of @ which satisfies that 0(—y) = 6(y)

~

6-0=0 +06 + Op(N*?’/Q), (2.5)

where § = O,(N~%2) and 0 = Op(N71). F or 6 — (67,...,0 »)'s it is assumed that 0;
satisfies that (i) E[07] = O(N~') and (ii) s(;)(0)'2(0 )v = 0,(N7Y).

The assumption (A1) implies that B(8) — 8 = O,(N~Y/2), and (A1) and (A2) (i)
mean that B;(0) = O,(N~'/?) and B (0) O,(N~Y2). Also, (A1) and (A2) imply
that i"7(8) € Cy', iEF(0) = O, (1) and AEE(8) = O,(1).

Under the above assumptions, we can derive the second-order approximation to MSE.
Define g1(0), g2(0) and g5(6) by

0(6) =b(G(0)" + Z'R(0)Z) ",
() ~(a— X's(0))(X'S(0) ' X) " (a — X's(0)),
6:(0) =tx [ (2 y530) (200 y oy (@)

for Cov (b\*) = E[(b\* - E[/G\*])(b\* — E[a*])’] It can be seen that g1(0) is rewritten as

(2.6)

71(8) = H'G(0)b — s(6)'=(0)s(8). (2.7)

Theorem 2.1 Assume the conditions (A1)-(A4). Then the MSE of iZ2(8) is approxi-
mated as

MSE(8,i""(8)) = 91(8) + 9:(8) + g5(8) + O(N /%), (2.8)

All the proofs of theorems given in this section will be given in Section 4.

[2] Approximated unbiased estimator of MISE. We next provide an asymptot-
ically unbiased estimator of M SFE(@, AEB(G)) with second-order accuracy. Define g11(0)
and ¢12(0) by

0g1(0 ok k
911(0) =( 961‘(9 )>/E[9 +6 ],
(2.9)

912(6) =5t [B(O)Cov (8)],

where the (7, j)-th element of B(0) is given by
(B(6))i; = (b— Z's(0))'(0;;G(8))(b — Z's(0)) + s(0)'(0;;R(6))s(6). (2.10)
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It is noted that g12(0) = 0 when G and R are matrices of linear functions of 8. Define
mse(8, i2(8)) by

-~ ~

mse (8, i”%(9)) = g:(0) + g*(), (2.11)

where

9% (0) = g2(0) + 295(6) — 911(0) — g12(0). (2.12)
Since E[0 ] = O(N~1) from the condition (A4), it is noted that gy;(8) = O(N~1), so that

~

g7(08) = O(N~1). The following theorem shows that mse(a, 1nE8(0)) is a second-order
unbiased estimator of the MSE of 7#%(0) under the additional assumption:

(B1) For 1 < i, j,k < q, (i) 1(8) € C¥ and 0,9,(0) = O(1), 8;;0:(8) = O(1) and
Biirg1(8) = O(1), (ii) g#(8) € €' and 8,9#(6) = O(N ).

Theorem 2.2 Assume the conditions (A1)-(A4) and (B1). Then,
E[mse(6, 172 (8))] = MSE(0,1i"(0)) + O(N%/?). (2.13)

[3] Corrected confidence intervals. We construct a confidence interval of u =
a'B +Ab"v which satisfies the nominal confidence level with the second-order accuracy. Let
mse(0) = mse(0,17B(0)) = g1(0) + g7 (0) for g# given in (2.12). Since mse(0) is an
asymptotically unbiased estimator of the MSE of the empirical Bayes estimator if2(0),
it is reasonable to consider the confidence interval of the form

IP2(9) : a"5(0) + za/z\/mse(a). (2.14)

o~

However, the coverage probability P[u € I¥5(8)] cannot be guaranteed to be greater than
or equal to the nominal confidence coefficient 1 — «. To address the problem, we consider

~

to adjust the significance point z,/2 as zqa/2{1 + h(8)} by using an appropriate correction

~

function h(@). That is, the corrected confidence interval is described as

ICPB(@) : nPB(6) + Za )2 [1 + h(a)] \/mse(8).

Here, we define the function h(€) by

2 +1 ¢ (391(9)) (891(0) ~

h(0) = BT T )'Cov (6)]. (2.15)

= 80,02

The following theorem shows that CEB(@) satisfies the nominal confidence coefficient up
to the second-order under the additional assumption:

(C1) h(B) € CY), 9,h(0) = O(N"!) for 1 < i < q.
Theorem 2.3 Assume the conditions (A1)-(A4), (B1) and (C1). Then,

Plu e I°PP0)] =1 — a+ O(N*?). (2.16)



2.3 Third-order approximation

We now show that all the results given in Theorems 2.1, 2.2 and 2.3 hold with third-order
accuracy under some additional assumptions. We here assume the following conditions:

(A5) (i) £(0) € C&, and limy o [N3F| < 0. (ii) 8(8) € CE', and (y— X B) s (0) =
Op(1) and s(;)(0)'s(j)(6) = O(1).

(AG) 6 — 6 can be further expanded as

0-60=0 +6 +8 +0,N?), (2.17)

A* *ok

where 8 = O,(N~Y2), 8 Op(N71) a = O,(N~%?). Tt is assumed that

= nd 9
these satisfy the following: () [9* 0] = O(N~2) and E[é*é**] = O(N7?) and (i)
¥/2) an (0

(2 (
5)(0)S()V,0;" = Op(N~ [ )(0)S(0){V,V,0:}5(6)s(;(6)8;] = O(N ).

The assumptions (A1), (A2)(1) and (A5)(i) imply that ,B(Uk (8) = O,(N~1/2). Also,
(A1), (A2) and (A5) imply that g u ik (9) O,(1).

Theorem 2.4 Assume the conditions (A1)-(A6). Then the MSE of ﬁEB(b\) is approxi-
mated as R
MSE(9,7i"7(0)) = g1(0) + g2(6) + g5(0) + O(N?). (2.18)

To give an asymptotically unbiased estimator of MSE(6, iZ8(8)) with the third-order
accuracy, assume that

(B2) For 1 <i,j,k, 0 < q, (i) 1(0) € Cy" and Dyjueg1(6) = O(1), (ii) ¢#(8) € Cg" and
0;;9%(0) = O(N~") and (iii) E[0 ] = O,(N~?).

Theorem 2.5 Assume the conditions (A1)-(A6), (B1) and (B2). Then,
E[mse(6,772(8))] = MSE(0,i%(8)) + O(N2). (2.19)

Finally, assume that

(C2) h() € C¥' and 9;h(8) = O(N~Y) for 1 <i,5 < q.
Theorem 2.6 Assume the conditions (A1)-(A6), (B1), (B2), (C1) and (C2). Then,

Plue I°PB@) =1—a+ O(N?). (2.20)

We conclude this subsection with some remarks.

Remark 2.1 When the covariance matrix Cov (5*) and the bias £ [5* —1—5**] are approx-
imated as Cov (0 ) = C* +O(N~3/?) and E[@ +60 ]=b"+ O(N~3?), we can replace
Cov (0 ) and E[@ + 6 | with C* and b", respectively, in Theorems 2.1 - 2.6.



Remark 2.2 The model treated by Datta and Lahiri (2000) is y, = X,;,8 + Z,;v; + €;
for i = 1,...,k, where v; ~ N,,(0,G;(0)), € ~ N,,(0,R;(0)) and it is assumed that
R;(0) = 1_,0;Dy;D;; and Gi(0) = Y 1_, 0;F;; F;; for 6y = 1 and known matrices D;;
and F;;. It is also assumed that the elements of D;; and F;; are uniformly bounded.
For the other notations, see Datta and Lahiri (2000). They provided the corresponding
results to Theorem 2.1 and 2.2. It can be seen that the conditions (A1)-(A3) satisfies
conditions (a), (b), (c¢), (d), (f) of Datta and Lahiri (2000) except the conditions that
SUpP; <;<i M 1s bounded and that & — oo, which are implicitly assumed in the condition
(A4) in this paper.

A~k

Remark 2.3 As mentioned below (2.9), the term ¢15(0) = 27'tr [B(0)Cov (6 )] does
not appear under the condition
(A7) G(0) and R(0) are matrices of linear functions of 0,

since (B(0));; = (b— Z's(0))'(0,;G(0))(b — Z's(0)) + s(0)'(0;;R(0))s(0). The model
of Datta and Lahiri (2000) satisfies the condition (A7). Since most models studied in the
literature satisfy (A7), the term g;2(0) has not explicitly appeared in the literature except
Das, et al. (2004), who treated the model with general covariance structures, and the term
g12(0) is implicitly included by Ay(o) given in (4.5) of their paper.. When G(0) or R(6)
have time-series or longitudinal structures, however, the term g15(6) cannot be ignored.
For this point, see Section 3.5. The models for analyzing time-series and cross-section
data have been actively and extensively studied in the literature. Of these, Rao and
Yu (1994) and Datta, Kahiri and Maiti (2002) have provided the explicit forms of MSE
estimators of EBLUP. Rao and Yu (2002) derived the MSE estimator in the case that the
AR(1) coefficient p is known, and used the plug-in estimator when p is unknown. Datta,
et al. (2002) treated a random walk model, namely the case of p = 1. Thus, the term
g12(0) does not appear in these papers, although both handled time-series structures.

