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1 Introduction

Emergency services (fire-fighting, ambulance...) are subject to
spatial limitations. Consequently, the quality of the service is negatively
affected by the distance between the users and the location of the service.
In order to reach efficiency in the provision of emergency services, the
competent Authority has to decide the optimal structure of provision
taking into account the distance-sensitive utilities of the users.(V)

In France, the Departmental Authority has the competence to de-
sign the structure of provision for emergency services within the Depart-
ment. A natural objective for the Departmental Authority is to maxi-
mize welfare. But, which structure of provision for emergency services
should the Departmental Authority choose? The emergency service has
to attend a group of geographically separated municipalities and this
may require the construction of more than one emergency unit.(? The

(*) We wish to thank two anonymous referees for helpful comments and sugges-
tions. This paper has been presented at the University of Istambul, University
Autonoma de Barcelona, XI Jornadas de Economia Industrial (Madrid). This
research has been supported by: UPV 035.321-HB146/96, DGICYT PB94-1372.
The research of Vincent Vannetelbosch has been made possible by a fellowship
of the Basque Country government.

() Up to now the literature has only focused on the demand-supply side of emer-
gency services (see Ahlbrandt [1973], Brueckner [1981], Duncombe [1992), Dun-
combe and Yinger [1993]). The provision-location side of emergency services has
been neglected.

) In France, an emergency unit serves usually more than one municipality. For
example, the Department Haut-Rhin has 38 emergency units for 377 munici-
palities and 671319 inhabitants [sources: Service Départemental d’Incendie et
de Secours du Haut Rhin, Colmar].
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provision costs of each emergency unit have to be divided among the mu-
nicipalities that use it. Also, the possibilities of communication between
municipalities restrict the possible cooperation to connected municipal-
ities, and each emergency unit serves (in priority) a connected subgroup
of municipalities. Hence, the benefits derived by a municipality de-
pend positively on the level of provision of the service and negatively on
the aggregate distance between the subgroup of municipalities and the
emergency unit. Indeed, when a municipality requires the service of the
emergency unit, the firemen could be attending any other municipality
that shares the emergency service. In such context, it is not excluded
that a single emergency unit for the whole economy (joint provision of
the service) is inefficient, because the benefits obtained by sharing the
costs of provision can be offset by the negative effect of the distance on
the quality of service.

To what extent does the impact of the distance on the quality
of service prevent the joint provision of the emergency public service?
Also, if the joint provision is inefficient, which is the efficient or stable
structure of provision? These are the two questions that we give an
answer to in this paper. The most natural approach to tackle these
issues is the cooperative game-theoretic approach® .

A well-known observation is that the location of municipalities in
a region gives rise to a hierarchy between them (see Nystuen and Dacey
[1961]). Then, the communication between municipalities can be repre-
sented by graphs: abstract networks of points and lines. The radial geo-
graphical structure, one of the simplest structures, emerges when some
peripheral municipalities are connected by means of a central munici-
pality. We answer our two questions in this geographical setting, called
star-tree-graph. The choice of the star-tree-graph is motivated by its
simplicity for presenting our results which are robust to any tree-graph
(see the discussion in Section 4). Formally, we consider an economy
formed by municipalities located at the nodes of a star-tree-graph. A
central government, the Departmental Authority in the case of France,
is involved in the costly provision of an emergency public service. The
emergency service has to be located in the graph. Only connected mu-
nicipalities are able to derive benefits from the joint provision. The mu-
nicipalities are characterized by distance-sensitive utility functions: the
quality of the service diminishes with the aggregate distance between
the municipalities and the location of the service.