Remark 2.4 It is noted that the validity of the asymptotic expansions will not be dis-
cussed here. All the results in this paper are based on major terms obtained by Taylor
series expansions which is a similar method as used in Datta and Lahiri (2000). The
validity of the second-order approximations in MSE and its estimation has been shown
by Prasad and Rao (1990) for unbiased estimators of @ in some specific models, and by
Das, et al. (2004) for ML and REML in the general LMM. Although this paper provides
the third order approximations without the validity, we need more conditions and much
more steps for establishing the validity of the third-order approximations.

Remark 2.5 The corrected function h(€) given in (2.15) includes ¢1(€) in the denom-
inator, and this may cause the instability of the corrected confidence interval I CEB(/G\)
near @ = 0. For example, as given in Example 2.2, we have g;(61,62) = 6162/(01 + ns6s)
in the nested error regression model, where #; and 6, respectively, are the ‘within’ and
‘between’ components of variance, and ng is a sample size of a small area. When 60, is close
to zero, the estimator 92 and gl(él, ég) take values near zero, which leads to the instability
of the confidence interval. One method for fixing this problem is to use the truncation of
the estimator , as 077 = max{f,, N~2/3}, which was suggested in Kubokawa (2010), For

o~

the practical use of I°PB(6), we need such a modification of the estimator 6.



2.4 Instructive examples

In this section, the results given in the previous sections are applied to specific models, and
the corresponding forms of the MSE estimators and the confidence intervals are derived.

Example 2.1 (Fay-Herriot model) As a simple basic area model, we consider the Fay-
Herriot model described by

yi:m;ﬁ—kvi—ksi, izl,..‘,k,

where £ is the number of small areas, x; is a p x 1 vector of explanatory variables, 3 is
a p X 1 unknown common vector of regression coefficients, and v;’s and ¢;’s are mutually
independently distributed random errors such that v; ~ N (0,60) and &; ~ N(0,d;). Let
X = (xy,...,x), y = (y1,...,yx), and let v and € be similarly defined. Then, the
model is expressed in vector notations as y = X8 + v + €, and y ~ N(X3,X) where
X =3(0)=0I,+ D for D =diag(dy,...,d) and N = k. It is assumed that sup,~, d; <
00, inf;>; d; > 0 and that £ — oo. N

When we want to estimate ps = .8 + v, the vectors @ and b used in Section 2
correspond to @ = ¢, and b = (0,...,0,1,0,...,0)" such that b'v = v,. The EBLUP or
empirical Bayes estimator of u, is written as

A2 (0) = 2 BO) + (0/(0+do)) (v, — = BO)),
and the functions g;(6), g2(0), g5(0), g11(0) and k() are expressed as g;(0) = 0(6 +d,)~*,
g2(0) = d2(0 + d,) 2, (X'S7 X)) e,
g5(0) =d2(0 + d,)*Var(07),
g11(0) =d2(0 + dy) " E[6" + 6],
22+
- 8602(0 + d,)?
and g12(#) = 0. In this model, the conditions (A2) and (A5) given hold, and the conditions
(A4) (ii) and (A6)(i) are rewritten as 90* /9y, = O,(N~'), 90** /0y, = O,(N~3?) and
E[(0%0%/0y?)0*] = O(N~?). Assume the conditions (A1), (A3), (A4) and (A6) and that

E[6™] = O(N~2), Var(9*) € C{gz] and E[0* + 0] € C(?]. Then, we can obtain the
third-order approximations given in Theorems 2.4, 2.5 and 2.6.

(2.21)

h(0) Var(6),

[Prasad-Rao estimator]| A simple estimator of 6 is the unbiased estimator suggested
by Prasad and Rao (1990) given by 0V = (k — p)"'(y’Woy — tr [DW)) for W, =
I, — X(X'X)" X' In this case, 0V — 0 = 0U* = (k — p)~'tr [Wy(yy' — X)], and it is
casy to see that E[0V*] = 0 and Var[0V*] = 2k~2tr 2 + O(k~2) as described in Prasad
and Rao (1990). Since all the conditions other than (A1) are satisfied, from Remark 2.1,
we get the results in Theorems 2.4, 2.5 and 2.6 under (Al). n

Example 2.2 (Nested error regression model(NERM)) The model we next han-
dle is the nested error regression model (NERM) given by

yij:w;j,@—i—vi—{—eij, izl,...,k,jzl,...,ni,
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where k is the number of small areas, N = Zle n;, @;; is a p x 1 vector of explana-
tory variables, B is a p X 1 unknown common vector of regression coefficients, and v;’s
and £;;’s are mutually independently distributed as v; ~ N(0,02) and &;; ~ N(0,0?).
Here, 02 and o2 are referred to as, respectively, ‘between’ and ‘within’ components
of variance, and both are unknown. Let X; = (za,...,xin,), X = (X1,..., X}),
Y, = Wity -+ Yin,)s Y = (Y1, ..., y}) and let € be similarly defined. Let v = (vq,...,v;)
and Z = block diag(g,,,...,J,,) for j,, = (1,...,1) € R™. Then, the model is ex-
pressed in vector notations as y = X3 + Zv + €. It is assumed that sup,~, n; < co and
that k — oo. -

We want to estimate the mean p, = @,3 + vs of the s-th small area for T, =
Z?il xsj/ns. The vectors a and b used in Section 2 correspond to @ = T, and b =
o,..., 0, 1,0,...,0) such that b'v = v,. Also, @ = (61,0) and X correspond to 0, = o2,
05 = o2 and ¥ = block diag(Xy, ..., 2y) for ; = 011, + 0T, T, = J. _]n I, bemg
the n; X n; identity matrix. Since E Y=o/ NI, 6’2/(91 +n302)¢]ns) and X gns (01 +
ng02)"'7,., s(@) is expressed as 3(9) (02/(01+n56’2)( PN | S 1 o )

g (RN )TN
where 0,,, is the n;-dimensional zero vector such that 0" = (O’ 0 0/, ). From

nys PRI ny

this expression, 0;8(0) and 025(0) can be derived. Then, the EBLUP or empirical Bayes
estimator of pg4 is written as

175(0) = T,B(6) + (nsba/(6y + niby)) (7, — T,B(8)),

and the functions ¢1(0), ¢g2(0), g5(0), ¢11(0) and h(0) are expressed as g;(0) = 6102(0; +
ns02) !, g2(0) = 03601 + 77/392) T (X'SX) 7,

93(0) =n,(0; + ny0s)"3(—0s,0,)Cov (8 )(—0s, 6,
91(8) (el+nse2) 2(n02,0)E0 +8 ), (2.22)
MO) = 22Tl (g2 g2 Cov (8 )(n.62 0%,

(0192) (01 + ?1502)2

and g12(@) = 0. In this model, conditions (A2) and (A5) hold. It is also noted that in (A4)
and (A6), the conditions 8() ) (0)2(0)V,0; = O,(N7'), 5(0)S(0)V 01" = O,(N~3/?)
and Es;(0)'Z(0){V,V,0;}X(0)s(;(8)0] = O(N~2) are rewritten as V07 = O,(N 1),
V.0 = O,(N%?) and E[{V, V’e*}e*] O(N~2), respectively, for 1 < i,j < 2 and
Vs = 0/0y,. Assume the conditions (A1), (A3), (A4) and (A6) and that E[a***] =
O(N—2), Cov (9*) € CE] and E[O* + 0**] € C‘[gz]. Then, we can obtain the third-order
approximations given in Theorems 2.4, 2.5 and 2.6.