In order to maximize welfare, the central government chooses the
location of the emergency service and the optimal provision. The optimal

(3) Gallastegui et al. [1997] have used a similar approach for a public good economy
with congestion.
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location is chosen so that the aggregate distance between municipalities
and service is minimized. To sustain the optimal provision, the central
government charges the Lindahl prices to the municipalities. Pricing
the emergency public service according to Lindahl generates benefits
that depend negatively on the degree in which the distance affects the
quality. Therefore, if the quality is strongly affected by distance, the
joint provision of the service may be inefficient in the sense that there
exists another structure of provision generating greater benefits to the
municipalities. But, whenever the joint provision is efficient, is there
any distribution of benefits that guarantees the sustainability of the
Lindahl equilibrium in the core of the economy? To answer this ques-
tion, we identify the benefits that each coalition of municipalities ob-
tains from the provision of the service with the characteristic function
of a TU-game. Hence, the nonemptiness of the core of the game deter-
mines the sustainability of the Lindahl equilibrium in the core of the
economy.

Our main results are the following ones. First, if the quality of
service is not affected by distance, the joint provision of the emergency
service is efficient. Moreover, the Lindahl equilibrium belongs to the
core of the economy. However, for public services affected by distance,
the joint provision is not always efficient. In this case, there exists a
minimum quality of service compatible with its joint provision. This
minimum or critical quality of service can be interpreted as the limit
value below which the positive external effect of the joint provision of
the service is dominated by the negative external effect: the distance.
Finally, for any quality of service below the critical one, the joint provi-
sion of the service is inefficient. Nevertheless, we are able to identify
the efficient and stable structure of provision for the emergency service.
The paper is organized as follows. In Section 2 we develop our public
good economy. Also, we determine the optimal location and provision,
as well as the Lindahl prices, for the emergency service. Section 3 is
devoted to determine the minimum quality level compatible with the
joint provision of the service. We also identify the efficient and stable
structure of provision for any quality level. In Section 4 we discuss some
assumptions. Section 5 concludes.

2 The model

We develop a public good economy formed by some peripheral mu-
nicipalities connected by means of a central municipality located in a
star-tree-graph. A central government, whose objective is to maximize
welfare, has to decide the location, provision and price of an emergency
public service the quality of which diminishes with distance.
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2.1 The location of the public service

Let us formalize the geographical setting. The central municipality
and the peripheral municipalities are located in the star-tree-graph
T = (N,E), where N is the finite set of nodes (or municipalities) and E
is the finite set of edges joining each pair of nodes. We denote by e;; € E
the edge joining (in both directions) the nodes i, j € N. A path between
any two nodes of IV is a sequence of distinct edges in E allowing both
nodes to be joined. Each pair of different nodes of N is connected by
exactly one path. The central node (central municipality) is directly
connected to each of the remaining nodes (peripheral municipalities)
The peripheral municipalities are connected by means of the central
one. An example of our geographical setting is given in Figure 1.

2

5
Figure 1: The geographical setting

Only connected municipalities have incentives to use the same
provider. A coalition § C N is connected if each pair of different nodes
in the (sub)graph (S,E(S)) is connected by exactly one path, where
E(S)={eij€ E|1i,j € S}. We denote by C (N) the set of all connected
coalitions. For each coalition § C N we denote by K (S) the set of all
components of S,

K(S)={S*C 8| 5" eC(N) and}5' > 5", § €C(N), S C S}

In words K (.S) is the set of largest connected subcoalitions in S.

Let d(i,y) be the distance between municipality i and a point
y € T. The distance between coalition S and a point y is defined
as the aggregate distance and denoted by d(S,y) = 3 ;csd(4,y). The
quality of the public service provided to a municipality is only negatively
affected by the aggregate distance between the set of municipalities and
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the location of the service. Therefore, for each connected coalition of
municipalities, the optimal location chosen by the government, whose
objective is to maximize welfare, is a point of the star-tree-graph that
minimizes the aggregate distance between the municipalities and the
service location. We denote by |S| the cardinality of S. Thus, for each
S € C(N), |S| = 2, the optimal location of the service is

¥ (9) glel;};sd(z,y)- (1)
The distance between coalition S and the optimal location of the service
is denoted by d(S),i.e. d(S)=d(S,y*(S)).