[Prasad-Rao estimator] Prasad and Rao (1990) suggested estimators based on
unbiased estimators of §; = 02 and 0y = 02 Let S = ¢'(Iy — X(X'X)'X')y and S; =
Yy (E—-EX(X'EX) ' X'E)y where E = block diag(Ey, ..., Ey) for E; = I,,,—n;*J,,.
Then, unbiased estimators of 6; and 6, suggested by Prasad and Rao (1990) are

B = S/(N —k—p) and 8 ={S— (N —p)V}/N"
where N, = N — tr {(X'X)"' S°F_ n2Z,@'}. In this case, 6Y — 6; = 8V for i = 1,2, and

zlz

it is easy to see that E[0V*] = 0, E[0V*] = 0, VS, = 2(E;y,— E; X;(X'EX) ' X'Ey) =
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0,(1), V;ViS=2(I,, — X;(X'X)'X,;,)=0(1), X'V,S; =0 and X'V,S = 0. Based
on these observations, we can check the conditions (A3), (A4) and (A6). From (5.4)-(5.6)
of Prasad and Rao (1990), Cov ({9\U*) can be approximated as

~Ux 207 1 —k/N
- N-—k

Cov(6 )= RN R+ (N — RS (14 /6,7 /N ) +O(NT),

Thus from Remark 2.1, we can get the corresponding results in Theorems 2.4, 2.5 and 2.6
under (Al). n

3 ML and REML methods

3.1 Notations and assumptions

In this section, we derive higher order expansions described in (2.5) and (2.17) for the
ML and REML estimators of €, and show that the conditions (A3), (A4) and (A6) are
satisfied, and the corresponding results given in Theorems 2.1 - 2.6 are provided.

For notational simplicity, we here omit (0) in A(@), ¥X(0) and others, and use the

vector and matrix notations col;(a;) and mat;;(b;;) defined by

a1 by - blq
coli(ai) = s matij(bij) =

Qq by -+ by

We here use the same notations as in Subsection 2.1. Also, for 0 <, j,k, ¢, m < g, let
eigenvalues of 3;jre) and Xjrem) be )\ijz and )\ijem fora=1,..., N respectively, where
AT < < R and AP < < AR

(M1) Let Ay = mat,;(tr [E(i)E_IE(j)E_I]). Assume that A, is a ¢ x g positive definite
matrix, and Ay /N converges to a positive definite matrix.

(M2) 3(0) € Cgl], and limy_. [A7"] < oo.
(M3) 2(8) € ¢, and limy_. |A3*™| < .

Under these conditions with the conditions (A1), (A2)(i) and (A5)(i), we derive the
second- and third-order expansions of ML and REML, which are defined as follows:

~M ~ R
[1] ML method. The ML estimator 8 = (6),...,0}")" of @ is defined as the
solution of the equations Li(/O\M) =0fori=1,...,q, where
Li(®)=Li=y (X' - P)E,(Z' — Py —tr[E7'Z), (3.1)

for P(O) = P = E'X(X'T'X)'X'S™". Since y'(T7' — P)T)(Z ' — Py =
(y— XB)(Z"'—P)E,(E7' — P)(y — XB), the condition (A3) is clearly satisfied and
we can put 3 = 0 without any loss of generality.

11



(2] REML method. The REML estimator 8 = (6%, ..., 07%) of @ is defined as the

solution of the equations LZR(/B\R) =0fori=1,...,q, where
LYO) =y (' = P)EH(E' =Py —tr[(Z" - P)I). (3.2)

It is clear that the condition (A3) is satisfied, and we can put 8 = 0 without any loss of
generality.

The consistency of the ML and REML has been studied by Sweeting (1980), Mardia
and Marshall (1984) and Cressie and Lahiri (1993). It can be seen that the conditions
of Theorem 2 in Mardia and Marshall (1984) are satisfied by (A1), (A2)(i), (A5)(i) and

(M1), so that we can see that 9" — 6= O,(N~Y2) and 9" — 9= O,(N~Y2).
To derive asymptotic expansions of ML and REML, the following equalities are useful:
E[tl‘ [Cl (yy/ — 2)]131' [Cg(yy, — Z)H =2tr [012022],

E[tr[C1(yy — D))t [Calyy — D) [Colyy' — D] =8t [C15C,5C,z), )

where C1, Cy and C3 are N x N matrices and y ~ N (0,X) for 3 = 0.

3.2 Expansions of ML and the corresponding results

We first derive the third-order expansion given in (2.17) for the ML estimator of 8 under
the conditions (A1), (A2)(i), (A5)(i) and (M1)-(M3) where 3 = 0.

[1] Taylor series expansion of ML. From the Taylor series expansion of (3.1), it
is observed that

~M ~ 1 ~ ~
0=Li(0 )=Li(0)+ Za: Li) (03" — 0.) + 3 ; Litan) (62" — 0a)(6)" — 6,)

1 . . .
+ 6 Z Li(abc)(eéw - ea)(gé\/[ — bh) wé\/l —0,)

a,b,c
b O L (O)0Y 66 —0)6Y — 000 — 60, (3.4
24 a,b,c,d ’ ’ ,
where 6 is a point satisfying |0 — 6] < H@M — 0| for the Euclidean norm || - ||, and

Litaby = OavLi, Litabe) = OapeLi and Liaped) = Oapeali. Also, Zmb’c’ , means summation over

1<a,be,d<g,and)_,, Za’b and Zmb’c are defined similarly. Since L;(pca)(0) = Op(N),
the last term is up to O,(N~!). Then, the equality (3.4) is expressed as
~M

1 R R
0 =col;(L;) + mat,(Li))(0 —0)+ §coli( E Li(ab)(eéw —0,) (6 — 91,))
a,b

1 . . R
+ 6col,-(z Litabey (02 — 0,)(0" — 0,) (0 — 6.)) + O,(N7Y),

a,b,c
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which implies that

~ 1 ~ ~
9" o :{matm(—Li(a))}_l{coli(Li) + 500l Lin (B = 0.6 — 03))
a,b
1 A A i
+ ECOli (Z Li(abc) (02/[ — 9(1)<9é\/[ — 91,)(9(]3‘/1 - Qc))} + Op(N_2), (35)
a,b,c

Thus, we need to evaluate each term in (3.5).

Since (2—1)@ = —-X¥;X, L; is expressed as

Li=—y{(EZ o +Qly +tr[Z(ZY) )]

=—tr[(Z ) (yy — )] - [Qiyy, (3.6)
where Q; = X7 'SP + PX; X' — PX(;)P. From (3.6), it is observed that
Li(a) =tr [E(G)(E 1) (4) ] [( )(za) (yy - 2)] —tr [Qi(a)yy/]7 (37>

Li(ab) :Biab [(Z ) iab) (yy - Z)] —tr [Qi(ab)yy/]7
Li(abc) :Ciabc —tr [(E )(iabc) (yy - E)] —tr [Qi(abc)yy,L

where B,y = 8b{tr [E(a)(z_l)(i)]}—i‘tr [E(b)(z_l)(m)] and Cigpe = ac{ab{tr [2(a)<2_1>(1)]}+
tr (B () )]} + 0 [Be) (E7") iaty]. From (3.6), L; is written as

col;(L;) = a1 — ay, (3.10)
where ¢ X 1 vectors a; and aq are defined by
ax = coli(—tr [(S )y’ — BN, a0 = coli(tr [Quuy)) (3.11)
It is noted that X'Fy = O,(NV?) and tr [F(yy’ — X)] = O,(N'/?) provided F satisfies
X'FYFX = O(N) and tr [FXFX] = O(N), respectively, since E[{tr [F(yy' —X)|}*] =
tr [FXFX] by the equality in (3.3). Hence from conditions (A1), (A2)(i) and (M1), it
follows that a; = O,(N'/?) and ag = O,(1). From (3.7),
mat;,(—L;q)) = Az + A1 + Ay, (3.12)
where ¢ X ¢ matrices Ay, A; and A are defined by
Ay = mat,(—tr B (E7)]), A= mat(tr[(E7 ) (yy' - X)), (3.13)
and Ap = mat;,(tr [Q;,)yy']). 1t is noted that
(N =2 H{BpZ "2y + Z( 3 Be — BeptE
and

(tr [CD])* < tr [C*]tr [D?],
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for symmetric matrices C and D. Then from conditions (A1), (A2)(i) and (M1), it follows
that Ay/N converges a positive definite matrix, and A; = O,(N/?) and Ay = O,(1), so
that the inverse matrix of mat;,(—L;.)) can be expanded as

{mat,(— L)} ' = Ay — AT A AT+ AT (AL AT AL - Ag) A O, (NT/2), (3.14)
where A;' = O(N7Y), A;'A1A;Y = O,(N73/2) and A;'(A1ATA — A A =
Op(N72). Similarly, from (3.8) and (3.9), L) and L) can be evaluated as

Li(ab) :Biab —tr [(E_l)(iab) (yy, - E)] + Op(l)v

(3.15)
Li(abc) :Ciabc + Op<N1/2)-

Hence from (3.5), §M — 0 can be approximated as
0" —0={A," — A,"ALA, + A (ALA AL - A Ay + O,(N 1))

X {a1 —ao + %coli(Z{Bwb —tr (27 iy (yy’ — DO — 0,) (0 — 6))
a,b

+ écoli(z Clape(OM — 0,)(OM — 6,)(6M — ec))} + 0,(N7?). (3.16)

a,b,c
[2] First- and second-order terms. From the approximation (3.16), it follows that
8" —0-9" + O,(N~1), where

~M *

0 =Ay'a;=A;"coly(—tr (T (yy — 2))). (3.17)
Using the approximations (3.15) and (3.17), we can see that
coli (D Ligan) (02" — 0.)(6)" — 6,)) = by + Op(N7'/2),

a,b
for
b, = col, Z Biap02*00").

~M * A~M xx

Hence from (3.16), it is seen that 0 —0=0""+90""+ O,(N~%2), where

A~M xx

0 :—A;I{ao—%+A1Az_lal} (319
— a5 {col (ir[@uy) + col (3 BuulV-i}") 2}
a,b

~M*

— Ay mat,, (tr (7)) (yy' — X)])0

[3] Third-order term. To evaluate the approximation (3.16) up to O,(N~?), we
observe that for (3.15),

coli (D Litan) (02" — 0)(6)" — 6,)) =bo +b_1 + Op(N ),
a,b

coli () Liabey (02" — 02)(0" — 0,)(02" — 0.)) =c_1 + O (N ),

a,b,c
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for

b_l :COI‘ ZBiab éM*éM** +éM*éé\4**))
— COl Ztr (zab) yy - E)]éfl\/l*éé\/[*)7

c 1 =col; Z(mecey*e%*ey*).
a,b,c
Thus, the third-order term is given by

M xx%

b c_ B b B ~Mx
:A21{71+?1+A1A21(a0_50>+(A1A21A1_A0)0 } (3.19)

[5] Expansion of ML and the corresponding results. From these arguments,
under the conditions (A1), (A2)(i), (A5)(i), (M1)-(M3), we obtain the expansion

~M ~M * A~ M xx A~M xxx _9

06 —-06=0 +0 +6 + O,(N77), (3.20)
~M* ~M*x o~ DM sk

where it is verified that @ = Op(Nfl/Q)7 0 = Op(Nfl) and 9 — Op(N*3/2)_

Concerning the second-order expansion, using the same arguments as in above, we can
verify that

8" —0=08" 48" 1O, (N, (3.21)
under the weaker conditions (A1), (A2)(i), (A5)(i), (M1)-(M2).

Proposition 3.1 (i) Assume the conditions (Al), (A2), (Ab), (M1)-(M3). Then, the

conditions (A4), (A6), (B1), (B2), (Cl) and (C2) are satisfied for /G\M, and the third-

order expansion (3.20) is obtained. FEspecially, it is observed that Cov (@M*) = 24",
M *

E[@ | =0 and

B0 =A7 col,(tr [(X'S7 X)X (27 X))

+ Aj 'col;(tr [Ay 'mat, ; (t1 [Z(a) (7)) ))])- (3.22)
It is noted that E[@M**] = Ay 'col;(tr (X' X)L X'(Z7) (X)) when ¥ or G and R
are matrices of linear functions of 0. Also, E[0M***] = O(N~2), E[@AZM*é;VI**] = O(N7?)
and E[@A;M*é;w*é{y*] =O(N7?) for 1 <4,5,k <p.

(ii) Assume the conditions (A1), (A2), (A5)(i), (M1)-(M2). Then, the conditions (A4),
(B1) and (C1) are satisfied, and the second-order expansion (3.21) is obtained.

The proof is given in Section 4. From Proposition 3.1, the assumptions in Theorems
2.4, 2.5 and 2.6 are satisfied by the conditions (A1), (A2), (A5), (M1)-(M3), and we get

MSE(0,7i"5(8")) =g1(0) + g2(0) + g3(68) + O(N ),
Elmse(@" ,7"5(0"))] =MSE(0,7"5(@")) + O(N?),
Plu e I°F2@")] =1 — a + O(N"2),
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~M

where ¢1(0), g2(0) and g3(0) are given in (2.6), and mse(aM,ﬁEB(aM)) and I°FB(0 )
are defined around Theorems 2.2 and 2.3. Also from Proposition 3.1, the assumptions in
Theorems 2.1, 2.2 and 2.3 are satisfied by the conditions (A1), (A2), (A5)(i), (M1)-(M2),
and we get the corresponding results with the second-order approximation.

3.3 Expansion of REML and corresponding results

Concerning the expansions of REML defined in (3.2), we can use the same arguments as
in the above expansions of ML.
It is noted that L given in (3.2) is rewritten as LE = —tr[(Z7") o (yy — B)] —
tr[Q;(yy’ — X)] or
col;(LF) = a; — a}),

where aj; = col;(tr [Q;(yy’ — X)]), and a, is given in (3.11). Since the term Lﬁa) is given
by

Ly =tr[Se)(E el —tr (6w (yy — )]+ tr Q3] — tr [Qi (yy' — T)),

the matricial expression mat;,(—L?) can be written as
R *
matia(—l)i(a)) = A2 -+ A1 + AO?

where Ay = mat;,(—tr [Q;X )] +tr [Q;,)(yy —X)]), and A; and A, are given in (3.12).
Similarly, Lf,, and Lf, ) can be evaluated as Lff,, = Big — tr (=Y ary (yy' — )] +
O,(1) and Lﬁ‘

abe) = Ciabe + Op(N 1/ 2). From the same arguments as given in the previous

. . ~R
subsection, we can approximate € as

0" - 0=0 +0 190 " +0O,N?), (3.23)

.. . . .. ~Rx  ~Rxx ~ Rk
under the same conditions as given in Proposition 3.1. Here, 8 ,0  and 6 are the
L. ~M*  ~Mxx A~ M ok X .
similar forms to 8 , 6 and 6 , respectively, where ag and Ay are replaced with

~Rx ~Rxx
aj and Aj. Especially, 8 and @  are given by

b\R* :/éM* _ A;lah
b\R** = — AQ_I{CLS — b0/2 —+ AlAQ_ICLl}

:Agl{_coli (tr[Qi(yy — )] + coli (Y B0 0)™) /2} (3.24)
a,b

~M *

— Ay 'mat;, (tr [(Z7") o) (yy' — X)])0

Then, we get the following proposition, whose proof is omitted, since it can be verified
based on the same arguments as in the proof of Proposition 3.1.

Proposition 3.2 (i) Assume the conditions (A1), (A2), (A5), (M1)-(M3). Then, the
conditions (A4), (A6), (B1), (B2), (C1) and (C2) are satisfied. Thus, the third-order
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expansion (3.23) is obtained, and the corresponding results to Theorems 2.4, 2.5 and 2.6
hold. Especially, it is observed that Cov (§R*) = Cov (EM*) =2A;", E[/B\R*] =0 and

~Rx*x*

E[O ] = A;lcoli (tr [A;lmatayb (tr [Z(ab)(E*I)(i)])]), (325)
where E[@R**] = 0 when X are matrices of linear functions of 6. Also, E[éf***] =
O(N~2), E[9I*0%] = O(N—2) and E[0f*070[*] = O(N~?) for 1 <i,j,k < p.

(ii) Assume the conditions (A1), (A2), (A5)(i), (M1)-(M2). Then, the conditions (A4),
(B1) and (C1) are satisfied, and the second-order expansion and the corresponding results
to Theorems 2.1, 2.2 and 2.3 are obtained, where ag is replaced with ag.

3.4 ML and REML in specific models

Example 3.1 (Fay-Herriot model and modified Fay-Herriot estimator) Consider
the model treated in Example 2.1. )
[ML estimator] The ML estimator 0y is given as the solution of the equation
LM(9M) = 0, where
LY(0) = o/ (2(0)™" = P(0))*y — tr [2(0) ']
for P(0) defined in (3.1). The conditions (A2)-(A6), (B1)-(B2), (C1)-(C2) and (M1)-
(M2) can be seen to be satisfied, and we get Theorems 2.4, 2.5 and 2.6, where a; =
2
J;

tr (X% (yy' — 2)], Ay = tr (872, M = a1 /A;, and E[0M*] = 0, Var[f™*] = 2/tr [S~
and E[0M*] = —tr (X'S7' X)) X' 72X /tr [27.

[REML estimator] From (3.2), on the other hand, the REML estimator is given as
the solution of the equation LE(#%) = 0, where

LE(0) =/ (2(0)7" — P(0))*y — tr [(3(60)~" — P(9))].

From the arguments around (3.23), it can be seen that 0F* = a,/A,, and E[0%*] = 0,
Var[0™] = 2/tr[27?], and E[#®**] = 0. Since all the conditions are satisfied, we get
Theorems 2.4, 2.5 and 2.6 under (Al).