Let us illustrate the determination of the optimal location of the
service with the following example. Take N = {1,2,3,4,5} as the set
of municipalities and E = {ei2,e13,€14,€15} as the set of edges (see
Figure 1). Then, C (N) = {{1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4},
{1)5}s {1a2’3}9 {112a4}’ {1’2i5}’ {113’4}’ {1,315}; {1v4s5}, {1727314})
{1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {1,2,3,4,5}} . Notice that X(S) = S
if § € C(N),but K£(S) # S if S ¢ C(N). For example, K ({2,3,4}) =
{{2},{3},{4}}. Computing minyer 3, 5 d(i,y), we obtain the optimal
location for every connected coalition S in the star-tree-graph. For {N}
and all S € C(N) of cardinality 3 or 4, y* (S) is the central municipality.
For all S € C(N) of cardinality 2, y* (S) is any point between the two
municipalities. Obviously, for any coalition {i}, y* ({i}) is municipality
i,forall i e N.

2.2 The Pareto optimal provision and the Lindahl equilibrium

In addition to the solving of the problem of location of the public
service, the government has to decide the optimal provision of the public
service f financed by a private good z, as well as to settle the Lindahl
prices that municipalities have to pay for the provision of the service.
Consider an economy formed by a finite set N of municipalities and two
goods, one private and one public service. The public service is produced
using the private good according to a technology, ¢(f), which exhibits
decreasing returns and is given by the following quadratic cost function:

o(f) = £2/2. (2)

Each municipality : € S is characterized by an endowment of the private
good W; and the following linear separable-additive utility function:

ui(f,d(5), z1) = o (ﬁ)]—q) f+z, (3)

where f and 2; are the quantities of the public service and private
good consumed by municipality i. The parameter «; indicates the
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preferences of municipality ¢ towards the public service and the private
good. Remember that d(S) is te distance between S and the optimal
location, y* (S).) The parameter ¢ > 0 measures the degree by which
the quality of service is negatively affected by distance and g = 0 simply
means that distance does not influence quality at all. The term between
bracket in the utility function may be interpreted as the quality of
provision of the emergency service. It is reasonable to assume that
when a municipality is the only one to be attended by a provider located
in its own municipality, its utility for using the service is not affected by
distance. Without loss of generality, it reverts to assume that d({i}) =
1 for all i € N. Hence, for coalitions S, |S| > 2, we have that d(S) >
1. Note that in this model all municipalities are equally affected by
distance.

The Pareto optimal allocations are obtained by maximizing the
sum of utilities over all agents subject to the technological and feasibility
restrictions.(®) First order conditions ofthe solution of this problem yield
the Bowen-Lindahl-Samuelson condition: the sum of the marginal rates
of substitution of the public good for the private one must be equal to
the marginal rate of transformation of the public good for the private
one (which is the marginal cost of output in terms of input):

3 % = 8c/dfs.
es 1 1

In our model, for an economy consisting of any connected coalition S €
C (N) of municipalities, the optimal provision is given by
o(S)
f5= e, 4
) @
where o(S) = ) ;s ai.

It is well known that an optimal allocation can be attained as a
Lindahl equilibrium. Let us normalize to one the price of the private
good, and denote by b;(S, f3) the share of the provider benefits assigned
to municipality ¢ € S. Then, a Lindahl equilibrium is an allocation

) Qur choice of this utility function, taking into account the aggregate distance,
is well motivated to model the provision of emergency services. For example,
when a municipality ¢ € S requires the services of a fire station, firemen could
be attending any other municipality belonging to the same group S. In France,
an emergency unit as the centre de secours is able to do simultaneously two
or three fire-interventions (sources: Service Départemental d’Incendie et de
Secours du Haut Rhin, Colmar).

() The welfare function weights equally all the municipalities. Indeed, an egali-
tarian power distribution among the municipalities is assumed.
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(zf, f¥)ies € RISI x R and a system of personalized prices for the public
service (t});cs € RIS such that:

Y]
Foralli € S:e ot fS420 3 —m fo+ V (fs, z:) € R
DTN {2 rona fs +z ) i
S 7T )P ° *
s‘t' : t:fS + Z; g W’i + bt'(Sa fg))
(ll) 2 2
DS -f5 /22 tifs—fs/2 Vfs€Ry,
i€S i€S
(iii) .
Yo —f5/2=) Wy
€S i€s
where condition (i) requires that municipalities maximize utility, con-
dition (ii) requires that the provider of emergency service maximizes

benefits and condition (iii) indicates that the market clearing condition
is satisfied.