[Modified Fay-Herriot estimator] The estimator suggested by Fay and Herriot
(1978) is given as the solution of the equation L¥# (F#) = 0, where

L™(0) = y'(2(0)"" — P(0))y — (k —p)

for P(0) defined in (3.1). Here, we consider the general estimator 6,, given as the solution
of the equation L,, () = 0, where

Lin(0) =/ (3(0)" = P(0))y — (k —p) — m(0), (3.26)

and m(f) is a function of 6 with order m(#) = O(1). To derive the expression corre-
sponding to (3.20) for ém, the same arguments as in Subsection 3.2 are used. Espe-
cially, the terms corresponding to (3.10), (3.12) and (3.15) are expressed as follows: Since
Ln(0) = tr [ yy' — X)] —m(d) — tr [P(yy’ — X)], we can put

a =tr[Z 7 yy —2)], ao=tr[P(yy — )] +m(0).
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Let f™(0) = 0" f(0)/06™ for a function f(#). Since —L%)(Q) =tr [ +tr [ 3 (yy —
)] + tr [PY(yy' — )] — tr[P] +mM(0) and tr [PYX] = —tr [P], we can put
Ay=tr[27Y, A =tr[Z 3 yy' - )], Ao =tr[PVyy]+mM(0).
Then, R
07, = ar /Ay = [ gy — D))/ (S,
Since LY (0) = 2tr [S72]+2tr [ (yy' — )]+ 0,(1) and LY (0) = —6tr [S 73]+ 0, (kY/2),

we can put

by =2tr [X72(0%)%, ¢ = —6tr [X73)(0%)?,
by =dtr [S7205,05 + 2tr [ 73 (yy' — 2)](67,)%,
where é;jf is defined by
O =(—ao + bo/2)/Az (A1/A,)07,

L)) r[E7 a e [E(yy - 3)]
__tr[2_1]+tr[ L SR

Also, 67 can be derived as

O = Ay ' {b_1/2+ c_1/6 + A1 Ay (a0 — bo/2) + (ATA; ! — A0)0r, ).
Hence, E[0%] = 0, Var[0x] = 2k/(tr [£71])2 and
el 2k:tr (272 — (tr [271))? __m(0)
- (tr [271])3 tr [
which were derived by Datta, et al. (2005) in the case of m(¢) = 0. That is, E[OFH+] = 0,
Var[0¥7] = 2k/(tr [£7])? and E[077*] = 2{ktr [£7°] — (tr[Z7'])?}/(tx [£7'])*. From
(3.27), we can vanish the second-order term in the bias of 6, by putting

tr [27]

(tr[271])2
Then, E[02] = 0 while Var[0:,] = Var[0FH*) = 2k/(tr [£7])2. It can be verified that

all the conditions are satisfied, and we get the results in Theorems 2.4, 2.5 and 2.6 under
(A1). n

(3.27)

m(0) = 2k —2. (3.28)

Example 3.2 (NERM) Consider the model treated in Example 2.2.
[ML estimator] The ML estimators 9" = (OM_0M) of (0y,0,) are given as the

~M ~M
solutions of the equations L1(0 ) =0 and Ly(6@ ) = 0, where L1(0) and Ly(0) given in
(3.1) can be written as

k
77%92 — .2 n; 92
X, P2-S"Zta-—2
? = XiB6) ~ 5= - TBENII - 5 -
k 2 N
§ 2 _ § -
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since X1y = I and Xy = block diag(Jy,,...,Jy,). In this model, the conditions (A2)-
(A6), (B1)-(B2), (C1)-(C2) and (M1)-(M3) are satisfied, so that the results stated in
Proposition 3.1 are established under (Al). Note that A, and a; given in (3.13) and
(3.10) can be written as

Ay =mat;(tr [ XS E71)
. (N — /{)91_2 + 21(91 + nﬂg)_z Zl nl(el + ni92)_2
o Zz nl(ﬁl + nzﬂg)_Q Zz n?(el + niﬁg)_Q ’
a — ( >, tr [IEZQ(yiy; -3 ) _
Zi]z‘E; (i — X)X 7,

~M * 1 ~M x
Then, & = A, a;,and F[@ |=0 and
M+ 202 ko p2a2 —¥F A2
@y - 2 ( Eogrti | Thnat )
d() \ — Zi:l ny; (N —Fk+ Zi:l )

where d() = (N — k + 370, 97) iy 089} = (T nar?)? and 55 = (1 + ngg)™" for
Y = 0/0,. Tt is easy to see that g;(@) can be given by ¢3(0) = 2Nn. 0,73 /d(v). Also

~M

from (3.22), E[0 **] can be written as

SMes 0y —p Zle niy; + (Zf:l nivi)c(y)
Ele 1= d(v) ( P i — (N —k+ 30 7)) ) ’

where ¢(y) = tr [(X'S71X) "' 2% n2+2E,%]. These were obtained by Datta and Lahiri
(2000).

[REML estimator] The REML estimators 8" = (08 0BY of (0y,0,)" are given as the

-~ -~

solutions of the equations LI(@ ) = 0 and LE(0 ) = 0, where LE(0) and LI(0) given in
(3.2) can be written as

Li(6) =L,(0) + tr (X' X) ' X'E72X],

LE(0) =Ly(0) + tr [( X' X)L X' block diag(J,,, - .., Jn, )X X].

Then, it can be seen that 0" = Ayla, = 5M*, and E[@R*] =0, Cov (§R*) = Cov (5M*)
and E[@R**] = O(N7?) as shown in Datta and Lahiri (2000). Hence, we can get the
corresponding results in Proposition 3.1 under (Al). ]

3.5 A basic area level model for combining time-series and cross-
sectional data

Finally we consider a basic area level model proposed by Rao and Yu (1994) for combining
the time-series and cross-sectional data. This is an extension of the Fay-Herriot model
and is described by

i =B +vi+uy+ey, i=1,....k t=1,...,T, (3.29)
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where k is the number of small areas, ¢ is a time index, N = kT, x;; is a p x 1 vector of
explanatory variables, 3 is a px 1 unknown common vector of regression coefficients. Here,
v;’s, uy’s and g;’s are mutually independent random variables such that v; ~ A(0,02),

Eit ™ N(O, dzt) and

Uit = PUj—1 T €4, lpl <1,
where e;; ~ N(0,0?), and 02, 02 and p are unknown parameters. Let X; = (z;1,...,Ti7),
Y, = (Yi1,-- -, yir), and let u; and €; be similarly defined. Then, the model is expressed
in vector notations as

yz:XZ/B+JTUz+uz+€z7 izla"'aka
=X+ Zov; + €,

for j, = (1,...,1)Y € R", Zy = (§;,Ir) and v' = (v;,u}), and it is seen that w; ~
N(0,0%®(p)) and €; ~ N (0, D;), where

1
1—p?

\I’(p) = mati7j(p|i_j‘) and Dz = dlag (dily PN adiT)~

Let 0, = 02, 0, = 02, 03 = p and 0 = (6,0, 05)". Thus,
y; ~ N(X;8,%4(0)),
where for Jr = j,j7 and G(0) = block diag(f;,0,¥(63)), we have
3.(0) =ZyGo(0)Z,+ D; = 61 Jr + 6,9 (65) + D,.

Letting X = (X,..., X}), y = (¥}, ...,y}) and letting v* and € be defined similarly,
we can express the model as y = X3+ Zv*+€, where Z = I ® Z, Cov (v*) = G(0) =
I, ® Go(0) and Cov () = R = block diag(Dy,...,Dy). Then, y ~ N(X3,X(0)) for
3(0) = ZG(0)Z' + R = block diag(X:(0),...,3(0)). It is assumed that T is bounded,

SUpP;>1 4>1 dit < 00, inf>y4>1diy > 0 and that k& — oo.

We consider to predict the currect mean of the s-th small area psg = xlp0 +
vs + ugr. The vectors a and b used in Section 2 correspond to a = x,; and b =
(0%, sy 07y, 0,00, 1, .., 04, ) for Opyq = (0,...,0) € R"*'and b, = (1,0,...,0,1) €

R™! such that ¥'v* = blv* = v, + uyr. Then, the EBLUP of p,p is

i = B(0) + b.Go(8) 2457 (0) {y. - X.B(0)}
—a/:B(0) + 5.(0) {v. - X.B0)},

where s/(0) is expressed as

5,(0) =b.Go(0)Z,Z;(0) = {0157 + oc1 ¥ (03)} 271(6)
:{91.7’/1" + 92<9§717 s 7937 1)}Es_1<0)7

for ¢p = (0,...,0,1) € R”.
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From (2.9), the function g¢;(0) is written as
g1(0) = Ql + QQC/T‘IJ(QZQCT - 85(0)/25(0)85(0),
and ¢»(0) and g¢5(0) are expressed as

92(0) =(@y — 5,(0) X )(X'E(0) " X) " (wer — X'54(0)),

75(8) =tr [(asg(eey)zs(e) (asgge)l)bov (6")} .

It can be verified that the expressions of ¢1(0) and g»(6) are identical to those given by
Rao and Yu (1994) since ¢, ®(6s)er = (1 —62)~L. Since ¥(63) = (1 — 62)‘mat, ; (65 "),
it can be seen that

6\11(93) 293 1 . nlieil—1
‘I’(3) (83) = 893 = 1 _ (9%‘11(03) + 1_—‘9§mati’j (|Z - ng ]‘ )’
82‘11(93) 2(1+ 3(9%) 404 . pli—il-1
W (33)(03) = 90,005 (1= 022 U (63) + Wmati,j(\z —jlo5)
1 e i—jl—
gt ([ — (1 = 51 = D)o5T').
Then, 0s5(0)'/00 in g;(0) can be derived by using the derivatives
8 / / ./ !/ —
8_9185(0) = Ss(l) (9) :<]T - 85(9) JT) Es 1(0)7
0
=.-85(0) = 552)(0)’ 5.(0)' (01 Jr + D)X1(),
004 0o
a / / / / —
8_9385(0) = 83(3)(9) :92 (CT — 85(0) )‘I’(g)(eg)zs 1(9)
Also, ¢11(0) and h(0) in (2.9) and (2.15) are
0G1(0) 1 iox o
911(8) =( 901‘(9 )) L6 +6 ],
zo+1 991(0)\ 0g1(0) ./ e
h(0) —891(0)2tr ( 50 )( 20 ) Cov (0 )],
where the derivatives of ¢;(0) are written as
0g1(0
9810( ) =1 — 2841)(0)'34(0)'55(0) + 5,(0) Jr54(8),
1
a 0 / !/ !/
%19( ) =crW(03)cr — 2842)(0)'2:(0)s,(0) + s,(0)" ¥ (03)s5(0),
2
990) _g, e w5 (0 28,(3)(0)'T4(0)54(6) + 625,(6) W 3 (63)5.(0
a0, —02er¥ e (0s)er — 28:(3(0) 3:(0)5:(6) + 025:(0) W) (05)55(6).

For the function g12(0) in (2.9), it is given by

912(8) = %tr [B(6)Cov (8],
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where the (i, j)-th element of B(0) is given by (bs — Z{s5(0))'(0;;Go(0))(bs — Z55(0)).
It is here noted that 811(;0(0) = 812G0(0) = 813G0(0) = 322670(9) = 0, 823(}’0(0) =
block diag(0, ¥(3)(f3)) and 033Go(0) = block diag(0, 62 (33(f3)). Also note that b, —
Zys4(0) = (1— {91]T + 020 (03)Y2,1(0)d 1, &y — {0157 + 02,0 (05)}2,1(6)). Thus,
it is observed that By = Bis = Bi3 = Bas = 0 and

Bay =(cp — {015 + 02 (03)) 21 (0) ¥ 3 (03) (¢ — {015 + 02 W (05)15,7(0)),
Byg = (¢ — {0157 + 020 (65)}£71(0)) 0% (33 (63) (¢ — {017 + 0261 % (03)15,7(0))
In this model, ¥(@) is not linear in 63, so that the function g12(0) cannot be ignored.

Hence, we can compute the requested functions provided Cov (5*) and E [5* + 5**] can
be derived for estimator 8 of 6.

[REML estimator] We use the REML estimator 9" = (07,08 ORY defined in (3.2),
which is the solution of the equations Lf(aR) =0 for i =1, 2,3, where

LEO)=y(Z' = P)Z;(Z ' =Py —tr (T = P)Z).
Here,
S =50Jr, Ze =12 ¥(0;), g = I, 0,P3(0),

since Xy1)(0) = Jr, 3y (0) = (93) and Xy3)(0) = 0% (5)(03) for X4(0) = 61 Jp +

0, W (03) + D,. From Proposition 3.2, it follows that Cov (GR ) =2A;" and E[@R*] =0,
where Ay = mat, ;(tr [ X' 2;3X7"]) can be computed by using

tr [ 182 Ztr DIVES Sy I Jyl
Finally, we need to compute the expectation £ [b\R**] given by

~Rxx

E0 ]=—A;"col;(tr [A; 'mat,(tr [EwpnZ ' EHE7)]).

Since Xy11) = g2y = Beas) = Bye2) = 0, a3y = P(3)(03) and X3y = 02W (33)(03), it
can be seen that

tr [A_lmata b(tr [E(Gb)E_IE(i)E_l])]
k
—2A% Ztr 3(03)5 Ty 1 + AP e [02% 53 (65) 3, Sy B 1,
(=1

where AY denotes the (i, j)-th element of A;".

The conditions (A2), (A5), (M2) and (M3) can be seen to be satisfied. Assuming the
conditions (A1), (M1), sup;sy 5 dix < 00, infi>14>1dy > 0 and that T is bounded and
k — oo, we can see that the results of Proposition 3.2 hold, namely, we obtain the results
given in Theorems 2.4-2.6.
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4 Proofs

Proof of Theorems 2.1 and 2.4. We begin by proving Theorem 2.4, namely, the
third-order approximation given in (2.18) under the conditions (A1)-(A6).
Following Prasad and Rao (1990) and Datta and Lahiri (2000), the MSE of ZIEB({/J\)
can be written as MSE(0, i (1)) = E[{i®(8,0) — u}?] + E{a""(0) — 1”(8,6)}?] +
E[{7i"B(6) — iP8(9)}?], and the first two terms are expressed as

E{f"(8,0) — u}’] =b/(G(0)™' + Z'R(6)7'Z)"'b = 0(0),
E[{n""(0) — i"(8.0)}*] =(a — X's(0)) (X'5(0) ' X) ' (a — X's(0)) = 92(9).

Let g5(8) = E[{[i®B(8) — i®2(8)}?]. From the Taylor series expansion, it follows that

~

ate(0) = )+ Z iy ( Z fi65(0)(6; — 6:)(0; — 6;)
+ - ZﬁEﬁ (0)(6: — 0:)(8; — 0;)(0r — O, (4.1)
z]k:
where 8 is a point satisfying |0 — 8] < ||§ — 0|| for the Euclidean norm | - ||, and

iy’ (8) = 0" (0)/00; and i(;5(6) and ﬁbﬁ)(@) are defined similarly. Also Y, ;. means
summation over 1 <1i,j,k < g, and ), and Z are defined similarly.

For notational simplicity, hereafter we omit (6) in FB(9), B(6), B(i)(e), s(0) and
otheArs Since ,u(”k)(e) = O,(1) from (A1), (A2) and (A5), note that ij{fﬁg)(e)(@ —
6;)(0; — Qj)(é’k —0) = Op(N*3/2). Then, g3(0) can be estimated as

[Z REPRED( )+ D AERTES (0 = 0:)(05 — 0;)(B — 01|

1,7,k

+ 0( 2, (4.2)
It is observed that
it =(a— X's) By — s(y X (B—B) + sy (y — XB),
it =(a— X's) B — s, X (B — B) + s(;)(y — XB)
— 51y X By — 50, X By,

and that B(i) = O,(N~2) and B(ij) = O,(N~2) from (A1) and (A2). These facts are
used to evaluate g3(0) as

[Z sy (y — XB)s(;(y — XB)(0; — 0,)(6; — 0))
+2 Z sy — XB){(a— X's)By — s;,X (B~ B)}0; — 0,)(0; - 0))

+ Z Sy (y — XB)s(;j(y — XB)(0; — 0;)(0; — 0;)(0), — Qk)} +O(N7?).

i?j?k
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Since § — 0 is expanded as @ —0 =8 +80 +6 + O,(N72) from (A6), g3(0) can be
further approximated as

- Z Els(y(y — XB)s(;(y — XB)(0:0; +20;0;")
+2ZE31 XB){(a— X's)B — s, X (B — B)}0:0:]
+ Z Bls{y(y — XB)s(;; (y — XB)0;0:0;] + O(N7?)
=1, :512 + I3+ O(N72). (say) (4.3)

To estimate the first term [;, we use the following Stein identity given by Stein (1973)
for y ~ Ny(X3,X):
El(y — X8)g(y)] = E[V,{Zg(y)}], (4.4)

where g(y) = (¢1(y),...,gn(y))" is an absolutely continuous function and V, is the
differential operator defined by V, = 0/0y. For example, let A be an N x N matrix
independent of y, and let a(y) be a scalar function which is twice-differentiable with
respect to y. Then the Stein identity is used to get that

Elu'Aua(y)] =E[V, {ZAua(y)}]
=tr [ZA]Ela(y)] + E[u'A'SV ,a(y)],

for u = y — X 3. Applying the Stein identity to the second term gives that
E[w A2V ja(y)] = B[V, {3A'EVa(y)}] = Eltr[BAXV,V a(y)]],
which yields the useful equality
E[u' Aua(y)] = tr [XA]E[a(y)] + tr [ZEAXE[VV'a(y)]]. (4.5)
Using the Stein identity, we can see that
I = Z B[V {Ssus(;(y — XB)(0;0; + 20701 }]
= Z tr {Bs sy JE[070; +20;07] + Y E[(y — XB)'s()s(; BV, (070;)]
+2 Z E[(y — XB)'s4)s(;,EV,(0;07)]

=1 + 112 + 2145. (say)

Since E[f;] = O(N~') and E[0;0] = O(N~2) from (A4) and (A6), it can be seen that

I = tr [(‘3_’;) (g‘;) Cov (8)] + O(NV=) = 4;(0) + O(N ).
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For I,5, the Stein identity is applied again to rewrite it as
le =) BV, {Ss()8(, 2, (0;0;) Ztr [2% sy SE[V, V! (6:07)]

=23 5, SE(V, V)0 + <vy9:><V'e S,

which is of order O(N~?) as seen from the condition (A4) and (A6) (ii). Also,

Ly =Y E[(y — XB)sws; ={(V,0)0; + (v,0:)01],

which is of order O(N~?) from (A4) and (A6)(ii).