Having solved the system we obtain the Lindahl prices:

t; = ,i1€ 8. 5

AGK )
The Lindahl equilibrium benefits to be shared among the set of munic-
ipalities belonging to S are

2
BS) = Lu(5.55) = 5 (5o ) - ®)

and the equilibrium utility derived by each municipality i € S is given

by
U; (f.;?d(s),z;)=Wi+bi(s,f§)' (7)

The utility of each municipality : € S depends on the share of the total
benefits it obtains and on its initial endowment. Therefore, whether or
not the Lindahl equilibrium lies into the core of the economy formed
by the municipalities belonging to S, will depend on the benefits dis-
tribution among them. We precisely investigate this issue in the next
section.

3 The quality and the structure of provision

In order to know whether or not the Lindahl equilibrium is stable,
we identify the benefits, B(S), of each connected coalition of municipal-
ities S € C(N) with the characteristic function of the star-tree game
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(N, v), where the value of coalition S is given by:

1/ a(S*) ?
’U(S)= 5\ T77e19 forall SC N.
2 slEer)

Our star-tree game (N,v) is a cooperative game(® restricted to the
star-tree-graph T = (N, E), such that the value that a coalition S can
obtain, v (S), is the sum of the values of its components. This star-
tree game (N, v) depends on the parameter ¢ which determines, given
the aggregate distance, the quality of the service, [d(S)]™?. This fact
allows the relationship between ¢ and the nonemptiness of the core of
the game (N, v) (and hence the nonemptiness of the core of the economy)
to be studied. Precisely, we analyze to what extent the degree in which
the quality of service is affected by the aggregate distance prevents the
optimal joint provision of service. The joint provision simply means a
single provider for the whole economy.

3.1 The minimum quality of service

We determine the minimum quality of service that guarantees the
nonemptiness of the core of the game (N,v) and the stability of the
joint provision of the service. This minimum quality is a critical value
indicating when the external positive effect of the joint provision of the
service is offset by distance. In the game (N, v), the allocations z € R!V |
of the value v (N) belonging to the core of the game are given by:

C(N,v) = {z e RVl |z (N) =v(N) and z(5) > v(5) VS € C(N)},

where z (S) = 3. g z: and z; is the payoff of municipality i according
to z € RV, To verify whether or not an allocation belongs to the core of
the game (N, v), we have to check if the connected coalitions S € C(N)
receive at least their values, v(S). First, we consider the limit case
where the quality of the service is not affected by distance, and hence
g = 0. In this case, we show that the efficient and stable structure
of provision of the service is a single provider located at the central
municipality for the whole economy.

(6) Myerson [1977] introduced the graph-restricted games by assuming that only
players who can communicate with each other are able to cooperate. Our star-
tree game is a class of graph-restricted games.
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Proposition 1 If q = 0, then the core of the game (N, v) is nonempty.

Proof
For g = 0, the characteristic function of the game (N,v) is

v(S)= ) MforallSCN.

S*eK(S)

Function v{.) is convex and «(.) is a non-negative additive function.
Therefore, following Shapley [1971], the game (N,v) is convex and it
has a nonempty core. a

However, we can easily find values of q large enough for which
the core of the game (NV,v) is empty. The following numerical example
illustrates this eventuality.