The similar arguments can be used to evaluate the other terms. For Iy, it is observed
that

I, = ZE s [(a—X's) By, — s, X (B - B)]0:0;}]
—ZE 2EVy{[(a— X's)By — s X(B - B)]0;0;}]

= Z sHE{0 {7 X(X'S7'X) Ha— X's) - ST X (X' X)X 55 } E[0;0]]
12
+ 3 E[syB{(V,00)0; + (V,0:)0; }{(a — X's) B, — s, X (B - B)}],
i,
which is of order O(N %) as seen from (A1), (A2) and (A4), since B(j) = 0,(N~1/2) and
B—B=0,(N"12).

Finally, I3 can be evaluated as

Iy = B[V, {8080,y — XB)0;0;0;}]
1,5,k
- Z Els(y2V,{(y - X B)'si50; A;é,t}]
i,k
=" 8y S50 E[0;0;6;]

4,5,k

+ > ElsZ{(V,00)0;60; + (V,0,)0:07 + (V,0,)6;0; }Hy — XB)'sip],  (4.6)

1,5,k

which is of order O(N~2) as seen from (A2) and (A4). Hence it is concluded that

MSE(8, AEB(O)) = 91(0) + g2(0) + ¢5(0) + O(N~?), and the proof of Theorem 2.4 is
complete.
For the proof of Theorem 2.1, the same arguments as given above are used. Especially,
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g3(0) can be evaluated as
Z E [ﬁffBAEB —6:)(0; — ;)] + O(N /%)
=b [Z sty (y — XB)s(;)(y — XB)(0: — 6:)(6; — 0;) + O(N %)
%]

_ Z Els(y(y — XB)s;(y — XB)(6;0)] + O(N3/?).

Then the Stein identity can be applied to the above expectation and it is rewritten as
= S BT (Bosl v~ XB)EE))] + O
=2t {Zewsiy bEIOLO] + 2 Plly = XBYs0s0, BV, (010))] + O™
293( )+ O(N—2),

which proves Theorem 2.1. [

Proof of Theorems 2.2 and 2.5. We shall prove Theorem 2.5. It is noted that g5(8)
and g;;(@) are of order O,(N™1), while g (5) = O,(1). Since ¢ (5) is not a second-order
unbiased estimator of g;(@), we need to approximate the expectation E[g; (5)] From the
Taylor expansion of ¢ (5) around @ = 0, it follows that

Elg:( +Z{azgl )}E[0; — 0;] + Z{&jgl )}E[(0; — 0;)(0; — )]
+ Z{amgl V}E[(0; — 0,)(0; — 0,) (0 — O]
z]k
Z{awgl VYE((0; — 0:)(0; — 0,) (6 — 0x) (0 — 00)],

where 6 is a point satisfying |6 — 0] < Ha— 0||. Since ¢1(0) € Cgl] and 0;51091(0) = O(1),
it can be further approximated as

3 Z{aijm(e)}Ew:e; 00+ 8367
4,3

+ % Z{@ijkgl(e)}E[é 07 + O(N2). (4.7)
Let g11(8) = 3..{8:g1(8)}E[67 + 6*]. Note that 9;g,(8) = O(1), 9;;91(8) = O(1) and
Oijkg1(8) = O(1). Since E[0;0r*] = O(N-2) and E[f;**] = O(N~?2) from (A6) and (B2),
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it follows that

E(8)] = 91(6) + gu1 (6 Z{a”gl E[0;0;] + O(N?). (48)
To evaluate the third term in the r.h.s. of (4.8), we express ¢;(0) as ¢;(0) = b'Gb —
(Xs)'27!(Zs). Then,
0;91(0) = b'{0,G}b — {0;Xs}'s — s'{0;Xs} + s'{0;X}s,
which leads to

82]91(0) :b/{az]G}b - {aijES}/S - {@23}'{&-5} - s’{@ijEs} - {aiS}/{ajES}
+ {@s}’{ajE}s + s’{@ijE}s + S’{@E}{@is}
= — [{618}/2{635} + {8]8}/2{618}]
+ [b/{al]G}b + 8’{(%2}8 — b’{@ijG}’Z's — S'Z{@-jG}b],
since ¥s = ZGb. Note that b'{0,;G}b + s'{0;;X}s — b'{0,,G}YZ's — §Z{0;;G}b =

(b—Z's(0))(0,;G(0))(b— Z's(0)) + s(0)(0;;R(0))s(0) which is equal to (B(8)),; for
B(0) defined in (2.10). Thus, the third term can be expressed as

Z{augl E[0;07] = —g5(0) + g12(0), (4.9)

where g12(0) is defined in (2.9). Hence from (4.8), it can be seen that

E[(8)] = 9:(6) + 911(6) — 63(6) + 912(6) + O(N ) (4.10)
Now we can evaluate the expectation of g% (5) as

E[g*(8) +Z{3g 0)}E[(0; — 6,)]

T ZE{amg 0)}(6; — 6.)(6; — 6,)], (4.11)

where 6 is a point satisfying ||@ — 6]| < [|@ — 6]|. Since ¢#(8) € C([,Q], 9;97(0) = O(N71),
8;;9%(8) = O,(N~') and E[f; — 6;] = O(N~1), it can be seen that E[g#(0)] = ¢#(6) +
O(N™?), so that from (4.10)

~ ~

E[mse(6, "% (8))] = E[g:(8)] + g% (8) + O(N2) = ¢:(6) + 62(8) + g3(8) + O(N ),
and the proof of Theorem 2.5 is complete. Theorem 2.2 can be similarly proved. ]

Proof of Theorems 2.3 and 2.6. From (2.2), the conditional distribution of u given
y is given by
,U’y ~ N(ﬁB</67 0)7 gl<0))7
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where i%(8,0) = a'8 + s(0)'(y — XB), and g(0) = b(G(0)™" + Z'R(6)"'2)7'b as

given in (2.6). Then, the coverage probability of IF5(0) is written as

m— ﬁB(ﬂ7 0)
91(0)

=E[®(z + G(z)) — P(—2 + G(—2))], (4.12)

Plu € I°FB(0)] =P[—z + G(—2) < <z+G(2)]

where G(z) = U + 2V for
U ={i""(8) — 1"(8.0)}/v/0:(6). (4.13)
V:{[l—l—ha \/mse/é —V91(0)}/\/9:(6). |

It is noted that G(z) = O,(N~1/2) as seen below. Then, ®(z + G(2)) is evaluated as

0= + G(2) =0() + G)o() + o) + T
1

z+G(z)
5 /Z (z+ G(z) — x)*¢" (x)dx

¢'(2) +

22— 1

—o(2) + {60 - 52+ 526 ot

24+G(z)
i [ e 6 -6 - st

It can be verified that fZ+G 24+ G(z) — )33 — 2¥)zp(x)de = Oy(N~2). From (4.12),
it follows that R
Plu e IPB(8)] = 1 — a+ 6(=)H(6) + O(N?)
where
2

H(®) = B[G(:) ~ G(=2) ~ L{G() + G(—2)} + Z=H{G() — G2,

which can be rewritten as

H(0) = 2FE[2V — (U? + 2*V?) + =— ! (BUPV + 2°V?)]. (4.14)

We thus need to show that H(6) = O(N~2). To this end, we shall verify that E[2V —
(U? 4 22V?)] = O(N~?) and E[3U?V + 2°V3] = O(N?).

It is noted that U is rewritten as U = {AEB( — uEB(0)}/\/g:1(0) + {nFB(6
P(8,0)}/1/g:1(0). Since p¥?(0) — i%(3,0) = (a’ ’X)(,B(O) — ), from Kackar and
Harville (1984), it follows that 22(0)—72(8, 0) is independent of @ and =% (0) -5 (0).
Using the result given in Theorem 2.4, we can evaluate E[U?] and E[U?t(0)] for function
t(-) as

E[U* =B[{""(0) — #""(0)]/3:(8) + E{A""(0) — " (8,6)})/91(6)
={93(8) + 92(0)}/5:(8) + O(N?),
E[UH(0)] =E[{@""(0) — i""(0)}1(8)]/9:(0) + 9:(6) E[t(8)] /1 (6). (4.15)
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Also, note that
W 4+ V2= 2+ V)V ={1+ h()}*mse(8)/g,(0) — 1
={01(0) — 91(0)}/91(8) + O, (N 7). (4.16)

Since h(0) = O(N~1) and ¢#(8) = O(N™1), it is seen that

B2V +V?] =Elmse(8))/91(6) — 1+ 2E[1(8)91(9))/9:(8) + O(N ")

={95(6) + 92(0)}/91(0) + 2E[1(68)91(0)]/91(8) + O(N?).

These observations are used to show that

E[2V — (U* 4 22V =E[(2V + V?) = U? — (1 + 22)V?]

=2E[1(8)91(6)]/9:1(0) — (1 + z*)E[V?] + O(N?)
=2h(0) — (1 + 2*)E[V?] + O(N~?), (4.17)

where in the third equality we used the same arguments as in (4.11) for evaluating

E[h(8)g1(6)] under (C1) and (C2).

We now estimate the term E[V?]. Since

V/01(0) = {\/0:1(8) — /9:(0)} + f(6) (4.18)

for f(0) = (14 h(6))\/mse(0) — \/g1(0)}, we write g;(0)E[V?] as

a1 (0)EV?] =E[{/:1(0) — V/9:1(0)}*] + E[{f(8)}*] + 2E[{\/ 9:(8) — \/9:(0)} f(6)]

:Il+]2+213. (say)

Noting that
\/ 91(8) =\/9:(8) + Z{ai\/ 91(0)}(0; — 0;) + % Z{aijv 91(0)}(6: — 0,)(6; — 6;)

+ 6 S0\ (B} — 00 = 0,) 0k — ), (4.19)

we can see that

I =E[Y_{0/0:0)}{0,/0:(0)} (0: — 0:)(6; — 6))
£ 20/ 9O 051 ()} (6 — 06, — 0,)(B — 6,)| + O(N )

=L [Z{@'\/ 91(0)}{0;v 91(9)}@:‘@;‘ + 2@:9* )+ Z{ak\/gl—}{@] \/gl—}e*e ek]
Lo,
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which can be approximated as I1 = 3, :{0;1/91(0)}{0;1/¢1(0) } E| [0 9* ]+ O(N~?). Since

f (5) can be expressed as
9#(
\/ mse )+ \/ a1( 5

g*(6) = Op(N71) and h(B) = O,(N71Y), it is casy to see that 1) =0 p(N71), and
I, = E[{f(0)}’] = O(N7?). For I, noting that f(?) ( )+ 3:(0:/(0))(6: — 6),
from (4.19), it follows that I3 = f(0)>_,(0;1/91(0))E[0; — O(N~2) = O(N?) since
f(8) = O(N~1). Hence from (4.17), we get that

mse(a)

1+ 22 o (891(9)) (091(0)
4g,(0)? 00 00
which has order O(N~2) from the definition of h(8) given in (2.15).

Finally, we need to show that E[3U?V + z2V3] = O(N~2) or (3/2)E[U?*(2V + V?)] —
(3/2)E[U*V?] 4+ 22E[V?3] = O(N~?%). From (4.1), (4.2), (4.15) and (4.16), it can be seen
that

ElU*(2V +V?)] [Z GG {0kg1(8)}(0; — 6:)(0; — 0;) (0 — Hk)] /91(8) + O(N~?)

4,5,k

=Y Elsty(y — XB)s(;(y — XB){0:9:1(0)}0;0;6;]/9:(8) + O(N?),

i7j7k

E[2V — (U* + 22V?)] = 2h(0) — )'Cov (8)] + O(N ),

which can be shown to be O(N~2) similarly to (4.6). From (4.18) and (4.19), it can
be verified that E[U?V?] = O(N~2) and E[V3] = O(N~?). Therefore, the third-order
approximation given in (2.20) is proved.

For the proof of Theorem 2.3, from (4.14), it is noted that

H(0) = zE[2V — (U? + 2*V?)] + O(N73/?),

so that we need to show that E[2V — (U? 4 22V?)] = O(N~%/2). This can be shown by
using the same arguments as used above. ]

Proof of Proposition 3.1. We shall prove part (i) of Proposmon 3.1, and the proof

of part (ii) is omitted. In this proof, we omit the index M in 0" .0 ** and others for the
sake of simplicity. Since 87 is written as 67 = — > A¥tr (X~ )(a) (yy' — X)] where Ay

is the (i,j)-th element of the inverse matrix A," = (A;j ), it is easy to see that E[f] = 0
and

8*0* ZAzaAJb [tr [(Z @ (yy — D)tr [(Z ) p) (yy — 2)]]

—2 Z Al ATP(Ag) oy = 245
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where tr [(Z7) ) Z(EpE] = —tr [(Z)wZw)] = (A2)w. Thus,

~x

Cov (0) = mat;;(E[0;07]) = 24, (4.20)
Similarly,

E[6;0:6;) = AP AP AFE[tr (7)) (yy — )]
X tr[(Z) e (yy — D)t (7)o (yy' — 2)]]
=8 AL AP At (27 Z(E ) B(E )] = 0V 7).

a,b,c

For E[6;*], it is noted that

éj* = Z Aéj{—tr [sz] —tr [Q] (yy/ - X))+ Zb Bjab92é2/2
+) (B oy (yy' — )ALt (B (yy' — E)J}, (4.21)
a,b

so that from (4.20),

BO7) =Y AJ{-tr[Q;Z] + > _ALBja,+2) AP [(Z7) 0 2(E )]}
a,b a,b

J

Since tr (B0 B(ENpE] = —tr (7)o @), it is observed that

D APBia+2) AP () B(E )] = ) At [Sw (5 ),
a,b a,b

a,b

so that X -
B0 = A{— QT+ ) APtr Sy (S}
a,b

J
which can be also expressed as (3.22), since tr [@,;3] = —tr [(X'Z7'X)1X'(Z71) ;) X].
For E[0*0;], from (4.21), 6:*0; is written as

07705 =Y AJ{—tr [Q; X105 — tr [Q;(yy' — 2)]0; + > Bjub;0;0;/2
j a,b

=Y AP AF (57 oy (yy — D [(E) e (v’ — D) (7)o (yy — D))}
It is noted that Eltr [Q;(yy’ — ¥)]0;] = —2 >, Akatr [QjZ(E*I)(a)E] =O(N™Y), Bjap =
O(N), E[0:0:6:] = O(N~2) and
BlAS A5t [(S7) oy (yy' — D)tr [(Z7) ) (yy' — D7) o (yy' — )]
=8AF At (27 0 B(ETNHE(ET)Z] = O(N ),
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so that o
E[07*0;] = O(N7?).
We shall show that E[07**] = O(N~2) for 07** given in (3.19). Note that Bj,, E[0:0;*] =
O(N™Y), E[tr [(Zfl)uab)(yy/ — 3)]0x65] = O(N™1) and CipE[070707] = O(N~1). The
i-th element of E[A; A5 (ag — by/2)] is

ZE [tr [( (yy - E)]Agb{tr [Q,2] + tr [Qy( yy' — ZBbch*‘g*}
which can be shown to be of order O(N~1). Similarly, the i-th element of E[(A; A;'A; —
A)0 ] is

ZE {Z (57 o) (yy' — DA (37 o) (yy' — 2))]

—tr QX — tr [Q) (yy' — )]}ACdtf (2 (d)(yy, -3,
which is of order O(N~'). Thus, it is concluded that
E[f;"] = O(N?).

Finally, we check the conditions (A4) (ii) and (A6)(ii). Since Vyéj =23 AP (=N wy,
it follows that szi)ZVyé;f =23 Aéas’(i)iz(x_l)(a)y, Which is of order O,(N~!) from
the conditions (A2) and (ML1). Since V, V! 0% = =23 A} (X)), it is observed that

Els(,2{V,V,0:}Zs é;‘;]
=—2 ZA%@ @28 Elf;] = 0.

From (4.21), it can be seen that

V0 = QZA Quy— Y AlBiun{AX(E ) oyb; + AL(S )0yl }
i,a,b,c
+2 Z A AL (E ) Gy ytr (B (yy' — )]
i,a,b

+(E ) eytr (B 6w vy — D))},

which shows that s’(i)EVyHA;* = O,(N~3/%) from the conditions (A2) and (M1). Thus,
the conditions (A4)(ii) and (A6)(ii) are satisfied. Therefore, the proposition is proved. m
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