Example 1 (core is empty) Let N = {1,2,3,4} be the set of munic-
ipalities located in the nodes of a star-tree-graph: municipality
1 is the central node connected with the remaining nodes. Let
a; = 2 for all i € N. The distances among the municipali-
ties are: d(1,2) = 2.25, d(1,3) = 1.5, d(1,4) = 2.75 and the
impact of the distance on the quality of the service is ¢ = 0.5.
The characteristic function v is: v(1) = v(2) = v(3) = v(4) =
2, v(12) = 3.55, v(13) = 5.33, v(14) = 291, v(123) = 438,
v(124) = 3.6, v(134) = 4.23, v(1234) = 4.92, and the sum of
the values of its components for non-connected coalitions. Since
v(123) 4+ v (4) = 6.8 > v (1234) = 4.92, the core of the game (N, v) is
empty.

Nevertheless, there exist values of ¢ > 0 such that the core of the
game (V,v) isnonempty. Setting ¢ equal to 0.2 in our previous Example
1, illustrates this fact.

Example 2 (core is nonempty) Considering Example 1 and setting
now ¢ = 0.2, the characteristic function of the game (N, v) reverts
to: v(1) =v(2) =v(3) =v(4) =2, v(12) = 5.78, v(13) = 6.8,
v(14) = 5.34, v(123) = 10.61, v(124) = 9.45, v(134) = 10.09,
v (1234) = 15.13, and the sum of the values of its components for
non-connected coalitions. It is easy to verify that the allocation:
1 =4.51, zo = 3.52, z3 = 3.84, =4 = 3.26, is in the core.

Which is the minimum quality of service that guarantees the effi-
ciency or stability of the joint provision? The next proposition answers
this question. Let us denote by P (N) the set of partitions of N formed
by connected coalitions. An element of this set is denoted by P.
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Proposition 2 The core of the game (N,v) is nonempty if and only if
q < q* where

= min
{ {
Proof

Proposition 2 is proved in four steps. But first we recall a few well-
known definitions. Let N be a set of players and let B be a collection
of nonempty sets. Define B; = {Se€ B|i€ S} foralli e N. B is
said to be a balanced collection of sets if there exist positive numbers
(As)gep suchthat 35 As=1foralli€ N. Abalanced collection not

containing a balanced subcollectlon is called minimal.

> le(S)? [‘;((1;)] = [a(N))? forallP(—:P(N)}

SepP

Step 1. A necessary and sufficient condition for any game (N, v) to have a
nonempty core is that

N2 S s 0(5) (8)

for every minimal balanced collection B (see Theorem X.5.1 in
Owen [1995]).

Step 2. Demange [1994] has shown that any balanced family of connected
coalitions in a tree-graph contains a partition (Lemma 2 in De-
mange [1994]).

Step 3. Step 1 and Step 2 allow us to rewrite the conditions (8) of Theorem
X.5.1 of Owen [1995] for tree-games as:

v(N)2 ) As-v(S) forall Pe P(N) withAg =1forall S € P.
SepP
9

Step 4. Therefore, the conditions (9) for our star-tree game (N, v) are:

WP (V) > s;% (e (SIS forall P& P(N).
(10)
Reordering, we obtain:

P> Y [(S)? [Lﬂ)] forall PeP(N). (1)

SepP
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Note that [d (V) /d(S)] increases with ¢ since d (N) > d(S) for all
S C N. This fact implies that if for a given partition P there exists
a value § such that

e > S [al(s [d(N)’]Qq,

SeP

then, this inequality holds for any value g < §. Thus, the value

=mm{ S () [ N)]?" o (V)2 VPEP(N)}

Sep
guarantees that the core of the game (¥, v) is nonempty Vg < ¢*
Consider now that ¢ > ¢*. In this case, we have that

Z[ (S))? [ N)]2q>[a(N)]2 for some P € P(N),

sep d(S)
and hence, for such partition P € P (N),
v(N) <Y v(S).
SepP

Then, the game (N, v) has an empty core. Therefore, any star-tree
game (N,v) has a nonempty core if and only if ¢ < ¢*. O

Asthe quality of service {d (S5)] 7 is smaller the bigger is parameter
q, for values of ¢ > ¢*, the external positive effect of the joint provision
of the service is offset by distance. Let us illustrate Proposition 2 with
a numerical example.

Example 3 (minimum quality) Consider the game in Example 1 .
Computing the critical values of ¢ given by conditions (11) for each
partition of P (V) we obtain:

Partition q

{{123}, {4}} 0.31
{{124}, {3}} 0.42
{{134}, {2} 0.36

{{12}, {3}, {4}} 0.35
{{13}, {2}, {4}} 0.30
{14}, 2}, 3} 0.8
{1}, {2 (3, {4} o7
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Therefore, ¢* = 0.30. The game (N,v) we obtain for ¢* = 0.30 is:
v(1)=v(2) =v(3) =v(4) =2, v(12) = 4.92, v(13) = 6.27, v (14) =
4.36, v(123) = 8.14, v (124) = 6.85, v (134) = 7.55, v (1234) = 10.41,
and the sum of the values of their components for non-connected
coalitions. Note that the allocation: z; = 3.595, 23 = 2, 73 = 2.675,
z4 = 2, verifies the core conditions.

3.2 The stable geographical structure

Whether or not the joint provision is efficient, we are able to de-
termine the structure of provision compatible with any degree of qual-
ity, even for ¢ > ¢*. Next proposition establishes that, for any game
(NV,v), there always exists at least a stable partition P € P (N), which
represents the efficient and stable geographical structure of provision.
Aumann and Dréze [1974] analyze games with coalition structure. A
coalition structure P on N, is a partition of N. A game with coali-
tion structure P is a triple (V,v, P). The core of a game with coalition
structure (N, v, P) is defined as C (N,v,P) = {x € Rl | z(S) > v(S)
VS C N, z(Sk) = v(Sk) VSx € P}. A coalition structure P is sta-
ble whenever C (N,v, P) # @. Let P* = maxpep(n) D_gep v (S) be the
partition of maximum value.

Proposition 3 Let g be any positive number. Then, there exists at least
a partition P € P (N) such that C(N,v,P) # 2.

Proof

We distinguish two cases.

(i) case 1: 0 < ¢ < g¢*. Since C(N,v,{N}) = C(N,v), by Proposition 2
we have that C (N,v,{N}) # @.

(ii) case 2: ¢ > ¢*. To prove that there exists a stable coalition structure
in this case, we select an allocation and we show that it lies into the
core of the partition of maximum value P*. Note that, in a star-tree
game, any coalition S € C(N) of cardinality |S| > 2 contains the
central node. (Hereafter player 1 denotes the central node). Hence,
any partition P € P (N) takes the form P = {{S},{i},...,{4§}}, 1 € S
and ¢ # j # 1. Now, consider the following allocation z € RIVI:
z; = v({i}) for i € N\{1} and z1 = ¥ 5cp. v(S)— ;e 1) v ({i}) . Note
that allocation z satisfies z(S) = v(S) for all § € P*. Furthermore,
suppose that, for some T # S, § € P*, T C N with |T| > 2 we have
z(T) =Y gep-v(S) — ZieN\{l} v({i}) + ZieT\{l} v ({i}) < v(T). Since
V(1) + Xiemr v ({i}) < Xsep- v(S), we have z(T) > v(T). Therefore
v(T)<z(T) foral TC N. O
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The next numerical example illustrates Proposition 3.

Example 4 Let N = {1,2,3,4,5} be the set of municipalities located
at the nodes of a star-tree-graph, with a; = 2 for all i € N; the
distances are d(1,2) = 1.2, d(1,3) = 1.2, d(1,4) = 1.8, d(1,5) =
2.2; and g = 0.4. The characteristic function v is v (1) = v (2)
v(3) = v(4) = v(5) = 2, v(12) = 6.91, v(13) = 6.91, v(14) =
5, v(15) = 4.26, v(123) = 8.93, v(124) = 7.47, v(125) = 6.76,
v(134) = 7.47, v(135) = 6.76, v (145) = 5.94, v(1234) = 10.15,
v (1235) = 9.4, v (1245) = 8.56, v (1345) = 8.56, v (12345) = 11.32,
and for the value of non-connected coalitions the sum of the values
of its components. In this example the partition of maximum value
is P* = {{123},{4},{5}} and )} gcp.v(S) = 12.93. The allocation
z; = 2 for all i € N\{1} and z; = 4.93 is in the core of the game
(N,v, P*). In other words, the stable geographical structure for
the provision of the service requires three points of provision, one
for each of the following coalitions: {123}, {4}, and {5}. The
service for coalition {123} will be located in the central node or
municipality.

4 Discussion

Before concluding we comment upon some of the main assump-
tions of the model. Section 4.1 contains a brief discussion about the as-
sumption that the municipalities are only differentiated through their
locations. In Section 4.2 we point out that our results are robust to a
more general geographical setting. Finally, Section 4.3 is devoted to the
class of public services that fits our model.

4.1 The size of the municipalities

We have analyzed a situation in which a central government has
to decide on the provision and location of an emergency public service
in order to maximize welfare. This emergency service has to attend a
group of identical municipalities, which are only differentiated through
their locations. In other words, it is assumed that the municipalities
have the same size, the same power of decision in sharing the benefits,...
Nevertheless, we argue that our results do not change qualitatively once
the size or power of the municipality is taken into account. One way
to differentiate the municipalities relatively to their size or power is
to weight the distance separating them. In this case, the aggregate
distance between a coalition of municipalities and a location of the
service is defined as a weighted sum of the individual distances in
which the weight of each municipality represents its relative size or
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power. This case has been studied in an extended version. By comparing
our egalitarian distribution of power with a distribution in which more
weight is given to the central municipality, we found that the minimum
quality of service necessary for the efficiency of the joint provision is
smaller the more powerful (or the bigger) is the central municipality.

4.2 The geographical setting

For sake of simplicity we have presented our results using, as
geographical setting, a star-tree-graph. Indeed, our results obtained for
this radial geographical structure are robust to any other tree structure.
For example, to compute the minimum quality of service compatible with
the joint provision of service (Proposition 2) we have only to take into
account the partitions of N formed by the different connected coalitions
of municipalities. Moreover, Grafe et al. [1998] have shown that, for the
class of tree games, the efficient coalition structure is always stable (in
the sense that the core of the game associated to that efficient coalition
structure is nonempty) (Proposition 3).

4.3 The emergency public services

We have restricted our analysis to the class of emergency public
services. Therefore, we have assumed that the utility function of any
municipality depends negatively on the aggregate distance between
the coalition it belongs to and the service location. Nevertheless, our
model can be easily adapted to analyze the provision of other classes
of public services (hospitals, schools...). In these cases, the utility
function of each municipality also depends on the distance between
the municipality and the location of the service. But then, the optimal
location would not be invariant to the specification of the government
welfare function.

5 Concluding remarks

Up until now, the existing models on public services in which dis-
tance has a role, have developed powerful algorithms in order to solve
locational-allocation aspects. In this type of literature a-priori levels
of provision are assumed, putting aside decision problems such as the
determination of the optimal provision and pricing (see e.g. Granot
[1987]). Lea [1983] presented an evaluation of these models and pointed
out the convenience of studying the locational-allocation aspects within
the scope of the theory of public goods. This is precisely what we have
done in this paper.

We have considered an economy in which a central government
has to decide on the location and provision of an emergency public
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service the quality of which diminishes with distance. We have derived
the optimal level of the service and the Lindahl prices that sustain it.
Since we have assumed convex technology of production the optimal
provision of the service generates benefits, the distribution of which
remains to be solved. To this respect, a question we have answered
is whether there exists a distribution of benefits sustaining the optimal
level of service so that joint provision is stable. A distribution of benefits
capable of sustaining the joint provision of services may not exist when
the distance affects quality too strongly. Also, we have determined
the minimum quality that allows the sharing of benefits to sustain the
optimal provision.

But, if the quality of service does not permit the joint provision of
the emergency service, alternative structures of provision are required.
We have shown that for any quality of service there always exists a
stable structure determining the points of provision for the emergency
public service.
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